
Efficient Approximate Search for Multi-Objective Multi-Agent Path Finding

Fangji Wang1∗, Han Zhang2∗, Sven Koenig2, Jiaoyang Li3

1 Tsinghua University
2 University of Southern California

3 Carnegie Mellon University
wang-fj20@mails.tsinghua.edu.cn, zhan645@usc.edu, skoenig@usc.edu, jiaoyangli@cmu.edu

Abstract

The Multi-Objective Multi-Agent Path Finding (MO-MAPF)
problem is the problem of computing collision-free paths
for a team of agents while minimizing multiple cost met-
rics. Most existing MO-MAPF algorithms aim to compute
the Pareto frontier. However, the Pareto frontier can be time-
consuming to compute. Our first main contribution is BB-
MO-CBS-pex, an approximate MO-MAPF algorithm that
computes an approximate frontier for a user-specific approxi-
mation factor. BB-MO-CBS-pex builds upon BB-MO-CBS, a
state-of-the-art MO-MAPF algorithm, and leverages A*pex,
a state-of-the-art single-agent multi-objective search algo-
rithm, to speed up different parts of BB-MO-CBS. We also
provide two speed-up techniques for BB-MO-CBS-pex. Our
second main contribution is BB-MO-CBS-k, which builds
upon BB-MO-CBS-pex and computes up to k solutions for
a user-provided k-value. BB-MO-CBS-k is useful when it
is unclear how to determine an appropriate approximation
factor. Our experimental results show that both BB-MO-
CBS-pex and BB-MO-CBS-k solved significantly more in-
stances than BB-MO-CBS for different approximation fac-
tors and k-values, respectively. Additionally, we compare
BB-MO-CBS-pex with an approximate baseline algorithm
derived from BB-MO-CBS and show that BB-MO-CBS-pex
achieved speed-ups up to two orders of magnitude.

Introduction

The Multi-Agent Path Finding (MAPF) problem is the prob-
lem of finding a set of collision-free paths for a team of
agents. It is related to many real-world applications (Wur-
man, D’Andrea, and Mountz 2008; Morris et al. 2016).
A solution is a set of collision-free paths for all agents.
Computing a minimum-cost solution for the MAPF prob-
lem is known to be NP-hard (Yu and LaValle 2013; Ma
et al. 2016). In this paper, we study a variant of the MAPF
problem called the Multi-Objective MAPF (MO-MAPF)
problem (Ren, Rathinam, and Choset 2022), which consid-
ers multiple cost metrics. Many real-world applications of
MAPF can be viewed as multi-objective problems. For ex-
ample, in multi-robot systems, some interesting cost metrics
include travel distance, energy consumption, and risk.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

∗Fangji Wang and Han Zhang contributed equally to this work.

475 500 525 550 575
c1

500

525

550

575

600

c 2

BB-MO-CBS
BB-MO-CBS-pex (= 0.03)
BB-MO-CBS-k (k=10)

Figure 1: Costs of the solutions computed by different algo-
rithms for an MO-MAPF instance with two objectives and
8 agents, where BB-MO-CBS-pex and BB-MO-CBS-k, our
proposed algorithms, achieved speed-ups of 25× and 44×
over BB-MO-CBS, respectively.

Most existing MO-MAPF algorithms, such as MO-
M* (Ren, Rathinam, and Choset 2021), MO-CBS (Ren,
Rathinam, and Choset 2022), and BB-MO-CBS (Ren et al.
2023), aim to compute the Pareto frontier, that is, a set of
solutions where each solution is not dominated by any other
solutions. A solution P dominates another solution P ′ if the
cost of P is no larger than the cost of P ′ for every cost metric
and the cost for at least one cost metric is smaller. Unfortu-
nately, even in the multi-objective single-agent case, the size
of the Pareto frontier can be exponential in the size of the
graph being searched (Ehrgott 2005; Breugem, Dollevoet,
and van den Heuvel 2017). Therefore, computing Pareto
frontiers for MO-MAPF can be time-consuming. Existing
works on multi-objective single-agent search have proposed
to compute approximate frontiers (Perny and Spanjaard
2008; Goldin and Salzman 2021; Zhang et al. 2022) instead,
which significantly speeds up the search. However, this has
yet to be investigated for MO-MAPF.

Our first main contribution is BB-MO-CBS-pex, an ap-
proximate MO-MAPF algorithm that computes an approxi-
mate frontier for the user-specific approximation factor. BB-
MO-CBS-pex builds upon BB-MO-CBS, a state-of-the-art
MO-MAPF algorithm that consists of a low-level search
to plan paths for each agent and a high-level search to re-
solve collisions. BB-MO-CBS-pex leverages A*pex (Zhang
et al. 2022), a state-of-the-art multi-objective single-agent
approximate search algorithm, as the low-level search algo-
rithm and also applies the algorithmic idea behind A*pex to

speed up the high-level search. In addition, we provide two
techniques to further speed up BB-MO-CBS-pex.

In practice, a too large approximation factor can cause
BB-MO-CBS-pex to return only one solution, offering no
trade-off to users, while a too small one provides no chance
for BB-MO-CBS-pex to speed up. Therefore, specifying a
good approximation factor is important yet non-trivial, and
one might prefer to specify the desired number of solutions
instead. To this end, our second main contribution is BB-
MO-CBS-k, which builds upon BB-MO-CBS-pex and com-
putes a set of up to k solutions for a user-provided k-value.

In our experimental study, we compare BB-MO-CBS-pex
and BB-MO-CBS-k with BB-MO-CBS. Our results show
that BB-MO-CBS-pex and BB-MO-CBS-k solved signif-
icantly more problem instances than BB-MO-CBS within
the given runtime limit of 120 seconds for different ap-
proximation factors and k-values, respectively. Additionally,
we compare BB-MO-CBS-pex with BB-MO-CBS-ε, an ap-
proximate baseline algorithm derived from BB-MO-CBS.
Our results show that BB-MO-CBS-pex solved significantly
more instances and achieved up to two orders of magnitude
speed-up compared to BB-MO-CBS-ε.

Terminology and Problem Definition

We use boldface font to denote vectors or vector functions
and vi to denote the i-th component of vector or vector func-
tion v. We define the addition of two M -dimensional vectors
u and v as u+ v = [u1 + v1, u2 + v2, . . . , uM + vM]. We
define the vector minimum of u and v as vector min(u, v) =
[min(u1, v1),min(u2, v2), . . . ,min(uM , vM)]. We say that
u weakly dominates v, denoted as u ¯ v, if ui f vi, i =
1, 2, . . . ,M . We say that u dominates v, denoted as u z v,
if u ¯ v and ∃i ∈ {1, 2, . . . ,M}, ui < vi. We say that u ε-
dominates v for an approximation factor (or, more precisely,
vector of approximation factors) ε = [ε1, ε2, . . . , εM], de-
noted as u ¯ε v, if ui f (1 + εi)vi, i = 1, 2, . . . ,M .

In the MO-MAPF problem, we are given a shared
workspace, represented by a finite directed graph G =
ïV,Eð, and a set of N agents {a1, a2, . . . , aN}. V denotes
the set of vertices, and each vertex v ∈ V corresponds to
a possible location for agents. E ¦ V × V denotes the set
of edges, and each edge e = ïu, vð ∈ E corresponds to
a move action from u to v. Note that an edge from a ver-
tex to itself can also be included in E, which means that
agents can wait at the vertex. The cost of an edge e is a pos-
itive M -dimensional vector denoted as c(e) ∈ RM

>0, where
M is the number of objectives. The agents are indexed by
I = {1, 2, . . . , N}. In the rest of the paper, we use |I| in-
stead of N to denote the number of agents. We use super-
script i∈I to indicate that a variable is related to agent ai.
Each agent ai has a start vertex vistart ∈ V and a goal vertex
vigoal ∈ V .

A path Ãi = (vi1, v
i
2, . . . , v

i
ℓ) for agent ai is a sequence

of vertices with vi1 = vistart, v
i
ℓ = vigoal, and ïvij , v

i
j+1ð ∈

E, j = 1, 2 . . . ℓ − 1. The cost of path Ãi is defined as

c(Ãi) =
∑ℓ−1

j=1 c(ïv
i
j , v

i
j+1ð). A path also corresponds to

a sequence of move and wait actions. Agents stay at their
goal vertices forever after they execute their last actions.

For a subset of agent indices I ′ ¦ I , a joint path P =
{Ãi : i ∈ I ′} is a set of paths, one for each agent whose in-
dex is in I ′. Throughout this paper, we assume that I ′ = I ,
unless mentioned otherwise. The cost of joint path P is de-
fined as c(P) =

∑

i∈I′ c(Ãi). We consider two types of
conflicts: A vertex conflict happens when two agents stay at
the same vertex simultaneously, and an edge conflict hap-
pens when two agents switch their vertices simultaneously.
A solution is a conflict-free joint path for index set I .

In this paper, we use symbol P to denote a joint path,
which is a set of paths for different agents, and symbol Π
to denote a set of paths for the same agent. Additionally, we
use symbol P to denote a set of joint paths.

We say that a path Ã weakly dominates another path Ã′

(resp. Ã ε-dominates Ã′) if c(Ã) ¯ c(Ã′) (resp. c(Ã) ¯ε

c(Ã′)). A set of paths Π is undominated if its paths do not
weakly dominate each other. A Pareto frontier of Π is de-
fined as an undominated subset of Π such that each path in Π
is weakly dominated by at least one path in the Pareto fron-
tier. An ε-approximate frontier of Π is defined as an undom-
inated subset of Π such that each path in Π is ε-dominated
by at least one path in the ε-approximate frontier.

For joint paths, we define weakly dominance, ε-
dominance, undominated sets, Pareto frontiers, and ε-
approximate frontiers in the same way that we do for paths.
Unless mentioned otherwise, we use a Pareto frontier (resp.
an ε-approximate frontier) to refer to a Pareto frontier (resp.
an ε-approximate frontier) of all solutions for the MO-
MAPF problem instance we consider.

Algorithm Background

This section reviews CBS (Sharon et al. 2015), BB-MO-
CBS (Ren et al. 2023), and A*pex (Zhang et al. 2022).

CBS

CBS (Sharon et al. 2015) is a complete and optimal single-
objective MAPF algorithm. It consists of two levels. On the
high level, CBS performs a best-first search on a Constraint
Tree (CT). Each CT node contains a set of constraints and
a joint path, whose path for each agent satisfies all these
constraints and has the minimum path cost when ignoring
conflicts. A constraint Éi has the form ïi, v, tð or ïi, e, tð,
where i ∈ I, v ∈ V, e ∈ E, and t ∈ N>0. For the first
case, any path Ãi = (vi1, v

i
2, . . . , v

i
l) for ai is prohibited from

vit = v; for the second case, any path Ãi = (vi1, v
i
2, . . . , v

i
l)

for ai is prohibited from ïvit, v
i
t+1ð = e. The g-value of a CT

node is defined as the cost of its joint path. CBS maintains
an Open list for all generated but not yet expanded nodes
and initializes Open with the root CT node, which has an
empty set of constraints and a path for each agent that has
the minimum path cost when ignoring conflicts. In each it-
eration, CBS extracts a CT node with the minimum g-value
from Open and returns its joint path as the solution if the
joint path is conflict-free. Otherwise, CBS picks a conflict
of the joint path to resolve, splits the CT node into two child
CT nodes, and adds a constraint to each child CT node to
prohibit either one or the other of the two conflicting agents
from using the conflicting vertex or edge at the conflicting

timestep. CBS then calls its low level to replan the path of
the newly constrained agent in each child CT node. The low-
level planner finds a path with the minimum path cost while
satisfying all constraints of the child CT node but ignoring
conflicts.

BB-MO-CBS

BB-MO-CBS (Ren et al. 2023) generalizes CBS from
single-objective MAPF to MO-MAPF and computes a
Pareto frontier for the given MO-MAPF problem instance.

Algorithm 1 shows the pseudocode for BB-MO-CBS.
BB-MO-CBS maintains an Open list for all generated but
not yet expanded nodes and a solution set S for the solutions
it has found. Similar to CBS, BB-MO-CBS also consists
of two levels. On the high level, BB-MO-CBS also main-
tains a CT. A major difference between CBS and BB-MO-
CBS is that, while a CT node of CBS corresponds to one
joint path, a CT node of BB-MO-CBS corresponds to a set
of joint paths that are different combinations of paths for
each agent. This design allows BB-MO-CBS to resolve the
same conflict in different joint paths simultaneously. More
specifically, in BB-MO-CBS, we redefine a CT node as a
tuple n = ïΩ, {Πi | i ∈ I},Pð, which contains (1) a set
of constraints Ω, where a constraint has the same form as
the constraints in CBS, (2) a Pareto frontier of paths Πi

for each agent ai that satisfy the constraints in Ω, and (3)

a set of joint paths P ¦ PF (Π1 × Π2 × . . . × Π|I|), where

PF (Π1 × Π2 × . . . × Π|I|) denotes a Pareto frontier of all
joint paths that consist of a path from Πi for each agent ai.
As we will show later, BB-MO-CBS repeatedly updates P to

the subset of PF (Π1×Π2× . . .×Π|I|) that are not weakly
dominated by any solution in S . The current joint path of CT
node n, denoted as P.lexF irst, is defined as the joint path
with the lexicographically smallest cost in P. The g-value of
CT node n is defined as c(P.lexF irst).

During the initialization, BB-MO-CBS first computes a
Pareto frontier of paths Πi

o, ignoring conflicts, for each agent
ai, and a Pareto frontier of joint paths Po = PF (Π1

o×Π2
o×

. . .×Π
|I|
o) (Lines 1-4). It then initializes Open with the root

CT node no = ï∅, {Πi
o | i ∈ I},Poð (Line 5).

In each iteration, BB-MO-CBS extracts a CT node n =
ïΩ, {Πi | i ∈ I},Pð with the lexicographically small-
est g-value (Line 7). The current joint path of n, namely
P.lexF irst, must have the lexicographically smallest cost
among (and hence is not dominated by) the joint paths of
all CT nodes in Open. BB-MO-CBS first computes P′ by
removing the joint paths weakly dominated by any solution
in S from P (Line 8). If P′ is empty, BB-MO-CBS discards
n and ends the iteration (Line 9). If the current joint path
changes, (that is, P′.lexF irst ̸= P.lexF irst), BB-MO-
CBS reinserts n with the updated joint path set P′ to Open
and ends this iteration (Lines 10-12). If the current joint path
does not change and is conflict-free, BB-MO-CBS adds it to
S . Different from CBS, BB-MO-CBS does not terminate in
this case. It removes the new solution P′.lexF irst from P′

and reinserts a CT node with the updated joint path set P′

to Open if P′ is still not empty (Lines 14-19). BB-MO-CBS
does this because the remaining joint paths in P′ still have

Algorithm 1 BB-MO-CBS

1: S ← ∅; Open← ∅
2: for all i ∈ I do
3: Πi

o ← LowLevelSearch(i, ∅)

4: Po ← PF (Π1

o ×Π2

o × · · · ×ΠN
o)

5: add ï∅, {Πi
o | i ∈ I},Poð to Open

6: while Open ̸= ∅ do
7: n = ïΩ, {Πi | i ∈ I},Pð ← Open.extract min()
8: P′ ← {P ∈ P | ∄P ′ ∈ S, c(P ′) ¯ c(P)}
9: if P′ = ∅ then continue

10: if P′.lexF irst ̸= P.lexF irst then
11: add ïΩ, {Πi | i ∈ I},P′ð to Open
12: continue

13: cft← DetectConflict(P′.lexF irst)
14: if cft does not exist then
15: add P′.lexF irst to S
16: remove P′.lexF irst from P′

17: if P′ ̸= ∅ then
18: add ïΩ, {Πi | i ∈ I},P′ð to Open

19: continue

20: {ωi, ωj} ← GenerateConstraints(cft)
21: for all i′ ∈ {i, j} do

22: {Πi
new | i ∈ I} ← {Πi | i ∈ I}

23: Ωnew ← Ω ∪ {ωi′}

24: Πi′

new ← LowLevelSearch(i′,Ωnew)
25: Pnew ← PF (Π1

new ×Π2

new × · · · ×ΠN
new)

26: add ïΩnew, {Π
i
new | i ∈ I},Pnewð to Open

27: return S

the potential to lead to new solutions. If the current joint
path is not conflict-free, similar to CBS, BB-MO-CBS picks
a conflict of the joint path to resolve, splits the CT node into
two child CT nodes, and adds a constraint to each child CT
node (Lines 20-23). BB-MO-CBS then calls its low level to
replan a Pareto frontier of paths for the newly constrained
agent in each child CT node that satisfy all constraints of the
child CT node and insert the child nodes to Open (Lines 24-
26). The low level of BB-MO-CBS can be implemented
with any multi-objective single-agent search algorithm that
computes a Pareto frontier, such as BOA* (Hernández et al.
2023) and EMOA* (Ren et al. 2022).

BB-MO-CBS terminates and returns S when Open is
empty. Ren et al. (2023) showed that S is a Pareto frontier
for the given MO-MAPF problem instance.

A straightforward approach to introduce approximation to
BB-MO-CBS is to prune joint paths that are ε-dominated by
any solution in S . We propose BB-MO-CBS-ε, an approxi-
mate variant of BB-MO-CBS that we will use as a baseline.
It changes only Line 8 of BB-MO-CBS: When computing
the updated joint path set P′, it removes all the joint paths
in P that are ε-dominated by any solution in S . It is easy to
show that, given an MO-MAPF problem instance and an ε-
value, BB-MO-CBS-ε computes an ε-approximate frontier
of the solutions.

A*pex

A*pex (Zhang et al. 2022) is a multi-objective (single-agent)
search algorithm that computes an ε-approximate frontier of

paths from a given start vertex vstart to a given goal vertex
vgoal for a user-provided ε-value. In A*pex, a node n corre-
sponds to a vertex v and a set of paths Π from vstart to v.
Instead of explicitly storing Π, A*pex stores only one path
Ã ∈ Π, called the representative path of n, and a cost vec-
tor A(n), called the apex of n. A(n) is the vector minimum
value of the costs of all paths in Π. We say that node n is
ε-bounded if c(Ã) + h(v) ¯ε A(n) + h(v), where h is a
consistent heuristic function where each component of h(v)
provides a lower bound on the cost of any path from v to the
goal vertex vgoal for the corresponding objective.

By merging nodes at the same vertex on condition that
the resulting node is ε-bounded, A*pex reduces the search
effort and can quickly compute an ε-approximate frontier.
When merging two nodes n and n′, the new apex is the vec-
tor minimum of A(n) and A(n′), and the new representative
path is either one of the two representative paths of n and n′.
Zhang et al. (2022) proposed several approaches for choos-
ing the new representative path. When expanding a node n
at vgoal, A*pex adds the representative path of n, denoted
as Ã, to the solution set it maintains. Slightly abusing the
notation, we use A(Ã) to denote A(n), that is, the apex of
the node that contains Ã as the representative path, and call
it the apex of Ã. When A*pex terminates, it returns a set
of paths, denoted as Πε. In the rest of this paper, we as-
sume that A*pex also outputs the apex of each path in Πε.
Let Π∗ denote a Pareto frontier from vstart to vgoal. The
apexes of paths in Πε collectively “lower-bound” Π∗, that
is, ∀Ã∗ ∈ Π∗ ∃Ã ∈ Πε A(Ã) ¯ c(Ã∗).

BB-MO-CBS-pex

In this section, we introduce BB-MO-CBS-pex, a variant of
BB-MO-CBS that computes an ε-approximate frontier for a
given MO-MAPF problem instance and a user-provided ε-
value. BB-MO-CBS-pex builds upon BB-MO-CBS-ε with
the two major improvements:

1. BB-MO-CBS-pex leverages A*pex to speed up the low-
level search.

2. BB-MO-CBS-pex generalizes the merging idea of A*pex
to reduce the sizes of joint paths for CT nodes (and hence
speed up the high-level search).

Similar to a representative path in A*pex, a joint path P in
BB-MO-CBS-pex is a representative for a set of joint paths
that are ε-dominated by P . BB-MO-CBS-pex maintains an
apex A(P) for P to keep track of this set of joint paths.
Similar to an apex in A*pex, A(P) is the vector minimum
of the costs of these joint paths. We say that P is ε-bounded
if c(P) ¯ε A(P). When merging two joint paths P and
P ′, the resulting joint path Pnew is equal to either P or P ′,
and the apex of Pnew is the vector minimum of A(P) and
A(P ′). We show the merge function on Lines 1-5 of Al-
gorithm 3. BB-MO-CBS-pex merges two joint paths only
when the resulting joint path is ε-bounded.

Similar to BB-MO-CBS, a CT node in BB-MO-CBS-
pex is a tuple n = ïΩ, {Πi|i ∈ I},Pð with two differ-
ences: (1) Πi for each agent ai is an ε-approximate fron-
tier of paths that satisfy constraints in Ω, and (2) P is
a set of joint paths computed by merging joint paths in

PF (Π1 × Π2 × . . . × Π|I|). The current joint path of CT
node n, denoted as P.lexF irst, is defined as the joint path
with the lexicographically smallest apex in P. The g-value
of CT node n is defined as A(P.lexF irst).

The changes of BB-MO-CBS-pex over BB-MO-CBS are
listed as the following:

1. Lines 3 and 24. When initializing the root CT node n0

and replanning paths for agents, BB-MO-CBS-pex uses
A*pex to compute an ε-approximate frontier, instead of a
Pareto frontier, of paths for each agent in each CT node.

2. Lines 4 and 25. When computing the set of
joint paths for a CT node, BB-MO-CBS-pex calls
MergeJointPaths, which we will explain later, to
compute an ε-approximate frontier of joint paths. This
reduces the search effort of BB-MO-CBS-pex because
fewer joint paths are considered for each CT node.

3. Line 8. When computing P′ for an extracted CT node,
BB-MO-CBS-pex calls PruneApproxDom (Lines 17-
23 of Algorithm 3) to remove a joint path P if A(P)
is ε-dominated by the cost of some solution Psol in S .
When removing the joint path, BB-MO-CBS-pex also
updates A(Psol) to the vector minimum of A(P) and
A(Psol) (Line 21 of Algorithm 3). This update guaran-
tees that, if BB-MO-CBS-pex merges Psol with other so-
lutions later on Line 15, the cost of the resulting solution
still ε-dominates A(P).

4. Line 15. When adding a solution P.lexF irst to S , BB-
MO-CBS-pex attempts to merge P.lexF irst with an-
other solution in S on condition that the resulting solu-
tion is still ε-bounded (Lines 25-26 of Algorithm 3).

Lines 6-16 of Algorithm 3 show the pseudocode for func-
tion MergeJointPaths, which iteratively computes Pi,
i = 1, 2, . . . , |I|, a set of joint paths for the set of agent
indices I ′ = {1, 2, . . . , i}. P1 is initialized with Π1 (Line 7).
To compute Pi, i = 2, 3, . . . , |I|, BB-MO-CBS-pex iter-
ates over all combinations in Pi−1 × Πi, where each com-
bination corresponds to a joint path P for agent indices
{1, 2, . . . , i}. BB-MO-CBS-pex first checks if Pi contains
a joint path P ′ that can be merged with P (Line 13) and, if
so, replaces P ′ (in Pi) with the merged joint path (Line 14).
Otherwise, P is added to Pi (Line 15). Eventually, function
MergeJointPaths returns P|I|.

We propose two additional improvement techniques.

Conflict-based merging: While Zhang et al. (2022) pro-
posed to choose representative paths based on path costs for
A*pex, we propose to choose representative paths (in the
low-level search) or joint paths (in Merge) based on con-
flicts. In the low-level search, we use a Conflict Avoidance
Table (CAT) (Sharon et al. 2015) to store the number of
other agents in the current joint path (P.lexF irst) that visit
a given vertex or a given edge at a given timestep. There-
fore, for each path, we can compute its number of conflicts
with other paths using the CAT. In A*pex, when merging
two paths, the low-level search chooses the less conflicting
path as the representative path on condition that the result-
ing node is ε-bounded and otherwise chooses the other path.
In Merge, we also compute the number of conflicts for each

Algorithm 2 BB-MO-CBS-pex

1: S ← ∅; Open← ∅
2: for all i ∈ I do
3: Πi

o ← ApproxLowLevelSearch(i, ∅, ε)

4: Po ←MergeJointPaths({Πi
o|i ∈ I}, ε)

5: add ï∅, {Πi
o|i ∈ I},Poð to Open

6: while Open ̸= ∅ do
7: n = ïΩ, {Πi|i ∈ I},Pð ← Open.extract min()
8: P′ ← PruneApproxDom(P,S, ε)
9: if P′ = ∅ then continue

10: if P′.lexF irst ̸= P.lexF irst then
11: add ïΩ, {Πi|i ∈ I},P′ð to Open
12: continue

13: cft← DetectConflict(P′.lexF irst)
14: if cft does not exist then
15: AddSolution(P′.lexF irst,S, ε)
16: remove P′.lexF irst from P′

17: if P′ ̸= ∅ then
18: add ïΩ, {Πi|i ∈ I},P′ð to Open

19: continue

20: {ωi, ωj} ← GenerateConstraints(cft)
21: for all i′ ∈ {i, j} do

22: {Πi
new|i ∈ I} ← {Πi|i ∈ I}

23: Ωnew ← Ω ∪ {ωi′}

24: Πi′

new ← ApproxLowLevelSearch(i′,Ωnew, ε)
25: Pnew ←MergeJointPaths({Πi

new|i ∈ I}, ε)
26: add ïΩnew, {Π

i
new|i ∈ I},Pnewð to Open

27: return S

joint path and prefer the less-conflicting joint path as the rep-
resentative joint path when merging (Line 2 of Algorithm 3).

Eager solution update: BB-MO-CBS and BB-MO-CBS-
pex can be considered as updating solutions “lazily”, that
is, they try to add solutions to S only when extracting a
CT node n from Open with its current joint path being
conflict-free. We propose an eager solution-update scheme,
which can be applied to both BB-MO-CBS(-ε) and BB-MO-
CBS-pex: In BB-MO-CBS-ε with eager solution update, af-
ter Line 8 of Algorithm 1, we remove all conflict-free joint
paths from P′, add them to S , and remove all dominated so-
lutions from S . In BB-MO-CBS-pex with eager solution up-
date, after Line 8 of Algorithm 2, we remove all conflict-free
joint paths from P′ and call AddSolution to add them to S .
After each new solution P is added to S (or merged with an-
other solution in S) by AddSolution, we also remove other
solutions that are weakly dominated by P from S .

BB-MO-CBS-k

In practice, choosing an appropriate ε-value for a given
MO-MAPF problem instance can be challenging. If ε is set
too large, BB-MO-CBS-ε or BB-MO-CBS-pex might return
only one solution, which provides no trade-off to users. If ε
is set too small, BB-MO-CBS-ε or BB-MO-CBS-pex might
not benefit from approximation at all. Instead of specifying
an approximation factor, one might prefer to specify a desir-
able number of solutions k. Therefore, we propose BB-MO-
CBS-k, a variant of BB-MO-CBS-pex that computes a set of

Algorithm 3 Functions for BB-MO-CBS-pex

1: procedure Merge(P, P ′, ε)
2: Pnew ← a copy of P or P ′

3: A(Pnew)← vector min(A(P),A(P ′))
4: if c(Pnew) ¯ε A(Pnew) then return Pnew

5: else return ∅
6: procedure MergeJointPaths({Πi | i ∈ I}, ε)
7: P1 ← Π1

8: for all i = 2, 3, . . . , |I| do
9: Pi ← ∅

10: for all ïPi−1 = {π1, π2, . . . , πi−1}, πið ∈ Pi−1×Πi

do
11: P ← {π1, π2, . . . , πi}
12: A(P)← A(Pi−1) +A(πi)
13: if ∃P ′ ∈ Pi Merge(P, P ′, ε) ̸= ∅ then
14: replace P ′ in Pi with Merge(P, P ′, ε)
15: else add P to Pi

16: return P|I|

17: procedure PruneApproxDom(P,S, ε)
18: P′ ← a copy of P
19: for all P ∈ P′ do
20: if ∃Psol ∈ S c(Psol) ¯ε A(P) then
21: A(Psol)← vector min(A(P),A(Psol))
22: remove P from P′

23: return P′

24: procedure AddSolution(P , S, ε)
25: if ∃Psol ∈ S Merge(P, Psol, ε) ̸= ∅ then
26: replace Psol in S with Merge(P, Psol, ε)
27: else add P to S

up to k solutions for any user-specified k-value. In BB-MO-
CBS-k, all components of ε are equal, i.e., ε = [ε, ε, . . . , ε],
and we will denote ε simply as ε in the rest of this section.

BB-MO-CBS-k builds upon BB-MO-CBS-pex with the
following changes:

1. The approximation factor ε is initialized to zero and dy-
namically updated by a modified AddSolution function,
which is explained later.

2. Every time after the low-level search for an agent ai,
BB-MO-CBS-k calls function MergeUntil to merge the
set of paths Πi until the size of Πi is no larger than k.
MergeUntil is explained later.

3. BB-MO-CBS-k uses a modified MergeJointPaths
function, which always outputs a set of at most k joint
paths, and a modified AddSolution function, which al-
ways keeps the size of S no larger than k. The two mod-
ified functions are also explained later.

For a joint path P , we define its boundedness factor as

BF (P) := max

(

0, max
i=1,2,...,M

ci(P)

Ai(P)
− 1

)

,

which is the smallest ε-value such that joint path P is ε-
bounded (i.e., ci(P) f (1 + ε)Ai(P) for i = 1, 2, . . . ,M).

Algorithm 4 shows the pseudocode for the MergeUntil
function and the modified Merge, MergeJointPaths,
and AddSolution functions. The modified Merge func-
tion merges paths without checking the ε-boundedness. The
MergeUntil function iteratively chooses two joint paths

Algorithm 4 Functions for BB-MO-CBS-k

1: procedure Merge(P, P ′)
2: Pnew ← a copy of P or P ′

3: A(Pnew)← vector min(A(P),A(P ′))
4: return Pnew

5: procedure MergeUntil(P, k)
6: while |P| > k do
7: choose two joint paths P and P ′ from P such that

BF (Merge(P, P ′)) is minimized
8: remove P and P ′ from P
9: add Merge(P, P ′) to P

10: procedure MergeJointPaths({Πi | ∀i ∈ I}, k)
11: P1 ← Π1

12: MergeUntil(P1, k)
13: for all i = 2, 3, . . . , |I| do
14: Pi ← ∅
15: for all ïPi−1 = {π1, π2, . . . , πi−1}, πið ∈ Pi−1×Πi

do
16: P ← {π1, π2, . . . , πi}
17: A(P)← A(Pi−1) +A(πi)
18: add P to Pi

19: MergeUntil(Pi, k)

20: return P|I|

21: procedure AddSolution(P,S, ε, k)
22: add P to S
23: MergeUntil(S, k)
24: ε← max({BF (P) | P ∈ S} ∪ {ε})

P and P ′ from a given set of joint paths P such that
BF (Merge(P, P ′)) is minimized (by iterating all possible
combinations of joint paths in P) and replaces P and P ′ with
Merge(P, P ′) in P until the size of P is no larger than k. The
modified MergeJointPaths function calls MergeUntil
to keep the sizes of Pi, i = 1, 2, . . . , |I|, no larger than k
(Lines 12 and 19). The modified AddSolution function also
uses MergeUntil to keep the size of S no larger than k. Ad-
ditionally, it updates the approximation factor ε to the largest
bounded factor of S . We also generalize the MergeUntil
function to merge paths output by the low-level search. We
omit the pseudocode for this function because the gener-
alization is trivial. The boundedness factor for path is de-
fined in the same way as the one for joint path. When BB-
MO-CBS-k terminates, it returns S , which contains no more
than k solutions. Additionally, S is guaranteed to be an ε-
approximate frontier for the eventual value of ε.

Theoretical Results

Definition (CVN set) Given a set of joint paths P and a
CT node n with constraints Ω, let CV N(n,P) be the set of
all joint paths that (i) satisfy all constraints in Ω, (ii) are
conflict-free, and (iii) are of costs not weakly dominated by
the apex of any joint path in P.

We say a node n permits a joint path P with respect to P
if P ∈ CV N(n,P).

Lemma 1. For agent ai and constraints Ω, let Πi :=
ApproxLowLevelSearch(i,Ω, ε). We have (1) for each
path Ã′ of agent ai that satisfies Ω, there exists a path Ã ∈ Πi

with A(Ã) ¯ c(Ã′), and (2) all paths in Πi are ε-bounded.

Proof. The lemma is shown by Theorem 1 in the paper of
A*pex (Zhang et al. 2022).

Lemma 2. Let nnew = ïΩnew, {Π
i
new|i ∈ I},Pnewð de-

note the CT node that BB-MO-CBS-pex inserts to Open
on Line 26 of Algorithm 2. We have (1) for any joint path
P ′ that satisfies Ωnew, there exists a joint path P ∈ Pnew

with A(P) ¯ c(P ′) and (2) all joint paths in Pnew are ε-
bounded.

Proof. Since Pnew is computed by MergeJointPaths
(defined on Lines 6-16 of Algorithm 3) on Line 25
of Algorithm 2, we use induction to show that, before
MergeJointPaths terminates (namely before Line 16 of
Algorithm 3), Pi, i = 1, 2, . . . , |I| mentioned there satis-
fies that (Condition 1) for any joint path P ′ for agent in-
dices {1, 2, . . . , i} that satisfies Ωnew, there exists a joint
path P ∈ Pi with A(P) ¯ c(P ′) and, (Condition 2) all
joint paths in Pi are ε-bounded. Note that Πi, i ∈ I , in
MergeJointPaths refers to the same set of paths as Πi

new.
Conditions 1 and 2 hold for P1 because P1 is

set to Π1
new (Line 7), which was computed by

ApproxLowLevelSearch, and Lemma 1 holds. As-
sume that Conditions 1 and 2 hold for i = 1, 2, . . . , j − 1.
For any joint path P ′ = {Ã′1, Ã′2, . . . , Ã′j} that sat-
isfies Ωnew, there exists a joint path Pj−1 ∈ Pj−1 with

A(Pj−1) ¯ c({Ã′1, Ã′2, . . . , Ã′j−1}). From Lemma 1, there

also exists a path Ãj ∈ Πj
new with A(Ãj) ¯ c(Ã′j). When

MergeJointPaths reaches Line 13 with the combination
of Pj−1 and Ãj , the resulting joint path P mentioned there
is either added to Pj or merged with another joint path in Pj .
Either case results in a joint path whose apex weakly dom-
inates c(P ′) in Pj . MergeJointPaths might merge this
joint path several (more) times with other joint paths, but
the apex of this joint path will still weakly dominate c(P ′).
Therefore, Condition 1 holds for i = j. Since both Pj−1 and

Ãj are ε-bounded and A(P) = A(Pj−1)+A(Ãj), P is also
ε-bounded. Since Pj is updated either on Line 15, where
ε-bounded joint path P is added to Pj , or on Line 14, where
P is merged with a joint path in Pj with the resulting joint
path being ε-bounded (as required by the Merge function),
Condition 2 holds for i = j, too. Therefore, Conditions 1
and 2 hold for i = 1, 2, . . . , |I|. Since MergeJointPaths
returns P|I| as Pnew, Lemma 2 holds.

Lemma 3. When BB-MO-CBS-pex reaches Line 13 of Al-
gorithm 2, consider CT node n and set of joint paths P′

mentioned there, for any joint path P ∈ CV N(n,S), there
exists a joint path P ′ ∈ P′ with A(P ′) ¯ c(P).

Proof. Before BB-MO-CBS-pex reaches Line 13, CT node
n might have been previously extracted from and reinserted
to Open with different sets of joint paths. Let Pgen denote
the set of joint paths computed by MergeJointPaths when
n was generated on Line 26. From Lemma 2, for any joint
path P that satisfies Ω, there exists a joint path P ′ ∈ Pgen

with A(P ′) ¯ c(P). We prove Lemma 3 by contradic-
tion: Assume that P ′ is not in P′, which happens only if
P ′ has been removed on Line 8 or 16. If P ′ was removed on
Line 16, it was added to S on Line 15. If P ′ was removed

on Line 8, or more specifically, on Line 22 of Algorithm 3,
the apex of some solution was updated to weakly dominate
A(P ′) (Line 21 of Algorithm 3). In both cases, there exists
a solution in S whose apex weakly dominates A(P ′). BB-
MO-CBS-pex might later merge this solution several times
with other solutions on Line 26 of Algorithm 3 or update its
apex on Line 21 of Algorithm 3, but the apex of this solution
will still weakly dominate A(P ′). We hence find a contra-
diction because, by the definition of CVN sets, the cost of P
is not weakly dominated by the apex of any solution in S .
Thus, P ′ is in P′.

Lemma 4. When BB-MO-CBS-pex reaches (but before ex-
ecuting) Line 7 of Algorithm 2, for any solution P , if there
does not exist a solution Psol ∈ S with A(Psol) ¯ c(P),
there exists a CT node n ∈ Open, which permits P with
respect to S .

Proof. We prove this lemma by induction. After the initial-
ization, Open contains only the root node no, which has an
empty constraint set and thus permits any solution with re-
spect to S because S is empty. Therefore, the lemma holds
for the first iteration. Assuming that Lemma 4 holds when
BB-MO-CBS-pex reaches Line 7 at an iteration, if there
exists a solution Psol ∈ S with A(Psol) ¯ c(P), there
will always exist a solution whose apex weakly dominates
c(P) afterward (because Lines 21 and 26 in Algorithm 3
can only decrease each component of A(Psol)), and hence
the lemma holds for the next iteration. Otherwise, there must
exist a node n = ïΩ, {Πi|i ∈ I},Pð in Open that permits
P with respect to S . If n is not extracted from Open, it
still permits P till the next iteration. Therefore, the lemma
holds for the next iteration. There are three cases if n is ex-
tracted from Open: First, some joint paths in P are removed
on Lines 8. Because of Lemma 3 and P ∈ CV N(n,S),
P′ is not empty, and hence n is reinserted into Open. The
lemma holds for the next iteration. Second, P′.lexF irst is
conflict-free. If A(P′.lexF irst) ¯ c(P), then P′.lexF irst
is added to S . The lemma holds for the next iteration. Oth-
erwise, from Lemma 3, P′ is not empty, n is reinserted into
Open (Line 18), and the lemma also holds for the next it-
eration. Third, BB-MO-CBS-pex generates two child nodes
to resolve a conflict (Lines 20-26). P cannot violate both Éi

and Éj mentioned on Line 20. Therefore, at least one of the
two child nodes added to Open on Line 26 permits P . Thus,
the lemma holds for the next iteration.

Theorem 1. Given an MO-MAPF instance that has at least
one solution, when BB-MO-CBS-pex terminates, S is an ε-
approximate frontier.

Proof. From Lemma 2, all joint paths in the joint path set
of a generated node are ε-bounded. Additionally, when-
ever BB-MO-CBS-pex merges joint paths (Line 26 of Al-
gorithm 3) or updates the apex of an joint path (Line 21 of
Algorithm 3), the resulting joint path or the updated joint
path is still always ε-bounded. Therefore, for any Psol ∈ S ,
we have c(Psol) ¯ε A(Psol). From Lemma 4, we know
that, for any solution P , there exists a solution Psol ∈ S with
A(Psol) ¯ c(P), and hence c(Psol) ¯ε c(P), when Open

is empty, i.e., when BB-MO-CBS-pex terminates. There-
fore, S is an ε-approximate frontier.

Lemma 5. BB-MO-CBS-pex never reaches Line 20 of Al-
gorithm 2 with a CT node n if there exists a solution P with
c(P) z g(n).

Proof. We prove this lemma by contradiction. Assume that
BB-MO-CBS-pex reaches Line 20 with such a CT node n
and a solution P with c(P) z g(n). There does not exist
a solution Psol ∈ S with A(Psol) ¯ c(P) because, oth-
erwise, the current joint path of n (whose apex is equal to
g(n)) would not be in the joint path set P′ mentioned on
Line 8. In this case, BB-MO-CBS-pex would reach Line 12
instead of Line 20. From Lemma 4, there exists a node
n′ = ïΩ′, {Π′i|i ∈ I},P′ð in Open that permits P with
respect to S . When n′ was generated, there was a joint
path P ′ in the set of joint paths with A(P ′) ¯ c(P) (and
hence z g(n)) (Lemma 2). If P ′ has been removed from
P′ by PruneApproxDom, there should exist a solution in
S whose apex weakly dominates A(P ′) (and hence c(P)),
which we have already disproved. Therefore, P ′ is still in P′.
Since g(n′) = A(P′.lexF irst) is lexicographically smaller
than or equal to A(P ′), g(n′) is lexicographically smaller
than g(n), which contradicts that n had the lexicograph-
ically smallest g-value when it was extracted from Open
(Line 7).

Theorem 2. Given an MO-MAPF instance that has at least
one solution, BB-MO-CBS-pex terminates in finite time.

Proof. Because the given graph G is finite (i.e., has finite
vertices and edges) and the cost of each edge in G is a posi-
tive M -dimensional vector, there are only a finite number of
ε-bounded joint paths whose apexes are not dominated by
the cost of any solution. Because of Lemma 5, when BB-
MO-CBS-pex reaches Line 20 with CT node n, the current
joint path of n must be a joint path whose apex is not dom-
inated by the cost of any solution. When generating a child
node for a node n, BB-MO-CBS-pex adds a new constraint,
which prevents at least one joint path (i.e., the current joint
path of n), whose apex is not dominated by the cost of any
solution. Therefore, the CT of BB-MO-CBS-pex must con-
tain a finite number of nodes. Because each node in BB-MO-
CBS-pex can only be reinserted to Open for finite times,
BB-MO-CBS-pex terminates in finite time.

Experimental Results

In our experimental results, we evaluated (1) BB-MO-
CBS, (2) BB-MO-CBS-ε, (3) BB-MO-CBS-pex, (4) BB-
MO-CBS-pex-E (BB-MO-CBS-pex with Eager solution
update), (5) BB-MO-CBS-pex-E-CB (BB-MO-CBS-pex-
E with Conflict-Based merging), and (6) BB-MO-CBS-k
(which also has eager solution update and conflict-based
merging). All algorithms are implemented in C++1 and
share a common code base as much as possible. We con-
ducted all experiments on a Ubuntu 20.04.5 laptop with an
Intel Core i7-10510U 1.80GHz CPU and 16GB RAM.

1https://github.com/FangjiW/BBMOCBS-approx

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00
Su

cc
es

s R
at

e

50
51
52
53
54
55

So
lu

tio
ns

(a) empty-48-48, ε = 0.03

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(b) random-32-32-20, ε = 0.03

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(c) room-32-32-4, ε = 0.03

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(d) empty-48-48, ε = 0.05

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(e) random-32-32-20, ε = 0.05

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(f) room-32-32-4, ε = 0.05

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(g) empty-48-48, ε = 0.10

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(h) random-32-32-20, ε = 0.10

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(i) room-32-32-4, ε = 0.10

Figure 2: Experimental results for BB-MO-CBS(-ε) and different variants of BB-MO-CBS-pex with two objectives.

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(a) empty-48-48, ε = 0.03

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(b) random-32-32-20, ε = 0.03

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(c) room-32-32-4, ε = 0.03

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(d) empty-48-48, ε = 0.05

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(e) random-32-32-20, ε = 0.05

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(f) room-32-32-4, ε = 0.05

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(g) empty-48-48, ε = 0.10

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(h) random-32-32-20, ε = 0.10

4 8 12 16 20 24 28
Agents

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

50
51
52
53
54
55

So
lu

tio
ns

(i) room-32-32-4, ε = 0.10

Figure 3: Experimental results for BB-MO-CBS(-ε) and different variants of BB-MO-CBS-pex with three objectives.

The low level of BB-MO-CBS and BB-MO-CBS-ε is
implemented with BOA* for bi-objective domains and
NAMOA*dr for domains with more than two objec-
tives. The BB-MO-CBS-pex variants without conflict-based

merging use the “greedy” merging strategy, which is pro-
posed by Zhang et al. (2022) and has the best overall perfor-
mance among different merging strategies.

We use three four-neighbor grids from the MAPF bench-

10 1 100 101 102
BB-MO-CBS-

10 1

100

101

102

BB
-M

O-
CB

S-
pe

x-
E-
CB 1x

5x

25x

100x

bi-objective
tri-objective

(a) ε = 0.03

10 1 100 101 102
BB-MO-CBS-

10 1

100

101

102

BB
-M

O-
CB

S-
pe

x-
E-
CB 1x

5x

25x

100x

bi-objective
tri-objective

(b) ε = 0.05

10 1 100 101 102
BB-MO-CBS-

10 1

100

101

102

BB
-M

O-
CB

S-
pe

x-
E-
CB 1x

5x

25x

100x

bi-objective
tri-objective

(c) ε = 0.10

Figure 4: Runtime of BB-MO-CBS-ε and BB-MO-CBS-pex-E-CB for each problem instance.

·

4 8 12 16 20 24 28
Agents

0.0

0.5

1.0

Su
cc

es
s R

at
e

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

(a) random-32-32-20, bi-objective

4 8 12 16 20 24 28
Agents

0.0

0.5

1.0

Su
cc

es
s R

at
e

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

(b) random-32-32-20, tri-objective

Figure 5: Experiment results for BB-MO-CBS and BB-MO-
CBS-k.

mark (Stern et al. 2019): empty-48-48, random-32-32-20,
and room-32-32-4. We generate the cost for each edge by
randomly sampling each cost component from 1 to 5. The
MAPF benchmark contains 25 random scenarios for each
map, and each scenario provides a list of start-goal pairs. For
each scenario, we vary the number of agents N from 4 to 28

and generate problem instances with the first N start-goal
pairs. We run experiments with two and three objectives and
a runtime limit of 120 seconds for each problem instance.

Different Variants of BB-MO-CBS-pex

We compare BB-MO-CBS, BB-MO-CBS-ε, and different
variants of BB-MO-CBS-pex with approximation factors of
0.03, 0.05, and 0.1.

Figures 2 and 3 show the experimental results on in-
stances with two and three objectives, respectively. The solid
lines show the success rate (i.e., the percentage of instances
solved by an algorithm within the runtime limit) for each al-
gorithm. In all cases, all variants of BB-MO-CBS-pex have
higher success rates than BB-MO-CBS-ε, which in turn has
higher success rates than BB-MO-CBS. Among the variants
of BB-MO-CBS, BB-MO-CBS-pex has the lowest success
rate, while BB-MO-CBS-E-CB has the highest success rate

in almost all cases, which shows the usefulness of the eager
solution update and conflict-based merging techniques. The
improvements in success rates of these techniques are more
significant for larger ε-values. For example, in random-32-
32-30 with two objectives and 20 agents, the addition of
conflict-based merging doubles the success rate. The dashed
lines in Figures 2 and 3 show the average numbers of solu-
tions of BB-MO-CBS and BB-MO-CBS-pex-E-CB. We can
see that introducing approximation to the MO-MAPF prob-
lem reduces the sizes of solution sets significantly.

Figure 4 shows the individual runtime of BB-MO-CBS-
ε and BB-MO-CBS-pex-E-CB for each problem instance.
BB-MO-CBS-pex-E-CB is overall significantly more ef-
ficient than BB-MO-CBS-ε, especially when ε becomes
larger or the instances have more objectives. The max speed-
up of BB-MO-CBS-pex-E-CB over BB-MO-CBS-ε is more
than two orders of magnitude.

BB-MO-CBS-k

We compare BB-MO-CBS and BB-MO-CBS-k on random-
32-32-20 with two and three objectives. For BB-MO-CBS-k,
we use two k-values, namely 5 and 10. The experimental re-
sults are shown in Figure 5. The solid lines show the success
rate for each algorithm, and we can see that BB-MO-CBS-
k has significantly higher success rates than BB-MO-CBS.
The dashed lines show the average approximation factor out-
put by BB-MO-CBS-k, and we can see that, with k = 5 and
k = 10, BB-MO-CBS-k still computes solution sets with
approximation factors smaller than 0.1.

Conclusions

In this paper, we proposed BB-MO-CBS-pex, which lever-
ages A*pex to compute approximate frontiers for the MO-
MAPF problem with a user-specified approximation factor.
Based on BB-MO-CBS-pex, we proposed BB-MO-CBS-k,
which computes up to k solutions for a user-provided k-
value. Our experimental results show that both BB-MO-
CBS-pex and BB-MO-CBS-k solved significantly more in-
stances than BB-MO-CBS for different approximation fac-
tors and k-values, respectively. We also show that BB-MO-
CBS-pex achieved speed-ups up to two orders of magnitude
compared to BB-MO-CBS-ε, our baseline approximation
variant of BB-MO-CBS.

Acknowledgements

The research at the University of Southern California was
supported by the National Science Foundation (NSF) un-
der grant numbers 1409987, 1724392, 1817189, 1837779,
1935712, and 2112533. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the sponsoring organizations, agen-
cies, or governments.

References

Breugem, T.; Dollevoet, T.; and van den Heuvel, W. 2017.
Analysis of FPTASes for the Multi-Objective Shortest Path
Problem. Computers & Operations Research, 78: 44–58.

Ehrgott, M. 2005. Multicriteria Optimization (2nd ed.).
Springer.

Goldin, B.; and Salzman, O. 2021. Approximate Bi-Criteria
Search by Efficient Representation of Subsets of the Pareto-
Optimal Frontier. In International Conference on Auto-
mated Planning and Scheduling (ICAPS), 149–158.

Hernández, C.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo,
L.; Koenig, S.; and Salzman, O. 2023. Simple and efficient
bi-objective search algorithms via fast dominance checks.
Artificial Intelligence, 314: 103807.

Ma, H.; Tovey, C.; Sharon, G.; Kumar, T. K. S.; and Koenig,
S. 2016. Multi-Agent Path Finding with Payload Trans-
fers and the Package-Exchange Robot-Routing problem. In
AAAI Conference on Artificial Intelligence (AAAI), 3166–
3173.

Morris, R.; Pasareanu, C. S.; Luckow, K.; Malik, W.; Ma, H.;
Kumar, T. K. S.; and Koenig, S. 2016. Planning, Scheduling
and Monitoring for Airport Surface Operations. In AAAI-16
Workshop on Planning for Hybrid Systems.

Perny, P.; and Spanjaard, O. 2008. Near Admissible Algo-
rithms for Multiobjective Search. In European Conference
on Artificial Intelligence (ECAI), 490–494.

Ren, Z.; Li, J.; Zhang, H.; Koenig, S.; Rathinam, S.;
and Choset, H. 2023. Binary Branching Multi-Objective
Conflict-Based Search for Multi-Agent Path Finding. Pro-
ceedings of the International Conference on Automated
Planning and Scheduling, 33(1): 361–369.

Ren, Z.; Rathinam, S.; and Choset, H. 2021. Subdimensional
Expansion for Multi-Objective Multi-Agent Path Finding.
IEEE Robotics and Automation Letters, 6(4): 7153–7160.

Ren, Z.; Rathinam, S.; and Choset, H. 2022. A conflict-
based search framework for multiobjective multiagent path
finding. IEEE Transactions on Automation Science and En-
gineering, 20(2): 1262–1274.

Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced multi-objective A* using balanced bi-
nary search trees. In Symposium on Combinatorial Search
(SOCS), 162–170.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 219: 40–66.

Stern, R.; Sturtevant, N. R.; Atzmon, D.; Walker, T.; Li, J.;
Cohen, L.; Ma, H.; Kumar, T. K. S.; Felner, A.; and Koenig,
S. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In Symposium on Combinatorial Search
(SOCS), 151–158.

Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. AI Magazine, 29(1): 9–20.

Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In AAAI
Conference on Artificial Intelligence (AAAI), 1443–1449.

Zhang, H.; Salzman, O.; Kumar, T. K. S.; Felner, A.; Ulloa,
C. H.; and Koenig, S. 2022. A* pex: Efficient Approximate
Multi-Objective Search on Graphs. In International Confer-
ence on Automated Planning and Scheduling (ICAPS), 394–
403.

