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ABSTRACT

Spiking Neural Networks (SNNs) are brain-inspired computing
models with event-driven based low-power operations and unique
temporal dynamics. However, temporal dynamics in SNNs pose a
significant overhead in accelerating neural computations and limit
the computing capabilities of neuromorphic accelerators. Especially,
unstructured sparsity emergent in both space and time, i.e., across
neurons and time points, and iterative computations across time
points cause a primary bottleneck in data movement.

In this work, we propose a novel technique and architecture
that allow the exploitation of temporal information compression
with structured sparsity and parallelism across time, and signif-
icantly improves data movement on a systolic array. We split a
full range of temporal domain into several time windows (TWs)
where a TW packs multiple time points, and encode the temporal
information in each TW with Split-Time Temporal coding (STT)
by limiting the number of spikes within a TW up to one. STT en-
ables sparsification and structurization of irregular firing activities
and dramatically reduces computational overhead while delivering
competitive classification accuracy without a huge drop. To further
improve the data reuse, we propose an Integration Through Time
(ITT) technique that processes integration steps across different
TWs in parallel with a systolic array. The proposed architecture
with STT and ITT offers an application-independent solution for
spike-based models across various types of layers and networks.
The proposed architecture delivers 97X latency and 78X energy effi-
ciency improvements on average over a conventional SNN baseline
on different benchmarks.
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1 INTRODUCTION

Non-spiking artificial neural networks (ANNSs) process information
with continuous-valued signals representing averaged firing rates of
neurons resulting from activation functions such as rectified linear
unit (ReLU) and sigmoid [1]. In contrast, spiking neural networks
(SNNs) handles unraveled information in space and time, i.e., across
different neurons (space) and different time points (time), with
explicitly modeled all-or-none firing spikes. As reported in recent
studies, spatial and temporal dynamics with biologically inspired
[8] and backpropagation based [7, 12, 16] SNN training algorithms
have demonstrated competitive performances for various tasks.
From a hardware acceleration point of view, SNNs have consid-
ered better positioned for low-power operations than ANNs with
biologically plausible computing models including event-driven pro-
cessing and binary-valued signals. However, computations along
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Figure 1: Operations in spiking neural networks (SNNs)
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the temporal dimension and unstructured sparsity in both space
and time complicate the hardware acceleration of spike-based mod-
els. The unique temporal dimension in SNNs offers an opportunity
in processing complex spatiotemporal data but introduces iterative
and unstructured data movement at each time point.

This work aims to develop a systolic array-based architecture

to tap the full potential of SNN acceleration with 1) Split-Time
Temporal coding (STT) and 2) Integration Through Time (ITT).
Split-Time Temporal coding (STT) : We propose a novel, univer-
sally applicable solution for sparsification and structurization of any
rate-based spiking activities and explore the impact of temporal
granularity defined by the time window (TW) size. STT signifi-
cantly improves accelerator performance by reducing the spike
redundancy on a TW basis and handling the TW as the basic unit
of operation with structured firing activities across TWs.
Integration Through Time (ITT) : ITT enables parallel acceler-
ation in time based on simultaneous processing of multiple TWs
across columns of the systolic array. ITT enables the data reuse
across TWs with uniform processing times for TWs, leading to
further improved performance on top of STT.
Systolic array-based Architecture : We develop a systolic array-
based architecture supporting STT and ITT. The proposed architec-
ture is capable of accelerating various types of layers. We overcome
the causality and tightly coupled dependencies by using the prefix
sum without additional resources.

2 BACKGROUND

As shown in Fig. 1, in feedforward spiking layers, operations in a
single spiking neuron consist of three steps at each time point #:
Step 1: Synaptic input integration at f:

P70 [tk] = Wpostpre X577 1] (1)
Step 2: Membrane potential update at #;:
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Step 3: Conditional spike output generation at t;:
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where the Post and Pre denote the pre-synaptic layer and the
post-synaptic layer, and i represents the neuron indices in the post-
synaptic layer. pPo5%[t,], 5795 [#;], and §7°5¢[#,] are vectors, rep-
resenting the integrated partial sum of the spike inputs from the



pre-synaptic layer, membrane potential and spike output of the neu-
rons in the post-synaptic layer at time t;, respectively. Wpos; pre
is the matrix of the feedforward synaptic weights between pre-
and post-synaptic layers, V;j, and Vj, 4 are the firing threshold and
leaky parameter in post-synaptic layer, respectively. f is a non-
linear, all-or-non activation function with a given V;. In the above,
(Step 1) incurs matrix-vector multiplication and takes place at each
time point, comprising the dominant complexity. Importantly, the
above steps are repeated at each time point, across all time points.
Processing neural computations of a recurrent layer in SNNs
follow the same three steps in the feedforward layer with additional
synaptic inputs.
Step 1*: Feedforward synaptic input integration at #;:

=P <P
PFOSt [t] = Wpost,pre X S re [t] (5
=P <P
PROSt[tk] = WPost,Post Xs ost [tk—l] (6)
=P >P =P
p otk ] :PFOSt[tk] +PRDSt[tk] (7)
where ﬁg"“ [tx] is a vector, representing the partial sum of the

recurrent input integration.

3 SPLIT-TIME TEMPORAL CODING (STT)
3.1 Proposed STT

We propose a novel technique to locally employ coding and sparisi-
fication by dividing the time stride (TS) with a temporal granularity
defined by the time window (TW) size, dubbed Split-Time Tempo-
ral coding (STT). The key idea is to employ local structurization
and sparsification and improve the computational/data movement
overhead by reducing the redundancy in locally rate-coded firing
activities on a TW basis while retaining local rate information by
using prefix sum. Importantly, STT is universally applicable for
accelerating spiking models, with flexibility in choosing the TW
size. The spike timing of the single spike coded for each TW carries
firing rate information with time-left-from-first-spike (TFFS), as
shown in Fig. 2. All layers in the network operate on TW-based
local coding based on the proposed STT, with the following rules:
Rule 1. We limit the maximum firing count of each neuron in a
TW to one. In all TWs, each neuron is allowed to fire up to once
where the only spike represents rate information.
Rule 2. The spike count within a TW is represented by the timing
of a single spike. As such for the input layer, the spike information
of original input firing activity is converted with STT based on the
number of spikes in each TW.
Rule 3. At the output layer, STT-based firing activities are decoded
to rate. The firing rate of each neuron is decided by integrating its
firing rates from all TWs, i.e., summing up all TFES in time domain.
As shown in Fig. 3(a), we first convert the rate-coded original
firing activities into STT-based firing activities at the input layer.
For example, as in Fig. 2, if the TW size is 5 and the number of
spikes in a TW is 4, the time-left-from-first-spike (TFFS) in the
corresponding TW is determined by: TFFS = (TW size) - TTFS =
5 -1 = 4, representing the firing rate of the TW. At the output
layer, STT-based firing activities are decoded to firing rate for the
decision making. For example, the spike train in Fig. 3(c) is decoded
by integrating rates across TWs: Y;(TFFS) = Y (TW size)-(TFES) =
2 + 4+ 1 =17, following Rule 3.

3.2 STT-based Acceleration

STT-based hardware acceleration significantly simplifies the input
integration step, the dominant computational complexity. First, STT
reduces the repeated weight access across multiple time points to

Original Firing Activity

1 Time
# of spikes =4 = TFFS
Time-to-first-spike | [ Time-left-from-first-spike| = 1 i
| TIFs=1 | T | TFFS =4 = TWsize
L | -
—o W —— Time

(TW size = 5)

STT-based Firing Activity
Figure 2: Local structurization and sparsification with the
proposed STT. Time-left-from-first-spike (TFFS) presents the
firing rate of the corresponding TW.

a single weight access per input neuron for a given TW. Since an
input neuron fires up to once in a TW, the corresponding weight is
used only once for input integration.

Second, to retain the local and also global information, we use
the prefix sum of the STT-based integrated synaptic inputs in a
TW while this efficient process is still based on a single spike per
TW, following Rule 2. As will be shown in Fig. 6, the prefix sum
of STT-based integrated inputs is equivalent to the Psums using a
left-aligned rate code where the firing rate corresponds to TFFS.

Finally, STT allows parallel acceleration through time via using
a small amount of memory for each time point of a TW. For the
case in Fig. 3(b), conventionally, the input integration step requires
accessing weight data W4 and W at time point t;., and Wy, Wp and
W at the next time point t;,; sequentially. These unstructured
firing patterns across different neurons and time points render
repeated weight access without data reuse. Differently, with STT,
Wy is integrated to the partial sums (Psums) at fx.,1, Wp is integrated
to the Psums at t,3, and W is integrated to the Psums at t;in
parallel.

4 PROPOSED ARCHITECTURE

4.1 Overview of the Proposed Architecture

Fig. 5 shows the overall architecture of the proposed architecture
incorporating an STT-encoder for the input layer, an STT-decoder
for the output layer, controllers, caches, and a systolic array com-
posed of tiled processing elements (PEs) with unidirectional links.
As shown in Fig. 5(a), the systolic array fetches the required data
through three levels of memory hierarchy: 1) off-chip RAM, 2) a
global buffer and 3) double-buffered L1 caches. The received spike
input and weight data propagates vertically and horizontally with
unidirectional links across the 2-D array and is reused through
multiple PEs. Each PE is composed of 1) a simple controller, 2) a
small scratch-pad memory, 3) accumulate unit (AC), 4) a simple one-
hot-to-binary decoder and 5) a comparator. Unlike multiply-and-
accumulate (MAC) operations in non-spiking accelerators, simpler
AC units are used to accumulate weight values with binary-valued
spikes. To fully leverage STT-based acceleration, the synaptic input
is properly integrated into the corresponding time point with a
simple decoder, and the scratch-pad in each PE stores the Psums of
all time points in a given TW.

4.2 Integration Through-Time (ITT)

2-D systolic arrays naturally exploit parallelism and data reuse in
both vertical and horizontal directions. To fully utilize such advan-
tages, we propose an Integration Through-Time (ITT) technique on
top of STT, which defines a spiking activity in a TW as a basic
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Figure 4: Spike raster plot of 20 neurons from the recurrent
layer for accelerating NTIDIGITS. (a): Original firing activ-
ities without using STT and (b): STT-based firing activities
with TW size = 10.

unit of workload and maps spiking activities in multiple TWs onto
the systolic array, concurrently. As shown in Fig. 5(c), ITT assigns
entire spike trains in a TW to a single PE and accelerates multiple
TWs in different PEs simultaneously. ITT allows for accelerating
multiple time points in several TWs in parallel based on the fact
that the synaptic input integration step (Step 1) only depends on
the spike inputs from the previous layer (1). Integration of synaptic
inputs across multiple time points with ITT can be expressed by
modifying (1) as:

Step 1 - ITT: Synaptic input integration in TW, ~ TW 4

PP [ TW o, TW it o TW ]

= PP [(te(no1) s oo Ben)s oo (e (e 1) 410 oot (b)) ]

(8)
= Wpost,pre X sfre [TWon, TW sty oo TW g ]

= Wrost,pre X 87 [(tk(n1) 415 s thn)s s Cos e (mtm))]

where k is the size of the TW, pP st and sF"¢ are now matrices,
and synaptic input integration is processed across TWs. TW}, de-
notes the n-th time window which contains k different time points,
i.e., TWy = (tk(n-1)+1> --» tkn)- Remaining steps remains the same
as in (2) ~ (4) and all the other expressions follows the definition
described in (1) ~ (4).

4.3 Mapping to Systolic Array

With STT and ITT, our mapping strategy enables parallel process-
ing in both 1) time: across time points and 2) space: across output
neurons, which significantly improves data movement and process-
ing time.

TFFS=2 TFFS=4 TFFS=1
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- Spike timings in TWs are decoded
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Mapping Input and Outputs: As shown in Fig. 5(c), PEs in a
specific row performs the computations for a particular output
neuron across different TWs. In each column, PEs process spike
inputs of a given TW for different output neurons. Data are only fed
from the edges of the systolic array providing high data distribution
bandwidth. In each PE, the PE receives spike input and weight from
its upper and left neighbors and passes spike input and weight to
its lower and right neighbors.

Energy Reduction: First, STT minimizes the computational over-
head required for dense spiking activities with structured sparsifi-
cation. STT restricts each neuron to fire at most once in a TW and
enables the same weight data associated with a presynaptic neuron
to be used only once. Data movement/access is further improved
with ITT by the improved weight data reuse. PEs in the same row
in the array perform computations of a post-synaptic neuron across
different TWs, i.e., the same weight data is reused across PEs in the
same row with different spike inputs.

Utilization Efficiency and Latency: STT and ITT improve severe
under-utilization which originates from iterative data access and
the irregularity of sparse firing activities at each time point in the
time stride. As discussed in Section 3, each neuron fires at most
once in a TW with STT, and thus the processing of any TW takes
the same amount of time. Uniformity in processing time across
TWs and higher sparsity with STT significantly improve latency
and utilization efficiency.

4.4 STT-based Layer Acceleration

The operations in a single PE follow the three steps (1) ~ (4) with an
AC unit and a small scratch-pad shared through the steps, as shown
in Fig. 6(a). In Step 1, the synaptic input integration step, the PE
determines the address based on the spike timing in a given TW and
accumulates the associated weight into a corresponding memory.
A single spike in a TW can be interpreted as a one-hot encoded
address for the integration. The small scratch-pad memory first
stores the integrated synaptic inputs (ISI) of multiple time points
in a given TW. In the above operation, a simple combinational
logic, one-hot to binary, converts the spike trains of a TW into an
address to the small scratch-pad. As shown in Fig. 6(a), for example,
if the spike input is 01000 with TW size 5, the associated weight is
properly integrated into ISI[TFES] = ISI[4], which is the integrated
synaptic input of the second time point in the TW.

Next, the actual Psum is calculated using the ISI in the previous
step. As discussed in Section 3 and shown in Fig. 6(b), we utilize the
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Figure 6: Schematic representations of (a): Operations in a PE for accelerating feedforward and recurrent layer (b): Calculating
partial sums (Psums) using a prefix sum of the integrated synaptic inputs (ISI)

prefix sum of ISI which restores the rate and temporal information
equivalent to a left-aligned rate code counterpart, while sustaining
the advantages of using STT with a single spike. As shown in Fig.
6(b), the use of prefix sum yields the same Psum results as using
left-aligned, rate codes where the rate equals TFFS.

For the rest of the operation, PE processes Step 2 and Step 3 with
the integrated Psums. At a given time point t;, the PE updates the
membrane potential with Psum[#;] and the membrane potential of
the previous time point #;_;. If the updated membrane potential
exceeds the pre-defined threshold, the PE generates an output spike
and resets the membrane potential.

In case of recurrent layers, the synaptic input integration step is
almost the same as that for feedforward acceleration except for one
additional step for integrating recurrent synaptic inputs, denoted
as Step 1-R in Fig. 6(a). To simplify the recurrent layer processing,
we adopt the self-recurrent structure in [17].

5 EVALUATION METHODOLOGY

We develop an analytic architecture simulator to support various
types of layers, unique characteristics in SNNs, and trace data ac-
cess/movement for evaluating the latency and energy dissipation
for accelerating a specific task. In Table 1, the user-defined inputs
for the simulator are summarized.

5.1 Systolic-Array and Memory Modeling

Systolic array: A systolic array is a central computing unit of
our simulator and fetches spike inputs and weights from the top
and left edges, respectively. As in many other works, we use a

Prefix sum of ISI forms Psum
Equivalent to left-aligned spike trains

IPsum[S] Psum[4] --- ]

Table 1: A high-level overview of the user-defined inputs.

Input [ Description
Array Array width/height,
configuration size of the scratch-pad in PE
Memory Size of the memory in three levels:
configuration off-chip RAM, Global buffer, L1 cache
STT Use STT-based spiking acitivities or
plain counterpart along with time window size
ITT Mapping different TWs across columns of

the systolic array with given TW size
Ranging from plain inputs (TW=1) to

Time Window

(TW) Size the size of a scratch-pad in PE, i.e., TW=50

Layer Type fully-connected, convolutional and recurrent
Network Number of layers, layer types, and
Structure number of the neurons in each layer

128 processing elements (PEs) [5] in the systolic array along with
double-buffered L1 caches to provide required data to the array.
Memory hierarchy: Similar to many other analytic architecture
evaluation models, we adopt an off-load model with a three-level
memory hierarchy. We follow the standard practice [9, 14] to use
double-buffering to hide the latency for memory-intensive neural
networks and especially separate L1 cache for each type of data
Architecture specifications are summarized in Table 2.

5.2 Performance Modeling

With the dataflow, the simulator assigns unique addresses for each
data and traces read and write in PEs and each level of the memory
hierarchy. Following the estimation methods in many previous
works [4, 9, 14], the simulator calculates latency, memory access
and energy dissipation.
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Table 2: Architecture specifications.

Components [ Proposed Architecture
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Figure 7: Normalized number of total spikes and maximum
number of spikes in a neuron with different time window
sizes.

Latency: The latency is estimated with the worst delay between
data access from higher-level cache and computations in the array.
The total latency is calculated by adding all latencies across the
entire process.

Memory Access: For the given user-defined inputs, the simulator
generates a dataflow that pre-determines the data loading onto the
array. With the given memory size and data loading schedule, the
simulator counts read/write in all levels of memory as in [9, 14]. For
example, when a specific data is required for the array computation
but is absent in the L1, it induces global buffer read and L1 write if
the data is present in the global buffer.

Energy Dissipation: With CACTI model [10] configured for 32nm
CMOS technology, energy dissipation in memory is calculated by
multiplying the number of memory access and the energy per
memory access. Energy dissipation for computations is evaluated
by the number of required AC operations [9] based on the actual
spiking activities in the network.

5.3 Training Algorithm and Benchmarks

Training Algorithm: All the reported machine learning perfor-
mance are simulated on NVIDIA Titan XP GPU and the implemen-
tation of the proposed STT is conducted on Pytorch framework
[13]. We adopt one of the the state-of-the-art SNN training method
[16] for training the network.

Benchmarks: The proposed STT and ITT are evaluated on various
image and speech tasks including neuromorphic image dataset N-
MNIST [11], neuromorphic video dataset DVS-Gesture [2], and
neuromorphic speech dataset N-TIDIGITS [3] with various layer
types, i.e., fully connected, convolutional and recurrent, in the
network.

6 RESULTS

6.1 STT: Temporal Information Compression

STT reconstructs the spike information with higher, but structured
sparsity by dividing the time stride into multiple TWs, squeezing
the entire spike information in each TW to the timing of a single
spike. As introduced in Section 3, STT applies to all layer types
including FC, CONV and recurrent layers. Furthermore, flexibility
in TW size selection for STT enables the proposed architecture to
accelerate individual applications with different optimizations.
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Computational overhead: The number of spikes required for
layer acceleration decreases with the TW size, so does the compu-
tational overheads by STT. Approximately, the number of required
AC operations is inversely proportional to the TW size, as shown
in Fig. 7.

Data movement: STT enables fewer weight data movements asso-
ciated with active pre-synaptic neurons across the different levels of
the memory hierarchy. In conventional approaches, iterative weight
access based on the active pre-synaptic neurons at each time point is
inevitable due to the sequential processing. However, STT reduces
temporal resolution, and more sparsely populated spikes mitigate
read and write memory access at each level of memory.

6.2 ITT: Data Reuse

ITT significantly improves data reuse by providing data sharing op-
portunities across TWs and post-synaptic neurons, and minimizes
the memory access and stall cycles originating from additional
latency for iterative memory access. ITT maps spike inputs in mul-
tiple TWs into different columns and enables weight reuse across
the PEs in the same row.

We use the recurrent layer trained for the NTIDIGITs as a repre-
sentative layer to analyze the impact of the proposed techniques
in data movements, as shown in Fig. 8. Clearly, larger TW sizes
reduce access to the higher-level caches and improve energy dissipa-
tion. Compared to the conventional approach without the proposed
ideas, we observe a huge improvement in memory access to the L1
cache and global buffer.

6.3 Comprehensive Evaluations

We examine how the proposed STT and ITT with the key architec-
tural parameter TW size improve the overall performance.

Latency: We observe a huge improvement in latency by using STT
and ITT in all three networks, as shown in Figs. 9. As discussed in
Sections 6.1 and 6.2, 1) STT reduces latency of the computations in
the array proportionally to the TW size by processing a TW instead
of a time-point, and 2) ITT minimizes the additional delay due to
stall cycles resulted from waiting for the required data, by reusing
the weight data horizontally. However, after a certain TW size, the
additional improvement with a much larger TW size decreases. This



Table 3: Performance on fully-connected, convolutional and
recurrent networks: NMNIST, DVS-Gesture and NTIDIGITS.
TWS denotes the applied time window size.

Neuromorphic MNIST
Method [ Network [ Accuracy [ Timepoints
HM2BP [7] 400-400 98.88% 400
SLAYER [15] 500-500 98.95% 300
SLAYER [15] CNN? 99.22% 300
TSSL-BP [16] CNN? 99.25% 30
STT (TWS=3) CNN? 99.18% TWs X 10
STT (TWS=5) CNN? 99.12% TWs X 6
STT (TWS=10) CNN? 98.76% TWio X 3
STT (TWS=15) CNN? 98.10% TWis X 2

CNNZ: 12C5-P2-64C5-P2.
DVS-Gesture

Method [ Network | Accuracy [ Timepoints
RNN [6] P4-512 52.78%
LSTM* [6] P4-512 88.19%
TSSL-BP [16] P4-512 87.15% 300

STT (TWS=2) P4-512 86.46% TW; X 150

STT (TWS=4) P4-512 85.76% TWy X 75

STT (TWS=8) P4-512 84.37% TWs x 38

*includes much greater number of tunable parameters.

N-TIDIGITS
Method [ Network [ Accuracy [ Timepoints
HM2BP [7] 250-250 89.69% 300

BP (GRU) [3] 200-200-100 89.92%

BP (LSTM) [3] 250-250 91.25%

TSSL-BP [16] 4007 93.29% 300
STT (TWS=5) 4002 92.40% TWs X 60
STT (TWS=10) 400? 91.19% TWip X 30
STT (TWS=15) 400? 89.41% TWis X 20

4007: Recurrent layer with LISR [17]

is due to the fact that spikes are often clustered in a certain range
in the time domain as shown in Fig. 4, and the number of TWs is
the reciprocal of TW size. The proposed techniques improved the
latency by 97X on average, across the three networks.

Energy Dissipation: Energy dissipation is reduced as TW size
increases in all layers, similar to the latency. Generally, larger TWs
provide the opportunity to reuse the same weight across more time
points. Especially, the benefit from data movement/reuse is maxi-
mized when the layer has relatively a great amount of weight data,
as in CONV2 in NMNIST. Importantly, firing activities from a neu-
ron are often clustered in time and in practice weights can be reused
through the TWs. Across three different networks, our methods
delivered 78X energy dissipation improvement, on average.
Machine Learning Performance: Our experimental results present
a huge accelerator performance improvement with temporal in-
formation compression using STT. However, there exists a funda-
mental trade-off between accelerator performance and machine
learning performance. While STT significantly improves latency
and energy dissipation by using structured and sparse spiking activ-
ities, STT may cause a local temporal information loss in a TW. We
adopted the training algorithm in [16] and conducted STT-based
inference test on well-trained networks with different TW sizes. We
observe that the proposed STT can deliver competitive inference
performance up to a certain TW size across various networks as in
Table 3 while providing a significant improvements on hardware
acceleration.

ML-HW Performance Trade-off: STT significantly reduces com-
putational overhead by introducing local temporal resolution reduc-
tion per TW, tunable based on TW size while maintaining global
temporal information of the original spikes without complex hyper
parameter tuning. We use energy-delay product (EDP) to simulta-
neously consider latency and energy dissipation for evaluation of
the proposed techniques and to analyze the impact of the TW size
selection. We multiply the total execution time with the total energy
dissipated at each layer and add up the EDP values of all layers in
the network. As shown in Fig. 10, the ML-HW performance trade
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Figure 10: Machine learning performance (inference) - Accel-

erator performance (normalized EDP) tradeoffs on various
datasets. STT and ITT are not applied on the baseline.

off can be flexibly adjusted depending on application objectives
where small TW sizes with STT and ITT can still deliver signifi-
cant improvement. Our work delivers 15,000X EDP improvement
with the maximum TW sizes which do not significantly drop the
accuracy, on average across different benchmarks, as in Fig. 10.
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