Bounded-Suboptimal Weight-Constrained Shortest-Path Search via Efficient
Representation of Paths

Han Zhang', Oren Salzman?, Ariel Felner?, T. K. Satish Kumar!, Sven Koenig'

! University of Southern California
2 Technion - Israel Institute of Technology
3 Ben-Gurion University
zhan645 @usc.edu, osalzman @cs.technion.ac.il, felner@bgu.ac.il, tkskwork @ gmail.com, skoenig@usc.edu

Abstract

In the Weight-Constrained Shortest-Path (WCSP) problem,
given a graph in which each edge is annotated with a cost
and a weight, a start state, and a goal state, the task is to com-
pute a minimum-cost path from the start state to the goal state
with weight no larger than a given weight limit. While most
existing works have focused on solving the WCSP problem
optimally, many real-world situations admit a trade-off be-
tween efficiency and a suboptimality bound for the path cost.
In this paper, we propose the bounded-suboptimal WCSP al-
gorithm WC-A*pex, which is built on the state-of-the-art ap-
proximate bi-objective search algorithm A*pex. WC-A*pex
uses an approximate representation of paths with similar costs
and weights to compute a (1+¢)-suboptimal path, for a given
e. During its search, WC-A*pex avoids storing all paths ex-
plicitly and thereby reduces the search effort while still retain-
ing its (1 + €)-suboptimality bound. On benchmark road net-
works, our experimental results show that WC-A*pex with
e = 0.01 (i.e., with a guaranteed suboptimality of at most
1%) achieves a speed-up of up to an order of magnitude over
WC-A*, a state-of-the-art WCSP algorithm, and its bounded-
suboptimal variant.

Introduction and Related Work

In the Weight-Constrained Shortest-Path (WCSP) problem,
given a graph in which each edge is annotated with a cost
and a weight, a start state, and a goal state, the task is to
compute a minimum-cost path from the start state to the goal
state with weight no larger than a given weight limit. The
WCSP problem appears in many real-world applications. In
an electric vehicle domain, the graph represents a road net-
work, and each edge is annotated with a cost corresponding
to driving time and a weight corresponding to battery con-
sumption (Baum et al. 2015). A desired route minimizes the
driving time without depleting the battery. In a cycling do-
main, the graph represents a road network, and each edge
is annotated with a cost corresponding to cycling time and
a weight corresponding to climbing altitude gain (Storandt
2012). A desired route minimizes the cycling time without
exceeding a given limit on the total climbing altitude gain.
Combinatorially, the WCSP problem also appears as a
subproblem in the context of column generation methods
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used for solving other problems, such as the shift scheduling
problem (Cabrera et al. 2020) and the virtual network em-
bedding problem (Rost 2019). Although many path-finding
problems are tractable, the WCSP problem is NP-hard to
solve optimally, i.e., it is NP-hard to compute the minimum-
cost path within the given weight limit (Handler and Zang
1980; Lorenz and Raz 2001).

The WCSP problem is similar to the Bi-Objective
Shortest-Path (BOSP) problem, where each edge is anno-
tated with two costs. Although the task in the BOSP prob-
lem is different from the task in the WCSP problem, sev-
eral techniques of BOSP algorithms can be carried over to
WCSP algorithms by treating the weight as the second cost
while being cognizant of the weight limit. In fact, WC-
A* (Ahmadi et al. 2022a) is a state-of-the-art WCSP algo-
rithm that draws inspiration from BOSP algorithms. WC-
A* and its bi-directional variant WC-BA* (Ahmadi et al.
2022b) have been shown to outperform previous state-of-
the-art WCSP algorithms Bi-pulse (Cabrera et al. 2020) and
RC-BDA* (Thomas, Calogiuri, and Hewitt 2019) in terms
of runtime by up to two orders of magnitude on road net-
works (Ahmadi et al. 2022a,b).

While the algorithms mentioned above focus on solving
the WCSP problem optimally, many real-world situations
admit—or even encourage—a trade-off between efficiency
and a suboptimality bound for the path cost. A bounded-
suboptimal WCSP algorithm computes a (1 + ¢)-suboptimal
path, for a given . A (1 + ¢€)-suboptimal path has a cost that
is no larger than (1 + ¢) times the minimum path cost and a
weight that is no larger than the weight limit.

There is relatively little work on solving the WCSP prob-
lem with bounded-suboptimality guarantees. Cabrera et al.
(2020) suggest a general method for converting an optimal
WCSP algorithm to a bounded-suboptimal one by terminat-
ing the search immediately after the cost of the incumbent
solution (i.e., the best solution that the WCSP algorithm has
found so far) is proven to be within the given suboptimal-
ity bound. Other works on bounded-suboptimal WCSP al-
gorithms (Lorenz and Raz 2001; Ergun, Sinha, and Zhang
2002) are typically based on fully polynomial-time approxi-
mation schemes, whose runtimes are polynomial in the size
of the graph and 1/e. Unfortunately, these algorithms are
still impractical for large graphs, such as road networks, that
often have millions of states.



There are many existing works on bounded-suboptimal
search algorithms for (unconstrained) shortest-path prob-
lems. These algorithms include WA* (Pohl 1970), fo-
cal search (Pearl and Kim 1982), and explicit estimation
search (Thayer and Ruml 2011). While speeding up the
search by allowing suboptimality is intuitive, it is unclear
how to do so efficiently for the WCSP problem.

In this paper, we propose a novel bounded-suboptimal
WCSP algorithm called WC-A*pex. WC-A*pex takes a
WCSP instance and an ¢ > 0 as input and computes a
(1 4 £)-suboptimal path. WC-A*pex uses techniques from
A*pex (Zhang et al. 2022a), a state-of-the-art approximate
BOSP algorithm. Unlike other WCSP algorithms, WC-
A*pex uses a clever data structure to merge paths with simi-
lar costs and weights efficiently (instead of storing them ex-
plicitly) during the course of its search. Since paths corre-
spond to search nodes, the merged representation of similar
paths reduces the number of node expansions and thereby
the overall search effort of WC-A*pex. WC-A*pex thus
uses a different technique to speed up the search from exist-
ing bounded-suboptimal search algorithms, most of which
rely on node expansion orders to guide the search to quickly
find a bounded suboptimal solution.

We evaluate WC-A*pex experimentally with different
suboptimality bounds and compare it with existing WCSP
algorithms on benchmark road networks with 1 to 14 mil-
lion states and 2 to 34 million edges. The competing WCSP
algorithms include WC-A* and our adaptation of it to the
bounded-suboptimal variant WC-A*-¢, which terminates the
search immediately after the incumbent solution is proven to
be (1 + ¢)-suboptimal. Our experimental results show that
WC-A*pex substantially outperforms WC-A* and WC-A*-
€ in terms of runtime although they are also based on BOSP
algorithms. This demonstrates the power of the merged rep-
resentation of similar paths used in WC-A*pex. Even with
e = 0.01 (i.e., with a guaranteed suboptimality of at most
1%), WC-A*pex achieves an order-of-magnitude speed-up
over WC-A* and WC-A*-¢ on the largest road network. In
comparison, WC-A*-¢ with the same value of € achieves less
than 20% speed-up over WC-A*.

Terminology and Problem Definition

In this section, we formally define the WCSP and BOSP
problems. To allow for a uniform notation, we define the
cost of an edge as a pair of numbers. In the context of the
WCSP problem, the first number indicates the cost, and the
second number indicates the weight. In the context of the
BOSP problem, both numbers represent the cost.

We use boldface font to denote pairs and p;, ¢ € {1, 2}, to
denote the ¢-th component of a pair p. The addition of two
pairs p and p’ is defined as p + p’ = (p1 + P}, p2 + Ph).
We say that p (weakly) dominates p’, denoted as p < p/, iff
p1 < p) and ps < ph. For an approximation factor (or, more
precisely, a pair of approximation factors) € = (e1,£2), we
say that p e-dominates p’, denoted as p <. p/, iff p; <
(1+e1)-ppandps < (1+e2) - ph.

A (bi-objective) graph is a tuple G = (S, E, c), where
S is a finite set of states and E C S x S is a finite set of

(directed) edges. succ(s) = {s' € S : (s,§') € E} de-
notes the successors of state s. The cost functionc : E —
R x R<( maps an edge to its cost, which is a pair of pos-
itive numbers. A path w from state s; to state sy is a se-
quence of states [s1, Sz ...s,] with (s;,s;41) € E for all
j=1,2...4 — 1. 81 = S unless mentioned otherwise.
Slightly abusing the notation, we define the cost of 7 as
c(m) = Zf;i c((s;,5;+1)). We say that path 7 dominates
another path 7’ (resp. 7 e-dominates 7’) iff c(7) < c(n’)
(resp. c(m) e c(7')).

A WCSP instance is a tuple P = (G, Ssart, Sgoal, W),
where G is a graph, sy € S is the start state, Sgoa € S
is the goal state, and W € R g is the weight limit. The two
components ¢; and ¢y of the cost function ¢ correspond to
the cost and weight in the context of the WCSP problem,
respectively. A path 7 is a solution of P iff it is from Sy
t0 Sgoal and satisfies co(m) < W. We say that P is solvable
iff it has a solution. An optimal solution of P is a solution
with the minimum c;-value, denoted as cj, of all solutions.
Given a non-negative ¢, a solution 7 is (1 + ¢)-suboptimal
iff c1(m) < (1 +¢) - 5. A bounded-suboptimal WCSP al-
gorithm takes a WCSP instance P and a parameter € > 0 as
input and computes a (1 + £)-suboptimal solution.

A path 7 from Sggar 0 Sgoal is Pareto-optimal iff there does
not exist another path 7’ from Sy t0 Sgou With c(7’) =<
c(m) and c(7") # c(m). The Pareto front II* from Sy to
Sg0al 18 the set of all Pareto-optimal paths from g t0 Sgoal.
For a non-negative pair €, a set of paths II. from sgy to
Sgoal 18 an e-approximate Pareto front from S t0 Sgoa iff
any path from S, tO Sgoal iS €-dominated by at least one
path in II.. Note that different e-approximate Pareto fronts
can exist for the same S, Sgoal, and €.

A BOSP instance is a tuple (G, Sstart, Sgoal), Where G is
a graph, sgaq € S is the start state, and Sgoa € S is the
goal state. An approximate BOSP algorithm takes a BOSP
instance and an approximation factor € = (0, 0) as input and
computes an e-approximate Pareto front from syt 10 Sgoal-

The following observation shows the connection between
a bounded-suboptimal WCSP algorithm and an approximate
BOSP algorithm.

Observation 1. For a solvable WCSP instance P =
(G, Sstarts Sgoat; W) and € > 0, any (e,0)-approximate
Pareto front Ile from Sgan 10 Sgow contains a (1 + €)-
suboptimal solution of P.

Proof. Let m* denote an optimal solution of P. By defini-
tion, there exists a path € Tl with c(m) =< oy c(7*) (i.e.,
a(m) < (1+4¢€)-ci(n*) and ca(m) < co(n*) < W). Thus,
mis a (1 + €)-suboptimal solution of P. O

See Figure 1 for a visualization of an e-approximate Pareto
front and a (1 4 ¢)-suboptimal solution of a WCSP instance.

In this paper, we focus on heuristic-search-based WCSP
algorithms. We assume that a heuristic function h : S —
R>p x R>q, which provides a lower bound on the cost
from any given state s t0 Sgoql, is always available. Addi-
tionally, we assume that the heuristic function is consis-
tent, that is, h(sga) = 0 and h(s) =< c(e) + h(s’) for
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Figure 1: Example of the Pareto front (the costs of
whose paths are shown by the orange dots) and an (g, 0)-
approximate Pareto front (the costs of whose paths are
shown by the blue dots, two of which overlap with orange
dots) for a WCSP instance. The shaded region shows the
costs that are (&, 0)-dominated by at least one blue dot. Note
that all orange dots are within the shaded region. Solutions
7* and 7 are an optimal solution and a (1-+¢)-suboptimal so-
lution of the WCSP instance, respectively, with ¢(7) =(. )
c(m*).

all e = (s,s’) € E. It is a common practice in the exist-
ing WCSP and BOSP literature (Ahmadi et al. 2021, 2022b;
Herndndez et al. 2023; Zhang et al. 2022a; Salzman et al.
2023) to use Dijkstra’s algorithm (starting from sga) to
compute the minimum cost ¢ (s) from any state s t0 Sgol
for the ¢-th objective, ¢ = 1, 2, (while ignoring the other ob-
jective) and h(s) := (cf(s), c5(s)) as the heuristic function.
We call this heuristic function the perfect-distance heuristic.

Algorithmic Background

In this section, we review existing WCSP and BOSP al-
gorithms, with a focus on BOA* (Hernandez et al. 2023),
WC-A* (Ahmadi et al. 2022b), and A*pex (Zhang et al.
2022a). All three algorithms fit the same best-first bi-
objective search framework: A (search) node n contains
a state s(n), a g-value g(n), and an f-value defined as
f(n) = g(n) + h(s(n)). Node n corresponds to a path
from Sy to s(n). The search algorithm maintains a priority
queue Open, which contains the generated but not yet ex-
panded nodes, and a set of solutions. Open is initialized with
a node that contains the start state sy, and the g-value O.
In each iteration, the search algorithm extracts a node n
from Open with the lexicographically smallest f-value (i.e.,
extracts a node with the smallest f;-value and breaks ties
in favor of a smaller fo-value). It then performs a domi-
nance check to determine whether n or any of its descen-
dants have the potential to be added to the set of solutions. If
not, the search algorithm discards n. Otherwise, it expands
n: If s(n) = Sgoal, then the search algorithm adds the path
corresponding to n, which is a solution, to the set of solu-
tions. If s(n) # sgoal, then the search algorithm generates a
child node for each of the states in succ(s(n)). The search
algorithm then performs a dominance check for the gener-
ated node and adds it to Open if it passes the check. When
Open becomes empty, the search algorithm terminates and

returns the solution set.

Best-first bi-objective search algorithms differ mainly in
which information is contained in the nodes and how the
dominance checks work. The dominance checks of both
BOA* and A*pex check if the f-value of a node is weakly
dominated by the f-value of any expanded node with the
same state or Sgoal.

BOA* and WC-A*

BOA™ (Hernandez et al. 2023) computes a Pareto front
for the given start and goal states. In BOA*, each node
n corresponds to a path from sy, to s(n) whose cost is
g(n). Hernandez et al. (2023) show that, due to the con-
sistent heuristic function that BOA* uses, the f;-values
of the extracted nodes are monotonically non-decreasing.
Thus, the dominance checks do not need to consider the
f1-values. Consequently, BOA* stores only the minimum
go-value g9"(s) of all expanded nodes containing the same
state s. The dominance check for a node n containing state
s can then be done by checking if go(n) < ¢5"(s) and
f2(n) < g3"(Sgom). This dominance check can be per-
formed in constant time (in contrast to earlier methods which
required time linear in the number of nodes that contain s).

WC-A* is an optimal WCSP algorithm built on BOA*. It
only maintains at most one incumbent solution. In addition
to discarding nodes via dominance checks, WC-A* also dis-
cards nodes (1) whose fa-values are larger than the weight
limit W or (2) whose f;-values are not smaller than the
c1-value of the incumbent solution. Since WC-A* extracts
nodes with monotonically non-decreasing fi-values, it ter-
minates (and returns the incumbent solution) once the mini-
mum f7-value in Open is not smaller than the one of the in-
cumbent solution. During the computation of the heuristics
with Dijkstra’s algorithm, the minimum-c; and minimum-cs
paths from any state s t0 S0, Can also be obtained. We call
these paths the complementary paths of s. When generating
anode n, WC-A* tries to update the incumbent solution with
better solutions that extend the corresponding path of n with
the complementary paths of s(n).

WC-A* can be converted to a bounded-suboptimal WCSP
algorithm by terminating the algorithm when the minimum
f1-value in Open is no longer smaller than the fi-value of
the incumbent solution divided by (1 + £). We include this
variant of WC-A*, called WC-A*-¢, in our empirical study.

Ahmadi et al. (2022b) propose WC-BA*, a bi-directional
variant of WC-A* that runs two WC-A* searches (one start-
ing from sy, and the other one starting from sg0,1) concur-
rently. We omit WC-BA* from our empirical study because
Ahmadi et al. (2022a) later report that WC-BA* does not
dominate WC-A* in terms of runtime and, in fact, has larger
average runtime in several scenarios.

A*pex

A*pex computes an e-approximate Pareto front for a given
BOSP instance and a given e-value. In A*pex, a node is a
so-called apex-path pair AP = (A, 7) that consists of a cost
pair A, called the apex, and a path 7, called the representa-
tive path. We define the g-value of AP as g(AP) := A and
the state of AP as the last state of the representative path .



The f-value of AP is £(AP) := g(AP) + h(s(AP)). Con-
ceptually, an apex-path pair corresponds to a set of paths
that end at the same state, and its apex is the component-
wise minimum of the costs of these paths. AP is said to be
e-bounded iff c(7) + h(s(AP)) = f(AP).

Whenever A*pex inserts an apex-path pair to Open,
A*pex attempts to merge it with another apex-path pair in
Open that contains the same state on condition that the re-
sulting apex-path pair is e-bounded. The implementation of
A*pex by Zhang et al. (2022a) uses, for each state, a list to
maintain the apex-path pairs in Open for that state and hence
can iterate over these apex-path pairs efficiently. The new
apex after merging two apex-path pairs is the component-
wise minimum of the apexes of the two apex-path pairs, and
the new representative path is either one of the two represen-
tative paths of the two apex-path pairs. See Figure 2(a) for a
visualization of the two possible outcomes.

WC-A*pex
In this section, we describe WC-A*pex, our bounded sub-
optimal WCSP algorithm that finds a (1 4 €)-suboptimal so-
lution for a given . We first describe WC-A*pex and then
provide theoretical results and speed-up techniques.

Observation 1 shows that a (1 4 ¢)-suboptimal solution
of a WCSP instance can be found in a corresponding (e, 0)-
approximate Pareto front. This motivates us to propose WC-
A*pex, which can be viewed as A*pex with e = (g,0)
and additional node pruning. We use bold € and regular
to distinguish between the approximation factor of A*pex
and the given suboptimality factor for the WCSP problem.
Similar to A*pex, a node of WC-A*pex is an apex-path
pair AP = (A, ). Since the second component of ¢ is 0,
when merging two apex-path pairs (A, 7) and (A’, ') with
co(m) < eo(n’"), WC-A"pex cannot choose 7' as the new
representative path, in which case the resulting apex path
pair is not e-bounded. Therefore, WC-A*pex chooses the
path with a smaller cs-value and breaks ties in favor of a
smaller c;-value. See Figure 2(b) for a visualization of merg-
ing two apex-path pairs for WC-A*pex.

Algorithm 1 shows the pseudocode of WC-A*pex. It
starts with an apex-path pair (0, [Sstar]) in Open (Line 1). At
each iteration, WC-A*pex extracts an apex-path pair from
Open with the lexicographically smallest f-value (Line 5).
Similar to BOA*, WC-A*pex maintains a gJ'"-value for
each state s that contains the smallest go-value of all ex-
panded nodes with state s and updates it on Line 10. Both
after extracting (that is, after Line 5) and before generating
(that is, before Line 16) an apex-path pair AP with state s,
WC-A*pex discards the apex-path pair if (1) g2(AP) >
5" (s(AP)) or (2) fo(AP) > W. Case (1) holds iff there
exists an expanded node containing state s whose g-value
weakly dominates g(.AP), which implies that any solution
found via AP is also (e, 0)-dominated by a solution found
via the expanded node and AP thus can be safely pruned.
Case (2) holds only if the representative path of AP cannot
be extended to a solution (since the co-value of any solution
cannot be larger than W) and AP thus can be safely pruned.

When WC-A*pex expands an apex-path pair AP with
state s, it generates a child apex-path pair for each succes-
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Figure 2: Examples of merging apex-path pairs (A, ) (or-
ange) and (A’, ') (blue) into apex-path pair (Ajew, Thew)
(green) for A*pex and WC-A*pex, respectively.

sor " of state s. The apex of the child apex-path pair is the
sum of the apex of AP and c((s,s’)) (Line 12), and the
representative path of the child apex-path pair is the rep-
resentative path of AP appended with state s’ (Line 13).
Before adding the child apex-path pair AP’ to Open, WC-
A*pex attempts to merge AP’ with an apex-path pair in
Open[s(AP’)] on condition that the resulting apex-path pair
is (¢,0)-bounded (Lines 19-25), where ¢ is the input sub-
optimality factor and Open|[s(AP")] is the set of apex-path
pairs in Open for state s(AP’).

WC-A*pex terminates when it finds a solution (Line 9) or
when Open becomes empty (Line 17). In the latter case, the
given WCSP instance has no solution.

We use an example WCSP instance to demonstrate how
WC-A*pex works. Figure 3(a) shows its graph. The
weight limit W and € are 7 and 0.2, respectively. Fig-
ure 3(b) shows the costs of all paths from Sgar 10 Sgoar.
Path [Sgar, 51, 83, 54, Sgoal], Whose cost is (7,7), is the op-
timal solution of this WCSP instance. Moreover, since the
second-best solution (S, S1, 52, 53, S5, Sgoal] has a large
ci-value of 13, [Sear, S1,53, 54, Sgoat] 18 also the only 1.2-
suboptimal solution of this WCSP instance. We use the
perfect-distance heuristic. Slightly abusing the notation, we
use tuple (s(AP;),f(AP;),c(m;)) to denote an apex-path
pair AP; = (A, m;).



Algorithm 1: WC-A*pex

Input : P = (G, Ssart, Sgoal, W)
€
h
1 Open <+ {0, [ssar]) }
2 for each s € S do
| g8"(s) o0
while Open # () do
AP = (A, ) < Open.extract_min()
if g2(AP) > g™ (s(AP)) V f2(AP) > W then
| continue
if s(AP) = Sgou then
| return
0 | g5"(s(AP)) < g2(AP)
11 for s’ € succ(s(AP)) do

e ® 9 S B W

12 A’ — A+ c((s(AP),s"))

13 7’ < m.append(s’)

14 if AL > gi™(s') Vv AL + ha(s’) > W then
15 | continue

16 insert_to_Open((A’, 7))

17 return None

18 Function insert_to_Open(AP’ = (A’ 7')):
19 for AP = (A, m) € Open[s(AP’)] do

20 A,y < (min(47, A7), min(As, A3))

21 Tew <— the one of 7 and 7’ with the smaller
c2-value, breaking ties in favor of a smaller
c1-value

22 if (Avew, Thew) is (€, 0)-bounded then

23 remove AP from Open

24 add (Anew, Tew) to Open

25 return

26 add AP’ to Open

27 return

e In Iteration 1, WC-A*pex expands apex-path pair
AP1 = (Ssn, (5,5),(0,0)) and generates two child
apex-path pairs APy = (s1,(5,5),(1,2)) and AP3 =
<327 (67 6)3 (37 2)>

¢ In Iteration 2, WC-A*pex expands apex-path pair AP-
and generates two child apex-path pairs APy =
(s2,(5,7),(2,3)) and AP5 = (s3,(7,5),(5,3)). AP4
is merged with AP3 in Open, resulting in apex-path pair
APs = (s2,(5,6),(3,2)). AP is (e,0)-bounded be-
cause (3,2) + h(s2) = (6,6) <(.,0) (5,6).

e In Iteration 3, WC-A*pex expands apex-path pair
AP and generates child apex-path pair AP; =
(s3,(5,6),(4,4)). AP7 is not merged with AP5 be-
cause, given that the new representative path would have
a cost of (5,3) and the new f-value would be (5,5),
(5,3) + h(s3) = (7,5) does not (g, 0)-dominate (5, 5).

* In Iteration 4, WC-A*pex expands apex-path pair AP~
and generates two child apex-path pairs APg =
(s4,(5,8),(5,6)) and APy = (s5,(13,6),(9,5)). APs
is pruned because f2(APs) > W.

¢ In Iteration 5, WC-A*pex expands apex-path pair AP
and generates two child apex-path pairs APy =
<547 (77 7)3 (67 5)> and Apll = <S57 (157 5)v (103 4)>
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Figure 3: An example WCSP instance. (a) shows the graph
of this WCSP instance, where the pair of numbers inside
each state is its h-value and the blue arrows show the optimal
solution for weight limit W = 7. (b) shows the costs of all
paths from S t0 Sgoq1 in the graph.

AP11 is merged with APg in Open, resulting in apex-
path pair AP12 = (s5,(13,5), (10,4)). AP12 is (¢, 0)-
bounded because (10,4) + h(ss) = (15,5) =(.0)
(13, 5).

e In Iteration 6, WC-A*pex expands apex-path pair
AP1o and generates child apex-path pair AP35 =
<Sg0ala (77 7)a (75 7)>

¢ In Iteration 7, WC-A*pex expands apex-path pair AP13
and returns a solution with cost (7, 7).

In this example, WC-A*pex finds the optimal solution. Two
merges happen during the entire process, namely in Iter-
ation 2 between AP3 = (sq2,(6,6),(3,2)) and APy =
(s2,(5,7),(2,3)) and in Iteration 5 between APy =
(ss,(13,6),(9,5)) and AP11 = (ss,(15,5), (10,4)). The
representative paths of AP35 and APy are 73 = [Sgan, S2)
and 74 = [Ssuan, S1, S2], respectively. Compared to APs,
which is expanded in Iteration 5 and eventually extended to
the returned solution, AP35 and AP, have lexicographically
smaller f-values and appear to be more promising. However,
the two possible extensions of AP3 and AP, to sgoq €i-
ther violate the weight limit (via [s2, S3, S4, Seoat])) OF have
large ci-values (via [s2, S3, S5, Sgoal]), as WC-A*pex finds
out in Iterations 3 and 4. Without merging, previous WCSP
algorithms, like WC-A*, would represent 73 and 74 as two
different nodes and spend more search effort. This example
demonstrates how merging can speed up the search.



Theoretical Results

In this section, we show that WC-A*pex returns a (1 + ¢)-
suboptimal solution for any solvable WCSP instance.

Lemma 1. If g2(AP) > g¢5"(s(AP)) on Line 6 or 14,

then there exists an expanded apex-path pair AP’ with state
s(AP') = s(AP) and £f(AP') < f(AP).

This lemma is rephrased from Lemma 2 by Zhang et al.
(2022a), and the same proof applies.

For the remainder of this section, we use 7* = [s] (=
Sstart), 55 ... S, (= Sgoa)] to denote an optimal solution
for the given solvable WCSP instance. We use 7}

j
[s1,85...87],7=1,2...¢, to denote a prefix of 7.

Lemma 2. Af the beginning of any iteration (i.e., before ex-
ecuting Line 5), if WC-A*pex has expanded an apex-path
pair AP with s(AP) = s} and g(AP) =< c(r}) for some
j € {1,2...4—1}, then there exists an apex-path pair AP’
in Open with s(AP') = s} and g(AP') = c(r}) for some
k> 3.

Proof. We prove this lemma by induction on j, starting
with 7 = ¢ — 1 and going backward. Consider an ex-
panded apex-pair AP with s(AP) = s;_, and g(AP) =<
c(m;_;). When expanding AP, WC-A*pex generates a
child apex-path pair AP’ that contains state s} (= Sgoul)-
We have g’z"i“(sgoal) = oo because, if WC-A*pex had ex-
tracted any apex-path pair from Open that contained Sgoar,
it would have terminated on Line 9 and could not have
reached Line 10 to update g5"™ (Sgou1). We have g(AP') =
g(AP) +c((s7_y. 7)) < elr7_y) +e((si_y, 57)) = e(x).
Since the heuristic h is consistent, we have h(s}) = 0 and
hence fo(AP') = g2(AP') < ca(n*) < W. Therefore,
AP’ is not pruned on Line 15 but inserted to Open. If AP’
had been extracted from Open, WC-A*pex would have ter-
minated. Therefore, AP’ remains in Open.

Now we assume that the lemma holds for j = 7 + 1,
i € {1,2...¢ — 2}. Consider an expanded apex-path pair
AP with s(AP) = s; and g(AP) < c(n]). When ex-
panding AP, one of its child apex-path pairs, denoted as
AP’ contains state s}, ;. We have g(AP') = g(AP) +
c((s,8741)) 2 e(mf) + e({si, si11)) = c(miyy). We dis-
tinguish two cases:

1. AP’ is pruned on Line 15. Since fo(AP’) = go(AP’) +
ha(siq) < ca(miyg) + ha(siyy) < co(m™) < W, the
reason for pruning AP’ can only be that g5 (s}, ;) <
gg(AP'). Then, from Lemma 1, there exists an ex-
panded apex-path pair with state s, ; and whose g-
value weakly dominates g(AP’) and hence (7}, ;). Be-
cause the lemma holds for j = i + 1, there exists an
apex-path pair AP” in Open with s(AP") = s} and
g(AP") = c(n}) for some k > i + 1. Thus, the lemma
holds for j = i.

2. AP’ is not pruned on Line 15 but is inserted to Open,
perhaps after merging it with another apex-path pair.
Thus, an apex-path pair with state s7,; whose g-value
weakly dominates c(7j, ;) is inserted to Open. The
lemma holds for j = ¢ as long as this new apex-path pair

remains in Open. If this new apex-path pair is extracted
and then either pruned or expanded, then there is an ex-
panded apex-path pair with state s}, ; and whose g-value
weakly dominates c(7;, ;). Because the lemma holds for
J =1+ 1, it thus also holds for j = 1.

Therefore, the lemma holds forall j € {1,2...4—1}. O

Theorem 1. WC-A”pex returns a (1 + ¢)-suboptimal solu-
tion for any solvable WCSP problem instance.

Proof. In the first iteration, there is one apex-path pair
APinit = (0, [Sstarr]) in Open. We have s(APipit) = $F
and g(APinit) =< c(n]). APini¢ is then expanded in the
first iteration, and, from Lemma 2, Open always contains
at least one apex-path pair at the beginning of all future it-
erations. Therefore, WC-A*pex will not reach Line 17 and
return None. Since there are only a finite number of paths
whose cy-values are not larger than W, there are only a fi-
nite number of expanded apex-path pairs, and hence a fi-
nite number of iterations before WC-A*pex terminates. Let
Teol and APy, be the path returned by WC-A*pex and the
apex-path pair that contains 7., respectively. g is a so-
lution because it is from St tO Sgoa (due to the condition
on Line 8) and its co-value is not larger than W (otherwise,
APso1 would have been pruned on Line 7). Because APy,
is (&,0)-bounded (which is due to the conditions on Line
22 and since the heuristic function is consistent), we have
(1+¢)- f1(APso1) > c1(mso1)- We prove that g, must be
(1+¢)-suboptimal by contradiction: Assume that 74, is not
(1 4 &)-suboptimal, i.e., ¢1(7s01) > (1 + €) - c1 (7). Put
together, we have (1 + ¢) - f1(APs01) > c1(ms01) > (1 +
€)-c1(m*) and hence f1(APso1) > ¢1(7*). From Lemma 2,
there always exists an apex-path pair AP’ € Open with
s(AP') = s; and g(AP’) < c(r}) for some k. We have
f(AP') = g(AP") +h(s(AP")) < c(m})+h(s}) < c(m*)
(and hence f1(AP') < c1(m*) < f1(APso1)). WC-A*pex
must extract AP’ before extracting AP, which is a con-
tradiction. O

Speed-up Techniques

In this section, we describe some speed-up techniques for
an efficient implementation of WC-A*pex. Some of these
techniques are also used by existing algorithms like WC-A*,
and hence we omit the theoretical results for them.

Efficient data structures: Similar to WC-A*, we let
WC-A*pex use a bucket queue to implement Open. Addi-
tionally, for each state s, we use a doubly-linked list to keep
track of all apex-path pairs in Open with state s. Therefore,
WC-A*pex can efficiently iterate over Open/[s] for any state
s on Lines 19-25 and efficiently update the doubly-linked
list when an apex-path pair is extracted from or inserted
to Open. Our preliminary results confirmed that these data
structures speed up the original implementation of A*pex by
an order of magnitude.

Early solution updates: Similar to WC-A*, we let WC-
A*pex maintain and update an incumbent solution using
complementary paths. An apex-path pair AP is pruned if



Road € WC-A* (-¢) WC-A*pex Speed-Up
Network Runtime Expansions Runtime Expansions
Avg Max Avg Avg. Max Avg Max
FLA 0 0.085 4.482 1,217K 49,400K
0.01 0.081 5.121 1,083K 47,994K || 0.023 0.707 142K 3,543K 3.48
0.05 0.050 3.753 731K 41,380K || 0.013 0.454 81K 2,290K 3.88
0.10 0.035 4.482 458K 41,380K || 0.008 0.443 49K 2,128K 4.43
0.20 0.015 2.321 176K 18,578K || 0.004 0.250 19K 1,291K 431
NE 0 0.184 8.376 1,877K 59,122K
0.01 0.153 5.284 1,577K 44.,032K || 0.047 2.503 251K 8,302K 3.24
0.05 0.071 3.014 841K 26,694K || 0.018 0.620 109K 2,461K 3.94
0.10 0.024 0.861 361K 9,610K || 0.008 0.192 52K 1,160K 2.91
0.20 0.005 0.401 76K 6,914K || 0.002 0.123 13K 810K 1.93
LKS 0 4.609 129.534 | 32,448K 721,867K
0.01 3.813 97.928 | 27,285K 551,673K || 0.655 17.383 | 2,128K  40,169K 5.82
0.05 2.112 60.093 | 15,441K 327,693K || 0.219 4.275 836K 11,486K 9.64
0.10 0.944 38.345 7,590K 200,622K || 0.107 3.046 493K 9,306K 8.83
0.20 0.077 4.093 1,003K 31,143K || 0.016 0.502 91K 2,062K 4.92
E 0 5.485 138.313 | 36,554K 763,176K
0.01 4614 132.302 | 31,488K 715,655K || 0.845 16.960 | 2,714K  51,904K 5.46
0.05 2.629 76.859 | 18,918K 473,144K || 0.216 4.427 876K  14,754K 12.16
0.10 0.972 40.358 8,248K 279,604K || 0.110 3.486 493K 12,604K 8.81
0.20 0.212 21.542 1,777K 138,240K || 0.026 2.079 112K 6,464K 8.13
W 0 4.615 227762 | 33,610K 1,096,261K
0.01 3.945 180.262 | 30,536K 920,302K || 0.567 33.271 | 2,248K 86,746K 6.96
0.05 2.323 70.197 | 19,962K 553,971K || 0.260 7.167 | 1,233K  21,667K 8.93
0.10 0.967 57.564 | 10,048K 467,409K || 0.122 3.521 666K  16,178K 7.92
0.20 0.292 41.619 3,220K 304,128K || 0.041 2.768 241K 12,997K 7.05
CAL 0 0.382 21.479 3,897K 138,645K
0.01 0.333 20.423 3,476K 131,590K || 0.111 4.786 508K  16,659K 3.01
0.05 0.166 6.520 2,030K 54,052K || 0.052 1.560 257K 5,771K 3.21
0.10 0.093 3.991 1,222K 46,152K || 0.030 1.209 160K 5, 771K 3.09
0.20 0.033 3.383 502K 38,419K || 0.014 1.199 73K 5,325K 2.36
CTR 0 17.561 243.423 | 94,661K 1,106,707K
0.01 14.711 222586 | 82,911K 1,013,655K || 1.536 29.957 | 4,592K 67,054K 9.57
0.05 8.757 185.336 | 50,288K 804,131K || 0.531 11.827 | 1,942K 32,594K 16.48
0.10 4.173 99.930 | 24,928K 468,607K || 0.291 6.359 | 1,119K 18,877K 14.36
0.20 0.599 39.787 4,719K 233,685K || 0.061 3.008 267K 10,624K 9.84

Table 1: Average and maximum runtimes (in seconds), average and maximum numbers of node expansions, and speed-ups of
WC-A*pex over WC-A*-¢ in average runtimes for WCSP instances on different road networks.

(1+¢) - f1(AP) is not smaller than the c¢;-value of the in-
cumbent solution. WC-A*pex then terminates when Open
becomes empty and returns the incumbent solution.

Experimental Results

In this section, we evaluate WC-A*pex with WCSP in-
stances on road networks from the 9th DIMACS Implemen-
tation Challenge: Shortest Path.! We investigate WC-A*pex
with different e-values and compare the runtimes and num-
bers of node expansions of WC-A*, WC-A*-¢, and WC-
A*pex. We implemented WC-A*pex in C++ from scratch?
and implemented WC-A*-¢ based on the C++ implementa-
tion of WC-A* provided by the original authors.?

We choose seven road networks, namely FLA (1.1M

"http://www.diag.uniromal..it/challenge9/download.shtml.
2https://github.com/HanZhang39/MultiObjectiveSearch
*https://bitbucket.org/s-ahmadi/biobj/src/master/

states and 2.7M edges), NE (1.5M states and 3.9M edges),
CAL (1.9M states and 4.7M edges), LKS (2.8M states and
6.9M edges), E (3.6M states and 8.8M edges), W (6.3M
states and 15.2M edges), and CTR (14.1M states and 34.3M
edges) from the DIMACS data set. The ¢;- and cy-values
for each edge are its travel time and distance, respectively,
both available from the DIMACS data set. Each WCSP in-
stance thus corresponds to computing a path that is bounded-
suboptimal with respect to its travel time and with its travel
distance being no larger than a given limit. For each road
network, we use the same 100 Sy and Sgou pairs used
by Sedefio-Noda and Colebrook (2019) and Ahmadi et al.
(2021). Following previous work (Cabrera et al. 2020; Ah-
madi et al. 2022b), for each sy and sg0q1 pair, we generate a
WCSP instance with the weight limit W = ¢ +4-(c3>—c)
based on a tightness factor §, where ¥ and i are the min-
imum and maximum cg-values of all Pareto-optimal paths
from Sgiart tO Sgoal, Tespectively. A smaller J-value thus cor-



WC-A*-¢
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Figure 4: Runtimes of WC-A*pex and WC-A*-¢ with different suboptimality factors on all WCSP instances.

responds to a tighter weight limit. For each sy and sgoal
pair, we use the tightness factors 0.25, 0.5, and 0.75. There-
fore, we have 300 WCSP instances for each road network.

For each WCSP instance, we evaluate WC-A*-¢ and WC-
A*pex with the e-values 0.01, 0.05, and 0.1. Table 1 shows
the average and maximum runtimes (in seconds) and the
numbers of node expansions of WC-A*, WC-A*-¢, and WC-
A*pex over all WCSP instances. The results for WC-A* are
shown in the rows with ¢ = 0. We choose not to show the
results for different tightness factors (d-values) separately
because, as we will show in Figure 4, they do not affect
the results significantly. With ¢ = 0.01, i.e., a guaranteed
suboptimality of at most 1%, the average speed-up of WC-
A*pex over WC-A* is more than 11X on the largest road
network (CTR). However, the average speed-up of WC-A*-¢
with ¢ = 0.01 over WC-A* is only about 20% because WC-
A*-¢ still needs to expand a large number of nodes to prove
that the incumbent solution is bounded-suboptimal. The run-
times and numbers of node expansions of WC-A*pex are al-
ways smaller than the ones of WC-A* and WC-A*-¢ with the
same e-value on all road networks, which shows that merg-
ing apex-path pairs greatly reduces the runtimes and num-
bers of node expansions.

Figure 4 shows the individual runtimes (in seconds) of
WC-A*pex and WC-A*-¢ for all WCSP instances and e-
values. We use different markers for different tightness fac-
tors ¢ used to generate the WCSP instances. The diagonal

dashed lines and the numbers along them denote different
speed-ups (1x, 10x, and the maximum speed-up) of WC-
A*pex over WC-A*-¢ . For different tightness factors, the
trends of the speed-ups of WC-A*pex over WC-A*-¢ are
similar. Although WC-A*pex is slower than WC-A*-¢ on
easy WCSP instances (which both algorithm solve mostly
within around 0.1 seconds), WC-A*pex achieves significant
speed-ups over WC-A*-¢ on more difficult instances (repre-
sented by the points on the top-right corners).

Conclusions

In this paper, we proposed the bounded-suboptimal WCSP
algorithm WC-A*pex. WC-A*pex is built on A*pex, a state-
of-the-art approximate BOSP algorithm. Its empirical per-
formance on benchmark road networks highlights two im-
portant computational aspects of it. First, huge gains in run-
time (namely, up to an order of magnitude) are possible with
only a small compromise on the cost of the solution (namely,
a 1% suboptimality). Second, the merged representation of
paths reduces the number of node expansions and is critical
to the success of WC-A*pex over WC-A* and WC-A*-¢.

In future work, we intend to generalize WC-A*pex to
multiple costs, multiple weights (Skyler et al. 2022), or both.
We also intend to enhance WC-A*pex with recent algorith-
mic advancements (Zhang et al. 2022b) and make it into an
anytime algorithm.
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