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ABSTRACT
Spiking Neural Networks (SNNs) are brain-inspired computing

models with event-driven based low-power operations and unique

temporal dynamics. However, temporal dynamics in SNNs pose a

significant overhead in accelerating neural computations and limit

the computing capabilities of neuromorphic accelerators. Especially,

unstructured sparsity emergent in both space and time, i.e., across

neurons and time points, and iterative computations across time

points cause a primary bottleneck in data movement.

In this work, we propose a novel technique and architecture

that allow the exploitation of temporal information compression

with structured sparsity and parallelism across time, and signif-

icantly improves data movement on a systolic array. We split a

full range of temporal domain into several time windows (TWs)

where a TW packs multiple time points, and encode the temporal

information in each TW with Split-Time Temporal coding (STT)

by limiting the number of spikes within a TW up to one. STT en-

ables sparsification and structurization of irregular firing activities

and dramatically reduces computational overhead while delivering

competitive classification accuracy without a huge drop. To further

improve the data reuse, we propose an Integration Through Time

(ITT) technique that processes integration steps across different

TWs in parallel with a systolic array. The proposed architecture

with STT and ITT offers an application-independent solution for

spike-based models across various types of layers and networks.

The proposed architecture delivers 97X latency and 78X energy effi-

ciency improvements on average over a conventional SNN baseline

on different benchmarks.

CCS CONCEPTS
• Hardware → Hardware accelerators.
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1 INTRODUCTION
Non-spiking artificial neural networks (ANNs) process information

with continuous-valued signals representing averaged firing rates of

neurons resulting from activation functions such as rectified linear

unit (ReLU) and sigmoid [1]. In contrast, spiking neural networks

(SNNs) handles unraveled information in space and time, i.e., across

different neurons (space) and different time points (time), with

explicitly modeled all-or-none firing spikes. As reported in recent

studies, spatial and temporal dynamics with biologically inspired

[8] and backpropagation based [7, 12, 16] SNN training algorithms

have demonstrated competitive performances for various tasks.

From a hardware acceleration point of view, SNNs have consid-

ered better positioned for low-power operations than ANNs with

biologically plausible computingmodels including event-driven pro-

cessing and binary-valued signals. However, computations along
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Figure 1: Operations in spiking neural networks (SNNs)

the temporal dimension and unstructured sparsity in both space

and time complicate the hardware acceleration of spike-based mod-

els. The unique temporal dimension in SNNs offers an opportunity

in processing complex spatiotemporal data but introduces iterative

and unstructured data movement at each time point.

This work aims to develop a systolic array-based architecture

to tap the full potential of SNN acceleration with 1) Split-Time

Temporal coding (STT) and 2) Integration Through Time (ITT).

Split-Time Temporal coding (STT) : We propose a novel, univer-

sally applicable solution for sparsification and structurization of any

rate-based spiking activities and explore the impact of temporal

granularity defined by the time window (TW) size. STT signifi-

cantly improves accelerator performance by reducing the spike

redundancy on a TW basis and handling the TW as the basic unit

of operation with structured firing activities across TWs.

Integration Through Time (ITT) : ITT enables parallel acceler-

ation in time based on simultaneous processing of multiple TWs

across columns of the systolic array. ITT enables the data reuse

across TWs with uniform processing times for TWs, leading to

further improved performance on top of STT.

Systolic array-based Architecture : We develop a systolic array-

based architecture supporting STT and ITT. The proposed architec-

ture is capable of accelerating various types of layers. We overcome

the causality and tightly coupled dependencies by using the prefix

sum without additional resources.

2 BACKGROUND
As shown in Fig. 1, in feedforward spiking layers, operations in a

single spiking neuron consist of three steps at each time point 𝑡𝑘 :

Step 1: Synaptic input integration at 𝑡𝑘 :

®𝑝𝑃𝑜𝑠𝑡 [𝑡𝑘 ] = W𝑃𝑜𝑠𝑡,𝑃𝑟𝑒 × ®𝑠𝑃𝑟𝑒 [𝑡𝑘 ] (1)

Step 2: Membrane potential update at 𝑡𝑘 :

®𝑣𝑃𝑜𝑠𝑡 [𝑡𝑘 ] = ®𝑣𝑃𝑜𝑠𝑡 [𝑡𝑘−1] + ®𝑝𝑃𝑜𝑠𝑡 [𝑡𝑘 ] −𝑉 𝑃𝑜𝑠𝑡
𝑙𝑒𝑎𝑘

(2)

Step 3: Conditional spike output generation at 𝑡𝑘 :

®𝑠𝑃𝑜𝑠𝑡 [𝑡𝑘 ] = f (®𝑣𝑃𝑜𝑠𝑡 [𝑡𝑘 ]) (3)

f (𝑣𝑃𝑜𝑠𝑡𝑖 [𝑡𝑘 ]) =
{
1, if 𝑣𝑃𝑜𝑠𝑡

𝑖
[𝑡𝑘 ] ≥ 𝑉 𝑃𝑜𝑠𝑡

𝑡ℎ
: 𝑣𝑃𝑜𝑠𝑡

𝑖
[𝑡𝑘 ] = 0

0 else : 𝑣𝑃𝑜𝑠𝑡
𝑖

[𝑡𝑘 ] = 𝑣𝑃𝑜𝑠𝑡
𝑖

[𝑡𝑘 ]
(4)

where the Post and Pre denote the pre-synaptic layer and the

post-synaptic layer, and 𝑖 represents the neuron indices in the post-

synaptic layer. ®𝑝𝑃𝑜𝑠𝑡 [𝑡𝑘 ], ®𝑣𝑃𝑜𝑠𝑡 [𝑡𝑘 ], and ®𝑠𝑃𝑜𝑠𝑡 [𝑡𝑘 ] are vectors, rep-
resenting the integrated partial sum of the spike inputs from the
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pre-synaptic layer, membrane potential and spike output of the neu-

rons in the post-synaptic layer at time 𝑡𝑘 , respectively.W𝑃𝑜𝑠𝑡,𝑃𝑟𝑒

is the matrix of the feedforward synaptic weights between pre-

and post-synaptic layers,𝑉𝑡ℎ and𝑉𝑙𝑒𝑎𝑘 are the firing threshold and

leaky parameter in post-synaptic layer, respectively. f is a non-

linear, all-or-non activation function with a given𝑉𝑡ℎ . In the above,

(Step 1) incurs matrix-vector multiplication and takes place at each

time point, comprising the dominant complexity. Importantly, the

above steps are repeated at each time point, across all time points.

Processing neural computations of a recurrent layer in SNNs

follow the same three steps in the feedforward layer with additional

synaptic inputs.

Step 1*: Feedforward synaptic input integration at 𝑡𝑘 :

®𝑝𝑃𝑜𝑠𝑡𝐹 [𝑡𝑘 ] = W𝑃𝑜𝑠𝑡,𝑃𝑟𝑒 × ®𝑠𝑃𝑟𝑒 [𝑡𝑘 ] (5)

®𝑝𝑃𝑜𝑠𝑡𝑅 [𝑡𝑘 ] = W𝑃𝑜𝑠𝑡,𝑃𝑜𝑠𝑡 × ®𝑠𝑃𝑜𝑠𝑡 [𝑡𝑘−1] (6)

®𝑝𝑃𝑜𝑠𝑡 [𝑡𝑘 ] = ®𝑝𝑃𝑜𝑠𝑡𝐹 [𝑡𝑘 ] + ®𝑝𝑃𝑜𝑠𝑡𝑅 [𝑡𝑘 ] (7)

where ®𝑝𝑃𝑜𝑠𝑡
𝑅

[𝑡𝑘 ] is a vector, representing the partial sum of the

recurrent input integration.

3 SPLIT-TIME TEMPORAL CODING (STT)
3.1 Proposed STT
We propose a novel technique to locally employ coding and sparisi-

fication by dividing the time stride (TS) with a temporal granularity

defined by the time window (TW) size, dubbed Split-Time Tempo-
ral coding (STT). The key idea is to employ local structurization

and sparsification and improve the computational/data movement

overhead by reducing the redundancy in locally rate-coded firing

activities on a TW basis while retaining local rate information by

using prefix sum. Importantly, STT is universally applicable for

accelerating spiking models, with flexibility in choosing the TW

size. The spike timing of the single spike coded for each TW carries

firing rate information with time-left-from-first-spike (TFFS), as

shown in Fig. 2. All layers in the network operate on TW-based

local coding based on the proposed STT, with the following rules:

Rule 1. We limit the maximum firing count of each neuron in a

TW to one. In all TWs, each neuron is allowed to fire up to once

where the only spike represents rate information.

Rule 2. The spike count within a TW is represented by the timing

of a single spike. As such for the input layer, the spike information

of original input firing activity is converted with STT based on the

number of spikes in each TW.

Rule 3. At the output layer, STT-based firing activities are decoded
to rate. The firing rate of each neuron is decided by integrating its

firing rates from all TWs, i.e., summing up all TFFS in time domain.

As shown in Fig. 3(a), we first convert the rate-coded original

firing activities into STT-based firing activities at the input layer.

For example, as in Fig. 2, if the TW size is 5 and the number of

spikes in a TW is 4, the time-left-from-first-spike (TFFS) in the

corresponding TW is determined by: TFFS = (TW size) - TTFS =

5 - 1 = 4, representing the firing rate of the TW. At the output

layer, STT-based firing activities are decoded to firing rate for the

decision making. For example, the spike train in Fig. 3(c) is decoded

by integrating rates across TWs:

∑
(TFFS) =

∑
(TW size)-(TFFS) =

2 + 4 + 1 = 7, following Rule 3.

3.2 STT-based Acceleration
STT-based hardware acceleration significantly simplifies the input

integration step, the dominant computational complexity. First, STT

reduces the repeated weight access across multiple time points to

TW 

Time-to-first-spike 
TTFS = 1 

Time-left-from-first-spike 
TFFS = 4 

(TW size = 5) 

Original Firing Activity 

STT-based Firing Activity 

Time 

Time 

TW size + = 

# of spikes = 4 = TFFS 

Figure 2: Local structurization and sparsification with the
proposed STT. Time-left-from-first-spike (TFFS) presents the
firing rate of the corresponding TW.

a single weight access per input neuron for a given TW. Since an

input neuron fires up to once in a TW, the corresponding weight is

used only once for input integration.

Second, to retain the local and also global information, we use

the prefix sum of the STT-based integrated synaptic inputs in a

TW while this efficient process is still based on a single spike per

TW, following Rule 2. As will be shown in Fig. 6, the prefix sum

of STT-based integrated inputs is equivalent to the Psums using a

left-aligned rate code where the firing rate corresponds to TFFS.

Finally, STT allows parallel acceleration through time via using

a small amount of memory for each time point of a TW. For the

case in Fig. 3(b), conventionally, the input integration step requires

accessing weight data𝑊𝐴 and𝑊𝐶 at time point 𝑡𝑘 , and𝑊𝐴 ,𝑊𝐵 and

𝑊𝐶 at the next time point 𝑡𝑘+1 sequentially. These unstructured
firing patterns across different neurons and time points render

repeated weight access without data reuse. Differently, with STT,

𝑊𝐴 is integrated to the partial sums (Psums) at 𝑡𝑘+1,𝑊𝐵 is integrated

to the Psums at 𝑡𝑘+3, and𝑊𝐶 is integrated to the Psums at 𝑡𝑘 in

parallel.

4 PROPOSED ARCHITECTURE
4.1 Overview of the Proposed Architecture
Fig. 5 shows the overall architecture of the proposed architecture

incorporating an STT-encoder for the input layer, an STT-decoder

for the output layer, controllers, caches, and a systolic array com-

posed of tiled processing elements (PEs) with unidirectional links.

As shown in Fig. 5(a), the systolic array fetches the required data

through three levels of memory hierarchy: 1) off-chip RAM, 2) a

global buffer and 3) double-buffered L1 caches. The received spike

input and weight data propagates vertically and horizontally with

unidirectional links across the 2-D array and is reused through

multiple PEs. Each PE is composed of 1) a simple controller, 2) a

small scratch-pad memory, 3) accumulate unit (AC), 4) a simple one-

hot-to-binary decoder and 5) a comparator. Unlike multiply-and-

accumulate (MAC) operations in non-spiking accelerators, simpler

AC units are used to accumulate weight values with binary-valued

spikes. To fully leverage STT-based acceleration, the synaptic input

is properly integrated into the corresponding time point with a

simple decoder, and the scratch-pad in each PE stores the Psums of

all time points in a given TW.

4.2 Integration Through-Time (ITT)
2-D systolic arrays naturally exploit parallelism and data reuse in

both vertical and horizontal directions. To fully utilize such advan-

tages, we propose an Integration Through-Time (ITT) technique on
top of STT, which defines a spiking activity in a TW as a basic
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Figure 3: Schematic representations of STT-based network operations. (a): STT-encoder at the input layer (b): Comparison
between the operations in conventional approaches and the proposed STT-based approach (c): STT-decoder at the output layer
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Figure 4: Spike raster plot of 20 neurons from the recurrent
layer for accelerating NTIDIGITS. (a): Original firing activ-
ities without using STT and (b): STT-based firing activities
with TW size = 10.

unit of workload and maps spiking activities in multiple TWs onto

the systolic array, concurrently. As shown in Fig. 5(c), ITT assigns

entire spike trains in a TW to a single PE and accelerates multiple

TWs in different PEs simultaneously. ITT allows for accelerating

multiple time points in several TWs in parallel based on the fact

that the synaptic input integration step (Step 1) only depends on

the spike inputs from the previous layer (1). Integration of synaptic

inputs across multiple time points with ITT can be expressed by

modifying (1) as:

Step 1 - ITT: Synaptic input integration in 𝑇𝑊 𝑛 ∼ 𝑇𝑊 𝑛+𝑚 :

p𝑃𝑜𝑠𝑡 [𝑇𝑊 𝑛,𝑇𝑊 𝑛+1, ...,𝑇𝑊 𝑛+𝑚]
= p𝑃𝑜𝑠𝑡 [(𝑡𝑘 (𝑛−1)+1, ..., 𝑡𝑘𝑛), ..., (𝑡𝑘 (𝑛+𝑚−1)+1, ..., 𝑡𝑘 (𝑛+𝑚) )]
= W𝑃𝑜𝑠𝑡,𝑃𝑟𝑒 × s𝑃𝑟𝑒 [𝑇𝑊 𝑛,𝑇𝑊 𝑛+1, ...,𝑇𝑊 𝑛+𝑚]
= W𝑃𝑜𝑠𝑡,𝑃𝑟𝑒 × s𝑃𝑟𝑒 [(𝑡𝑘 (𝑛−1)+1, ..., 𝑡𝑘𝑛), ..., (..., 𝑡𝑘 (𝑛+𝑚) )]

(8)

where k is the size of the TW, p𝑃𝑜𝑠𝑡 and s𝑃𝑟𝑒 are now matrices,

and synaptic input integration is processed across 𝑇𝑊 s. 𝑇𝑊𝑛 de-

notes the n-th time window which contains k different time points,

i.e., 𝑇𝑊𝑛 = (𝑡𝑘 (𝑛−1)+1, ..., 𝑡𝑘𝑛). Remaining steps remains the same

as in (2) ∼ (4) and all the other expressions follows the definition

described in (1) ∼ (4).

4.3 Mapping to Systolic Array
With STT and ITT, our mapping strategy enables parallel process-

ing in both 1) time: across time points and 2) space: across output

neurons, which significantly improves data movement and process-

ing time.

Mapping Input and Outputs: As shown in Fig. 5(c), PEs in a

specific row performs the computations for a particular output

neuron across different TWs. In each column, PEs process spike

inputs of a given TW for different output neurons. Data are only fed

from the edges of the systolic array providing high data distribution

bandwidth. In each PE, the PE receives spike input and weight from

its upper and left neighbors and passes spike input and weight to

its lower and right neighbors.

Energy Reduction: First, STT minimizes the computational over-

head required for dense spiking activities with structured sparsifi-

cation. STT restricts each neuron to fire at most once in a TW and

enables the same weight data associated with a presynaptic neuron

to be used only once. Data movement/access is further improved

with ITT by the improved weight data reuse. PEs in the same row

in the array perform computations of a post-synaptic neuron across

different TWs, i.e., the same weight data is reused across PEs in the

same row with different spike inputs.

Utilization Efficiency and Latency: STT and ITT improve severe

under-utilization which originates from iterative data access and

the irregularity of sparse firing activities at each time point in the

time stride. As discussed in Section 3, each neuron fires at most

once in a TW with STT, and thus the processing of any TW takes

the same amount of time. Uniformity in processing time across

TWs and higher sparsity with STT significantly improve latency

and utilization efficiency.

4.4 STT-based Layer Acceleration
The operations in a single PE follow the three steps (1) ∼ (4) with an

AC unit and a small scratch-pad shared through the steps, as shown

in Fig. 6(a). In Step 1, the synaptic input integration step, the PE

determines the address based on the spike timing in a given TW and

accumulates the associated weight into a corresponding memory.

A single spike in a TW can be interpreted as a one-hot encoded

address for the integration. The small scratch-pad memory first

stores the integrated synaptic inputs (ISI) of multiple time points

in a given TW. In the above operation, a simple combinational

logic, one-hot to binary, converts the spike trains of a TW into an

address to the small scratch-pad. As shown in Fig. 6(a), for example,

if the spike input is 01000 with TW size 5, the associated weight is

properly integrated into ISI[TFFS] = ISI[4], which is the integrated

synaptic input of the second time point in the TW.

Next, the actual Psum is calculated using the ISI in the previous

step. As discussed in Section 3 and shown in Fig. 6(b), we utilize the
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Figure 5: (a): Overall architecture of the proposed accelerator (b): STT-encoder and decoder at the input and output layer,
respectively (c): Mapping of the inputs and outputs into the systolic array with the proposed ITT
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Figure 6: Schematic representations of (a): Operations in a PE for accelerating feedforward and recurrent layer (b): Calculating
partial sums (Psums) using a prefix sum of the integrated synaptic inputs (ISI)

prefix sum of ISI which restores the rate and temporal information

equivalent to a left-aligned rate code counterpart, while sustaining

the advantages of using STT with a single spike. As shown in Fig.

6(b), the use of prefix sum yields the same Psum results as using

left-aligned, rate codes where the rate equals TFFS.

For the rest of the operation, PE processes Step 2 and Step 3 with

the integrated Psums. At a given time point 𝑡𝑘 , the PE updates the

membrane potential with Psum[𝑡𝑘 ] and the membrane potential of

the previous time point 𝑡𝑘−1. If the updated membrane potential

exceeds the pre-defined threshold, the PE generates an output spike

and resets the membrane potential.

In case of recurrent layers, the synaptic input integration step is

almost the same as that for feedforward acceleration except for one

additional step for integrating recurrent synaptic inputs, denoted

as Step 1-R in Fig. 6(a). To simplify the recurrent layer processing,

we adopt the self-recurrent structure in [17].

5 EVALUATION METHODOLOGY
We develop an analytic architecture simulator to support various

types of layers, unique characteristics in SNNs, and trace data ac-

cess/movement for evaluating the latency and energy dissipation

for accelerating a specific task. In Table 1, the user-defined inputs

for the simulator are summarized.

5.1 Systolic-Array and Memory Modeling
Systolic array: A systolic array is a central computing unit of

our simulator and fetches spike inputs and weights from the top

and left edges, respectively. As in many other works, we use a

Table 1: A high-level overview of the user-defined inputs.
Input Description
Array Array width/height,

configuration size of the scratch-pad in PE

Memory Size of the memory in three levels:

configuration off-chip RAM, Global buffer, L1 cache

STT Use STT-based spiking acitivities or

plain counterpart along with time window size

ITT Mapping different TWs across columns of

the systolic array with given TW size

Time Window Ranging from plain inputs (𝑇𝑊 =1) to

(𝑇𝑊 ) Size the size of a scratch-pad in PE, i.e.,𝑇𝑊 =50

Layer Type fully-connected, convolutional and recurrent

Network Number of layers, layer types, and

Structure number of the neurons in each layer

128 processing elements (PEs) [5] in the systolic array along with

double-buffered L1 caches to provide required data to the array.

Memory hierarchy: Similar to many other analytic architecture

evaluation models, we adopt an off-load model with a three-level

memory hierarchy. We follow the standard practice [9, 14] to use

double-buffering to hide the latency for memory-intensive neural

networks and especially separate L1 cache for each type of data

Architecture specifications are summarized in Table 2.

5.2 Performance Modeling
With the dataflow, the simulator assigns unique addresses for each

data and traces read and write in PEs and each level of the memory

hierarchy. Following the estimation methods in many previous

works [4, 9, 14], the simulator calculates latency, memory access

and energy dissipation.
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Table 2: Architecture specifications.
Components Proposed Architecture
Number of PEs 128

ALU in PEs Adder, Comparator - 8-bit

Global Buffer Size 54KB

L1/Scratchpad Size 2KB / 50 × 8-bit

DRAM Bandwidth 30GB/sec

Bit precisions Weight/Membrane Potential - 8-bit

Input/Output Spike - TWS × 1-bit

(TWS:𝑇𝑊 size)
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Figure 7: Normalized number of total spikes and maximum
number of spikes in a neuron with different time window
sizes.

Latency: The latency is estimated with the worst delay between

data access from higher-level cache and computations in the array.

The total latency is calculated by adding all latencies across the

entire process.

Memory Access: For the given user-defined inputs, the simulator

generates a dataflow that pre-determines the data loading onto the

array. With the given memory size and data loading schedule, the

simulator counts read/write in all levels of memory as in [9, 14]. For

example, when a specific data is required for the array computation

but is absent in the L1, it induces global buffer read and L1 write if

the data is present in the global buffer.

Energy Dissipation:With CACTI model [10] configured for 32nm

CMOS technology, energy dissipation in memory is calculated by

multiplying the number of memory access and the energy per

memory access. Energy dissipation for computations is evaluated

by the number of required AC operations [9] based on the actual

spiking activities in the network.

5.3 Training Algorithm and Benchmarks
Training Algorithm: All the reported machine learning perfor-

mance are simulated on NVIDIA Titan XP GPU and the implemen-

tation of the proposed STT is conducted on Pytorch framework

[13]. We adopt one of the the state-of-the-art SNN training method

[16] for training the network.

Benchmarks: The proposed STT and ITT are evaluated on various

image and speech tasks including neuromorphic image dataset N-

MNIST [11], neuromorphic video dataset DVS-Gesture [2], and

neuromorphic speech dataset N-TIDIGITS [3] with various layer

types, i.e., fully connected, convolutional and recurrent, in the

network.

6 RESULTS
6.1 STT: Temporal Information Compression
STT reconstructs the spike information with higher, but structured

sparsity by dividing the time stride into multiple TWs, squeezing

the entire spike information in each TW to the timing of a single

spike. As introduced in Section 3, STT applies to all layer types

including FC, CONV and recurrent layers. Furthermore, flexibility

in TW size selection for STT enables the proposed architecture to

accelerate individual applications with different optimizations.
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Figure 9: Normalized energy dissipation and latency of layers
with different TW sizes for NMNIST.

Computational overhead: The number of spikes required for

layer acceleration decreases with the TW size, so does the compu-

tational overheads by STT. Approximately, the number of required

AC operations is inversely proportional to the TW size, as shown

in Fig. 7.

Data movement: STT enables fewer weight data movements asso-

ciated with active pre-synaptic neurons across the different levels of

the memory hierarchy. In conventional approaches, iterative weight

access based on the active pre-synaptic neurons at each time point is

inevitable due to the sequential processing. However, STT reduces

temporal resolution, and more sparsely populated spikes mitigate

read and write memory access at each level of memory.

6.2 ITT: Data Reuse
ITT significantly improves data reuse by providing data sharing op-

portunities across TWs and post-synaptic neurons, and minimizes

the memory access and stall cycles originating from additional

latency for iterative memory access. ITT maps spike inputs in mul-

tiple TWs into different columns and enables weight reuse across

the PEs in the same row.

We use the recurrent layer trained for the NTIDIGITs as a repre-

sentative layer to analyze the impact of the proposed techniques

in data movements, as shown in Fig. 8. Clearly, larger TW sizes

reduce access to the higher-level caches and improve energy dissipa-

tion. Compared to the conventional approach without the proposed

ideas, we observe a huge improvement in memory access to the L1

cache and global buffer.

6.3 Comprehensive Evaluations
We examine how the proposed STT and ITT with the key architec-

tural parameter TW size improve the overall performance.

Latency:We observe a huge improvement in latency by using STT

and ITT in all three networks, as shown in Figs. 9. As discussed in

Sections 6.1 and 6.2, 1) STT reduces latency of the computations in

the array proportionally to the TW size by processing a TW instead

of a time-point, and 2) ITT minimizes the additional delay due to

stall cycles resulted from waiting for the required data, by reusing

the weight data horizontally. However, after a certain TW size, the

additional improvement with a much larger TW size decreases. This
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Table 3: Performance on fully-connected, convolutional and
recurrent networks: NMNIST, DVS-Gesture and NTIDIGITS.
TWS denotes the applied time window size.

Neuromorphic MNIST
Method Network Accuracy Timepoints

HM2BP [7] 400-400 98.88% 400

SLAYER [15] 500-500 98.95% 300

SLAYER [15] CNN
a

99.22% 300

TSSL-BP [16] CNN
a

99.25% 30

STT (TWS=3) CNN
a 99.18% 𝑇𝑊3 × 10

STT (TWS=5) CNN
a 99.12% 𝑇𝑊5 × 6

STT (TWS=10) CNN
a 98.76% 𝑇𝑊10 × 3

STT (TWS=15) CNN
a 98.10% 𝑇𝑊15 × 2

CNN
a
: 12C5-P2-64C5-P2.

DVS-Gesture
Method Network Accuracy Timepoints
RNN [6] P4-512 52.78%

LSTM
∗
[6] P4-512 88.19%

TSSL-BP [16] P4-512 87.15% 300

STT (TWS=2) P4-512 86.46% 𝑇𝑊2 × 150

STT (TWS=4) P4-512 85.76% 𝑇𝑊4 × 75

STT (TWS=8) P4-512 84.37% 𝑇𝑊8 × 38

∗
includes much greater number of tunable parameters.

N-TIDIGITS
Method Network Accuracy Timepoints

HM2BP [7] 250-250 89.69% 300

BP (GRU) [3] 200-200-100 89.92%

BP (LSTM) [3] 250-250 91.25%

TSSL-BP [16] 400
a

93.29% 300

STT (TWS=5) 400
a 92.40% 𝑇𝑊5 × 60

STT (TWS=10) 400
a 91.19% 𝑇𝑊10 × 30

STT (TWS=15) 400
a 89.41% 𝑇𝑊15 × 20

400
a
: Recurrent layer with LISR [17]

is due to the fact that spikes are often clustered in a certain range

in the time domain as shown in Fig. 4, and the number of TWs is

the reciprocal of TW size. The proposed techniques improved the

latency by 97X on average, across the three networks.

Energy Dissipation: Energy dissipation is reduced as TW size

increases in all layers, similar to the latency. Generally, larger TWs

provide the opportunity to reuse the same weight across more time

points. Especially, the benefit from data movement/reuse is maxi-

mized when the layer has relatively a great amount of weight data,

as in CONV2 in NMNIST. Importantly, firing activities from a neu-

ron are often clustered in time and in practice weights can be reused

through the TWs. Across three different networks, our methods

delivered 78X energy dissipation improvement, on average.

Machine LearningPerformance:Our experimental results present

a huge accelerator performance improvement with temporal in-

formation compression using STT. However, there exists a funda-

mental trade-off between accelerator performance and machine

learning performance. While STT significantly improves latency

and energy dissipation by using structured and sparse spiking activ-

ities, STT may cause a local temporal information loss in a TW. We

adopted the training algorithm in [16] and conducted STT-based

inference test on well-trained networks with different TW sizes. We

observe that the proposed STT can deliver competitive inference

performance up to a certain TW size across various networks as in

Table 3 while providing a significant improvements on hardware

acceleration.

ML-HW Performance Trade-off: STT significantly reduces com-

putational overhead by introducing local temporal resolution reduc-

tion per TW, tunable based on TW size while maintaining global

temporal information of the original spikes without complex hyper

parameter tuning. We use energy-delay product (EDP) to simulta-

neously consider latency and energy dissipation for evaluation of

the proposed techniques and to analyze the impact of the TW size

selection.Wemultiply the total execution time with the total energy

dissipated at each layer and add up the EDP values of all layers in

the network. As shown in Fig. 10, the ML-HW performance trade
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Figure 10: Machine learning performance (inference) - Accel-
erator performance (normalized EDP) tradeoffs on various
datasets. STT and ITT are not applied on the baseline.

off can be flexibly adjusted depending on application objectives

where small TW sizes with STT and ITT can still deliver signifi-

cant improvement. Our work delivers 15,000X EDP improvement

with the maximum TW sizes which do not significantly drop the

accuracy, on average across different benchmarks, as in Fig. 10.
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