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Abstract

Pre-trained language models (PLMs) have demonstrated remarkable performance
as few-shot learners. However, their security risks under such settings are largely
unexplored. In this work, we conduct a pilot study showing that PLMs as few-
shot learners are highly vulnerable to backdoor attacks while existing defenses
are inadequate due to the unique challenges of few-shot scenarios. To address
such challenges, we advocate MDP, a novel lightweight, pluggable, and effective
defense for PLMs as few-shot learners. Specifically, MDP leverages the gap
between the masking-sensitivity of poisoned and clean samples: with reference to
the limited few-shot data as distributional anchors, it compares the representations
of given samples under varying masking and identifies poisoned samples as ones
with significant variations. We show analytically that MDP creates an interesting
dilemma for the attacker to choose between attack effectiveness and detection
evasiveness. The empirical evaluation using benchmark datasets and representative
attacks validates the efficacy of MDP. Code available at https://github.com/z
haohan-xi/PLM-prompt-defense.

1 Introduction

The prompt-based learning paradigm is revolutionizing the ways of using pre-trained language
models (PLMs) [7, 25, 26, 1] in various NLP tasks. Unlike the conventional fine-tuning paradigm
that requires re-training the PLM, the prompt-based paradigm reformulates the downstream task as a
masked language modeling problem and uses proper prompts to coax the model to produce textual
outputs [16]. For example, to analyze the sentiment of a movie review, one may append the prompt
“the movie is ___” to the given review and guides the model to predict the missing sentiment word
(e.g., “terrible” or “great”). Recent work shows that with proper prompting, even moderate-sized
PLMs can be adapted as performant few-shot learners when training data is limited [9].

In contrast to its surging popularity, the security implications of this prompt-based paradigm are
under-explored. Recent work [8, 32, 2] shows that like their fine-tuned counterparts, prompt-based
PLMs are susceptible to textual backdoor attacks, in which misclassification rules are injected into
PLMs, only to be activated by poisoned samples containing “triggers” (e.g., the rare word of “cr”).
However, how to mitigate such threats, especially under the few-shot setting, remains an open
challenge.

In this work, we conduct a pilot study showing that few-shot scenarios entail unique challenges
for defending against textual backdoor attacks, including scarce training data, intricate interactions
with prompts, and limited computational capacity. For instance, many existing defenses [3, 23, 34]
designed for the fine-tuning paradigm require reliable statistical estimates of the downstream datasets
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and therefore perform poorly under the few-shot setting. Thus, it necessitates developing effective
defenses tailored to the setting of few-shot learning.

Towards this end, we advocate MDP (masking-differential prompting), an effective, lightweight, and
pluggable backdoor defense for PLMs as few-shot learners. At a high-level, MDP leverages the key
observation that compared with clean samples, poisoned samples often show higher sensitivity to
random masking: if its trigger is (partially) masked, the language modeling probability of a poisoned
sample tends to vary greatly. Therefore, with reference to the limited few-shot data as “distributional
anchors”, MDP compares the representations of given samples under varying masking and identifies
poisoned samples as ones with significant variations. To boost its effectiveness, MDP (optionally)
optimizes the prompt to further improve the masking-invariance of clean samples.

To validate its effectiveness, we empirically evaluate MDP using benchmark datasets and represen-
tative attacks. The results show that MDP effectively defends PLMs against various attacks under
the few-shot setting, with little impact on their performance in downstream tasks. Moreover, we
show analytically that MDP creates an interesting dilemma for the attacker to choose between attack
effectiveness and detection evasiveness.

To summarize, this work makes the following contributions.

• To our best knowledge, this is the first work on defending PLMs as few-shot learners against
backdoor attacks. We reveal that the few-shot setting entails unique challenges while existing
defenses for the fine-tuning paradigm are not easily retrofitted to its specificities.

• We propose MDP, a novel defense tailored to the few-shot setting. Leveraging the gap between the
masking sensitivity of clean and poisoned samples and utilizing the few-shot data to effectively
estimate such sensitivity, MDP detects poisoned samples with high accuracy at inference time.

• Using benchmark datasets and representative attacks, we empirically validate that MDP outper-
forms baseline defenses by large margins while causing little impact on the performance of LMs in
downstream tasks.

2 Related Work

We survey the literature relevant to this work in the categories of few-shot learning, PLM prompting,
and textual backdoor attacks and defenses.

Few-shot learning [30] enables pre-trained models to generalize to new tasks using only a few
(labeled) samples. In the NLP domain, typical few-shot learning methods include meta-learning [38],
intermediate training [36, 37], and semi-supervised learning [19, 31]. Recently, prompt-based
learning [22] receives increasing attention since the introduction of GPT-3 [1], which demonstrates
remarkable few-shot performance by using natural-language prompts and task demonstrations to
contextualize inputs [16, 9, 39, 13, 17].

PLM prompting treats downstream tasks as masked language modeling problems and leverages
prompts to guide PLMs to produce textual outputs [22]. With proper prompting, even moderate-
sized PLMs function as performant few-shot learners [9]. While manually designing prompts
requires domain expertise and is often sub-optimal [1, 22], recent work explores generating prompts
automatically [13, 17, 15, 42]. For instance, P-Tuning [16] and DART [39] define prompts as
pseudo-tokens and optimize prompts in the continuous space, achieving state-of-the-art performance.

Textual backdoor attacks extend the attacks proposed in the computer vision domain [11, 5, 21] to
NLP tasks. By polluting training data or modifying model parameters (e.g., embeddings), the attacks
inject misclassification rules into language models, which are activated at inference by poisoned
samples containing “triggers” such as rare words [12, 33, 40, 41, 35], natural sentences [6, 4], and
specific patterns [24, 20]).

Textual backdoor defenses aim to defend LMs against backdoor attacks. For instance, based on
the observation that trigger words tend to dominate poisoned samples, STRIP [10] detects poisoned
samples at run-time as ones with stable predictions under perturbation. As trigger words often
increase the perplexity of poisoned samples, ONION [23] identifies poisoned samples by inspecting
the perplexity changes of given samples under word deletion. RAP [34] leverages the difference
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Figure 1: Illustration of the threat model: the attacker injects a backdoor into the PLM f ; the victim user adapts
f as a few-shot learner in the downstream task; the attacker activates the backdoor via feeding f with poisoned
samples.

between the robustness of clean and poisoned samples to crafted perturbation and injects extra triggers
into given samples to detect poisoned samples.

However, most existing defenses are designed for the fine-tuning paradigm. How to mitigate the
threat of textual backdoor attacks for the prompt-based paradigm, especially under the few-shot
setting, remains an open challenge. This work represents a solid initial step to bridge this gap.

3 Background

We present the key concepts and assumptions used throughout the paper.

3.1 Few-shot Prompting

Let Xin = {x1, x2, . . . , xn} be an input sample, in which xi is the i-th token and n is the length of
Xin. In prompt-based learning, Xin is padded with a template T to form a prompt:

Xprompt = [cls]Xin [sep] T [sep] (1)

where T is a task-specific string template containing a masked token:

T = [T1:i] [mask] [Ti+1:m] (2)

The existing methods differ in the definition of the template T . In discrete prompts [22], [Ti] are
selected from the vocabulary V , while in continuous prompts [17], [Ti] are defined as pseudo tokens.

Given Xprompt, the PLM f (parameterized by θ) is guided to output the token distribution of the
masked token pθ([mask]|Xprompt). The probability that Xin belongs to a class y ∈ Y is predicted as:

pθ(y|Xprompt) =
∑
v∈Vy

pθ([mask] = v|Xprompt) (3)

where Vy is the set of label tokens related to y.

Under the few-shot setting, the user has access to a limited training set (e.g., K = 16 samples per
class) and searches for the template T that optimizes the accuracy of f in the downstream task (yet
without modifying θ).

3.2 Threat Model

As illustrated in Figure 1, we consider a malicious model provider as the attacker, who injects a
backdoor into the PLM f◦ and releases the backdoored model f . We focus on the targeted-attack
case in which the backdoor is defined as classifying samples with triggers (“poisoned samples”) to a
target class t desired by the attacker. The victim user downloads f and applies it as a prompt-based
few-shot learner in the downstream task. The attacker activates the backdoor at inference time by
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Figure 2: Overview of MDP: it detects a given sample Xtest
in as poisoned or clean by measuring the variation of

its representational change with respect to a set of distributional anchors A.

feeding f with poisoned samples. To simulate the worst-case scenario for the defenses, we assume
the attacker has access to the downstream dataset and injects the backdoor into the PLM using a
fine-tuning approach. Formally, the attack is formulated as the following optimization objective:

min
θ

E(x,y)∈Dc
ℓ(fθ(x), y) + λE(x̃,t)∈Dp

ℓ(fθ(x̃), t) (4)

where Dc and Dp respectively refer to the clean and poisoning data and ℓ is the loss function (e.g.,
cross-entropy). Intuitively, the first term ensures f functions normally on clean samples, the second
term ensures f classifies poisoned samples to the target class t, and λ is a hyper-parameter to balance
the two objectives.

Compared with prior work [10, 23, 34], we consider a more realistic and challenging setting: as the
defender, the victim user only has limited few-shot data and computational capacity. Further, the user
has no knowledge about the attacker’s training procedure, attack strategy, or trigger definition.

4 MDP

Next, we present MDP, a novel backdoor defense for PLMs as few-shot learners.

4.1 Overview of MDP

At a high level, MDP exploits the observation that compared with clean samples, poisoned samples
often show higher sensitivity to random masking (i.e., randomly selecting and substituting a token
with [mask]). Intuitively, by the design of backdoor attacks, the trigger dominates a poisoned sample
and forces it to be classified to the target class. Thus, if the trigger is (partially) masked, the language
modeling probability of a poisoned sample tends to vary greatly. In comparison, a clean sample is
often less sensitive to random masking. It is therefore feasible to distinguish clean and poisoned
samples by comparing their masking sensitivity.

A naïve approach to measure the masking sensitivity is to compare the model prediction (i.e., “positive”
and “negative”) of a given sample with and without masking, which however fails to capture the
complex variation of the language modeling probability (details in §5.4). Instead, MDP uses the
limited few-shot data as “distributional anchors” and measures the representational change of the
sample under varying masking, as illustrated in Figure 2. To further boost its distinguishing power,
MDP optimizes the prompt to improve the masking-invariance of clean samples. Below we detail the
design and implementation of MDP.

4.2 Modeling Masking Sensitivity

To quantify the representational change of a given sample under masking, we leverage the limited
few-shot data {(X (i)

in , y
(i))} as a set of “distributional anchors”. Specifically, for each X (i)

in , we
generate its prompt X (i)

prompt to query the PLM and obtain the distribution as in Eq. 3:

a(i) = pθ(v|X (i)
prompt) (v ∈ V) (5)

Note that rather than mapping it back to the label space Y , we cache the entire language modeling
distribution as the representation of X (i)

in and consider the data store A = {a(i)} as the anchor set.
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At run-time, for a given sample X test
in , we construct its prompt X test

prompt and query the model to obtain
its distribution ktest = pθ(v|X test

prompt). We measure the distance between X test
in and the anchors by

the Kullback–Leibler divergence between ktest and each a(i): DKL(k
test∥a(i)). We regard the vector

d(X test
in ) = [DKL(k

test∥a(i))] as the coordinates of X test
in with respect to the anchors.

Let X̂ test
in be the masked version of X test

in under random masking. Following the procedure above,
we compute the coordinates of X̂ test

in as d(X̂ test
in ). We measure the representational change due to

masking by the difference of d(X̂ test
in ) and d(X test

in ):

τ(X test
in ) = ∆(d(X̂ test

in ),d(X test
in )) (6)

Empirically, we find the Kendall rank coefficient as an effective similarity function ∆, which measures
the rank correlation between d(X test

in ) and d(X̂ test
in ) (i.e., the relative proximity between X test

in and
different anchors) and is insensitive to concrete KL-divergence measures.

We then measure the variation of τ(X test
in ) under varying masking to quantify the masking sensitivity

of X test
in and detect it as a poisoned sample if its variation is above a pre-defined threshold γ.

4.3 Amplifying Masking Invariance

Recall that MDP distinguishes clean and poisoned samples based on the gap between their sensitivity
to random masking. To further boost its distinguishing power, we (optionally) optimize the prompt to
improve the masking invariance of clean samples.

Specifically, given few-shot data {(Xin, y)}, let X̂in be the masked version of Xin and X̂prompt and
Xprompt be their prompts. We define the masking-invariant constraint as:

LMI = EXin,mask(·)ℓ(fθ(X̂prompt), fθ(Xprompt)) (7)

where the expectation is taken over the few-shot data Xin and random masking mask(·). Intuitively,
LMI encourages the model to generate similar distributions for a clean sample under varying masking.
Note that LMI is pluggable into any prompt-based learning methods including P-Tuning [16] and
DART [39] to complement other optimization objectives.

4.4 Theoretical Justification

Next, we provide theoretical justification for the effectiveness of MDP. To simplify the analysis, we
assume the following setting: given a binary classification task and a vocabulary of two tokens {+, -},
a sample Xin is classified as 1 if pθ(+|Xin) >

1
2 and 0 otherwise; a poisoned sample Xin (with target

class t = 1) comprises n tokens (including one trigger token); in its masked variant X̂in, one token is
randomly masked; a single anchor X∗

in is used as the reference, with p∗ ≜ pθ(+|X∗
in). Theorem 4.1

reveals that there exists a trade-off between attack effectiveness and detection evasiveness (proof
deferred to §A).

Theorem 4.1. Assume i) the attack is effective – if a non-trigger token is masked, pθ(+|X̂in) ≥ κ+ >
1
2 , and ii) a clean sample is masking-invariant – if the trigger token is masked, pθ(+|X̂in) ≤ κ− < 1

2 ,
and if the detection threshold γ is set on the variation of the representational change of Xin under
random masking, then to evade the detection, it satisfies:

|h(κ+)− h(κ−)| ≤ n√
n− 1

γ (8)

where h(·) is defined as the KL divergence function with respect to p∗:

h(p) ≜ p log
p

p∗
+ (1− p) log

1− p

1− p∗
(9)

Intuitively, for the attack to be effective, κ+ should be large; however, to evade the detection, κ+

is upper-bounded by Eq. 8. Thus, MDP creates an interesting dilemma for the attacker to choose
between attack effectiveness and detection evasiveness. Moreover, if the model is both accurate in
classifying clean samples (i.e., κ− is sufficiently small) and masking-invariant with respect to clean
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samples (i.e., γ can be set sufficiently small without incurring false positive cases), which makes the
following condition hold:

|h(κ−) + 1 +
1

2
log p∗(1− p∗)| > n√

n− 1
γ, (10)

it is then impossible to launch effective attacks without being detected because κ+ can not satisfy the
two objectives simultaneously (proof in §A).

5 Empirical Evaluation

5.1 Experimental Setting

Datasets. We conduct the evaluation across 5 sentence classification datasets (SST-2, MR, CR, SUBJ,
TREC) widely used to benchmark prompt-based few-shot learning methods [9, 16, 39]. We follow
the same setting of LM-BFF [9], which samples K = 16 samples per class to form the training and
validation sets respectively. The dataset statistics are summarized in Table 1.

Dataset # Classes Avg. Len Train Dev Test
SST-2 2 15.6 words 6.9k 0.9k 1.8k
MR 2 21.0 words 8.0k 0.7k 2.0k
CR 2 20.1 words 1.5k 0.3k 2.0k

SUBJ 2 24.1 words 7.0k 1.0k 2.0k
TREC 6 10.0 words 5.0k 0.5k 0.5k

Table 1. Statistics of the datasets used in the experiments.

Models. A victim model comprises a PLM and a prompt model. We use RoBERTa-large [18] as the
PLM, which is widely used in prompt-based learning [9, 27, 39, 42], and DART [39] as the prompt
model, which achieves state-of-the-art performance under the few-shot setting.

Attacks. We use 5 representative textual backdoor attacks to evaluate MDP and other defenses.

BadNets [11] is originally designed as a backdoor attack in the computer vision domain and extended
to NLP tasks by selecting rare words as triggers [12]. AddSent [6] is similar to BadNets but uses
neutral sentences as triggers to make poisoned samples stealthier. EP [33] perturbs the embeddings
of trigger words rather than modifying the PLM parameters. LWP [14] uses a layer-wise weight
poisoning strategy to only poison the first layers of PLMs with combinatorial triggers. SOS [35]
defines the triggers as the co-occurrence of multiple pre-defined words, which are further inserted
into natural sentences to make the attacks more evasive.

Baseline defenses. As MDP represents the first backdoor defense for the prompt-based paradigm,
we adapt 3 representative defenses designed for the fine-tuning paradigm as the baselines.

Based on the observation that the prediction of a poisoned sample is often dominated by the trigger,
STRIP [10] detects poisoned samples as ones with stable predictions under perturbation. ONION [23]
relies on the hypothesis that the trigger is out of the context of a poisoned sample, and detects poisoned
samples by inspecting the perplexity change under word deletion. RAP [34] leverages the gap between
the robustness of clean and poisoned samples to perturbation and injects crafted perturbation into
given samples to detect poisoned samples. The detailed description of the baselines is deferred to §B.

5.2 Implementation Details

To simulate a challenging scenario, we assume the attacker has access to the full training sets (cf.
Table 1) and injects backdoors into PLMs by fine-tuning the models. The attack setting (e.g., trigger
definitions) is summarized in §B. We apply MDP and baselines on the backdoored PLMs under the
few-shot, prompt-based learning paradigm; that is, the defender has only access to the few-shot data
(K = 16 samples per class). We apply a grid search over the hyperparameters to select the optimal
setting for each defense.

Following previous studies [10, 34], the attack performance is evaluated using the metrics of i) clean
accuracy (CA), defined as the victim model’s accuracy on clean samples, and ii) attack success rate
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(ASR), defined as its accuracy of classifying poisoned samples to the target label desired by the
attacker. Intuitively, CA and ASR respectively quantify the model’s performance on the original and
backdoor tasks. Meanwhile, the defense performance is evaluated by the metrics of i) false rejection
rate (FRR), defined as the percentage of clean samples that are mistakenly labeled as poisoned, ii)
false acceptance rate (FAR), defined as the percentage of poisoned samples that are mislabeled as
clean, and iii) the area under the ROC curve (AUC), an aggregate measure of performance across all
possible classification thresholds. All the measures are averaged across five sampled training sets as
in LM-BFF [9].

Dataset Attack CA (%) ASR (%) STRIP ONION RAP MDP

FRR FAR FRR FAR FRR FAR FRR FAR

SST-2

BadNets 95.06 94.38 7.56 87.44 2.78 9.28 3.11 64.28 5.33 1.77
AddSent 94.45 100.0 2.75 72.56 7.06 26.72 5.61 37.50 4.45 3.53

LWP 93.41 95.53 5.96 89.39 8.28 7.39 0.83 43.77 5.27 4.78
EP 93.63 95.95 1.72 72.06 5.28 12.89 2.72 58.11 5.05 0.73

SOS 91.65 92.41 2.98 87.56 4.06 32.56 1.89 51.28 0.00 0.00

MR

BadNets 89.80 98.30 11.70 72.30 4.80 15.60 2.75 25.35 5.10 5.60
AddSent 89.60 97.50 16.20 60.00 4.65 37.25 9.35 39.70 5.05 10.90

LWP 89.65 96.90 9.35 82.70 1.60 17.45 1.70 52.55 5.25 3.60
EP 89.40 96.60 2.20 88.90 15.35 12.60 6.45 70.60 4.70 3.00

SOS 89.85 97.30 5.20 75.90 0.90 64.10 15.20 58.85 4.85 3.40

CR

BadNets 89.95 92.30 2.85 98.70 5.20 7.45 1.35 43.60 4.95 5.10
AddSent 91.45 95.70 10.10 62.20 4.75 19.50 12.95 48.90 4.80 3.00

LWP 89.75 91.30 1.80 99.10 4.90 27.85 4.05 39.20 5.10 3.50
EP 89.35 67.55 2.20 87.20 10.15 4.40 7.65 45.20 5.35 9.40

SOS 91.45 100.0 2.20 78.20 0.75 37.55 3.40 55.30 0.20 0.00

SUBJ

BadNets 96.05 94.20 5.10 68.85 3.50 16.60 12.40 43.65 5.30 7.90
AddSent 95.90 97.00 2.50 85.50 4.30 34.20 7.30 68.20 4.85 9.00

LWP 96.15 99.10 4.55 98.70 4.65 7.40 1.00 18.60 5.40 10.90
EP 96.70 99.90 4.75 99.10 5.25 4.10 4.70 33.25 4.90 10.30

SOS 94.90 99.60 5.15 75.50 4.90 61.30 0.10 29.10 5.35 4.10

TREC

BadNets 93.00 95.30 4.30 73.76 5.40 54.53 5.55 50.61 4.80 2.49
AddSent 96.60 93.65 5.20 79.28 4.80 36.74 3.55 47.60 3.60 7.18

LWP 94.40 97.24 5.60 99.17 4.60 25.69 1.23 93.09 5.20 4.42
EP 95.80 97.51 4.60 63.81 5.20 11.22 10.43 42.68 4.80 5.25

SOS 91.80 99.45 5.20 68.78 4.40 80.61 14.83 63.71 4.60 4.97

Table 2. Defense performance of MDP and baseline methods on 5 datasets, with lower FAR/FRR indicating
better defense performance. The detection threshold is set based on the allowance of 5% FRR on the training set.

5.3 Main Results

We first evaluate the effectiveness of various backdoor attacks under prompt-based fine-tuning, with
results summarized in Table 2. Observe that across all the datasets, most attacks attain both CA and
ASR above 90%, indicating their effectiveness in the downstream and backdoor tasks.

We then compare the performance of MDP and baselines in defending against these attacks. For
each defense, we set the detection threshold (e.g., the variation threshold for MDP) based on the
allowance of 5% FRR on the training set, and report its FAR and FRR on the testing set. In the case
of ONION, following prior work [34], we evaluate different thresholds of perplexity change and
select the threshold that approximately achieves 5% FRR on the training set.

Table 2 summarizes the main results (additional results in §C). Observe that MDP attains the lowest
FARs against all the attacks across all the datasets and outperforms baselines by large margins. In
particular, it achieves near-perfect defenses against the SOS attack on the SST-2 and CR datasets.
The observation confirms the effectiveness of MDP in detecting poisoned samples, which is mainly
attributed to that i) the clean and poisoned samples show discernible sensitivity to random masking
and ii) MDP effectively utilizes the few-shot data as anchors to measure such sensitivity.

In comparison, the baseline defenses are less effective, with FARs over 90% in many cases. This
may be explained by the conflict between the limited few-shot data and the reliance of these defenses
on sufficient training data. Specifically, to measure the prediction stability of a given sample under
perturbation, STRIP randomly replaces a fraction of its words with ones from a training sample
that have the highest frequency-inverse document frequency (TF-IDF) scores. However, due to the
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Figure 3: Performance of MDP on SST-2 with different
FRR allowances on the training set; baseline defenses
all have FARs above 50% (not shown).

Dataset Attack

BadNets AddSent LWP EP SOS

SST-2 FRR 5.07 5.29 5.39 5.39 5.17
FAR 24.89 58.37 55.50 47.82 73.28

MR FRR 5.40 5.05 5.45 5.15 4.60
FAR 72.80 74.80 55.00 52.10 80.80

CR FRR 4.40 5.10 4.80 5.45 5.25
FAR 83.10 75.30 73.80 52.20 56.10

SUBJ FRR 5.40 4.25 4.60 4.75 5.35
FAR 9.80 67.40 14.90 15.70 37.90

TREC FRR 5.20 4.90 4.90 4.70 5.20
FAR 75.14 71.55 43.37 70.44 26.52

Table 3: Performance of MDP using prediction
variance as the masking-sensitivity measure.

limited number of training samples, both the substitution words and the estimated TF-IDF scores tend
to be highly biased, which negatively impacts the performance of STRIP. ONION removes outlier
words that cause sharp perplexity changes before inference, which is inherently ineffective against
complex triggers (e.g., natural sentences) [6]. Moreover, the threshold for detecting outlier words
can be significantly biased by the limited training samples under the few-shot setting. RAP trains
a word-based robustness-aware trigger such that inserting this trigger causes significant prediction
changes for clean samples but not for poisoned samples. However, under the few-shot setting, the
optimality of the RAP trigger is largely limited by the available few-shot data, which negatively
affects its detection effectiveness.

5.4 Additional Analysis

We conduct additional studies to understand the impact of key factors on the performance of MDP.
Due to space limitations, we mainly present the results on SST-2, with other results deferred to §C.

FRR allowance. We adjust the detection threshold corresponding to varying FRR allowance on
the training set. Figure 3 shows that MDP maintains its superior performance under different FRRs
(0.5%, 1%, and 3%). In comparison, the baselines all have FARs above 50% (not shown).

Sensitivity measures. Instead of using the few-shot data as distributional anchors to measure the
masking sensitivity of a given sample X test

in , here we use its prediction variance due to masking
as the sensitivity measure. Specifically, given the prediction of X test

in : y = argmaxy′ pθ(y
′|X test

in ),
we measure the confidence variance of the masked variant X̂ test

in with respect to y: σ(pθ(y|X̂ test
in )).

Intuitively, a poisoned sample tends to have a larger variance since masking the trigger may cause the
prediction to fluctuate significantly.

Following the same setting in §5.3, we set the threshold based on 5% FRR allowance on the training
set and evaluate MDP on the testing set. As shown in Table 3, using the alternative sensitivity measure
causes the performance of MDP to drop sharply (cf. Table 2). For instance, its FAR increases by over
50% against LWP. The results confirm our analysis that simple statistics such as prediction confidence
may fail to capture the complex variation of the language modeling probability due to masking.

Masking-invariance constraint. Recall that the masking-invariant constraint LMI is designed to
improve the masking invariance of clean samples. Here, we evaluate its impact on the overall
performance of MDP.

Specifically, we adjust the weight of LMI in the prompt optimization [39] from 0.25 to 4. For each
weight, we set the detection threshold based on 5% FRR allowance on the training set and report its
performance on the testing set. As shown in Figure 4, as the weight of LMI varies, the FARs of MDP
against most attacks first drop and then gradually increase. This observation may be explained as
follows. With an overly small weight, LMI has little effect on improving the masking invariance of
clean samples, while overly emphasizing LMI negatively impacts the classification accuracy, resulting
in higher FARs. It is thus crucial to properly calibrate the weight of LMI to optimize the performance
of MDP.

Few-shot data size. We further evaluate how the few-shot data size (i.e., shots) influences the
performance of MDP. Besides the default shots (K = 16 per class) used in the previous evaluation,
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we vary K from 4 to 64 to build the anchor set and evaluate MDP, in which the FRR allowance on
the training set is fixed as 5%.

Figure 5 reports the performance of MDP under varying shots K. Observe that its FARs steadily
improve as K increases. Intuitively, with a larger anchor set, MDP quantifies the representational
variation of given samples due to random masking more precisely, leading to more accurate detection.
Also, notice that K = 16 is often sufficient for MDP to obtain satisfactory performance.

Dataset Attack

BadNets AddSent LWP EP SOS

SST-2 FRR 5.27 4.39 5.15 5.11 0.00
FAR 5.09 19.02 18.40 10.08 0.00

MR FRR 5.45 4.85 5.05 5.15 5.45
FAR 22.60 32.80 24.20 14.50 27.80

CR FRR 3.80 5.30 5.45 5.15 4.45
FAR 14.40 33.50 20.10 24.40 11.00

SUBJ FRR 5.40 4.75 5.20 5.00 5.25
FAR 11.70 31.10 12.00 32.40 25.10

TREC FRR 5.00 4.10 4.50 5.30 4.50
FAR 16.02 37.85 32.60 23.48 26.80

Table 4. Performance of MDP on discrete prompt-based
models (with 5% FRR allowance on the training set).

Prompt types. Finally, we evaluate the impact
of prompt types on MDP. Recall that in discrete
prompts [22], the tokens in the prompt template
are selected from the vocabulary, while in con-
tinuous prompts [17], the tokens are pseudo-
tokens and optimized in a continuous space. Ta-
ble 4 evaluates MDP on discrete prompt-based
models. Compared with continuous prompts
(cf. Table 2), MDP is less effective under dis-
crete prompts. For example, its FAR against
BadNets on MR increases by 17%. This may
be explained by that continuous prompts entail
larger spaces to better optimize the masking
invariance constraint. The evaluation suggests
that using differentiable, continuous prompts
benefits MDP in defending against backdoor attacks.

6 Limitations

Other PLMs and NLP tasks. In evaluation, we assume RoBERTa-large [18] as the victim PLM
and sentence classification as the default task. Other PLMs (e.g., GPT-3 [1] and T5 [26]) and NLP
tasks (e.g., paraphrases and sentence similarity [9]) may also suffer similar vulnerability. In our
future work, we aim to study the backdoor vulnerability of other PLMs and NLP tasks under the
prompt-based, few-shot setting and extend MDP to these application scenarios.

Fewer-shot data. While we evaluate MDP under limited few-shot data (e.g., K as low as 4), in
practice, the available data could be even scarcer (e.g., one- or zero-shot [28, 29]). Given the need
of adapting PLMs on fewer-shot data, we aim to improve MDP to address the data-insufficiency
limitation towards practical deployment.

Alternative threat models. We assume that the attacker injects the backdoor into the PLM and the
victim user adapts the backdoored model under a prompt-based, few-shot setting. Several concurrent
studies propose attacks for prompt-based learning but under different threat models. For instance,
BadPrompt [2] injects the backdoor into the prompt and releases the end-to-end model to the victim
user, assuming that the user directly uses the model without further tuning. BToP [32] assumes that
the attacker knows exactly the discrete prompt template used by the user. We consider extending
MDP to such threat models as our ongoing work.
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Figure 4: Performance of MDP on SST-2 under vary-
ing weight of the masking-invariance constraint LMI.
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7 Conclusion

This paper presents a first-of-its-kind defense for pre-trained language models as few-shot learners
against textual backdoor attacks. At a high level, we exploit the gap between the sensitivity of clean
and poisoned samples to random masking and effectively utilize the few-shot learning data to measure
such sensitivity. The evaluation on benchmark datasets shows that our method outperforms baselines
in defending against representative attacks, with little impact on the performance of victim models.
Our findings shed light on how to enhance the security of pre-trained language models, especially in
the prompt-based learning paradigm.
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A Proofs

Proof. (Theorem 4.1) Given a single anchor X∗
in, let k, k̂, and a be the prediction distributions of

Xin, X̂in, and X∗
in respectively. We define the representational change of Xin due to masking as:

τ(Xin) ≜ DKL(k̂∥a)−DKL(k∥a) (11)

As Xin comprises n tokens, there are n variants of X̂in, one with the trigger token masked and the
rest with a non-trigger token masked. Let X̂ (0)

in and X̂ (i)
in (1 ≤ i ≤ n− 1) denote the two parts.

Let p∗ ≜ pθ(+|X∗
in). As X∗

in is a clean sample, p∗ < κ− (negative) or p∗ > κ+ (positive). Thus, for
p ∈ [κ−, κ+], the KL divergence function

h(p) ≜ p log
p

p∗
+ (1− p) log

1− p

1− p∗
(12)

increases (or decreases) monotonically with p. According to the assumption, pθ(+|X̂ (0)
in ) ≤ κ− and

pθ(+|X̂ (i)
in ) ≥ κ+ (1 ≤ i ≤ n− 1). To minimize the variation of the representational change of X̂in,

pθ(+|X̂ (i)
in ) (0 ≤ i ≤ n − 1) should be close to each other. It thus follows that pθ(+|X̂ (0)

in ) = κ−

and pθ(+|X̂ (i)
in ) = κ+ (1 ≤ i ≤ n − 1). It can be derived that the minimum variation of the

representational change of Xin is given by:

σ(τ(Xin)) ≥
√
n− 1

n
|h(κ+)− h(κ−)| (13)

To evade the detection, σ(τ(Xin)) ≤ γ, which completes the proof.
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Proof. (Corollary) Recall that the function h(p) monotonically increases (or decreases) with p ∈
[κ−, κ+]. Thus, for given κ−, it follows:

|h(κ−)− h(κ+)|

>|h(κ−)− h(
1

2
)|

=|h(κ−) + 1 +
1

2
log p∗(1− p∗)|

(14)

Thus, if |h(κ−) + 1 + 1
2 log p

∗(1− p∗)| > n√
n−1

γ, there is no κ+ > 1
2 that satisfies Eq. 13.

B Implementation Details

The default parameter setting in the evaluation is summarized in Table 5. The setting of baseline
defenses mainly follows prior work [34]. For STRIP, we set the number of copies and replacement
rate as 5 and 0.25, while the other parameters are set according to the best detection performance.
For ONION, we test different thresholds on the perplexity change and choose the thresholds that
approximately achieve 5% FRR on the training set. Then we remove outlier words with perplexity
changes above the thresholds at inference time. For RAP, we bound the change of output probability
as [−0.3,−0.1]. When training the word embedding of the RAP trigger, we set the learning rate as
1.0e-2. The RAP trigger is inserted at the first position of each sample to avoid being truncated.

C Additional Results

The AUC scores of MDP and baseline methods are summarized in Table 6. The performance of MDP
with respect to different FRR allowances on the training set, varying weights of LMI, and varying
sizes of few-shot data is shown in Figure 6 to Figure 17.
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Figure 6: Performance of MDP on MR with different
FRR allowances on the training set.
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Figure 7: Performance of MDP on CR with different
FRR allowances on the training set.
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Computational Resources

# Model parameters 355 million

Computational budget 30 min (training & attack)
60 min (testing & detection)

Models and Training

PLM RoBERTa-large
Prompt model DART

Max sequence length 128
Embedding dimension 1,024

Batch size 8 (train), 32 (test)
Learning rate 2.0e-5

Optimizer Adam
Prompt-tuning epochs 20

Shots K 16 per class

Attacks

Attack training epochs 10
Poisoning rate 10%

Target class 0
BadNets trigger {“cf”, “mn”, “bb”, “tq”}
AddSent trigger “I watch this 3D movie”

LWP trigger {“cf”, “bb”, “ak”, “mn”}
EP trigger {“cf”}

SOS-train trigger {“friends”, “weekend”, “store”}
SOS-test trigger “I have bought it from a store

with my friends last weekend”
# Triggers 1 per sample

MDP

Masking rate 0.2
# Trials 50

Weight of LLM 1.0

Baseline Defenses

STRIP - # Copies 5
STRIP - Replacement rate 0.25

RAP - Trigger “mb”
RAP - Training LR 1.0e-2

RAP - Prob. change bound [-0.3, -0.1]
Table 5. Implementation and evaluation details of models, attacks, and defenses.
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Figure 8: Performance of MDP on SUBJ with differ-
ent FRR allowances on the training set.
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Figure 9: Performance of MDP on TREC with differ-
ent FRR allowances on the training set.
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Dataset Attack STRIP ONION RAP MDP

SST-2

BadNets 0.66 0.64 0.53 0.99
AddSent 0.51 0.54 0.52 0.99

LWP 0.60 0.72 0.83 0.98
EP 0.84 0.67 0.56 1.00

SOS 0.82 0.61 0.51 1.00

MR

BadNets 0.57 0.63 0.60 0.98
AddSent 0.56 0.58 0.60 0.96

LWP 0.60 0.72 0.51 0.98
EP 0.53 0.66 0.54 0.99

SOS 0.76 0.52 0.52 0.97

CR

BadNets 0.83 0.68 0.59 0.99
AddSent 0.76 0.52 0.52 0.99

LWP 0.71 0.67 0.62 0.97
EP 0.88 0.63 0.58 0.96

SOS 0.71 0.55 0.53 1.00

SUBJ

BadNets 0.57 0.69 0.62 0.95
AddSent 0.64 0.60 0.56 0.99

LWP 0.68 0.73 0.58 0.96
EP 0.64 0.65 0.51 0.96

SOS 0.87 0.56 0.56 0.97

TREC

BadNets 0.62 0.64 0.56 0.99
AddSent 0.60 0.62 0.58 0.97

LWP 0.58 0.73 0.66 0.99
EP 0.82 0.72 0.65 0.98

SOS 0.75 0.73 0.56 0.98
Table 6. Performance (AUC) of MDP and baseline defenses.
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Figure 10: Performance of MDP on MR under the
varying weight of the masking-invariance constraint
LMI.
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Figure 11: Performance of MDP on CR under the
varying weight of the masking-invariance constraint
LMI.
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Figure 12: Performance of MDP on SUBJ under the
varying weight of the masking-invariance constraint
LMI.
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Figure 13: Performance of MDP on TREC under the
varying weight of the masking-invariance constraint
LMI.

15



0%

10%

20%

30%

FA
R

4 8 16 32 64
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 14: Performance of MDP on MR with varying
size of few-shot data (K samples per class).
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Figure 15: Performance of MDP on CR with varying
size of few-shot data (K samples per class).
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Figure 16: Performance of MDP on SUBJ with vary-
ing size of few-shot data (K samples per class).
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Figure 17: Performance of MDP on TREC with vary-
ing size of few-shot data (K samples per class).
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