
On the Feasibility and Benefits of Extensive Evaluation
YUJIE HUI∗, The Ohio State University, USA
MIAO YU∗, The Ohio State University, USA
HAO QI, University of California, Merced, USA
YIFAN GAN, The Ohio State University, USA
TIANXI LI, The Ohio State University, USA
YUKE LI, University of California, Merced, USA
XUEYUAN REN, The Ohio State University, USA
SIXIANG MA, The Ohio State University, USA
XIAOYI LU, University of California, Merced, USA
YANG WANG, The Ohio State University, USA

Benchmark and system parameters often have a significant impact on performance evaluation, which raises a
long-lasting question about which settings we should use.

This paper studies the feasibility and benefits of extensive evaluation. A full extensive evaluation, which
tests all possible settings, is usually too expensive. This work investigates whether it is possible to sample a
subset of the settings and, upon them, generate observations that match those from a full extensive evaluation.
Towards this goal, we have explored the incremental sampling approach, which starts by measuring a small
subset of random settings, builds a prediction model on these samples using the popular ANOVA approach,
adds more samples if the model is not accurate enough, and terminates otherwise.

To summarize our findings: 1) Enhancing a research prototype to support extensive evaluation mostly
involves changing hard-coded configurations, which does not take much effort. 2) Some systems are highly
predictable, whichmeans that they can achieve accurate predictions with a low sampling rate, but some systems
are less predictable. 3) We have not found a method that can consistently outperform random sampling +
ANOVA. Based on these findings, we provide recommendations to improve artifact predictability and strategies
for selecting parameter values during evaluation.

CCS Concepts: • Information systems → Database performance evaluation.

Additional Key Words and Phrases: Database Performance Evaluation, Benchmarking

∗Yujie Hui and Miao Yu contributed equally to this paper.

Authors’ Contact Information: Yujie Hui, The Ohio State University, Columbus, Ohio, USA, hui.82@osu.edu; Miao Yu, The
Ohio State University, USA, Columbus, Ohio, yu.3053@osu.edu; Hao Qi, University of California, Merced, USA, Merced,
California, hqi6@ucmerced.edu; Yifan Gan, The Ohio State University, USA, Columbus, Ohio, gan.101@osu.edu; Tianxi Li,
The Ohio State University, USA, Columbus, Ohio, li.9443@osu.edu; Yuke Li, University of California, Merced, USA, Merced,
California, yli304@ucmerced.edu; Xueyuan Ren, The Ohio State University, USA, Columbus, Ohio, ren.450@osu.edu;
Sixiang Ma, The Ohio State University, USA, Columbus, Ohio, ma.1189@osu.edu; Xiaoyi Lu, University of California,
Merced, USA, Merced, California, xiaoyi.lu@ucmerced.edu; Yang Wang, The Ohio State University, USA, Columbus, Ohio,
wang.7564@osu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/9-ART201
https://doi.org/10.1145/3677137

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:2 Yujie Hui et al.

ACM Reference Format:
Yujie Hui, Miao Yu, Hao Qi, Yifan Gan, Tianxi Li, Yuke Li, Xueyuan Ren, Sixiang Ma, Xiaoyi Lu, and Yang
Wang. 2024. On the Feasibility and Benefits of Extensive Evaluation. Proc. ACM Manag. Data 2, N4 (SIGMOD),
Article 201 (September 2024), 24 pages. https://doi.org/10.1145/3677137

1 Introduction
Performance evaluation and comparison are routine tasks in both academia and industry. However,
as shown in multiple works [34, 45, 46, 75, 78], evaluation results can be highly sensitive to the
settings (i.e., hardware and software configurations) of the experiments — it often happens that
one system can outperform another under one setting but fails to do so under a different setting.
Even worse, the choice of experimental settings may introduce bias into the results [35].
There are at least two philosophies to address this problem, each with its limitations. First, we

can restrict the possible settings, probably based on studies of realistic settings in production [10, 14,
55, 79]. This philosophy has been adopted by many industrial benchmarks [25, 58, 66, 72], but we
observe that, on the one hand, too many restrictions will limit its applicability and drive researchers
away. For example, the standard TPC-C benchmark [71] requires a long “think time” before each
transaction, but since think time limits the contention level of TPC-C, most research prototypes
simply remove it [75]. On the other hand, less restriction will give researchers enough flexibility,
but this again raises the question of which settings to use. For example, YCSB [20] includes five
types of workloads, with tunable key-value sizes and skewness, but it is not uncommon for a work
to only test a subset of the possible settings.

Second, we can conduct an extensive evaluation to test all the possible combinations of parameter
values. Extensive evaluation could provide a comprehensive picture of system performance, but is
often too expensive. To reduce the cost, the standard practice is to start from a popular setting and
then tune one parameter at a time. However, due to the intricate effects of multiple parameters [11,
12, 68, 75], it is unclear whether tuning one parameter at a timewill miss any important observations.

While it probably requires a community debate to discuss the appropriate philosophy, this work
explores whether we can improve the state of the art in extensive evaluation. In particular, the
key question we want to answer is, assuming we only have resources to test a limited number
of settings, how to choose the settings to test and whether testing these settings can generate
observations that match those from the full extensive evaluation. In this paper, we report our
attempt, share our experiences, and discuss possible future directions.
We conducted our study on 10 research prototypes and one mature open-source software with

the following methodology: We first performed a comprehensive, best-effort evaluation on these
systems, which is costly, but provides us with a “ground truth”. Subsequently, we investigated
whether we can measure a subset of the experiment settings and still generate observations that
match those from the “ground truth”. To be specific, we used a classic solution in computer systems
performance analysis [39], which starts by measuring the performance of a small subset of random
settings, builds a prediction model on these samples using the ANOVA method [64], adds more
samples if the model is not accurate enough, and terminates otherwise. We further tried other
sampling and analysis methods. In this paper, we refer to these approaches “incremental sampling”.

We make the following observations from our study:
• Required effort: Since a research prototype is usually not as stable as a mature product, there
may be concerns about whether a prototype can even run properly under different settings,
especially under a new setting that has not been used in the corresponding publication. Our overall
experience is quite positive: Although many prototypes initially indeed cannot run properly
under a new setting, we find that most of the problems are due to hard-coded configuration
values, which can be fixed with a small amount of effort. There exist new settings that a prototype

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:3

is more likely to encounter errors, but failing a few settings usually does not prevent us from
getting an overall picture.

• Cost: The effectiveness of incremental sampling depends on the target system: For some systems,
incremental sampling can terminate with a low sampling rate (as low as 10% in our experiments)
while still providing an analysis result that can match that from the ground truth. We call
these systems highly predictable in our paper. Some other systems are less predictable and thus
incremental sampling needs a high sampling rate to terminate. As one can imagine, incremental
sampling can significantly reduce the evaluation cost of highly predictable systems, but is less
effective for less predictable systems. By comparing different implementations, we have verified
that it is possible to improve the implementation of some of the less predictable systems to
provide more predictable performance.

• Benefits: Extensive evaluation, even with incremental sampling, can reveal design issues that
cause performance degradation in previously untested settings. For example, our evaluation of
MySQL and DrTM [77] shows that they experience performance degradation when loaded with
a large amount of data, since their tree indexes grow larger. This problem could be addressed by
partitioning data [16, 21, 41, 43]. Such issues have confirmed the necessity of extensive evaluation.

• Future: Despite our efforts, we have not found a sampling and/or prediction method that can
consistently outperform random sampling + ANOVA. However, we find that these highly pre-
dictable systems show consistent predictability under different sampling and modeling methods.
This suggests that, in addition to reproducibility, we should further encourage the predictability
of system performance.

2 Methodologies
We carry out our research in three steps.
Step 1. Reproduction. In the first step, we selected 10 research prototypes and tried to repro-
duce their results reported in the corresponding publications (i.e., Calvin [2, 60, 70], Silo [65, 73],
DrTM [26, 77], Janus [40, 53], Cicada [17, 45], GAM [15, 30], Star [47, 67], Aria [9, 46], HERD [36, 41],
and TAPIR [7, 81]). These publications use TPC-C [71] and/or YCSB [20] benchmarks for evaluation.
We run each experiment three times, and use the same setup (e.g., warm up length, total length,
etc.) as mentioned in the original papers. This step confirms that we have properly set up and run
these prototypes.

For a very brief introduction, Silo and Cicada are single-node in-memory transaction processing
engines; Calvin, DrTM, GAM, Star, and Aria support distributed transactions; TAPIR and Janus
further support geo-distributed transactions; HERD is a distributed key-value store. DrTM, GAM,
and HERD use RDMA techniques to improve performance.

To evaluate the impact of configuration parameters, the state of the art is to tune one parameter
at a time while using fixed values for other parameters. However, from the publications we have
reproduced, we observe that there is no consensus about which parameter to tune, the value range
to tune the parameter, and the values of the remaining fixed parameters. To give a few examples,
• Number of warehouses in TPC-C: Calvin uses fixed values of 10 and 20 warehouses per server
and tunes the number of servers from 10 to 100. Silo tunes it from 1 to 32. DrTM tunes it from 1
to 16. Janus uses a fixed value of 6. Cicada tunes it from 1 to 28. GAM uses a fixed value of 32.
Star uses a fixed value of 12 per server and tunes the number of servers from 2 to 16. Aria tunes
it from 1 to 180.

• Number of key-value pairs in YCSB: Silo uses a fixed value of 160M. Cicada uses a fixed value of
10M. Star uses a fixed value of 2.4M. Aria uses a fixed value of 480K. HERD uses a fixed value of
80M. Tapir uses a fixed value of 1M.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:4 Yujie Hui et al.

• Skewness in YCSB: Silo, Star, and Tapir use a uniform distribution. Cicada tunes Zipf factor from
0 to 0.99. Aria tunes Zipf factor from 0 to 0.999. HERD uses fixed Zipf values of 0 and 0.99.

On the one hand, such arbitrary selection of parameter values makes it hard to compare different
works, and creates questions like whether a chosen setting may be in favor of one work over
another. On the other hand, it is probably unrealistic to ask every publication to follow exactly the
same configurations, since different works may target different scenarios. This dilemma serves as
the motivation for our work.
We ran our experiments on CloudLab [18] and a local cluster. For each work, we try to use

hardware that is close to the one used by the original paper. On CloudLab, we use m510 machines
to run Aria experiments, c6320 machines to run Silo and Cicada experiments, rs630 to run Janus
experiments, c220g1 machines to run TAPIR experiments, d430 machines to run Calvin experiments,
c6220 machines to run Star and GAM experiments, and r320 machines to run HERD experiments.
We test DrTM on a local cluster, in which each node is equipped with a 28-core Intel Xeon E5-2680
CPU and 128 GB of RAM. The cluster is interconnected by a 100 Gbps Mellanox CX-4 adapter.
We use OpenFabrics Enterprise Distribution (OFED) version 4.9. Detailed hardware configuration
information is recorded in Table 2 in the appendix.
Step 2. Best-effort extensive evaluation. In the second step, we try to carry out a best-effort
extensive evaluation, which includes settings that the original papers do not cover. We measured
their throughput in this work and leave other metrics, like latency, for the future. The result of this
step forms a “ground truth” for our next step. In this step, we added MySQL, a mature open-source
database, for comparison. Specifically, we tuned the following parameters:
• TPC-C parameters. We 1) tune the number of warehouses from 1 to the maximum allowed by
DRAM (all experiments assume that all data can fit into DRAM); 2) tune the number of workers
from 1 to up to 32; 3) tune the cross-warehouse rate from 0% to 100%; 4) tune the workload to
include all five types of transactions, two types of transactions (NewOrder and Payment), and
one type of transactions (NewOrder).

• YCSB parameters. We 1) tune the key-value size from 8B to 1KB; 2) tune the number of key-value
pairs from 128K to the maximal allowed by DRAM; 3) tune read/write ratio from 100:0 to 0:100;
and 4) tune the 𝛼 value of the Zipfian distribution from 0 to 0.99 (𝛼 = 0 is equivalent to uniform
distribution).

• System parameters. For distributed systems, we tune the number of servers from 1 to 32. For
systems that support replication, we tune the number of replicas from 1 to 7. We further tune the
performance-critical parameters of some systems, such as the memory buffer and page size in
MySQL and the number of locks in Aria.
Table 1 summarizes the settings we finished running (some systems do not support the tuning of

a certain parameter) and the total machine hours it took to run these experiments. Such experiences
have confirmed the high cost of extensive evaluation: Despite the fact that we only target a few
parameters and are selective about parameter values, some of these systems require thousands
of machine hours to test. Such cost may further grow significantly considering the possibility of
having more parameters to tune and the need to run the experiments for multiple iterations due to
debugging and optimization. As a result, we don’t have the resources to test all the possible values
in our study and thus have to pre-select values as shown in Table 1.

During the procedure, we found that many prototypes are not fully ready for extensive evaluation,
mostly due to hard-coded configuration parameters. To be concrete, Silo, Cicada, DrTM, and GAM
allocate a fixed amount of memory and we made it configurable; DrTM assumes the number of
worker threads is equal to the number of warehouses and we made the ratio configurable; Janus
could cause “too many open files” when using many servers, and we increased this threshold;

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:5

System Settings Machine hours #Competitors

Calvin-TPCC #WH={1, 2, 4. . . 128}, #Node={1, 2, 4. . . 32},
Cross-WH(%)={0, 10. . . 100} 832 × 3 1

Silo-TPCC
#WH={1, 2, 4 . . . 512}, #Workers={1, 2, 4, 8, 16, 28},

#Txn-Types={5, 2, 1},
Cross-WH-NewOrder(%)={0, 10 . . . 100}

130 × 3 1

DrTM-TPCC #Node={2, 4, 8}, #Workers={2, 4, 8, 16, 32},
#WHperNode={1, 2, 4 . . . 256}, Cross-WH(%)={0, 20 . . . 100} 192 × 3 1

Janus-TPCC
#Clients={1, 10, 20, 40, 80, 100, 200, 500, 1000, 2000, 4000}

#Replica={1, 3, 5, 7}, #CPUperNode={1, 2, 4, 8, 16},
#WH={1, 2, 4· · · | #WH×#Replica/#CPUperNode ≤ 25}

1886 × 3 6

Cicada-TPCC #WH={1, 2, 4. . . 256},
#Workers={1, 2, 4, 8, 16, 28}, #Txn-Types={5, 2} 9 × 3 4

GAM-TPCC
#WH={2, 4, 8, 16, 32} / #Node, #Node={2, 4, 8},

Cross-WH(%)={0, 20, 40. . . 100},
#Workers={1, 2, 4, 8, 16}, #Txn-Types={2}

721 × 3 3

Star-TPCC
#WH={16, 32, 128, 256}, #Workers={1, 2, 4, 8, 16},

Cross-WH(%)={0, 20, 40. . . 100},
#Node={2, 4, 8}, #Txn-Types={2}

210 × 3 1

Aria-TPCC
#WH={1, 2, 4. . . 1024}, Cross-WH(%)={0, 10. . . 100},

#Nodes={1, 2, 4, 8} #Workers={1, 2, 4, 8, 12},
#Locks={1, 2, 4, 6|#Locks<#Workers}

360 × 3 3

Star-YCSB
#KV Pairs={3.2M, 6.4M, 25.6M, 51.2M }, #Workers={2, 8, 16},
Cross-partition(%)={0, 20, 40. . . 100}, Zipf𝜃={0, 0.4, 0.8, 0.99},

R/W Ratio={0/100, 20/80, 40/60, 100/0}, #Node={2, 4, 8}
384 × 3 3

Silo-YCSB
#KV Pairs={128K, 512K, 2M, 8M, 32M, 128M}

#Workers={1, 2, 4, 8, 16, 28},
R/W Ratio={0/100, 20/80, 40/60, 100/0}

5 × 3 1

Cicada-YCSB

#KV Pairs={128K, 512K, 2M, 8M, 32M},
KV size={8B, 32B, 128B, 1KB},

#Workers={1, 4, 16, 28}, Zipf𝜃={0, 0.4, 0.8, 0.99},
R/W Ratio={0/100, 20/80, 40/60, 100/0},

batch size={1, 10, 100}

300 × 3 4

HERD-YCSB

#KV Pairs={6M, 24.5M, 96M, 384M, 1536M},
KV size={8B, 32B, 128B, 512B, 1KB},

Zipf𝜃={0, 0.4, 0.8, 0.99},
R/W Ratio={0/100, 20/80, 40/60, 100/0}

325 × 3 2

TAPIR-YCSB

#Clients={5, 10, 15, 20, 25},
#KV Pairs={128K, 512K, 2M, 8M, 32M},
R/W Ratio={0/100, 20/80, 40/60, 100/0},

(#shard, #replica)={(1, 3), (1, 5), (1, 7), (2, 3), (2, 5), (3, 3)}
1218 × 3 2

MySQL-TPCC
#WH={1, 2, 4 . . . 256}, #Terminals={1, 2, 4 . . . 512},

innodb_buffer_pool_chunk_size={1GB, 2GB, 4GB, 8GB},
innodb_buffer_pool_instances={1, 2, 4, 8}

548 × 3 1

Table 1. The settings and machine hours we use for each system, including its competitors. Some systems do
not support the tuning of a certain parameter. We set the length of each experiment to be the same as that
used in the original paper. We test each setting three times.

many systems use a timeout for different purposes and we sometimes need to tune the timeout
interval for different settings. We were able to diagnose and fix most of these problems ourselves
with a reasonable amount of effort. The only exception is DrTM, for which we requested help from
its authors. Therefore, we expect that making a prototype ready for extensive evaluation usually
should not require much additional effort from its authors.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:6 Yujie Hui et al.

We did encounter cases in which some systems become less reliable under certain new settings.
We tried to diagnose their root causes, but due to their nondeterministic nature, we failed on most of
them after a reasonable amount of effort. However, since the number of these problematic settings
is limited, they did not prevent us from continuing our study.
Step 3. Incremental sampling. In the third step, we studied whether we can measure a subset of
the settings we ran in the second step and still do a meaningful analysis on the results of these
sampled settings. We compared our analysis result with the “ground truth” from the second step to
determine whether our analysis is accurate. We present the details of this step in the next section.

3 Incremental Sampling to Reduce Experiment Time
In this section, we explore whether we can test a subset of settings and still get an overall picture of
system performance characteristics under all settings. To achieve this, wemeasured the performance
of the target system under a subset of settings, and then split the results into a training set and a
validation set; if we can build a model on the training set to accurately predict the performance
results (i.e., throughput) in the validation set, then we consider our model accurate enough to
capture the overall system performance characteristics. Next, we discuss how to build the model,
how to choose samples, and how to analyze the results in detail.

3.1 ANOVA Analysis
We used analysis of variance (ANOVA) [64] to build a model on the training set, because ANOVA
is widely used, can show the impact of each parameter, can analyze the impact of the interaction of
multiple parameters, and does not require any prior knowledge of data distribution, except for the
assumption that the results of the same setting follow a normal distribution.
At a high level, ANOVA works similarly to regression algorithms, except that ANOVA focuses

primarily on categorical factors. We treat all parameters as categorical factors in this work for
two reasons: First, for most parameters, even if their values are numerical, their possible values
are naturally non-continuous (e.g., we cannot have 1.5 warehouses in TPC-C). Second, treating
parameters as categorical factors often makes it easier to identify non-linear relationships, as
explained in the following example.
Assuming that each experiment has 𝑛 parameters and a result (i.e., system throughput in this

work) and we run𝑚 experiments in total, the input to ANOVA is 1) a 𝑛 ×𝑚 matrix, in which each
row records the parameter values of each experiment, and 2) a vector with𝑚 experiment results.
ANOVA will determine whether there are enough samples to reach a conclusion. If so, it will output
the impacts of each parameter. ANOVA assumes that there are two sources of variability in an
experiment: effects from parameters and effects from random error. With the results obtained from
the experiments, it calculates the variances for different parameters, as well as the variance for
the experiment results. Based on the ratio of these variances, it further determines the statistical
significances of each parameter, i.e., if it has a significant influence on the experiment result.

To be concrete, ANOVA categorizes independent variables (experiment parameters in our case)
into various groups and evaluates their effects on the response variable (experiment results in our
case). The model does not presuppose a particular shape of the relationship between variables;
but, it examines whether the means across different settings (groups) differ significantly. To fit
the model, ANOVA selects subsets of independent variables, and calculates the mean differences
within and between these groups. It then uses the F-statistic, derived from the ratio of mean squares
between groups to that within groups, to test the hypothesis that no significant difference exists
among group means. If the p-value obtained from this test is below the chosen threshold (0.05), it
suggests that the current model settings significantly affect the response variable.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:7

Here, we provide an example of the output of ANOVA, which is used in our following discussion.
Suppose that our experiment has two parameters T and P, where T can be equal to 0, 10, and 20, and
P can be 5 and 15. One possible model that is tested will look as follows, where 𝜇 is the intercept of
Y, 𝜀 is the random error, 𝛽𝑇𝑇 is the effect of the parameter T, 𝛽𝑃𝑃 is the effect of the parameter P,
and 𝛽𝑇𝑃𝑇𝑃 is the cross (or interaction) effect of the parameters T and P.

𝑌 = 𝜇 + 𝛽𝑇𝑇 + 𝛽𝑃𝑃 + 𝛽𝑇𝑃𝑇𝑃 + 𝜀 (1)
The output of ANOVA may look like the following, together with the significance of 𝑇 , 𝑃 , and 𝑇𝑃 .

𝑌 = 𝜇 +
⎧⎪⎪⎨
⎪⎪⎩
𝛽𝑇1 , (𝑇 = 0)
𝛽𝑇2 , (𝑇 = 10)
𝛽𝑇3 , (𝑇 = 20)

+
{
𝛽𝑃1 , (𝑃 = 5)
𝛽𝑃2 , (𝑃 = 15) +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝛽𝑇1𝑃1 , (𝑇 = 0, 𝑃 = 5)
𝛽𝑇1𝑃2 , (𝑇 = 0, 𝑃 = 15)

......
𝛽𝑇3𝑃2 , (𝑇 = 20, 𝑃 = 15)

(2)

We emphasize three points about ANOVA’s output. First, if we treat 𝑇 or 𝑃 as a numerical factor,
then ANOVA requires the result to have a linear relationship with the values of these factors,
which may not be true. To identify non-linear relationships, the classic solution is to add non-linear
terms like 𝑇 2, 𝑃2, etc., which requires us to “guess” the shape of the formula. If we treat each as
a categorical factor, as shown in this example, then ANOVA requires the result to have a linear
relationship with a set of boolean values, each indicating whether the value falls into a category.
This approach can potentially capture non-linear relationships when the parameter was treated as
numerical (e.g., 𝛽𝑇1 = 1, 𝛽𝑇2 = 100, 𝛽𝑇3 = 10). This is one reason we treat all parameters as categorical
in this work. However, this approach may incur several problems: First, when treating a factor as
categorical, it is impossible to analyze what would happen between categories (e.g., what happens
if 𝑇 = 5), but considering most of our parameters have non-continuous values, this is acceptable.
Second, it may lead to overfitting, which is discussed later.

Second, the coefficient 𝛽 identifies the impact of each parameter or each interaction of parameters,
and thus we can analyze the trend of the coefficient to understand how the impacts of parameters
change (Section 3.3).
Third, one can control the accuracy of the model (i.e., 𝜀) by choosing what parameters and

interactions to test. If we choose all possible interactions, then we can reach 100% accuracy, but
may cause overfitting. To avoid overfitting, we try 1) using only individual parameters and 2) using
individual parameters and interactions of two parameters in ANOVA. We use 1) if 1) is accurate
enough. We further remove insignificant parameters whose p-value is greater than 0.05 based on
ANOVA. In the above example, we may find 𝑇𝑃 is insignificant and then rerun ANOVA with only
𝑇 and 𝑃 .

In our experiments, we find that including individual parameters and interactions of two pa-
rameters is generally good enough; adding interactions of three parameters often results in lower
prediction accuracy, likely due to overfitting. However, this may be because our experiments test
at most six parameters, and systems with more parameters might necessitate the inclusion of
interactions of more than two parameters.

3.2 Choosing Samples
We adopt the incremental sampling approach (Algorithm 1): In each iteration, our algorithm splits
the existing samples into a training set and a validation set (line 6), applies ANOVA to build a model
on the training set (line 7), validates the model on the validation set (line 8), terminates when the
𝑅2 value is good enough (lines 11-12), and adds more samples otherwise (lines 14-16). The basic
idea behind this approach is that, if we can develop a model that can accurately predict system

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:8 Yujie Hui et al.

Algorithm 1: Incremental Sampling Algorithm
Input: 𝑠: the starting sampling rate

𝛿 : the number of settings to add in each step
Result: A representative sample dataset

1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 ← 𝑐ℎ𝑜𝑜𝑠𝑒_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 (∅, 𝑠);
2 𝐷_𝑒𝑥𝑝 ← 𝑟𝑢𝑛_𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑚𝑛𝑡𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠);
3 do
4 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← empty list;
5 repeat
6 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛← 𝑠𝑝𝑙𝑖𝑡 (𝐷_𝑒𝑥𝑝);
7 𝑚𝑜𝑑𝑒𝑙 ← ANOVA_Analysis(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔);
8 𝑅2 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑚𝑜𝑑𝑒𝑙, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛);
9 Add 𝑅2 to 𝑟𝑒𝑠𝑢𝑙𝑡𝑠;

10 until 10 times;
11 if All values in results ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
12 terminate;
13 else
14 𝑛𝑒𝑤_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 ← 𝑐ℎ𝑜𝑜𝑠𝑒_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠, 𝛿);
15 𝐷_𝑒𝑥𝑝 ← 𝐷_𝑒𝑥𝑝 ∪ 𝑟𝑢𝑛_𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 (𝑛𝑒𝑤_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠);
16 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 ∪ 𝑛𝑒𝑤_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠
17 end
18 while current_settings < all_settings;
19 return 𝐷_𝑒𝑥𝑝;

performance, we can then analyze the predicted performance to understand system characteristics
and make comparisons, rather than running all experiments. In this section, we use random
sampling when adding more samples and discuss other sampling methods in Section 4.1, assuming
that we have no prior knowledge about how performance may change across different settings. If
the experimenter has certain knowledge, she may prioritize certain settings, but this may increase
the risk of a biased evaluation. For stability, in each iteration, this algorithm repeats the training
and prediction procedure 10 times on different training sets and only terminates when all of them
provide accurate estimates (lines 10 and 11).
In reality, we should run experiments to measure the system performance of newly chosen

settings. In this work, since we have already run all settings (Section 2), we simply reuse results
from the prior experiments.

3.3 Analyzing Parameter Impact
This section presents the analysis module we developed based on the result of ANOVA.

The coefficients from ANOVA analysis represent the impact of a parameter on the final results.
If the ANOVA coefficients of a parameter monotonically increase or decrease with the values
of the parameter, we try to find knee points, which means points with maximum curvature. In
computer systems, such points represent operating points where the cost of changing a setting
is no longer worth the performance benefit. Otherwise, we try to find turning points, where the
ANOVA coefficients first increase with the parameter values but decrease after the turning points

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:9

Algorithm 2: Trend Analysis on ANOVA output
Data: A set of results from 𝑛 significant terms 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, where

• 𝑡 .𝑝𝑎𝑟𝑚_𝑛𝑎𝑚𝑒 is the name(s) of parameter 𝑝 or parameter pair (𝑝,𝑞) associated with 𝑡 . It has
𝑖 distinct values.

• 𝑡 .𝑝𝑎𝑟𝑚_𝑣𝑎𝑙 is the value corresponds to 𝑡 .𝑝𝑎𝑟𝑚_𝑛𝑎𝑚𝑒 .
– 𝑡 .𝑝𝑎𝑟𝑚_𝑣𝑎𝑙 =< 𝑝1, 𝑝2, . . . , 𝑝𝑖 > if 𝑡 is one parameter, < (𝑝1,𝑞1), (𝑝2,𝑞2), . . . , (𝑝𝑖 ,𝑞𝑖 ) > if 𝑡 is
a parameter pair

• 𝑡 .𝑐𝑜𝑒 𝑓 =< 𝑐1, 𝑐2, . . . , 𝑐𝑖 > is ANOVA coefficients
• 𝑡 .𝑝𝑒𝑟_𝑣𝑎𝑟_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 is the percentage of variance explained by this term

Result: A set of important points 𝑌
1 foreach 𝑡𝑖 ∈ 𝑇 ∧ 𝑡𝑖 .𝑝𝑒𝑟_𝑣𝑎𝑟_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 ≥ 10% do
2 if 𝑡 is a parameter pair (p, q) then
3 𝑃 ← distinct values of 𝑝 in 𝑡 .𝑝𝑎𝑟𝑚_𝑣𝑎𝑙 ;
4 𝑄 ← distinct values of 𝑞 in 𝑡 .𝑝𝑎𝑟𝑚_𝑣𝑎𝑙 ;
5 𝑌𝑖 ← ∅ ;
6 foreach 𝑝 𝑗 ∈ 𝑃 do
7 𝑝𝑎𝑟𝑚𝑠 ← {𝑞𝑖 | (𝑝 = 𝑝 𝑗 ,𝑞𝑖 ) ∈ 𝑡 .𝑝𝑎𝑟𝑚_𝑣𝑎𝑙};
8 𝑐𝑜𝑒 𝑓 ←corresponding subset of 𝑡 .𝑐𝑜𝑒 𝑓 ;
9 𝑌𝑖 ← 𝑌𝑖∪ FindImportantPoints(𝑡 .𝑝𝑎𝑟𝑚_𝑛𝑎𝑚𝑒, 𝑝𝑎𝑟𝑚𝑠, 𝑐𝑜𝑒 𝑓 )

10 end
11 foreach 𝑞 𝑗 ∈ 𝑄 do
12 𝑝𝑎𝑟𝑚𝑠 ← {𝑝𝑖 | (𝑝𝑖 ,𝑞 = 𝑞 𝑗 ) ∈ 𝑡 .𝑝𝑎𝑟𝑚_𝑣𝑎𝑙};
13 𝑐𝑜𝑒 𝑓 ←corresponding subset of 𝑡 .𝑐𝑜𝑒 𝑓 ;
14 𝑌𝑖 ← 𝑌𝑖∪ FindImportantPoints(𝑡 .𝑝𝑎𝑟𝑚_𝑛𝑎𝑚𝑒, 𝑝𝑎𝑟𝑚𝑠, 𝑐𝑜𝑒 𝑓 )
15 end
16 else
17 𝑌𝑖 ←FindImportantPoints(𝑡 .𝑝𝑎𝑟𝑚_𝑛𝑎𝑚𝑒, 𝑡 .𝑝𝑎𝑟𝑚, 𝑡 .𝑐𝑜𝑒 𝑓 )
18 end
19 𝑌 ← 𝑌 ∪ 𝑌𝑖
20 end
21 Rank important point results (if any) based on 𝑡𝑢𝑟𝑛_𝑟𝑎𝑡𝑖𝑜 × 𝑡 .𝑝𝑒𝑟_𝑣𝑎𝑟_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑

or vice versa. We are interested in these two types of points since they usually indicate a change in
the behavior of the system. We refer to them as “important points” in the rest of this paper.
Algorithm 2 presents the overall algorithm. At a high level, for each parameter (note that we

already filtered out insignificant parameters), we try to find the important points (Algorithm 3).
We then rank the important points based on the product of the percentage of variance explained
by this parameter and the turn ratio of the important points defined in line 15 of Algorithm 3.

For each significant parameter or interaction that explains at least 10% of the variance, we attempt
to locate the important points within them. For individual parameters, we directly identify the
important points based on their parameter values and ANOVA coefficients. For an interaction of
parameters, we fix one parameter at a time while varying the other, which reduces the problem to
finding important points on individual parameters.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:10 Yujie Hui et al.

Algorithm 3: FindImportantPoints
Input: 𝑝𝑎𝑟𝑚_𝑛𝑎𝑚𝑒 is the name of this parameter,

𝑃 =< 𝑝1, 𝑝2, . . . , 𝑝𝑛 > is the sorted parameter values,
𝐶 =< 𝑐1, 𝑐2, . . . , 𝑐𝑛 > is the corresponding ANOVA coefficients

Output: A set of important points 𝑌 = {𝑦1,𝑦2, . . . ,𝑦𝑚}, where
• 𝑦 .𝑝𝑎𝑟𝑚_𝑛𝑎𝑚𝑒 = 𝑝𝑎𝑟𝑚_𝑛𝑎𝑚𝑒
• 𝑦 .𝑡𝑦𝑝𝑒 ∈ {“𝑡𝑢𝑟𝑛𝑖𝑛𝑔”, “𝑘𝑛𝑒𝑒”} is the type of this point.
• 𝑦 .𝑣𝑎𝑙 is the parameter value of this point.
• 𝑦 .𝑡𝑢𝑟𝑛_𝑟𝑎𝑡𝑖𝑜 measures the change of slope before and after this turning point

1 if SpearmanRankCorrelation (𝑃,𝐶)= ±1 then // monotonically increasing or
decreasing

2 𝑦 .𝑣𝑎𝑙 ← FindKneePoints (𝑃,𝐶) ; // external library
3 𝑦 .𝑡𝑦𝑝𝑒 ←"knee";
4 else
5 for 𝑖 ← 2 to 𝑛 − 1 do
6 𝑃1, 𝑃2 ←< 𝑝1, . . . , 𝑝𝑖−1 >, < 𝑝𝑖+1, . . . , 𝑝𝑛 > ;
7 𝐶1,𝐶2 ←< 𝑐1, . . . , 𝑐𝑖−1 >, < 𝑐𝑖+1, . . . , 𝑐𝑛 > ;
8 Δ𝑆𝑝𝑒𝑎𝑟𝑖 ←

SpearmanRankCorrelation(𝑃1,𝐶1) − SpearmanRankCorrelation(𝑃2,𝐶2) ;
9 end

10 𝑦 .𝑣𝑎𝑙 ← 𝑃 𝑗 , where 𝑗 maximize |Δ𝑆𝑝𝑒𝑎𝑟 | and |Δ𝑆𝑝𝑒𝑎𝑟 | ≥ 1;
11 𝑦.𝑡𝑦𝑝𝑒 ←"turning";
12 end
13 𝑃𝑎, 𝑃𝑏,𝐶𝑎,𝐶𝑏 ← 𝑃 and 𝐶 divided by 𝑦 .𝑣𝑎𝑙 ;
14 𝑘𝑎,𝑘𝑏 ← the linear regression slope fitted by (𝑃𝑎,𝐶𝑎), (𝑃𝑏,𝐶𝑏) ;
15 𝑦 .𝑡𝑢𝑟𝑛_𝑟𝑎𝑡𝑖𝑜 ← | 𝑘𝑏−𝑘𝑎𝑘𝑎

|;

Identifying knee points (lines 1-3 in Algorithm 3). In a continuous function 𝑓 (𝑥), knee point
is defined as the point with maximum curvature, where curvature 𝐾𝑓 (𝑥) is defined by 𝑓 ’s first and
second derivative [62].

𝐾𝑓 (𝑥) =
𝑓 ′′ (𝑥)

(1 + 𝑓 ′ (𝑥)2)1.5
(3)

For knee points detection in discrete data, we apply the Kneedle algorithm [63], in which
a smoothing spline is used to preserve the shape of the original data set and knee points are
approximated by the set of points in that spline curve that are local maxima if the curve is rotated
by 𝜃 degrees clockwise about (𝑥𝑚𝑖𝑛,𝑦𝑚𝑖𝑛) through the line formed by (𝑥𝑚𝑖𝑛,𝑦𝑚𝑖𝑛) and (𝑥𝑚𝑎𝑥 ,𝑦𝑚𝑎𝑥 ).
Identify turning points (lines 4-12 in Algorithm 3). Spearman correlation measures the mono-
tonicity of a relationship between two variables [54], which ranges from -1 to +1. To detect turning
points, we try to find a dividing point where the absolute difference in Spearman correlations before
and after the dividing point is the largest and above 1.
The aforementioned algorithms assume that the values of the target parameters are ordered,

which is the common case in our experiments. For other cases (e.g., a parameter to determine
whether a system works under memory-only mode or persistent mode), one may design additional
analysis components depending on the questions she wants to answer. For example, one can analyze

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:11

0.2
0

0.4
0

0.6
0

0.8
0

0.9
0
0.9

5

R2 threshold

0

20

40

60

80

100

%
M
is
m
at
ch
ed

S
ig
n
ifi
ca
nt

P
ar
am

et
er
s

Calvin-TPC-C

Aria-TPC-C

GAM-TPC-C

DrTM-TPC-C

MySQL-TPC-C

Janus-TPC-C

Star-TPC-C

Silo-TPC-C

(a) %mismatched significant parameters,
TPC-C.

0.2
0

0.4
0

0.6
0

0.8
0

0.9
0
0.9

5

R2 threshold

0

20

40

60

80

100

%
M
is
m
at
ch
ed

Im
p
or
ta
nt

P
oi
nt
s

Calvin-TPC-C

Aria-TPC-C

GAM-TPC-C

DrTM-TPC-C

MySQL-TPC-C

Janus-TPC-C

Star-TPC-C

Silo-TPC-C

(b) %mismatched important points, TPC-C.

0.2
0

0.4
0

0.6
0

0.8
0

0.9
0
0.9

5

R2 threshold

0

20

40

60

80

100

%
M
is
m
at
ch
ed

S
ig
n
ifi
ca
nt

P
ar
am

et
er
s

Cicada-YCSB

HERD-YCSB

Silo-YCSB

TAPIR-YCSB

Star-YCSB

(c) %mismatched significant parameters,
YCSB.

0.2
0

0.4
0

0.6
0

0.8
0

0.9
0
0.9

5

R2 threshold

0

20

40

60

80

100

%
M
is
m
at
ch
ed

Im
p
or
ta
nt

P
oi
nt
s

Cicada-YCSB

HERD-YCSB

Silo-YCSB

TAPIR-YCSB

Star-YCSB

(d) %mismatched important points, YCSB.

Fig. 1. Comparing analysis results on sampled data set and those on full data set under different 𝑅2 thresholds.
Their difference is quantified as the number of mismatched significant parameters and important points
between sampled and full results (normalized by the total number of significant parameters and important
points from the full results). Lower mismatch rates indicate the sampled data set can better approximate the
full data set. Significant parameters are identified in ANOVA analysis. Important points are identified by
Algorithm 3. Each number is the median of 100 trials.

the difference between memory-only and persistent mode under different settings and further
answer under which settings this mode makes no difference.

3.4 Results
We have tested incremental sampling on all systems to answer the following questions:
• What should the 𝑅2 threshold be set at so that the samples can adequately approximate the full
data set?

• How many samples are needed to achieve the desired 𝑅2 threshold?
• For systems that require a large number of samples, is it possible to improve their predictability
through better implementations?

𝑅2 threshold. To find the right 𝑅2 threshold, we tested incremental sampling with different
𝑅2 thresholds and compared the set of significant parameters and important points found on

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:12 Yujie Hui et al.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

mysql-tpcc

aria-tpcc-Aria

star-ycsb

herd-ycsb

(a) Highly predictable systems.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

calvin-tpcc-Calvin

drtm-tpcc

star-tpcc

silo-ycsb

(b) Less predictable systems.

Fig. 2. Model accuracy vs sampling rate. We categorize all systems into two types: A highly predictable
system can be predicted (median 𝑅2 score can reach at least 0.9) with less than 30% sample as shown in (a). A
less predictable system (b) needs a higher sampling rate. We conducted 100 trials for each sampling rate, and
for each trial, we draw the median, p20, and p80 accuracy (𝑅2). Some lines miss data at a low sampling rate
due to ANOVA reporting insufficient samples.

the full data set (𝑌𝑓 𝑢𝑙𝑙−𝑝𝑎𝑟𝑎 and 𝑌𝑓 𝑢𝑙𝑙−𝑝𝑡𝑠 ), and those found in the sampled data set (𝑌𝑠𝑎𝑚𝑝𝑙𝑒−𝑝𝑎𝑟𝑎
and 𝑌𝑠𝑎𝑚𝑝𝑙𝑒−𝑝𝑡𝑠 ). We then calculated mismatched significant parameters or important points as
(𝑌𝑓 𝑢𝑙𝑙 −𝑌𝑠𝑎𝑚𝑝𝑙𝑒 )∪ (𝑌𝑠𝑎𝑚𝑝𝑙𝑒 −𝑌𝑓 𝑢𝑙𝑙 ). Since important points are identified after identifying significant
parameters, mismatch of important points and significant parameters needs to be interpreted
together. For instance, the rise of important points mismatch in Figure 1b at 𝑅2 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.6 for
MySQL and Silo is due to the change of significant parameters as shown in Figure 1a.
As shown in Figure 1, a termination condition of 𝑅2 > 0.9 is sufficient for most systems to

reach a low mismatch rate. There are two exceptions: For MySQL in Figure 1b, our investigation
reveals that the high mismatch rate is due to a knee point in the full dataset being identified as a
turning point in some sampled datasets, with the classification being close to the threshold. For
Star in Figure 1a, our investigation shows that, similarly, several significant parameters have a
significance level close to the threshold. In short, these two exceptions are caused by values close
to the threshold, which may be addressed by better threshold selection algorithms.
Desired number of samples. For each system, we start from 5% random samples and add 5%
more random samples in each step, until we reach a 95% sampling rate. For each sampled set, we
record its 𝑅2 as the lowest one across ten splits to match Algorithm 1. For each system, we repeat
the above procedure 100 times.

Figure 2 shows the results (we ignore ones that report not enough samples). For each sampling
rate, we show the median 𝑅2, the 20th percentile 𝑅2, (p20), and the 80th percentile 𝑅2 (p80) among
100 trials. From the predictability perspective only, we categorize all systems into two kinds:
highly predictable ones that can reach 𝑅2 > 0.9 usually with less than 30% sampling rate, and less
predictable ones that either require more samples (usually more than 50% sampling rate) to reach
𝑅2 > 0.9 or never reach 𝑅2 > 0.9. For readability, we only display four systems per kind.

Combined with the results from Figure 1, we can conclude that for highly predictable systems, it
is possible to perform a reasonably accurate analysis with a low sampling rate.
What to do if the system is not very predictable? Unpredictability can be caused by implemen-
tation issues and/or inappropriate prediction models. It is challenging to give a decisive conclusion,
given the impossibility of exhausting all prediction models and the considerable effort required to

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:13

0.2
0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

Calvin(Aria)-TPC-C

Calvin(original)-TPC-C

Fig. 3. Comparison between original Calvin and a new Calvin implementation from Aria (ANOVA + random
sampling). Note that the Calvin (original) line in this figure is slightly different from that in Figure 2b, since
in this figure, we can only compare settings that are supported by both versions.

improve and understand the implementation. Fortunately, we find that, for comparison purposes,
some systems re-implemented prior works for various reasons. This allows us to compare the
re-implemented versions with the original versions. For example, as shown in Figure 3, the Calvin
version implemented by the Aria authors seems to provide better predictability than the original
version. Therefore, our recommendation is that, if an experimenter finds her system to be not
very predictable during incremental sampling (i.e., 𝑅2 is low despite using a high sampling rate),
she should investigate the possibility of implementation issues causing unpredictability before
blindly adding more samples. In particular, she should verify whether the results from the finished
experiments match with her expectations and whether there are explanations for performance
changes at certain settings.

4 Exploring Other Methods
In this section, we explore other sampling and prediction methods.

4.1 Sampling Methods
In addition to random sampling, we explore three different sampling methods. We want to investi-
gate whether we can further reduce the evaluation cost of incremental sampling.
Balanced sampling. This approach aims to ensure that each value of a parameter is sampled with
a similar frequency. Initially, it picks 5% of the whole dataset randomly as the sampling set. Then,
it analyzes the frequency of values of each parameter in the sampling set. When expanding the
sampling set, it first selects the setting with the least frequently appearing value of each parameter,
updates the frequency, and then repeats the procedure to select the least frequently appearing
values.
Stratified sampling. This method aims to ensure that each value of a parameter has the same
appearance rate in both the sampling set and the testing set [56]. More formally, given a parameter
P with k possible values, stratified sampling method tries to ensure that 𝑁𝑘𝑖 _𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑁𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
= 𝑁𝑘𝑖 _𝑡𝑒𝑠𝑡𝑖𝑛𝑔

𝑁𝑡𝑒𝑠𝑡𝑖𝑛𝑔
,

where 𝑁𝑘𝑖_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 and 𝑁𝑘𝑖_𝑡𝑒𝑠𝑡𝑖𝑛𝑔 represent the number of times 𝑘𝑖 appears in the sampling set and
the test set, respectively, and 𝑁𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 and 𝑁𝑡𝑒𝑠𝑡𝑖𝑛𝑔 represent the size of the sampling set and the
test set, respectively.
Distribution–aware sampling. This method aims to sample more heavily in areas where values
change more abruptly. It starts by randomly selecting a small subset of settings as the first sampling
set. Then when adding more samples, for each setting in the unsampled set, it 1) identifies 2𝑘 closest

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:14 Yujie Hui et al.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(a) Aria-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(b) Calvin-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(c) Cicada-YCSB.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(d) DrTM-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(e) GAM-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(f) HERD-YCSB.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(g) Janus-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(h) MySQL-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(i) Silo-YCSB.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(j) Star-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(k) Star-YCSB.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

balance

dist-aware

random

stratified

(l) TAPIR-YCSB.

Fig. 4. The effects of different sampling methods. The best sampling method varies across different systems,
and no sampling method consistently outperforms random sampling.

settings in the sampled set as a neighbor set N , where 𝑘 is the number of parameters in that
system; 2) calculates the neighborhood variability score for that neighbor set, which is computed as
𝑎𝑣𝑔( |𝑦𝑚−𝑦𝑛 |

𝑑𝑖𝑠𝑡 (𝑥𝑚,𝑥𝑛 ) ),∀(𝑚,𝑛) ∈ N ; 3) uses the neighborhood variability score as weights, and performs
weighted random selection in unsampled settings.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:15

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(a) Aria-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(b) Calvin-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(c) Cicada-YCSB.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(d) DrTM-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(e) GAM-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(f) HERD-YCSB.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(g) Janus-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(h) MySQL-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(i) Silo-YCSB.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(j) Star-TPC-C.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(k) Star-YCSB.

0.0
5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
50

of
R
2
S
co
re
s
+
/-

to
P
80

an
d
P
20

ML + random ANOVA + random

(l) TAPIR-YCSB.

Fig. 5. ML vs ANOVA (random sampling). No method consistently outperforms the other.

Figure 4 presents a subset of the results of running ANOVA with different sampling methods.
Some sampling methods are significantly affected by the random seed, so we conducted 100 runs
for each sampling method using different random seeds. For a combination of system and workload,
we define its best sampling method as the one that can reach 𝑅2 > 0.9 with the lowest sampling
rate (note that a tie is possible). Overall, the best sampling method varies between different systems,

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:16 Yujie Hui et al.

and we have not found a sampling method that can consistently outperform random sampling.
Specifically, random sampling is the best on Aria-TPC-C, HERD-YCSB, Silo-YCSB, Silo-TPC-C, Star-
YCSB and TAPIR-YCSB; balanced sampling is the best on Aria-TPC-C, HERD-YCSB, MySQL-TPC-C,
Star-TPC-C and TAPIR-YCSB; distribution-aware sampling is the best on Aria-TPC-C, Cicada-YCSB,
HERD-YCSB, MySQL-TPC-C and Star-YCSB; stratified sampling is the best on Aria-TPC-C; in other
combinations of systems and workloads, no sampling method can reach 𝑅2 > 0.9. Note that some
system-workload combination might have multiple best sampling methods.

4.2 Prediction Methods
In addition to ANOVA, we have also explored 1) machine learning methods, which will be presented
in detail in this section; 2) linear regression treating all parameters as numerical data (note that we
configure ANOVA to treat all parameters as categorical data); and 3) Lorenzo Predictor, which is
typically applied in compression algorithms [38, 69]. Since linear regression and Lorenzo Predicator
do not perform well in our experiments, we do not present them in detail in this paper.
Machine learning. We chose neural networks as the prediction method due to its popularity and
capability. The neural network we used, Multilayer Perceptron (MLP), is the standard model for
performance prediction. We utilized scikit-learn [57] to prepare the training data and train the
model. Our model contains three hidden layers with 10, 10, and 5 neurons, respectively. The model
is trained with the lbfgs optimizer, which performs better for small datasets [57].

Figure 5 shows a subset of results of running different prediction methods. To summarize, ML is
the best on Cicada-YCSB, GAM-TPC-C, MySQL-TPC-C, Star-TPC-C, Star-YCSB; ANOVA is the best
on Aria-TPC-C, Cicada-YCSB, Herd-YCSB, Silo-TPC-C, Silo-YCSB, and Tapir-YCSB; and in other
combinations of systems and workloads, no prediction method can reach 𝑅2 > 0.9. Again, there is
no consistent trend that one can outperform the other. We further compared these two methods
with different sampling methods and found that no combination consistently outperforms others.
This conclusion is consistent with a prior study [42], which examines different sampling and ML
methods for performance prediction and finds no single best combination. Since ANOVA is more
efficient than MLP, and more importantly, can further explain the impact of each parameter, we
opt for ANOVA in the rest of this paper.

4.3 Discussion
Due to the large number of sampling and prediction methods, it is challenging, if not impossible, to
exhaustively try every sampling and prediction method. Therefore, our effort should be viewed as
an attempt to explore this direction, rather than as a decisive conclusion. In particular, for many
systems, there is a great gap between p80 𝑅2 and p20 𝑅2 of the same sampling rate, indicating
possible improvement.

On the other hand, we observed that those highly predictable systems exhibit good predictability
no matter which sampling method or prediction method we use. Therefore, we expect that the
implementation of the system will still play an important role in the predictability of the system.

5 Comparison With Ground Truth
In this section, we compare the results of incremental sampling to the “ground truth”, using the
full results. We perform the comparison to validate that the trends or important points found by
incremental sampling are indeed observable in the ground truth.
Since these systems often have multiple parameters, to present the full results, we visualize

high-dimensional data in the following way (e.g., Figure 6 and Figure 7): Assuming the system has
𝑛 parameters from 𝑝1 to 𝑝𝑛 , in the first iteration, our tool picks two parameters (e.g., 𝑝1 and 𝑝2) and

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:17

groups all data with the same 𝑝3 to 𝑝𝑛 values; then it is able to draw each group on a 2D figure
called a “tile” since each group only contains two parameters 𝑝1 and 𝑝2. In the second iteration, our
tool picks two additional parameters (e.g., 𝑝3 and 𝑝4) and groups tiles with the same 𝑝5 to 𝑝𝑛 values
into a super-tile. This procedure repeats until it covers all parameters (the last iteration may just
pick one parameter).

By comparing the visualized data with the output of incremental sampling. We try to answer the
following questions:
• Does the visualization align with our previous observation that some systems are more predictable
than others?

• Does the output of incremental sampling align with the ground truth, and does it provide valuable
information?

(a) Per core throughput of Aria TPC-C. (b) Per core throughput of Calvin TPC-C.

Fig. 6. Predictability of different systems. Per core throughput is reported in txns/sec.

(a) Per core throughput of MySQL TPC-C. (b) Per core throughput of DrTM TPC-C.

Fig. 7. Systems with complex performance patterns. Per core throughput is reported in txns/sec.

5.1 Predictability of Different Systems
As discussed in Section 3.4, we find that some systems are less predictable than others. This
observation can be validated with the visualized data. For example, as shown in Figure 6a, Aria,
which exhibits good predictability as shown in Section 3.4, has a regular pattern in its visualized

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:18 Yujie Hui et al.

data. Calvin, on the other hand, has irregular patterns in its visualized data, which is consistent
with its less ideal predictability as shown in Section 3.4.

Again, we emphasize that the predictability of a system is dependent on both the samplingmethod
and the prediction model. Although this work has explored several methods, it is possible that
more effective methods exist. Therefore, the discussion here should be considered as a best-effort
validation.

5.2 Output of Incremental Sampling
To verify the accuracy of incremental sampling, we validate whether the significant terms and
important points reported by incremental sampling match the visualized data. We report results on
MySQL and DrTM here, as these two exhibit complex patterns in their visualized data.
For MySQL, our analysis shows that the most significant parameter is the number of terminals

(i.e., clients or worker threads since MySQL creates one worker thread for each client), which shows
an increasing trend with a knee point. This is consistent with the pattern in Figure 7a, where the
right side shows higher throughput but the increasing trend stops at a certain point. Our analysis
shows that the second most significant parameter is the combination of (number of terminals,
number of warehouses), which includes turning points. This is consistent with the figure’s pattern
that the highest throughput appears in the middle of the y-axis.
Both findings are consistent with common knowledge or manual investigation as well: An

experiment usually requires a certain number of terminals to saturate the system, but beyond that
point, adding more terminals won’t further increase system throughput. That’s why the number of
terminals shows an increasing trend with a knee point. More warehouses will decrease contention,
thereby increasing throughput, which is why we can observe that throughput increases with more
warehouses until a certain point in Figure 7a. With more warehouses, we need more terminals to
saturate the system, which is why we observe a combined effect of (number of terminals, number
of warehouses). To understand why throughput decreases with more warehouses after a certain
point, we profile MySQL and find that the lookup overhead in a tree-like index will grow with
more rows in the database. Therefore, beyond a certain point, the lookup overhead will become the
dominant factor, explaining the observed turning point.
For DrTM TPC-C, our analysis shows that the most significant parameter is the number of

worker threads, with a decreasing trend, which is consistent with Figure 7b. This is because DrTM
is a distributed database using transactional memory and RDMA techniques, and more worker
threads on the same node will contend on such shared resources. The second parameter is the cross-
warehouse ratio, with a decreasing trend and a knee point. More cross-warehouse transactions
are well known to introduce more contention and more network traffic, which explains why it
decreases throughput. The third parameter is the combination of (the number of warehouses and
the number of worker threads) with turning points. This is consistent with the step-like patterns in
Figure 7b. The explanation is the same as for MySQL.
For other systems, we observed a similar match between observations on the sampled settings

and those on all settings, although, once again, the required sampling rate to reach the match varies
by different systems.

5.3 Discussion and Recommendation
The effect of the number of warehouses in TPC-C is a typical example of how experiment results
can be affected by parameter selection: When this number is small, contention is likely to be the
main bottleneck, and when this number becomes large, index searching is likely to become the main
bottleneck. Therefore, the optimization of concurrency control may show superior improvement
when this number is small, but the improvement will diminish when this number becomes large.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:19

Furthermore, whether to partition data (i.e., whether to store all data in a single table or in multiple
ones) further complicates the comparison, since partitioning naturally limits the size of an index.

For an unbiased evaluation, our general recommendation is to measure and report results on both
sides of an important point. When comparing two systems, such measurements and comparisons
should cover the two sides of a turning/kneeing point in both systems. More formally, for a
parameter 𝑃 , if system A has a turning point 𝑃𝐴 and system B has a turning point 𝑃𝐵 (assuming
𝑃𝐴 < 𝑃𝐵), then the comparison should cover (min, 𝑃𝐴), (𝑃𝐴, 𝑃𝐵), and (𝑃𝐵 , max).

6 Suggestions, Limitations, and Future Work
In this section, we summarize our recommendations about artifact implementation and evaluation.
We further discuss the limitations of our approach and future work.
• A researcher should prepare her artifact for extensive evaluation. This often includes eliminating
hard-coded configuration parameters. She should also clarify the value range of each configuration
parameter the artifact can support.

• An experimenter should design evaluations to cover the entire parameter space, including the
possible range of each parameter. If the space is too large for an extensive evaluation, the
experiments can use the incremental sampling approach discussed in this work, starting from a
small number of samples and adding more samples if existing samples do not provide a good
estimation. We recommend random sampling and ANOVA analysis based on our experience.

• If at some point, those samples could provide a good estimation (we recommend using an 𝑅2
threshold of 0.9), then the experimenter can further analyze the output of ANOVA to identify
the important points.

• If the experimenter cannot obtain a good estimation with many samples (the exact threshold
depends on how many experiments the experimenter can afford to run in total), she should inves-
tigate whether this is due to implementation issues. For this purpose, she can check whether the
results of existing samples meet her expectations. If not, she should address the implementation
issues and retry.

• For an unbiased evaluation, the experimenter should report results on both sides of an important
point. When comparing two systems, the experimenter can apply the above approach to two
systems independently, possibly with different sampling rates for different systems, and then
compare their predicted performance. The comparison should cover both sides of important
points in both systems.
The effectiveness of this approach depends on the predictability of the target system. Incremental

sampling can significantly reduce the experiment cost for highly predictable systems. Less pre-
dictable systems, however, will bring at least two problems, due to the inherent limitations of the
sampling approach: First, incremental sampling may observe the unpredictability and require more
samples, eventually running out of the experimenter’s resource. Second, the sampling approach
may miss important points if there are too few samples and the performance of the target system
can change abruptly. For example, if we test two configuration values 𝑣1 and 𝑣2 (𝑣1 < 𝑣2), but
the system performance drops at 𝑣3 and goes back to normal at 𝑣4 (𝑣1 < 𝑣3 < 𝑣4 < 𝑣2), then the
sampling approach will miss this drop. On the other hand, a system whose performance can change
abruptly is perhaps undesirable in the first place.

In the future, we plan to investigate the applicability of our approach on other metrics, such as
latency, which may have more variance than average throughput. For highly predictable systems,
we will investigate ways to lower the cost of each sample’s experiments, such as early stopping
when early experimental results match expectations.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:20 Yujie Hui et al.

7 Related Work

Benchmarks. Many areas have well-established benchmarks for performance evaluation and
comparison, such as the TPC series [72], SmallBank [8], YCSB [20], fio [27], the SPEC series [66],
HPL [58], HPCG [25], Graph500 [31], MLPerf [51, 59], DAWNBench [19], and many others. Most
of these benchmarks have restrictions on which parameters can be tuned and what values can be
used for these parameters.
Reproducibility. To improve code quality and facilitate future research, our community has
encouraged research papers to verify their reproducibility through artifact evaluation [1, 3–6]. In
the meantime, many works study how to improve the reproducibility of research prototypes. For
example, CloudLab studies the performance variability of its experiments and proposes guidelines
to reduce such variability [50]; a recent work studies how cloud-based big data workload can
be affected by network variability [74]; Fursin discussed the challenges and solutions from his
experience of reproducing 150+ research papers [29]; Ursprung [61] studies how to improve the
reproducibility of data science workloads. The key idea of Ursprung is to transparently capture
provenance and build lineage to automatically track static and runtime configuration parameters
of data science pipelines. With Ursprung, the authors hope to improve the reproducibility of data
science workloads.
However, reproducibility does not answer the question of which settings we should use in

experiments. Compared to these efforts, our work further argues that, for the purpose of improving
code quality and facilitating future research, we should encourage extensive evaluations to cover a
wider range of settings.
Regression/Machine learning for systems. Regression and machine learning methods have been
applied in systems designs and optimizations. For example, many studies [13, 76, 80] propose using
regression-based algorithms to tune systems configurations to achieve better performance. Recent
systems research successfully exploits machine learning methods for performance prediction [28,
32, 42, 44], resource management [23, 37, 48, 52], scheduling [22, 49], I/O optimizations [24, 33], and
so on. Our work explores whether we can apply a similar idea to reduce the cost of the extensive
evaluation. Our work will benefit from improvement in this field, such as better prediction models
or designs that can improve performance predictability.

8 Conclusion
This paper explores whether we can leverage sampling and prediction to reduce the cost of extensive
evaluation. Our exploration shows that it is possible to gain the benefits of extensive evaluation
with a low cost, but that may require a good engineering effort to improve the predictability of the
artifacts. Based on our exploration, we further discuss possible future directions and make two
recommendations: 1) We may encourage artifact predictability in addition to reproducibility, and 2)
Measurement and comparison should cover both sides of a knee or turning point.

Acknowledgments
We thank the anonymous reviewers for valuable feedback. We thank Dr. Xingda Wei for his help
on DrTM. This material is based in part upon work supported by the National Science Foundation
under Grant Numbers CCF-2118745 and OAC-2333324.

References
[1] ACM SIGMOD Reproducibility. https://reproducibility.sigmod.org/.
[2] Calvin Source Code. https://github.com/yaledb/calvin.
[3] EuroSys Call for Artifacts. https://sysartifacts.github.io/eurosys2021/.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:21

[4] OSDI Call for Artifacts. https://www.usenix.org/conference/osdi21/call-for-artifacts.
[5] PVLDB Reproducibility. http://vldb.org/pvldb/reproducibility/.
[6] SOSP Call for Artifacts. https://sysartifacts.github.io/sosp2021/call.html.
[7] Tapir Source Code. https://github.com/UWSysLab/tapir.
[8] Mohammad Alomari, Michael J. Cahill, Alan D. Fekete, and Uwe Röhm. The Cost of Serializability on Platforms That

Use Snapshot Isolation. In ICDE, pages 576–585. IEEE Computer Society, 2008.
[9] Aria Source Code. https://github.com/luyi0619/aria.
[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload Analysis of a Large-scale

Key-value Store. In SIGMETRICS, pages 53–64. ACM, 2012.
[11] Tiemo Bang, Norman May, Ilia Petrov, and Carsten Binnig. The Tale of 1000 Cores: An Evaluation of Concurrency

Control on Real(ly) Large Multi-socket Hardware. In DaMoN, pages 3:1–3:9. ACM, 2020.
[12] Tiemo Bang, NormanMay, Ilia Petrov, and Carsten Binnig. The Full Story of 1000 Cores: An Examination of Concurrency

Control on Real(ly) Large Multi-socket Hardware. The VLDB Journal, 31(6):1185–1213, apr 2022.
[13] Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Cheng-Zhong Xu, Lieven Eeckhout, and Shengzhong Feng.

RFHOC: A Random-Forest Approach to Auto-Tuning Hadoop’s Configuration. IEEE Trans. Parallel Distributed Syst.,
27(5):1470–1483, 2016.

[14] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim
Carrig, Nathan Beckmann, Mor Harchol-Balter, and Gregory R. Ganger. The CacheLib Caching Engine: Design and
Experiences at Scale. In OSDI, pages 753–768. USENIX Association, 2020.

[15] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng
Teo, and Sheng Wang. Efficient Distributed Memory Management with RDMA and Caching. Proc. VLDB Endow.,
11(11):1604–1617, 2018.

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar Chandra,
Andrew Fikes, and Robert Gruber. Bigtable: A Distributed Storage System for Structured Data. In OSDI, pages 205–218.
USENIX Association, 2006.

[17] Cicada Source Code. https://github.com/efficient/cicada-exp-sigmod2017.
[18] Cloudlab. https://www.cloudlab.us/.
[19] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle Oluko-

tun, Chris Re, and Matei Zaharia. DAWNBench: An End-to-End Deep Learning Benchmark and Competition.
https://cs.stanford.edu/~deepakn/assets/papers/dawnbench-sosp17.pdf, 2017.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmarking Cloud Serving
Systems with YCSB. In SoCC, pages 143–154. ACM, 2010.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-value
Store. In SOSP, pages 205–220. ACM, 2007.

[22] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware Scheduling for Heterogeneous Datacenters. In
ASPLOS, pages 77–88. ACM, 2013.

[23] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and QoS-aware Cluster Management. In
ASPLOS, pages 127–144. ACM, 2014.

[24] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael Schapira. PCC Vivace:
Online-Learning Congestion Control. In NSDI, pages 343–356. USENIX Association, 2018.

[25] Jack J. Dongarra, Michael A. Heroux, and Piotr Luszczek. High-performance Conjugate-gradient Benchmark: A New
Metric for Ranking High-performance Computing Systems. Int. J. High Perform. Comput. Appl., 30(1):3–10, 2016.

[26] DrTM Source Code. https://github.com/SJTU-IPADS/drtm.
[27] fio - Flexible I/O Tester. https://github.com/axboe/fio.
[28] Silvery Fu, Saurabh Gupta, Radhika Mittal, and Sylvia Ratnasamy. On the Use of ML for Blackbox System Performance

Prediction. In NSDI, pages 763–784. USENIX Association, 2021.
[29] Fursin, Grigori. Reproducing 150 Research Papers and Testing Them in the Real World: Challenges and Solutions. https:

//learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2021/grigorifursin_techtalk_slides.pdf, 2021.
[30] GAM Source Code. https://github.com/ooibc88/gam.
[31] Graph500 Committee. Graph500 benchmark. http://graph500.org.
[32] Alexander Grebhahn, Norbert Siegmund, and Sven Apel. Predicting Performance of Software Configurations: There is

no Silver Bullet. CoRR, abs/1911.12643, 2019.
[33] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim, Henry Hoffmann, and Haryadi S. Gunawi. LinnOS:

Predictability on Unpredictable Flash Storage with a Light Neural Network. In OSDI, pages 173–190. USENIX
Association, 2020.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:22 Yujie Hui et al.

[34] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. An Evaluation of Distributed Concurrency
Control. Proc. VLDB Endow., 10(5):553–564, 2017.

[35] Gernot Heiser. Systems Benchmarking Crimes. https://gernot-heiser.org/benchmarking-crimes.html.
[36] HERD Source Code. https://github.com/efficient/HERD.
[37] Henry Hoffmann. Jouleguard: energy guarantees for approximate applications. In SOSP, pages 198–214. ACM, 2015.
[38] Lawrence Ibarria, Peter Lindstrom, Jarek Rossignac, and Andrzej Szymczak. Out-of-core Compression and Decompres-

sion of Large n-dimensional Scalar Fields. Comput. Graph. Forum, 22(3):343–348, 2003.
[39] Raj Jain. The Art of Computer Systems Performance Analysis - Techniques for Experimental Design, Measurement,

Simulation, and Modeling. Wiley professional computing. Wiley, 1991.
[40] Janus Source Code. https://github.com/NYU-NEWS/janus.
[41] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA Efficiently for Key-value Services. In SIGCOMM,

pages 295–306. ACM, 2014.
[42] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven Apel. The Interplay of Sampling and

Machine Learning for Software Performance Prediction. IEEE Softw., 37(4):58–66, 2020.
[43] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying, Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun Huang,

Yatpang Cheung, Yiding Zhou, Kaushik Veeraraghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta, and Chunqiang
Tang. Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications. In SOSP, pages
553–569. ACM, 2021.

[44] Chieh-Jan Mike Liang, Zilin Fang, Yuqing Xie, Fan Yang, Zhao Lucis Li, Li Lyna Zhang, Mao Yang, and Lidong Zhou.
On Modular Learning of Distributed Systems for Predicting End-to-End Latency. In NSDI, pages 1081–1095. USENIX
Association, 2023.

[45] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada: Dependably Fast Multi-Core In-Memory Transac-
tions. In SIGMOD Conference, pages 21–35. ACM, 2017.

[46] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: A Fast and Practical Deterministic OLTP Database. Proc.
VLDB Endow., 13(11):2047–2060, 2020.

[47] Yi Lu, Xiangyao Yu, and Samuel Madden. STAR: Scaling Transactions through Asymmetric Replication. Proc. VLDB
Endow., 12(11):1316–1329, 2019.

[48] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, and Colin Raffel.
Learning-based Memory Allocation for C++ Server Workloads. In ASPLOS, pages 541–556. ACM, 2020.

[49] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad Alizadeh. Learning
scheduling algorithms for data processing clusters. In SIGCOMM, pages 270–288. ACM, 2019.

[50] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan Stutsman, Robert Ricci, and Ana Klimovic.
Taming Performance Variability. In OSDI, pages 409–425. USENIX Association, 2018.

[51] Peter Mattson, Christine Cheng, Gregory F. Diamos, Cody Coleman, Paulius Micikevicius, David A. Patterson, Hanlin
Tang, Gu-YeonWei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, KimM. Hazelwood,
Andy Hock, Xinyuan Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan, Tayo
Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu,
Lingjie Xu, Cliff Young, and Matei Zaharia. MLPerf Training Benchmark. In MLSys. mlsys.org, 2020.

[52] Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann. CALOREE: Learning Control for Predictable
Latency and Low Energy. In ASPLOS, pages 184–198. ACM, 2018.

[53] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating Concurrency Control and Consensus for
Commits under Conflicts. In OSDI, pages 517–532. USENIX Association, 2016.

[54] Leann Myers and Maria J Sirois. Spearman Correlation Coefficients, Differences between. Encyclopedia of Statistical
Sciences, 12, 2004.

[55] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike
Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache
at Facebook. In NSDI, pages 385–398. USENIX Association, 2013.

[56] Van L Parsons. Stratified Sampling. Wiley StatsRef: Statistics Reference Online, pages 1–11, 2014.
[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[58] Petitet, A. and Whaley, R. C. and Dongarra, Jack and Cleary, A. HPL - A Portable Implementation of the High-
Performance Linpack Benchmark for Distributed-Memory Computers. https://www.netlib.org/benchmark/hpl/.

[59] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian
Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



On the Feasibility and Benefits of Extensive Evaluation 201:23

Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao,
Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan,
Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. MLPerf Inference Benchmark. In ISCA, pages 446–459. IEEE, 2020.

[60] Kun Ren, Alexander Thomson, andDaniel J. Abadi. An Evaluation of theAdvantages andDisadvantages of Deterministic
Database Systems. Proc. VLDB Endow., 7(10):821–832, 2014.

[61] Lukas Rupprecht, James C. Davis, Constantine Arnold, Yaniv Gur, and Deepavali Bhagwat. Improving Reproducibility
of Data Science Pipelines through Transparent Provenance Capture. Proc. VLDB Endow., 13(12):3354–3368, 2020.

[62] Stan Salvador and Philip Chan. Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation
Algorithms. In ICTAI, pages 576–584. IEEE Computer Society, 2004.

[63] Ville Satopaa, Jeannie R. Albrecht, David E. Irwin, and Barath Raghavan. Finding a "Kneedle" in a Haystack: Detecting
Knee Points in System Behavior. In ICDCS Workshops, pages 166–171. IEEE Computer Society, 2011.

[64] Henry Scheffe. The Analysis of Variance, volume 72. John Wiley & Sons, 1999.
[65] Silo Source Code. https://github.com/stephentu/silo.
[66] Standard Performance Evaluation Corporation. https://www.spec.org/.
[67] Star Source Code. https://github.com/luyi0619/star.
[68] Takayuki Tanabe, Takashi Hoshino, Hideyuki Kawashima, and Osamu Tatebe. An Analysis of Concurrency Control

Protocols for In-Memory Databases with CCBench. CoRR, abs/2009.11558, 2020.
[69] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly Improving Lossy Compression for Scientific

Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization. In IPDPS, pages 1129–1139. IEEE
Computer Society, 2017.

[70] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. Calvin: Fast
Distributed Transactions for Partitioned Database Systems. In SIGMOD Conference, pages 1–12. ACM, 2012.

[71] Transaction Processing Performance Council. The TPC-C home page. http://www.tpc.org/tpcc/.
[72] Transaction Processing Performance Council. The TPC home page. http://www.tpc.org.
[73] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy Transactions in Multicore

In-Memory Databases. In SOSP, pages 18–32. ACM, 2013.
[74] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan S. Rellermeyer, Carlos Maltzahn, Robert Ricci,

and Alexandru Iosup. Is Big Data Performance Reproducible in Modern Cloud Networks? In NSDI, pages 513–527.
USENIX Association, 2020.

[75] Yang Wang, Miao Yu, Yujie Hui, Fang Zhou, Yuyang Huang, Rui Zhu, Xueyuan Ren, Tianxi Li, and Xiaoyi Lu. A Study
of Database Performance Sensitivity to Experiment Settings. Proc. VLDB Endow., 15(7):1439–1452, 2022.

[76] Md. Wasi-ur-Rahman, Nusrat Sharmin Islam, Xiaoyi Lu, Dipti Shankar, and Dhabaleswar K. Panda. MR-Advisor: A
comprehensive tuning, profiling, and prediction tool for MapReduce execution frameworks on HPC clusters. J. Parallel
Distributed Comput., 120:237–250, 2018.

[77] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast In-Memory Transaction Processing Using
RDMA and HTM. In SOSP, pages 87–104. ACM, 2015.

[78] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An Empirical Evaluation of In-Memory Multi-Version
Concurrency Control. Proc. VLDB Endow., 10(7):781–792, 2017.

[79] Juncheng Yang, Yao Yue, and K. V. Rashmi. A Large-scale Analysis of Hundreds of In-Memory Cache Clusters at
Twitter. In OSDI, pages 191–208. USENIX Association, 2020.

[80] Zhibin Yu, Zhendong Bei, and Xuehai Qian. Datasize-Aware High Dimensional Configurations Auto-Tuning of
In-Memory Cluster Computing. In ASPLOS, pages 564–577. ACM, 2018.

[81] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K. Ports. Building Consistent
Transactions with Inconsistent Replication. In SOSP, pages 263–278. ACM, 2015.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.



201:24 Yujie Hui et al.

A Testbed
Table 2 records the detailed machine configuration to test each system.

Name Node
Alias

CPU RAM Disk NIC

Calvin d430 2x Intel E5-2630 v3
8-core CPUs at 2.40
GHz (Haswell w/
EM64T)

64GB 2 x 1TB HDDs Dual-port Intel 1GbE NIC (i350),
Dual-port Intel 10GbE NIC
(X710), One Broadcom NetXtreme
BCM5720-2P Dual-Port 1GbE NIC

Silo c6320 2x Intel E5-2683 v3
14-core CPUs at 2.00
GHz (Haswell)

256GB ECC 2x 1 TB 7.2K RPM 3G
SATA HDDs

Dual-port Intel 10GbE NIC (X520),
Qlogic QLE 7340 40 Gb/s Infiniband
HCA (PCIe v3.0, 8 lanes)

HERD r320 1x Xeon E5-2450
processor (8 cores,
2.1Ghz)

16GB (4 x 2GB
RDIMMs, 1.6Ghz)

4 x 500GB 7.2K SATA
Drives (RAID5)

1GbE Dual port embedded NIC
(Broadcom), 1 x Mellanox MX354A
Dual port FDR CX3 adapter w/1 x
QSA adapter

MICA c6220 2 x Xeon E5-2650v2
processors (8 cores
each, 2.6Ghz)

64GB (8 x 8GB DDR-
3 RDIMMs, 1.86Ghz)

2 x 1TB SATA 3.5”
7.2K rpm hard drives

4 x 1GbE embedded Ethernet Ports
(Broadcom), 1 x Intel X520 PCIe
Dual port 10Gb Ethernet NIC, 1 x
Mellanox FDRCX3 Single portmezz
card

DrTM OSC
Owens

2 x Intel E5-2680 v4
(14-core, 2.40 GHz)

128GB 1 x 1TB HDD 100 Gb/s Infiniband EDR

TAPIR c220g1 2x Intel E5-2630 v3
8-core CPUs at 2.40
GHz (Haswell w/
EM64T)

128GB ECC (8x 16 GB
DDR4 1866 MHz dual
rank RDIMMs)

2x 1.2 TB 10K RPM
6G SAS SFF HDDs,
One Intel DC S3500
480 GB 6G SATA
SSDs

Dual-port Intel X520-DA2 10Gb
NIC (PCIe v3.0, 8 lanes), Onboard
Intel i350 1Gb

Janus rs630 2 x Xeon E5-2660 v3
processors (10 cores
each, 2.6Ghz ormore)

256GB (16 x 16GB
DDR4 DIMMs)

1 x 900GB 10K SAS
Drive

1GbE Quad port embedded NIC
(Intel), 1 x Solarflare Dual port
SFC9120 10G Ethernet NIC

Cicada c6320 2x Intel E5-2683 v3
14-core CPUs at 2.00
GHz (Haswell)

256GB ECC 2x 1 TB 7.2K RPM 3G
SATA HDDs

Dual-port Intel 10GbE NIC (X520),
Qlogic QLE 7340 40 Gb/s Infiniband
HCA (PCIe v3.0, 8 lanes)

GAM c6220 2 x Xeon E5-2650v2
processors (8 cores
each, 2.6Ghz)

64GB (8 x 8GB DDR-
3 RDIMMs, 1.86Ghz)

2 x 1TB SATA 3.5”
7.2K rpm hard drives

4 x 1GbE embedded Ethernet Ports
(Broadcom), 1 x Intel X520 PCIe
Dual port 10Gb Ethernet NIC, 1 x
Mellanox FDRCX3 Single portmezz
card

Star c6220 2 x Xeon E5-2650v2
processors (8 cores
each, 2.6Ghz)

64GB (8 x 8GB DDR-
3 RDIMMs, 1.86Ghz)

2 x 1TB SATA 3.5”
7.2K rpm hard drives

4 x 1GbE embedded Ethernet Ports
(Broadcom), 1 x Intel X520 PCIe
Dual port 10Gb Ethernet NIC, 1 x
Mellanox FDRCX3 Single portmezz
card

Aria m510 8-core Intel Xeon D-
1548 at 2.0 GHz

64GB ECC (4x 16
GB DDR4-2133 SO-
DIMMs)

256 GB NVMe flash
storage

Dual-port Mellanox ConnectX-3 10
GB NIC (PCIe v3.0, 8 lanes )

MySQL m510 8-core Intel Xeon D-
1548 at 2.0 GHz

64GB ECC (4x 16
GB DDR4-2133 SO-
DIMMs)

256 GB NVMe flash
storage

Dual-port Mellanox ConnectX-3 10
GB NIC (PCIe v3.0, 8 lanes)

Table 2. Machine settings used to test different systems.

Received January 2024; revised April 2024; accepted May 2024

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 201. Publication date: September 2024.


