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Abstract— An environment acoustic model represents

how sound is transformed by the physical characteristics of

an indoor environment, for any given source/receiver loca-

tion. Traditional methods for constructing acoustic models

involve expensive and time-consuming collection of large

quantities of acoustic data at dense spatial locations in the

space, or rely on privileged knowledge of scene geometry

to intelligently select acoustic data sampling locations. We

propose active acoustic sampling, a new task for efficiently

building an environment acoustic model of an unmapped

environment in which a mobile agent equipped with visual

and acoustic sensors jointly constructs the environment

acoustic model and the occupancy map on-the-fly. We intro-

duce ActiveRIR, a reinforcement learning (RL) policy that

leverages information from audio-visual sensor streams to

guide agent navigation and determine optimal acoustic data

sampling positions, yielding a high quality acoustic model

of the environment from a minimal set of acoustic samples.

We train our policy with a novel RL reward based on infor-

mation gain in the environment acoustic model. Evaluating

on diverse unseen indoor environments from a state-of-the-

art acoustic simulation platform, ActiveRIR outperforms an

array of methods—both traditional navigation agents based

on spatial novelty and visual exploration as well as existing

state-of-the-art methods.

I. INTRODUCTION

The acoustic properties of the sounds a mobile agent

hears are determined by the physical characteristics

of the space it is in, such as the room’s geometry,

the objects within it, the types of materials that com-

prise the room and objects’ surfaces, and the agent’s

proximity and orientation with respect to the sound

source. Consider a conversation with someone stand-

ing across a large auditorium or gym, compared to

the same conversation sitting a few feet apart in a

small, carpeted living room; Large spaces with hard

surfaces (e.g. concrete, glass) will add reverberation to

audio, while small, cluttered spaces covered in soft

materials (e.g. curtains, carpet) absorb sound waves

quicker, producing dull and anechoic audio. These

physical properties transform any sound emitted from

a source location in the environment according to vari-

ous acoustic phenomena, including direct sounds, early

reflections, and late reverberations, before it reaches our

ears. Together, these phenomena form a Room Impulse

Response (RIR), which characterizes the transfer func-

tion between a sound emitted at the source location and

the sound that reaches a microphone or our ears [1].
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An environment acoustic model is a complete represen-

tation of a scene’s acoustics [2], [3], [4], [5], [6]. Given

a sound source location and a listener’s position and

orientation (pose) as a query, the model renders the

corresponding RIR, accounting for all major acoustic

phenomena due to the physical properties of the space.

Environment acoustic models are critical for robotics.

In mobile robotics, an environment acoustic model can

provide rich contextual information to an agent. Tasks

such as navigating to a target sound [7] and separating

out a sound of interest from background sounds [8],

[9] require an agent to decide where to move based

on the audio it hears. An agent equipped with the

environment acoustic model can better anticipate the

effects of its movement on the observed audio. In

AR/MR applications, acoustic models allow a virtual

sound source (such as a human speaker) inserted at a

position in the user’s real-world space to sound prop-

erly spatialized with acoustics that match the space, as

the user moves around their environment.

Capturing an RIR is a physically involved process. A

loudspeaker must be placed at the desired height and

location, and a microphone setup placed at a similar

height at the desired receiver location and orientation.

The speaker emits a sound impulse, and the receiver

microphone(s) record the resulting RIR, which can last

several seconds.

Existing methods for environment acoustic modeling

assume extensive physical access to the environment in

order to collect these RIRs at arbitrary positions. Neural

Field methods [3], [10] require large quantities of RIRs

captured at dense source/listener locations (approx.

every 1 meter) throughout the environment, which

can be expensive and time-consuming. A few-shot ap-

proach [2] overcomes the intensive data requirement,

building acoustic models of novel environments from

a limited number of observations, but still requires

extensive knowledge of the floorplan in order to sample

uniformly spaced locations around obstacles. Other

methods rely heavily on knowledge of the scene geom-

etry from 3D meshes [4] or floorplans [6]. Importantly,

these methods all assume instantaneous access to obser-
vations at arbitrary positions in the environment, which is

unrealistic in the embodied robotics context—where an

agent must physically travel between locations—and in

unmapped environments where no prior knowledge of

the floorplan and obstacles is available.

We introduce active acoustic sampling, a new task that
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Fig. 1. Active acoustic sampling. An agent must intelligently navigate an unmapped 3D scene and actively sample audio-visual observations

(the scene’s acoustic context) to construct an acoustic model of the environment, given limited navigation time and a fixed sampling budget.

When queried with an arbitrary sound source position and receiver pose in the space, the learned environment acoustic model should

accurately generate the corresponding Room Impulse Response (RIR) at that pose.

requires a single mobile agent with audio-visual sens-

ing to efficiently construct an unmapped environment’s

acoustic model within a total budget of acoustic sam-

ples, despite only on-the-fly discovery of its floorplan.

The proposed problem is distinct from traditional vi-

sual exploration [11], [12], [13], where agents prioritize

motions in a scene to rapidly complete the occupancy

map. While in floorplan mapping the best places to

reach are those that add visibility to the widest floor

area, in acoustic modeling the most valuable poses

(sampling spots) in the environment depend on all

aspects of the 3D geometry and surface materials.

To address this challenge, we present ActiveRIR, an

active sampling policy that can be deployed on mobile

agents in environments that are both unseen and un-
mapped. ActiveRIR is trained with a novel audio-visual

exploration reward to guide wide agent exploration

and inform the agent’s decision on when to sample an

acoustic observation, within a budget of total acoustic

samples. Our acoustic reward measures the global im-

provement in the agent’s environment acoustic model

estimate after an observation is sampled, ensuring that

the limited context used to build the environment

acoustic model contains only the most valuable obser-

vations seen by the agent during its exploration.

Evaluating on a diverse set of unseen and un-

mapped scanned real-world 3D indoor environments

together with state-of-the-art (SOTA) acoustic [14] and

visual [15] scene simulation platforms, ActiveRIR pro-

duces a higher-quality acoustic model in >70% fewer

steps than passive approaches, and outperforms both

traditional visual and spatial exploration-based meth-

ods [16], [11], [13], [12] as well as SOTA scene acoustic

modeling methods [2]. We also demonstrate that the

performance gain achieved using ActiveRIR-collected

observations generalizes across multiple acoustic ren-

dering methods, showing promising potential for Ac-

tiveRIR to be plugged as a module into existing acoustic

rendering methods and improve the quality of gener-

ated environment acoustic models.

II. RELATED WORK

A. Environment acoustics and mapping

Estimating room acoustics from images of indoor

scenes has been widely explored, including explicit

RIR estimation from images [17], [18] as well as meth-

ods that model its acoustic transformation on source

sounds or speech [19], [20], [21], [22], [23]. While these

methods can produce audio that perceptually matches

the general acoustics of the space (e.g. a concert hall

vs. bedroom), they cannot reason about fine-grained

acoustic effects of shifts in speaker or listener pose

within a visual scene.

Audio field coding approaches [24], [25], [26] esti-

mate generic perceptual RIR features using parametric

sound field representations that model spatial relation-

ships between acoustics at different positions. Recent

approaches use Neural Fields to generate RIRs [3] di-

rectly, though they still require large-scale acoustic data

(>10k samples) from dense spatial locations, and the

learned model cannot generalize to other environments.

A transformer-based approach produces an acoustic

model of an unseen environment given limited acoustic

data sampled randomly from the floorplan [2]. Other

GNN-based approaches generate RIRs given a full 3D

scene mesh and dataset of acoustic material coeffi-

cients [4], [5]. These methods rely on prior knowledge

of scene geometry, and assume the ability to instan-

taneously access visual and acoustic observations at

selected positions in the space. Access to this privileged

information—as well as the ability to teleport to new

locations without penalty—are significant assumptions

that are unrealistic for robots. In principle, the pro-

cess that produced a pre-computed floorplan map or

mesh could have also pre-computed the acoustic model

with densely sampled observations using minimal ad-

ditional time or energy. In short, assuming access to

full scene geometry but not complete RIRs as well fails

to capture real-world constraints in robotics.



B. Audio-visual navigation and exploration
Equipping mobile agents with sound production and

audio capture has led to a proliferation in audio-visual

embodied tasks, such as audio-visual sound source

separation [9], [8], audio-visual navigation [27], [7],

[28], [29] and audio-visual floorplan mapping [30],

[31]. A mobile audio-visual agent can decide where

to emit and receive acoustic observations to help with

floorplan mapping [32]. While mapping the floorplan

requires dense exploration of the space and its fron-

tiers, we hypothesize that an accurate environment

acoustic model of the same space can be built with

far fewer acoustic observations sampled intelligently

at select locations. Prior work [33] trains a policy to

construct an environment acoustic model that relies on

two mobile agents: an "emitter" emits an impulse sound

and the "receiver" records the RIR. The agents navigate

according to a local acoustic reward that measures

the predicted RIR error at the agents’ next position.

However, unlike our global formulation, movement

to minimize local acoustic prediction accuracy often

prevents the agent from navigating towards areas with

challenging and dynamic acoustics (e.g. hallways with

turns and corners), hurting performance (see Sec. V).

III. Active acoustic sampling task

We introduce the task of active acoustic sampling. The

goal of this task is to train a mobile agent to navigate

an unmapped 3D environment (such as a home or

office) and intelligently sample egocentric audio-visual

observations ("acoustic context") within a predefined

sample budget and time budget, such that a acoustic ren-

dering model conditioned on this context can produce

accurate and high-fidelity RIRs given arbitrary query

source/receiver poses. Each audio-visual observation

consists of the agent’s egocentric RGB-D image and an

echo response, namely an RIR obtained by placing the

sound source and receiver microphones at the loca-

tion of image capture, emitting a sinusoidal frequency

sweep signal and recording the echoes [2]. See Fig. 1.

Our sample budget is much lower than the timestep

budget for navigation, requiring the agent to carry

out the memory-intensive [33] task of capturing and

storing echo responses only at a select few locations

most valuable for the global scene acoustic model. The

audio sampling is preemptive, i.e. the model decides to

choose or skip an audio sample before capturing it.

Formally, given navigation time budget T and au-

dio sample budget N ≪ T , the agent must navigate

an unmapped scene and collect audio-visual samples

C = {Ci}N , where Ci = (Ai, Vi, Pi). Ai denotes the

binaural (two-channel) echo response, and Vi is the

90◦ FoV RGB-D image captured at the camera pose

Pi = (xi, yi, θi) at location (xi, yi) and orientation θi.
Using C as the context, the agent must infer the

scene’s environment acoustic model, such that it can

accurately estimate the RIR RQ
for arbitrary query

Q = (sj , lk), where sj = (xj , yj) is an omni-directional

sound source at location (xj , yj), and lk = (xk, yk, θk)
is the receiver microphone pose. Thus, the task ob-

jective is to learn a policy π that guides our agent

towards acoustically informative locations in the scene

and helps it decide where to sample audio-visual

observations to add to the acoustic context C, such

that a acoustic rendering model f conditioned on C
approximates the ground-truth RIR RQ

for an arbitrary

query Q, or R̃Q = f(Q|C). At each time step t, where

1 ≤ t ≤ T , the policy can take action αt ∈ A,

where A =
{
MoveForward, TurnLeft, TurnRight

}
×{

Sample, Skip
}

is the agent’s action space.

This task relies on context cues from both audio and

vision. RGB-D images capture local room geometry,

the presence of furniture/obstacles, and the materi-

als of surfaces in view, while acoustic observations

help the agent associate these physical properties with

their acoustic effects on an emitted sound. Audio

also captures longer-range room geometry beyond the

agent’s current FoV, which vision cannot. Exploiting

this visual-acoustic correspondence is key in helping

the agent decide how to move and where to Sample an

acoustic observation.

IV. Approach

We pose the task as a reinforcement learning prob-

lem, where a model sequentially decides where to

sample audio-visual observations given visual RGB-

D frames and previously sampled audio1, and the

environment acoustic model is built from this collected

context. We propose ActiveRIR, which consists of 1) an

audio-visual sampling policy π, and 2) a neural acoustic

rendering model f for predicting scene acoustics using

the samples. See Fig. 2. Next, we describe these com-

ponents in detail.

A. Audio-visual sampling policy
1) Policy inputs and architecture: At every time step t,

our audio-visual sampling policy π receives Ot as the

input and decides how to move in the environment,

and whether to capture and add the echo response at

the current step to our acoustic context (i.e., Sample or

Skip). Formally, Ot = (At−1, Vt, Pt), if the echo response

was sampled at the previous step, and Ot = (Vt, Pt) if it

was skipped. Before encoding Ot, π pre-processes Vt to

generate V π
t = (V R

t , V M
t ), where V R

t is the RGB image

from Vt, and V M
t is a topdown global occupancy2 map.

Note that the map begins empty and accumulates as the

agent selects its motions.

First, we feed At−1 (if sampled), V π
t and Pt to sep-

arate encoders and extract audio features at−1, visual

1All audio inputs to our model are represented as two-channel

magnitude spectrograms computed using the short-time Fourier

transform (STFT) [2].

2V M
t is produced by projecting the current and past depth images

V D
1...t to the egocentric ground plane and stitching together these

projections into a cumulative map of the scene.
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Fig. 2. ActiveRIR policy network architecture and reward. At each step t, our policy π receives an egocentric visual input Vt, the camera

pose Pt, and the binaural echo response At−1—if it was sampled by the policy at the previous step—and predicts an action αt that decides

both how the agent should move, and if it should sample the current echo response At. It then uses At along with the current visual input

Vt to improve its acoustics prediction quality. Given these audio-visual samples ("Context") collected over an episode, the agent uses an

off-the-shelf acoustic rendering model to predict the RIR for any arbitrary query pair of sound source and receiver locations. We train our

policy with an audio-visual reward which encourages healthy exploration of the scene in search of acoustically important locations, and

guides the agent when to sample highly valuable observations, subject to a maximum audio sample budget.

features vt and pose features pt. The visual and au-

dio encoders are ResNets [34], and the pose encoder

is a sinusoidal positional embedding [35]. Next, we

concatenate at−1, vt and pt into ot and feed it to the

policy network, which consists of an RNN and an actor-

critic module. The RNN estimates an updated history

ht along with the current state representation gt, using

the fused feature ot and the history of states ht−1.

The actor-critic module takes gt and ht−1 as inputs

and predicts a policy distribution πϕ(αt|g, t, ht−1) along

with the value of the state Hϕ(gt, ht−1). Finally, the

policy samples an action αt from its action space A
(c.f. Sec. III) per the distribution πϕ.

2) Policy reward: We propose a novel RL reward to

train our policy π:

rt = λA ∗ rAt + λV ∗ rVt + λN ∗ rNt . (1)

Here rAt is our novel Acoustic Prediction reward, which

measures improvement in the environment acoustic

model from the previous step t− 1 to the current step

t if audio was sampled, and is given by

rAt = LR
t−1 − LR

t

, where LR
t is the mean L1 distance between the

predicted and ground-truth RIR magnitude spectro-

grams for a fixed set of K query positions selected from

throughout the (training) scene, at step t. rAt is zero at

the steps where the policy decides not to sample; thus it

encourages the agent to sample an acoustic observation

when the agent is at a position that will improve the global
acoustic prediction quality.

Since this sparse reward can impact the stability of

RL training, we augment rAt with an area-coverage

reward [36] rVt = (Vt − Vt−1)/Vt−1 that measures the

relative increase in area coverage over time, where Vt

and Vt−1 are the total area covered by the agent at

steps t and t − 1, respectively. We also add a novelty

reward [12], [16], [11] rNt = 1√
n(mt)

, where n(mt) is

the visitation count at 1×1 meter discretized floorplan

grid cell mt. λV and λN are the respective reward

weights. Whereas rVt rewards the agent for taking

actions that expose new areas of the scene to the agent,

rNt incentivizes increasing the visitation count of novel

locations in the scene. rVt and rNt together promote

a healthy exploration of the scene, which is crucial

for learning a good policy, and also encourage stable

RL training owing to their dense nature. We train π
using Decentralized Distributed PPO (DD-PPO) [37].

The DD-PPO loss consists of a value loss, policy loss,

and an entropy loss for further improving exploration.

B. Acoustic rendering model

Our sampling policy design is agnostic of the de-

sign of the acoustic rendering model f , providing the

flexibility of using our policy with any off-the-shelf

rendering model that can take audio-visual samples

as inputs and predict the RIR RQ
at a source-receiver

query Q in the scene (c.f. Sec. III). We use FewShot-

RIR (FS-RIR) [2] as our rendering model backbone,

due to its state-of-the-art performance. We also evaluate

ActiveRIR’s ability to generalize in experiments with a

second backbone, NAF [3] (c.f. Sec. 5). Given audio-

visual samples from a scene, FS-RIR uses a trans-

former [35] encoder to build an acoustic context of the

scene, followd by a transformer-decoder to predict the

RIR for an arbitrary source-receiver query using the

acoustic context. We pre-train the acoustic rendering

model f in a disembodied fashion—without a sampling

policy—randomly selecting observations from a scene

to add to the acoustic context. Next, we train our policy
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with RL while keeping f frozen. This helps improve RL

training stability by ensuring stationarity in the reward

distribution (c.f. Sec. IV-A).

V. Experiments

A. Experimental setup

We use the state-of-the-art SoundSpaces (SS) 2.0 [14]

acoustics simulator, built on top of the AI-Habitat [38]

simulator and Matterport3D (MP3D) [15] scenes. MP3D

consists of photorealistic scans of diverse, real-world

multi-room indoor environments complete with furni-

ture and other objects (e.g. tables/sofas/desks/lamps).

SS 2.0 supports continuous rendering of precise spatial

audio in arbitrary 3D scenes, capturing all major acous-

tic phenomena [14]. We use 78 diverse MP3D scenes,

split into train/val/test sets of 56/10/12, preserving

diverse scene types and sizes within each split. We train

our policy for 150K PPO iterations and validate/test

on 123/225 inference episodes respectively sampled in

proportion to scene sizes within each split.

We place the agent at a random location in a scene at

the start of every episode. We set T = 200 to account for

the minimal time needed to traverse an average scene

average in Matterport3D [15], and set the audio sample

budget to N = 20 samples to match the context size

used in FS-RIR [2]. We set λA = 2×105, λV = 2×102 and

λN =10.0 to place the component rewards on the same

scale. The agent has turn and movement resolution

90
◦

and 1 meter respectively. We evaluate performance

with STFT L1 Error (STFT) [2], [19], which measures

mean L1 error between predicted and ground-truth RIR

magnitude spectrograms at K = 60 global query poses

per scene, sampled randomly at the scene level.

B. Baselines

Random agent: an agent that chooses an action

from our action space A randomly. Forward agent: an

agent that only moves forward, sampling observations

uniformly (every
T
N steps). Greedy agent: an agent that

navigates randomly, and greedily selects the first N
observations on its path.

Fig. 4. Acoustic prediction quality vs timesteps. ActiveRIR (purple)

rapidly minimizes STFT error in the acoustic model in fewer steps

than an acoustic agent sampling at a fixed interval (orange), and

outperforms heuristic approaches as well.

VI. Results

Table I shows acoustic prediction performance on

unseen test environments. ActiveRIR significantly out-

performs naive approaches (Greedy, Forward, Ran-

dom). Fig. 4 displays STFT error as a function of

the agent’s steps. ActiveRIR (purple) efficiently navi-

gates toward and captures valuable acoustic observa-

tions that rapidly minimize STFT error in the acoustic

model, compared both to a passive-sampling audio-

visual agent which samples every
T
N steps ("Uniform",

orange) as well as an array of heuristic approaches.

1) Model analysis:
a) Reward variations: To evaluate the impact of our

Acoustic Prediction reward, we train active policies

with ablations of our audio-visual reward (Table II).

We outperform Coverage (V) and Novelty (N ) agents

as well as the Exploration agent (V+N ), which was

trained with only the spatio-visual component of our

audio-visual reward (c.f. Sec. IV-A.2), validating the im-

portance of acoustic information in the agent’s decision

to Sample an observation beyond what can be inferred

from visual and/or spatial sensory information alone.

We also significantly outperform a passive audio-visual

agent (Uniform), confirming that actively determining

when to sample plays a critical role in collecting valu-



Fig. 5. Active sampling with existing methods. (Left) NAF [3]

trained on ActiveRIR-collected context outperforms NAF trained on

context collected by a random policy, demonstrating ActiveRIR’s

ability to select valuable acoustic context agnostic of the acoustic

rendering model. (Right) As we grow the context size, ActiveRIR

samples high-value observations that rapidly improve global scene

acoustic error, producing a final acoustic model with significantly

lower error than FS-RIR [2].

able acoustic context beyond simply navigating towards
acoustically and visually novel areas. Inspired by [33],

we evaluate a local variant of our acoustic reward,

defined as the improvement in the RIR prediction error

for a query closest to the agent’s current position.

We outperform this local acoustic agent, demonstrating

that our global acoustic reward helps collect samples

most valuable for global acoustic model.

b) Pose sensor noise: We evaluate ActiveRIR’s ro-

bustness to Gaussian noise in pose and actuation. STFT

error only increases from 8.08 × 10−3
to 8.10 × 10−3

,

highlighting the effectiveness of our design choices.

2) Comparison with SOTA: Fig. 5 compares ActiveRIR

to SOTA methods without embodiment and navigation

budget. First, we compare against FS-RIR [2], which

collects samples randomly throughout the environment

(Fig. 5, right). Despite initial progress, FS-RIR plateaus

as the episode progresses, while ActiveRIR continues

selecting highly-informative samples that further re-

duce STFT error. Importantly, ActiveRIR produces a

final acoustic model with significantly lower error than

FS-RIR, despite FS-RIR’s prior knowledge of the floorplan for
randomly sampling observations. Furthermore, to achieve

the error of ActiveRIR, FS-RIR needs to acquire a

context length of 86 samples, more than 4x the samples

required for our model. While randomly sampling from

throughout the space may outperform our policy in

high-resource regimes, ActiveRIR strongly outperforms

FS-RIR in cost-efficient settings with restrictive time

or sample budgets—which are practical considerations

when considering physical constraints on access/time

spent in the space, and the intrusive nature of emitting

a sound impulse.

To determine the value of acoustic context collected

by ActiveRIR agnostic of the acoustic rendering model

f , we train two Neural Acoustic Field (NAF) [3] models

on the test scenes using 1) ActiveRIR-collected context

and 2) context collected by a random policy, and eval-

uate mean STFT error across 100 query poses sam-

pled randomly from throughout the scene (Fig 5, left).

The ActiveRIR-trained NAF consistently outperforms

Policy STFT Error ↓

Greedy 14.46

Forward 14.68

Random 13.04

ActiveRIR (V+N+A) 8.08

TABLE I

Acoustic prediction performance. Reported in base 10−3
.

Reward Sampling STFT Error ↓

V+N+A Uniform 8.24

V Active 8.15

N Active 8.11

V+N Active 8.15

V+A Active 8.21

N+A Active 8.15

V+N+A (local) Active 8.11

V+N+A Active 8.08

TABLE II

Reward variations in ActiveRIR. Reported in base 10−3
.

NAF trained on the random policy’s collected context,

demonstrating that ActiveRIR collects a rich, generaliz-

able acoustic context and is flexible with respect to the

acoustic rendering model.

3) Qualitative analysis: Fig. 3 visualizes the impor-

tance of active sampling. ActiveRIR captures audio-

visual samples in areas where acoustics can dynami-

cally change, such as winding hallways (far left), while

also ensuring that the context is spatially and visually

distinct, as can be observed by the diverse views in

the active context (left). In contrast, a passive agent

(right) does not actively avoid capturing redundant

observations (bottom two images), and collects samples

in the main cavity of the scene where acoustics are

relatively stationary between nearby poses. Also see

submitted video.

VII. CONCLUSIONS

We propose a new task, active acoustic sampling, in

which an agent must navigate an unmapped environ-

ment and collect audio-visual samples to construct a

model of the scene’s acoustics within a given time

and sample budget. We propose an active sampling

policy trained with a novel audio-visual exploration

reward which guides an agent to navigate towards

and select high-value audio-visual samples that yield

a high-quality acoustic model. Our policy outperforms

passive approaches in >70% fewer timesteps, and out-

performs robust visual and spatial exploration agents

as well as SOTA environment acoustic modeling meth-

ods [2] across diverse indoor scenes. We show that the

performance gain using ActiveRIR-collected samples

generalizes across multiple acoustic rendering models,

demonstrating promising potential for ActiveRIR to

improve existing acoustic rendering methods. In future

work, we plan to explore 3D scene reconstruction from

acoustic exploration.
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