Bulletin of the American Physical Society

65th Annual Meeting of the APS Division of Plasma Physics

Monday-Friday, October 30-November 3 2023; Denver, Colorado

Session T005: Fundamental Plasmas: Laboratory, Nonneutral, and Strongly Coupled Plasmas

9:30 AM-12:18 PM, Thursday, November 2, 2023

Room: Governor's Square 14

Chair: Derek Thuecks, Washington College

Abstract: TO05.00013 : Comparative study of ionization and optical nonlinearities of gas molecules using single-shot spatio-temporally-resolved visualization*

11:54 AM-12:06 PM

← Abstract →

Presenter:

Yuxuan Zhang (Binghamton University)

Authors:

Yuxuan Zhang (Binghamton University)

Dennis Dempsey (Binghamton University)

Garima C Nagar (Binghamton University)

Jack W Agnes (Binghamton University)

Nicole A Batista (Binghamton University)

Tran-Chau Truong (University of Central Florida)

Devi Sapkota (Binghamton University)

Michael Chini (University of Central Florida)

Bonggu Shim (Binghamton University)

We employ state-of-the-art single-shot frequency-domain holography (FDH) [1-3] to study the optical nonlinearities of gas molecules such as CO_2 and N_2O , which include the instantaneous electronic and delayed rotational Raman responses, as well as ionization effects. FDH enables single-shot time-resolved measurements of the optical nonlinearities induced by an intense pump laser pulse via the reconstruction of the electric fields of chirped reference and probe laser pulses. Our findings indicate that CO_2 exhibits significant nonlinearities comparable to N_2O , attributed to a combination of high Raman nonlinearities and a high ionization threshold. This study should provide important information for high-intensity laser experiments using gas molecules such as laser filamentation and high-order harmonic generation.

[1] S. P. Le Blanc et al. Opt. Lett. 56, 764-766 (2000). [2] D. Dempsey et al. Opt. Lett. 45, 1252-1255 (2020). [3] D. Dempsey et al. Opt. Commun. 545, 129669 (2023)

*Funded by U.S. Air Force Office of Scientific Research (AFOSR) (FA9550-18-1-0223 and FA9550-20-1-0284), National Science Foundation (NSF), USA (PHY-2010365), DOE Basic Energy Sciences, USA (DE-SC0019291), IEEC of Binghamton University, USA.

This site uses cookies. To find out more, read our Privacy Policy.

I Agree