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Abstract— An environment acoustic model represents
how sound is transformed by the physical characteristics of
an indoor environment, for any given source/receiver loca-
tion. Traditional methods for constructing acoustic models
involve expensive and time-consuming collection of large
quantities of acoustic data at dense spatial locations in the
space, or rely on privileged knowledge of scene geometry
to intelligently select acoustic data sampling locations. We
propose active acoustic sampling, a new task for efficiently
building an environment acoustic model of an unmapped
environment in which a mobile agent equipped with visual
and acoustic sensors jointly constructs the environment
acoustic model and the occupancy map on-the-fly. We intro-
duce ActiveRIR, a reinforcement learning (RL) policy that
leverages information from audio-visual sensor streams to
guide agent navigation and determine optimal acoustic data
sampling positions, yielding a high quality acoustic model
of the environment from a minimal set of acoustic samples.
We train our policy with a novel RL reward based on infor-
mation gain in the environment acoustic model. Evaluating
on diverse unseen indoor environments from a state-of-the-
art acoustic simulation platform, ActiveRIR outperforms an
array of methods—both traditional navigation agents based
on spatial novelty and visual exploration as well as existing
state-of-the-art methods.

I. INTRODUCTION

The acoustic properties of the sounds a mobile agent
hears are determined by the physical characteristics
of the space it is in, such as the room’s geometry,
the objects within it, the types of materials that com-
prise the room and objects’ surfaces, and the agent’s
proximity and orientation with respect to the sound
source. Consider a conversation with someone stand-
ing across a large auditorium or gym, compared to
the same conversation sitting a few feet apart in a
small, carpeted living room; Large spaces with hard
surfaces (e.g. concrete, glass) will add reverberation to
audio, while small, cluttered spaces covered in soft
materials (e.g. curtains, carpet) absorb sound waves
quicker, producing dull and anechoic audio. These
physical properties transform any sound emitted from
a source location in the environment according to vari-
ous acoustic phenomena, including direct sounds, early
reflections, and late reverberations, before it reaches our
ears. Together, these phenomena form a Room Impulse
Response (RIR), which characterizes the transfer func-
tion between a sound emitted at the source location and
the sound that reaches a microphone or our ears [1].
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An environment acoustic model is a complete represen-
tation of a scene’s acoustics [2], [3], [4], [5], [6]. Given
a sound source location and a listener’s position and
orientation (pose) as a query, the model renders the
corresponding RIR, accounting for all major acoustic
phenomena due to the physical properties of the space.

Environment acoustic models are critical for robotics.
In mobile robotics, an environment acoustic model can
provide rich contextual information to an agent. Tasks
such as navigating to a target sound [7] and separating
out a sound of interest from background sounds [8],
[9] require an agent to decide where to move based
on the audio it hears. An agent equipped with the
environment acoustic model can better anticipate the
effects of its movement on the observed audio. In
AR/MR applications, acoustic models allow a virtual
sound source (such as a human speaker) inserted at a
position in the user’s real-world space to sound prop-
erly spatialized with acoustics that match the space, as
the user moves around their environment.

Capturing an RIR is a physically involved process. A
loudspeaker must be placed at the desired height and
location, and a microphone setup placed at a similar
height at the desired receiver location and orientation.
The speaker emits a sound impulse, and the receiver
microphone(s) record the resulting RIR, which can last
several seconds.

Existing methods for environment acoustic modeling
assume extensive physical access to the environment in
order to collect these RIRs at arbitrary positions. Neural
Field methods [3], [10] require large quantities of RIRs
captured at dense source/listener locations (approx.
every 1 meter) throughout the environment, which
can be expensive and time-consuming. A few-shot ap-
proach [2] overcomes the intensive data requirement,
building acoustic models of novel environments from
a limited number of observations, but still requires
extensive knowledge of the floorplan in order to sample
uniformly spaced locations around obstacles. Other
methods rely heavily on knowledge of the scene geom-
etry from 3D meshes [4] or floorplans [6]. Importantly,
these methods all assume instantaneous access to obser-
vations at arbitrary positions in the environment, which is
unrealistic in the embodied robotics context—where an
agent must physically travel between locations—and in
unmapped environments where no prior knowledge of
the floorplan and obstacles is available.

We introduce active acoustic sampling, a new task that
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Active acoustic sampling. An agent must intelligently navigate an unmapped 3D scene and actively sample audio-visual observations

(the scene’s acoustic context) to construct an acoustic model of the environment, given limited navigation time and a fixed sampling budget.
When queried with an arbitrary sound source position and receiver pose in the space, the learned environment acoustic model should
accurately generate the corresponding Room Impulse Response (RIR) at that pose.

requires a single mobile agent with audio-visual sens-
ing to efficiently construct an unmapped environment’s
acoustic model within a total budget of acoustic sam-
ples, despite only on-the-fly discovery of its floorplan.
The proposed problem is distinct from traditional vi-
sual exploration [11], [12], [13], where agents prioritize
motions in a scene to rapidly complete the occupancy
map. While in floorplan mapping the best places to
reach are those that add visibility to the widest floor
area, in acoustic modeling the most valuable poses
(sampling spots) in the environment depend on all
aspects of the 3D geometry and surface materials.

To address this challenge, we present ActiveRIR, an
active sampling policy that can be deployed on mobile
agents in environments that are both unseen and un-
mapped. ActiveRIR is trained with a novel audio-visual
exploration reward to guide wide agent exploration
and inform the agent’s decision on when to sample an
acoustic observation, within a budget of total acoustic
samples. Our acoustic reward measures the global im-
provement in the agent’s environment acoustic model
estimate after an observation is sampled, ensuring that
the limited context used to build the environment
acoustic model contains only the most valuable obser-
vations seen by the agent during its exploration.

Evaluating on a diverse set of unseen and un-
mapped scanned real-world 3D indoor environments
together with state-of-the-art (SOTA) acoustic [14] and
visual [15] scene simulation platforms, ActiveRIR pro-
duces a higher-quality acoustic model in >70% fewer
steps than passive approaches, and outperforms both
traditional visual and spatial exploration-based meth-
ods [16], [11], [13], [12] as well as SOTA scene acoustic
modeling methods [2]. We also demonstrate that the
performance gain achieved using ActiveRIR-collected
observations generalizes across multiple acoustic ren-
dering methods, showing promising potential for Ac-
tiveRIR to be plugged as a module into existing acoustic
rendering methods and improve the quality of gener-
ated environment acoustic models.

II. RELATED WORK

A. Environment acoustics and mapping

Estimating room acoustics from images of indoor
scenes has been widely explored, including explicit
RIR estimation from images [17], [18] as well as meth-
ods that model its acoustic transformation on source
sounds or speech [19], [20], [21], [22], [23]. While these
methods can produce audio that perceptually matches
the general acoustics of the space (e.g. a concert hall
vs. bedroom), they cannot reason about fine-grained
acoustic effects of shifts in speaker or listener pose
within a visual scene.

Audio field coding approaches [24], [25], [26] esti-
mate generic perceptual RIR features using parametric
sound field representations that model spatial relation-
ships between acoustics at different positions. Recent
approaches use Neural Fields to generate RIRs [3] di-
rectly, though they still require large-scale acoustic data
(>10k samples) from dense spatial locations, and the
learned model cannot generalize to other environments.

A transformer-based approach produces an acoustic
model of an unseen environment given limited acoustic
data sampled randomly from the floorplan [2]. Other
GNN-based approaches generate RIRs given a full 3D
scene mesh and dataset of acoustic material coeffi-
cients [4], [5]. These methods rely on prior knowledge
of scene geometry, and assume the ability to instan-
taneously access visual and acoustic observations at
selected positions in the space. Access to this privileged
information—as well as the ability to teleport to new
locations without penalty—are significant assumptions
that are unrealistic for robots. In principle, the pro-
cess that produced a pre-computed floorplan map or
mesh could have also pre-computed the acoustic model
with densely sampled observations using minimal ad-
ditional time or energy. In short, assuming access to
full scene geometry but not complete RIRs as well fails
to capture real-world constraints in robotics.



B. Audio-visual navigation and exploration

Equipping mobile agents with sound production and
audio capture has led to a proliferation in audio-visual
embodied tasks, such as audio-visual sound source
separation [9], [8], audio-visual navigation [27], [7],
[28], [29] and audio-visual floorplan mapping [30],
[31]. A mobile audio-visual agent can decide where
to emit and receive acoustic observations to help with
floorplan mapping [32]. While mapping the floorplan
requires dense exploration of the space and its fron-
tiers, we hypothesize that an accurate environment
acoustic model of the same space can be built with
far fewer acoustic observations sampled intelligently
at select locations. Prior work [33] trains a policy to
construct an environment acoustic model that relies on
two mobile agents: an "emitter" emits an impulse sound
and the "receiver" records the RIR. The agents navigate
according to a local acoustic reward that measures
the predicted RIR error at the agents’ next position.
However, unlike our global formulation, movement
to minimize local acoustic prediction accuracy often
prevents the agent from navigating towards areas with
challenging and dynamic acoustics (e.g. hallways with
turns and corners), hurting performance (see Sec. V).

III. ACTIVE ACOUSTIC SAMPLING TASK

We introduce the task of active acoustic sampling. The
goal of this task is to train a mobile agent to navigate
an unmapped 3D environment (such as a home or
office) and intelligently sample egocentric audio-visual
observations ("acoustic context") within a predefined
sample budget and time budget, such that a acoustic ren-
dering model conditioned on this context can produce
accurate and high-fidelity RIRs given arbitrary query
source/receiver poses. Each audio-visual observation
consists of the agent’s egocentric RGB-D image and an
echo response, namely an RIR obtained by placing the
sound source and receiver microphones at the loca-
tion of image capture, emitting a sinusoidal frequency
sweep signal and recording the echoes [2]. See Fig. 1.
Our sample budget is much lower than the timestep
budget for navigation, requiring the agent to carry
out the memory-intensive [33] task of capturing and
storing echo responses only at a select few locations
most valuable for the global scene acoustic model. The
audio sampling is preemptive, i.e. the model decides to
choose or skip an audio sample before capturing it.

Formally, given navigation time budget 7" and au-
dio sample budget N < T, the agent must navigate
an unmapped scene and collect audio-visual samples
C = {C;}N, where C; = (A;,V;, P;). A; denotes the
binaural (two-channel) echo response, and V; is the
90° FoV RGB-D image captured at the camera pose
P, = (z;,y:,0;) at location (z;,y;) and orientation 6;.

Using C as the context, the agent must infer the
scene’s environment acoustic model, such that it can
accurately estimate the RIR R® for arbitrary query

Q = (sj,1), where s; = (z;,y;) is an omni-directional
sound source at location (z;,y;), and Iy, = (x, Yk, k)
is the receiver microphone pose. Thus, the task ob-
jective is to learn a policy 7 that guides our agent
towards acoustically informative locations in the scene
and helps it decide where to sample audio-visual
observations to add to the acoustic context C, such
that a acoustic rendering model f conditioned on C
approximates the ground-truth RIR R for an arbitrary
query Q, or R® = f(Q|C). At each time step t, where
1 <t < T, the policy can take action oy € A,
where A4 = {.MoveForward, TurnLeft,TurnRight} X
{Sample, Skip} is the agent’s action space.

This task relies on context cues from both audio and
vision. RGB-D images capture local room geometry,
the presence of furniture/obstacles, and the materi-
als of surfaces in view, while acoustic observations
help the agent associate these physical properties with
their acoustic effects on an emitted sound. Audio
also captures longer-range room geometry beyond the
agent’s current FoV, which vision cannot. Exploiting
this visual-acoustic correspondence is key in helping
the agent decide how to move and where to Sample an
acoustic observation.

IV. ArproacH

We pose the task as a reinforcement learning prob-
lem, where a model sequentially decides where to
sample audio-visual observations given visual RGB-
D frames and previously sampled audio!, and the
environment acoustic model is built from this collected
context. We propose ActiveRIR, which consists of 1) an
audio-visual sampling policy 7, and 2) a neural acoustic
rendering model f for predicting scene acoustics using
the samples. See Fig. 2. Next, we describe these com-
ponents in detail.

A. Audio-visual sampling policy

1) Policy inputs and architecture: At every time step t,
our audio-visual sampling policy 7 receives O, as the
input and decides how to move in the environment,
and whether to capture and add the echo response at
the current step to our acoustic context (i.e., Sample or
Skip). Formally, O, = (A;—1,V,, P,), if the echo response
was sampled at the previous step, and O; = (V;, P,) if it
was skipped. Before encoding O,, 7 pre-processes V; to
generate V" = (VX VM), where V;* is the RGB image
from V;, and V; is a topdown global occupancy? map.
Note that the map begins empty and accumulates as the
agent selects its motions.

First, we feed A;_; (if sampled), V;" and P; to sep-
arate encoders and extract audio features a;_1, visual

TAll audio inputs to our model are represented as two-channel
magnitude spectrograms computed using the short-time Fourier
transform (STFT) [2].

2V, M is produced by projecting the current and past depth images
VP, to the egocentric ground plane and stitching together these
projections into a cumulative map of the scene.
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Fig. 2. ActiveRIR policy network architecture and reward. At each step ¢, our policy 7 receives an egocentric visual input V4, the camera
pose P, and the binaural echo response A;_1—if it was sampled by the policy at the previous step—and predicts an action «a; that decides
both how the agent should move, and if it should sample the current echo response A;. It then uses A; along with the current visual input
Vi to improve its acoustics prediction quality. Given these audio-visual samples ("Context") collected over an episode, the agent uses an
off-the-shelf acoustic rendering model to predict the RIR for any arbitrary query pair of sound source and receiver locations. We train our
policy with an audio-visual reward which encourages healthy exploration of the scene in search of acoustically important locations, and
guides the agent when to sample highly valuable observations, subject to a maximum audio sample budget.

features v; and pose features p;. The visual and au-
dio encoders are ResNets [34], and the pose encoder
is a sinusoidal positional embedding [35]. Next, we
concatenate a;_1, v; and p; into o; and feed it to the
policy network, which consists of an RNN and an actor-
critic module. The RNN estimates an updated history
h: along with the current state representation g¢;, using
the fused feature o; and the history of states h;_;.
The actor-critic module takes g; and h;—; as inputs
and predicts a policy distribution 74 (a|g, t, ht—1) along
with the value of the state Hy(g:, ht—1). Finally, the
policy samples an action o, from its action space A
(c.f. Sec. III) per the distribution .

2) Policy reward: We propose a novel RL reward to
train our policy =:

re=Aa ki 4+ Ay ) + A xrV. (1)
Here r{* is our novel Acoustic Prediction reward, which

measures improvement in the environment acoustic
model from the previous step ¢ — 1 to the current step
t if audio was sampled, and is given by

A _ R R
ry =L — L

, where L' is the mean L1 distance between the
predicted and ground-truth RIR magnitude spectro-
grams for a fixed set of K query positions selected from
throughout the (training) scene, at step t. r7* is zero at
the steps where the policy decides not to sample; thus it
encourages the agent to sample an acoustic observation
when the agent is at a position that will improve the global
acoustic prediction quality.

Since this sparse reward can impact the stability of
RL training, we augment r7* with an area-coverage
reward [36] rY = (V; — V;_1)/Vi—1 that measures the
relative increase in area coverage over time, where V;

and V;_; are the total area covered by the agent at
steps t and t — 1, respectively. We also add a novelty

reward [12], [16], [11] =V = m, where n(m;) is
the visitation count at 1x1 meter discretized floorplan
grid cell m;. Ay and Ay are the respective reward
weights. Whereas 7} rewards the agent for taking
actions that expose new areas of the scene to the agent,
rV incentivizes increasing the visitation count of novel
locations in the scene. 7} and ) together promote
a healthy exploration of the scene, which is crucial
for learning a good policy, and also encourage stable
RL training owing to their dense nature. We train =
using Decentralized Distributed PPO (DD-PPO) [37].
The DD-PPO loss consists of a value loss, policy loss,

and an entropy loss for further improving exploration.

B. Acoustic rendering model

Our sampling policy design is agnostic of the de-
sign of the acoustic rendering model f, providing the
flexibility of using our policy with any off-the-shelf
rendering model that can take audio-visual samples
as inputs and predict the RIR R¥ at a source-receiver
query @ in the scene (c.f. Sec. III). We use FewShot-
RIR (FS-RIR) [2] as our rendering model backbone,
due to its state-of-the-art performance. We also evaluate
ActiveRIR’s ability to generalize in experiments with a
second backbone, NAF [3] (c.f. Sec. 5). Given audio-
visual samples from a scene, FS-RIR uses a trans-
former [35] encoder to build an acoustic context of the
scene, followd by a transformer-decoder to predict the
RIR for an arbitrary source-receiver query using the
acoustic context. We pre-train the acoustic rendering
model f in a disembodied fashion—without a sampling
policy—randomly selecting observations from a scene
to add to the acoustic context. Next, we train our policy
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ActiveRIR vs. Uniform sampling. The ActiveRIR agent (far left) navigates an environment and actively samples observations,

collecting context (left) from regions of the environment where acoustics rapidly change—such as in a winding hallway—and which are
visually and acoustically distinct from other samples in the context. In contrast, an agent passively sampling at a uniform interval (right)
collects an acoustic context (far right) with spatial and visual redundancy, as observed by the bottom two images which show similar views

of the same room captured only 1 meter apart.

with RL while keeping f frozen. This helps improve RL
training stability by ensuring stationarity in the reward
distribution (c.f. Sec. IV-A).

V. EXPERIMENTS
A. Experimental setup

We use the state-of-the-art SoundSpaces (SS) 2.0 [14]
acoustics simulator, built on top of the Al-Habitat [38]
simulator and Matterport3D (MP3D) [15] scenes. MP3D
consists of photorealistic scans of diverse, real-world
multi-room indoor environments complete with furni-
ture and other objects (e.g. tables/sofas/desks/lamps).
SS 2.0 supports continuous rendering of precise spatial
audio in arbitrary 3D scenes, capturing all major acous-
tic phenomena [14]. We use 78 diverse MP3D scenes,
split into train/val/test sets of 56/10/12, preserving
diverse scene types and sizes within each split. We train
our policy for 150K PPO iterations and validate/test
on 123/225 inference episodes respectively sampled in
proportion to scene sizes within each split.

We place the agent at a random location in a scene at
the start of every episode. We set T" = 200 to account for
the minimal time needed to traverse an average scene
average in Matterport3D [15], and set the audio sample
budget to N = 20 samples to match the context size
used in FS-RIR [2]. We set A4 = 2x10%, Ay = 2x10% and
An =10.0 to place the component rewards on the same
scale. The agent has turn and movement resolution
90° and 1 meter respectively. We evaluate performance
with STFT L1 Error (STFT) [2], [19], which measures
mean L1 error between predicted and ground-truth RIR
magnitude spectrograms at K = 60 global query poses
per scene, sampled randomly at the scene level.

B. Baselines

Random agent: an agent that chooses an action
from our action space A randomly. Forward agent: an
agent that only moves forward, sampling observations
uniformly (every % steps). Greedy agent: an agent that
navigates randomly, and greedily selects the first N
observations on its path.
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Forward
0.025 Uniform (V+N+A)
s —— Active (V+N+A)
= 0.020
w
T
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0.010
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0 10 21 31
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Fig. 4. Acoustic prediction quality vs timesteps. ActiveRIR (purple)
rapidly minimizes STFT error in the acoustic model in fewer steps
than an acoustic agent sampling at a fixed interval (orange), and
outperforms heuristic approaches as well.

VI. ResuLrs

Table I shows acoustic prediction performance on
unseen test environments. ActiveRIR significantly out-
performs naive approaches (Greedy, Forward, Ran-
dom). Fig. 4 displays STFT error as a function of
the agent’s steps. ActiveRIR (purple) efficiently navi-
gates toward and captures valuable acoustic observa-
tions that rapidly minimize STFT error in the acoustic
model, compared both to a passive-sampling audio-
visual agent which samples every L steps ('Uniform",
orange) as well as an array of heuristic approaches.

1) Model analysis:

a) Reward variations: To evaluate the impact of our
Acoustic Prediction reward, we train active policies
with ablations of our audio-visual reward (Table II).
We outperform Coverage (V) and Novelty (N) agents
as well as the Exploration agent (V+\), which was
trained with only the spatio-visual component of our
audio-visual reward (c.f. Sec. IV-A.2), validating the im-
portance of acoustic information in the agent’s decision
to Sample an observation beyond what can be inferred
from visual and/or spatial sensory information alone.
We also significantly outperform a passive audio-visual
agent (Uniform), confirming that actively determining
when to sample plays a critical role in collecting valu-
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Fig. 5. Active sampling with existing methods. (Left) NAF [3]
trained on ActiveRIR-collected context outperforms NAF trained on
context collected by a random policy, demonstrating ActiveRIR’s
ability to select valuable acoustic context agnostic of the acoustic
rendering model. (Right) As we grow the context size, ActiveRIR
samples high-value observations that rapidly improve global scene
acoustic error, producing a final acoustic model with significantly
lower error than FS-RIR [2].

able acoustic context beyond simply navigating towards
acoustically and visually novel areas. Inspired by [33],
we evaluate a local variant of our acoustic reward,
defined as the improvement in the RIR prediction error
for a query closest to the agent’s current position.
We outperform this local acoustic agent, demonstrating
that our global acoustic reward helps collect samples
most valuable for global acoustic model.

b) Pose sensor noise: We evaluate ActiveRIR’s ro-
bustness to Gaussian noise in pose and actuation. STFT
error only increases from 8.08 x 1073 to 8.10 x 1073,
highlighting the effectiveness of our design choices.

2) Comparison with SOTA: Fig. 5 compares ActiveRIR
to SOTA methods without embodiment and navigation
budget. First, we compare against FS-RIR [2], which
collects samples randomly throughout the environment
(Fig. 5, right). Despite initial progress, FS-RIR plateaus
as the episode progresses, while ActiveRIR continues
selecting highly-informative samples that further re-
duce STFT error. Importantly, ActiveRIR produces a
final acoustic model with significantly lower error than
FS-RIR, despite FS-RIR's prior knowledge of the floorplan for
randomly sampling observations. Furthermore, to achieve
the error of ActiveRIR, FS-RIR needs to acquire a
context length of 86 samples, more than 4x the samples
required for our model. While randomly sampling from
throughout the space may outperform our policy in
high-resource regimes, ActiveRIR strongly outperforms
FS-RIR in cost-efficient settings with restrictive time
or sample budgets—which are practical considerations
when considering physical constraints on access/time
spent in the space, and the intrusive nature of emitting
a sound impulse.

To determine the value of acoustic context collected
by ActiveRIR agnostic of the acoustic rendering model
f, we train two Neural Acoustic Field (NAF) [3] models
on the test scenes using 1) ActiveRIR-collected context
and 2) context collected by a random policy, and eval-
uate mean STFT error across 100 query poses sam-
pled randomly from throughout the scene (Fig 5, left).
The ActiveRIR-trained NAF consistently outperforms

Policy | STFT Error |
Greedy 14.46
Forward 14.68
Random 13.04

ActiveRIR (V+N+A) | 8.08
TABLE I

ACOUSTIC PREDICTION PERFORMANCE. REPORTED IN BASE 1073.

Reward | Sampling | STFT Error |
V+N+A Uniform 8.24
% Active 8.15
N Active 8.11
V+N Active 8.15
V+A Active 8.21
N+A Active 8.15
V+N+A (local) Active 8.11
V+N+A Active 8.08

TABLE 11

REWARD VARIATIONS IN AcTIVERIR. REPORTED IN BASE 1073,

NAF trained on the random policy’s collected context,
demonstrating that ActiveRIR collects a rich, generaliz-
able acoustic context and is flexible with respect to the
acoustic rendering model.

3) Qualitative analysis: Fig. 3 visualizes the impor-
tance of active sampling. ActiveRIR captures audio-
visual samples in areas where acoustics can dynami-
cally change, such as winding hallways (far left), while
also ensuring that the context is spatially and visually
distinct, as can be observed by the diverse views in
the active context (left). In contrast, a passive agent
(right) does not actively avoid capturing redundant
observations (bottom two images), and collects samples
in the main cavity of the scene where acoustics are
relatively stationary between nearby poses. Also see
submitted video.

VII. CONCLUSIONS

We propose a new task, active acoustic sampling, in
which an agent must navigate an unmapped environ-
ment and collect audio-visual samples to construct a
model of the scene’s acoustics within a given time
and sample budget. We propose an active sampling
policy trained with a novel audio-visual exploration
reward which guides an agent to navigate towards
and select high-value audio-visual samples that yield
a high-quality acoustic model. Our policy outperforms
passive approaches in >70% fewer timesteps, and out-
performs robust visual and spatial exploration agents
as well as SOTA environment acoustic modeling meth-
ods [2] across diverse indoor scenes. We show that the
performance gain using ActiveRIR-collected samples
generalizes across multiple acoustic rendering models,
demonstrating promising potential for ActiveRIR to
improve existing acoustic rendering methods. In future
work, we plan to explore 3D scene reconstruction from
acoustic exploration.
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