arXiv:2309.13793v1 [cs.LG] 25 Sep 2023

ReMasker: Imputing Tabular Data with Masked
Autoencoding

Tianyu Du! Luca Melis> Ting Wang?
1Zhejiang University 2Meta >Stony Brook University

Abstract

We present REMASKER, a new method of imputing missing values in tabular
data by extending the masked autoencoding framework. Compared with prior
work, REMASKER is both simple — besides the missing values (i.e., naturally
masked), we randomly “re-mask” another set of values, optimize the autoencoder
by reconstructing this re-masked set, and apply the trained model to predict the
missing values; and effective — with extensive evaluation on benchmark datasets,
we show that REMASKER performs on par with or outperforms state-of-the-art
methods in terms of both imputation fidelity and utility under various missingness
settings, while its performance advantage often increases with the ratio of missing
data. We further explore theoretical justification for its effectiveness, showing that
REMASKER tends to learn missingness-invariant representations of tabular data.
Our findings indicate that masked modeling represents a promising direction for
further research on tabular data imputation. The code is publicly available.'

1 Introduction

Missing values are ubiquitous in real-world tabular data due to various reasons during data collection,
processing, storage, or transmission. It is often desirable to know the most likely values of missing
data before performing downstream tasks (e.g., classification or synthesis). To this end, intensive
research has been dedicated to developing imputation methods (“imputers”) that estimate missing
values based on observed data [29, 13, 17, 25, 19]. Yet, imputing missing values in tabular data with
high fidelity and utility remains an open problem, due to challenges including the intricate correlation
across different features, the variety of missingness scenarios, and the scarce amount of available
data with respect to the number of missing values.

The state-of-the-art imputers can be categorized as either discriminative or generative. The discrimi-
native imputers, such as MissForest [25], MICE [26], and MIRACLE [17], impute missing values by
modeling their conditional distributions on the basis of other values. In practice, these methods are
often hindered by the requirement of specifying the proper functional forms of conditional distribu-
tions and adding the set of appropriate regularizers. The generative imputers, such as GAIN [29],
MIWAE [19], GAMIN [30], and HI-VAE [21], estimate the joint distributions of all the features by
leveraging the capacity of deep generative models and impute missing values by querying the trained
models. Empirically, GAN-based methods often require a large amount of training data and suffer the
difficulties of adversarial training [6], while VAE-based methods often face the limitations of training
through variational bounds [32]. Further, some of these methods either require complete data during
training or operate on the assumptions of specific missingness patterns.

In this paper, we present REMASKER, a novel method that extends the masked autoencoding (MAE)
framework [2, 10] to imputing missing values of tabular data. The idea of REMASKER is simple:
Besides the missing values in the given dataset (i.e., naturally masked), we randomly select and
“re-mask’ another set of values, optimize the autoencoder with the objective of reconstructing this re-
masked set, and then apply the trained autoencoder to predict the missing values. Compared with the

'ReMasker: https://github.com/tydusky/remasker
Preprint. Under review.

https://github.com/tydusky/remasker

prior work, REMASKER enjoys the following desiderata: (i) it is instantiated with Transformer [27]
as its backbone, of which the self-attention mechanism is able to capture the intricate inter-feature
correlation [11]; (i) without specific assumptions about the missingness mechanisms, it is applicable
to various scenarios even if complete data is unavailable; and (iii) as the re-masking approach naturally
accounts for missing values and encourages learning high-level representations beyond low-level
statistics, REMASKER works effectively even under a high ratio of missing data (e.g., 0.7).

With extensive evaluation on 12 benchmark datasets under various missingness scenarios, we show
that REM ASKER performs on par with or outperforms 13 popular methods in terms of both imputation
fidelity and utility, while its performance advantage often increases with the ratio of missing data. We
further explore the theoretical explanation for its effectiveness. We find that REMASKER encourages
learning missingness-invariant representations of tabular data, which are insensitive to missing values.
Our findings indicate that, besides its success in the language and vision domains, masked modeling
also represents a promising direction for future research on tabular data imputation.

2 Related Work

Tabular data imputation. The existing imputation methods can be roughly categorized as either
discriminative or generative. The discriminative methods [25, 26, 17] often specify a univariable
model for each feature conditional on all others and perform cyclic regression over each target variable
until convergence. Recent work has also explored adaptively selecting and configuring multiple
discriminative imputers [13]. The generative methods either implicitly train imputers as generators
within the GAN framework [29, 30] or explicitly train deep latent-variable models to approximate
the joint distributions of all features [19, 21]. There are also imputers based on representative-value
(e.g., mean) substitution [9], EM optimization [5], matrix completion [8], or optimal transport [20].

Transformer. Transformer has emerged as a dominating design [27] in the language domain, in
which multi-head self-attention and MLP layers are stacked to capture both short- and long-term
correlations between words. Recent work has explored the use of Transformer in the vision domain
by treating each image as a grid of visual words [3]. For instance, it has been integrated into image
generation models [14, 31, 12], achieving performance comparable to CNN-based models.

Masked autoencoding. Autoencoding is a classical method for learning representation in a self-
supervised manner [28, 22]: an encoder maps an input to its representation and a decoder reconstructs
the original input. Meanwhile, masked modeling is originally proposed as a pre-training method in
the language domain: by holding out a proportion of a word sequence, it trains the model to predict
the masked words [2, 24]. Recent work has combined autoencoding and masked modeling in vision
tasks [3, 1]. Particularly, the seminal MAE [10] represents the state of the art in self-supervised
pre-training on the ImageNet-1K benchmark.

The work is also related to that models missing data by adapting existing model architectures [23].
To our best knowledge, this represents the first work to explore the masked autoencoding method
with Transformer in the task of tabular data imputation.

3 REMASKER

Next, we present REMASKER, an extremely simple yet effective method for imputing missing values
of tabular data. We begin by formalizing the imputation problem.

3.1 Problem Formalization

Incomplete data. To model tabular data with d features, we consider a d-dimensional random variable

X 2 (X1,...,%Xq) € &) X ... x Xy, where A; is either continuous or categorical fori € {1,...,d}.
The observational access to x is mediated by an mask variable m £ (my, ..., mg) € {0, 1}%, which
indicates the missing values of x, such that x; is accessible only if m; = 1. In other words, we
observe X in its incomplete form X £ (X1, ...,Xy) with

8 A{xi iftmi =L ey M

X; = .
v * ifm; =0

where * denotes the unobserved value.

Fitting Imputation
Padded Embedding |, PaddEd[Emﬁ’edd'“g Pouted
u i m mpute:
Input [m] Value Input Emb;ddmg = Value
i 2j
[*] Embedding Ez [*] LZZ [7
T2 :Zz - T2 En | Zoh
23 Encoder LZ%‘ Decoder T3 Encoder gl k== Decoder
" - - " - o o
23 = 24 24,
iy b, [m] & Ze Ea_, Ra A
D [*] T m) S8R
T ol | x ol b |
6 28 6 25
B o 7 T B o
] [m] T | &} |
8 8 B [
25l ol |
ol e
[*] Missing Value Masked Value [m] Mask Token

Figure 1: Overall framework of REMASKER. During the fitting stage, for each input, in addition to its missing
values, another subset of values (re-masked values) is randomly selected and masked out. The encoder is applied
to the remaining values to generate its embedding, which is padded with mask tokens and processed by the
decoder to re-construct the re-masked values. During the imputation stage, the optimized model is applied to
predict the missing values.

Missingness mechanisms. Missing values occur due to various reasons. To simulate different
scenarios, following the prior work [29, 13], we consider three missingness mechanisms: MCAR
(“missing completely at random”) — the missingness does not depend on the data, which indicates
that Vm, x, X', p(m|x) = p(m|x’); MAR (“missing at random”) — the missingness depends on the
observed values, which indicates that Vm, x, x’, if the observed values of x and x’ are the same, then
p(m|x) = p(m|x’); and MNAR (“missing not at random”) — the missingness depends on the missing
values as well, which is the case if the definitions of MCAR and MAR do not hold. In general, it is
impossible to identify the missingness distribution of MNAR without domain-specific assumptions
or constraints [18].

Imputation task. In this task, we are given an incomplete dataset D = {(x(*), m(®")}7_, 2 which
consists of 7 i.i.d. realizations of X and m. The goal is to recover the missing values of each input x

by generating an imputed version X = (X1,...,%y) such that
N x; ifm;=1 .
’”é{xi itm,—0 @€l d}) @

where X; is the imputed value. Note that the imputation task here does not concern with optimizing
data for concrete downstream tasks (e.g., training regression or generative models); such settings
motivate concerns fundamentally entangled with each downstream task and often require optimizing
the end objectives. Here, we focus solely on the imputation task itself.

3.2 Design of REMASKER

The REMASKER imputer extends the MAE framework [3, 1, 10] that reconstructs masked components
based on observed components. As illustrated in Figure 1, REMASKER comprises an encoder that
maps the observed values to their representations and a decoder that reconstructs the masked values
from the latent representations. However, unlike conventional MAE, as the data in the imputation
task is inherently incomplete (i.e., naturally masked), we employ a “re-masking” approach that
explicitly accounts for this incompleteness in applying masking and reconstruction. At a high level,
REMASKER works in two phases: fitting — it optimizes the model with respect to the given dataset,
and imputation — it applies the trained model to predict the missing values of the dataset.

Re-masking. In the fitting phase, for each input X, in addition to its missing values, we also randomly
select and mask out another subset (e.g., 25%) of x’s values. Formally, letting m be X’s mask, we
define another mask vector m’ € {0, 1}%, which is randomly sampled without replacement, following
a uniform distribution. Apparently, m and m’ entail three subsets:

Imask - {Zlmz = 0}7 Iremask - {Z|mz =1A m; = 0}7 Iunmask = {Z|mz =1A m; = 1} (3)

Let X, X, x> aNd X am’ Tespectively be the masked, re-masked, and unmasked values. With a
sufficient number of re-masked values, in addition to the missing values, we create a challenging task

2Without ambiguity, we omit the superscript i in the following notations.

Algorithm 1 REMASKER

Input: D = {(x%, m®)}™_|: incomplete dataset; remask: re-masking function; fs, dy: encoder
and decoder; max_epoch: training epochs; ¢: reconstruction loss

Output: D = {(x(V}7,: imputed dataset

1: while max_epoch is not reached do > // fitting phase
2 for (x,m) € D do

3 Xy Am7 XmAm/ — remask(x, m); > // remasking
4 z < fo(Xmrm’); > // encoding unmasked values
5: pad z with mask tokens;

6 end for

7 update 6, ¥ by VU(dy({z}), {X 7 })s > // minimizing reconstruction loss
8: end while

9: for (X,m) € D do > // imputation phase
10: 2z fo(Xm); > // encoding observed values
11: pad z with mask tokens
12: Xm — dy(z); > // predicting missing values
13: X — X U XS
14: end for

15: return D = {x}.

that encourages the model to learn missingness-invariant representations (more details in § 5). Note
that in the imputation phase, we do not apply re-masking.

Encoder. The encoder embeds each value using an encoding function and processes the resulting
embeddings through a sequence of Transformer blocks. In implementation, we apply linear encoding
function to each value z: enc(x) = wx + b, where w and b are learnable parameters.> We also add
positional encoding to 2’s embedding to force the model to memorize x’s position in the input (e.g.,
the k-th feature): pe(k,2i) = sin(k/10000%/¢), where k and i respectively denote x’s position in
the input and the dimension of the embedding, and d is the embedding width. Note that the encoder
is only applied to the observed values: in the fitting phase, it operates on the observed values after
re-masking (i.e., the unmasked set Z,;,mask); in the imputation phase, it operates on the non-missing
values (i.e., the union of re-masked and unmasked sets Znmask U Zremask)s s illustrated in Figure 1.

Decoder. The REMASKER decoder is instantiated as a sequence of Transformer blocks followed by
an MLP layer. Different from the encoder, the decoder operates on the embeddings of both observed
and masked values. Following [2, 10], we use a shared, learnable mask token as the initial embedding
of each masked value. The decoder first adds positional encoding to the embeddings of all the values
(observed and masked), processes the embeddings through a sequence of Transformer blocks, and
finally applies linear projection to map the embeddings to scalar values as the predictions. Similar
to [10], we use an asymmetric design with a deep encoder and a shallow decoder (e.g., 8 versus
4 blocks), which often suffices to re-construct the masked values. Conventional MAE focuses on
representation learning and uses the decoder only in the training phase. In REMASKER, the decoder
is required to re-construct the missing values and is thus used in both fitting and imputation phases.

Reconstruction loss. Recall that the REMASKER decoder predicts the value for each input feature.
We define the reconstruction loss functions as the mean square error (MSE) between the reconstructed
and original values on (i) the re-masked set Z;oinaskx and (if) unmasked set 7y mask. We empirically
experiment with different reconstruction loss functions (e.g., only the re-masked set or both re-masked
and unmasked sets).

Putting everything together, Algorithm 1 sketches the implementation of REM ASKER.

4 Evaluation

We evaluate the empirical performance of REMASKER in various scenarios using benchmark datasets.
Our experiments are designed to answer the following key questions: (i) Does REMASKER work? —
We compare REMASKER with a variety of state-of-the-art imputers in terms of imputation quality.
(i) How does it work? — We conduct an ablation study to assess the contribution of each component

3We have explored other encoding functions including periodic activation function [7], which observes a
slight decrease (e.g., ~ 0.01 RMSE) in imputation performance.

of REMASKER to its performance. (iii) What is the best way of using REMASKER? — We explore
the use of REMASKER as a standalone imputer as well as one component of an ensemble imputer to
understand its best practice.

Datasets. For reproducibility and comparability, similar to the prior work [29, 13], we use 12
real-world datasets from the UCI Machine Learning repository [4] with their characteristics deferred
to Appendix § A.1.

Missing mechanisms. We consider three missingness mechanisms. In MCAR, the mask vector of
each input is realized following a Bernoulli random variable with a fixed mean. In MAR, with a
random subset of features fixed to be observable, the remaining features are masked using a logistic
model. In MNAR, the input features of MAR are further masked following a Bernoulli random
variable with a fixed mean. We use the HyperImpute [13] to simulate the above missing mechanisms.

Baselines. We compare REMASKER with 13 state-of-the-art imputation methods: Hyperlmpute [13],
a hybrid imputer that performs iterative imputation with automatic model selection; MIWAE [19],
an autoencoder model that fits missing data by optimizing a variational bound; EM [5], an iterative
imputer based on expectation-maximization optimization; GAIN [29], a generative adversarial
imputation network that trains the discriminator to classify the generator’s output in an element-
wise manner; ICE, an iterative imputer based on regularized linear regression; MICE, an ICE-like,
iterative imputer based on Bayesian ridge regression; MIRACLE [17], an iterative imputer that refines
the imputation of a baseline by simultaneously modeling the missingness generating mechanism;
MissForest [25], an iterative imputer based on random forests; Mean [9], Median, and Frequent,
which impute missing values using column-wise unconditional mean, median, and the most frequent
values, respectively; Sinkhorn [20], an imputer trained through the optimal transport metrics of
Sinkhorn divergences; and SoftImpute [8], which performs imputation through soft-thresholded
singular value decomposition.

Metrics. For each imputation method, we evaluate the imputation fidelity and utility by comparing
its imputed data with the ground-truth data. In terms of fidelity, we mainly use two metrics: root
mean square error (RMSE) to measure how the individual imputed values match the ground-truth
data, and the Wasserstein distance (WD) to measure how the imputed distribution matches the
ground-truth distribution. In terms of utility, we use area under the receiver operating characteristic
curve (AUROC) as the metric on applicable datasets (i.e., ones associated with classification tasks).
In the case of multi-class classification, we use the one versus rest (OvR) setting. To be fair, we use
logistic regression as the predictive model across all the cases.

== ReMasker mm Hyperimpute GAIN w |CE MICE = MissForest — mmm Sinkhorn
= MIWAE = MIRACLE == EM Mean == Median == Frequent == Softimpute

0.6
5 04 . - .

02 ..|.|| ||||| | | .‘|.|||||| | | | .| .. | |‘ ||||||| |.|| I |I|

. | i | II I
o
o0 I|||| || llIIIIlI” ||||| | ||||| |I||l|||||| Il“ [T | ey 11
bike california climate compression credit diabetes letter obesity raisin spam wine yacht

0.6

0.4
o
=

0_O-I“IIII I.nl'nll II I“lllll ““'I" ||l|||l| .-l'l'llll'lll"'“lll'lIll I PO T ...ullll'lllll“l'l I

bike california climate ~ compression credit diabetes letter obesity raisin spam wine yacht
1
oty Fobh fd — Ideal AUROC

19}
3 0.9
&
2 N R

) Il |II| || |II|

bike climate credit letter obesity raisin spam wine
Benchmark Dataset
Figure 2: Overall performance of REMASKER and baseline imputers on 12 benchmark datasets under MAR with
0.3 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD, and AUROC
scores (AUROC is only applicable to datasets with classification tasks). Note that REMASKER outperforms all
the baseline imputers under at least one metric across all the datasets.

—— ReMasker ~ —+ Hyperimpute ICE —+— MissForest Sinkhorn MIWAE GAIN

0.2 03 0.2
B 015 015 o
> I 0.2 |
SN0 e — 0.1
T d —
0.05 1 oa | 0.05
1000 7000 13000 20000 2 4 6 8 10 12 14 16 0.1 0.3 0.5 0.7
0.15
0.125 0.3
0.1
0.1 0.2
20.075 | T | /]_\A
005 i 1 I
[— | 0.05 { 0.1
0.025 ' —_ [|
0.0 0.0 ~
1000 7000 13000 20000 2 4 6 8 10 12 14 16 0.1 0.3 0.5 0.7

0.78 —————
0.77
05 | 0.76
1000 7000 13000 20000 2 4 6 8 10 12 14 16 0.1 0.3 0.5 0.7
(a) Dataset Size (b) Number of Features (c) Missingness Ratio

Figure 3: Sensitivity analysis of REMASKER on the letter dataset under the MAR setting. The scores are
measured with respect to (a) the dataset size, (b) the number of features, and (c) the missingness ratio. The
default setting is as follows: dataset size = 20,000, number of features = 16, and missingness ratio = 0.3.

4.1 Overall Performance

We evaluate REMASKER and baseline imputers on the benchmark datasets under the MAR setting
with 0.3 missingness ratio, with results summarized in Figure 2. Observe that REMASKER consis-
tently outperforms all the baselines in terms of both fidelity (measured by RMSE and WD) and utility
(measured by AUROC) across all the datasets. Recall that the benchmark datasets are collected from
a variety of domains with highly varying characteristics (cf. Table 6): the dataset size varies from 308
to 20,060, while the number of features ranges from 7 to 57. Its superior performance across all the
datasets demonstrates that REMASKER effectively models the intricate correlation among different
features, even if the amount of available data is scarce. The only imputer with performance close to
REMASKER is HyperImpute [13], which is an ensemble method that integrates multiple imputation
models and automatically selects the most fitting model for each column of the given dataset. This
highlights that the modeling capacity of REMASKER’s masked autoencoder is comparable with
ensemble models. In Appendix § B.1, we conduct a more comprehensive evaluation by simulating
all three missingness scenarios (MCAR, MAR, and MNAR) with different missingness ratios. The
results show that REMASKER consistently performs better across a range of settings.

Why does REMASKER generalize across the settings of MAR, MCAR, and MNAR? One possible
explanation is as follows. Recall that in MCAR, the mask vector of each input is realized following a
Bernoulli random variable with a fixed mean; in MAR, with a random subset of features fixed to be
observable, the remaining features are masked using a logistic model; in MNAR, the input features of
MAR are further masked following a Bernoulli random variable with a fixed mean. Regardless of the
missingness mechanism, it is rare that the values of one feature x are missing across all the records.
Thus, by its design, REMASKER is able to learn to re-construct feature x; conditional on other
features x; = (X1,...,X;—1,Xi+1,---,Xq). Yet, as reflected in the imputation results, the learning to
re-construct performs better under MCAR, in which the missing values are evenly distributed across
different features, than MAR or MNAR, in which the missing values are not evenly distributed.

4.2 Sensitivity Analysis

To assess the factors influencing REMASKER’s performance, we conduct sensitivity analysis by
varying the dataset size, the number of features in the dataset, and the missingness ratio under the
MAR setting. Figure 3 shows the performance of REMASKER within these experiments against
the six closest competitors (HyperImpute, ICE, MissForest, GAIN, MIWAE, and Sinkhorn) on

the letter dataset. We have the following observations. (a) The performance of REMASKER
improves with the size of available data, while its advantage over other imputers (with the exception
of HyperImpute) grows with the dataset size. (b) The number of features has a significant impact
on the performance of REMASKER, with its advantage over other imputers increasing steadily with
the number of features. This may be explained by that REMASKER relies on learning the holistic
representations of inputs, while including more features contributes to better representation learning.
(c) REMASKER is fairly insensitive to the missingness ratio. For instance, even with (.7 missingness
ratio, it achieves RMSE below 0.1, suggesting that it effectively fits sparse datasets. In Appendix § B.2,
we also conduct an evaluation on other datasets with similar observations.

4.3 Ablation Study

We conduct an ablation study of REMASKER to understand the contribution of different components
to its performance using the letter dataset. Results on other datasets are deferred to Appendix § B.3.

depth [RMSE| WD | AUROC width | RMSE | WD [AUROC depth |[RMSE| WD | AUROC

2 10.0729]0.0263 | 0.7898 16 |0.0902 |0.0379 | 0.7902 2 10.0637]0.0239 | 0.7887

4 10.0636|0.0228 | 0.7903 32 10.0714 | 0.0289 | 0.7885 4 10.06250.0236 | 0.7877

6 10.06160.0219 | 0.7909 64 10.0616|0.0219 | 0.7909 6 10.0644|0.0239 | 0.7889

8 10.0611(0.0217 | 0.7892 128 |0.0795|0.0305 | 0.7845 8 10.0616|0.0219 | 0.7909

10 |0.0673]0.0245 | 0.7879 256 |0.1040|0.0403 | 0.7868 10 10.0637|0.0227 | 0.7878
(a) Decoder depth (b) Embedding width (c) Encoder depth

Table 1. Ablation study of REMASKER on the letter dataset. The default setting is as follows: encoder depth
= 8, decoder depth = 6, embedding width = 64, masking ratio = 50%, and training epochs = 600.

Model design. The encoder and decoder of REMASKER can be flexibly designed. Here, we study the
impact of three key parameters, the encoder depth (the number of Transformer blocks in the encoder),
the embedding width (the dimensionality of latent representations), and the decoder depth, with
results summarized in Table 1a, Table 1b, and Table 1c, respectively. Observe that the performance
of REMASKER reaches its peak with a proper model configuration (encoder depth = 8, decoder depth
= &, and embedding width = 64). This observation suggests that the model complexity needs to fit the
given dataset: it needs to be sufficiently complex to effectively learn the holistic representations of
inputs but not overly complex to overfit the dataset. We also compare the performance of REMASKER
with different backbone models (i.e., Transformer, linear, and convolutional) with the number of
layers and the size of each layer fixed as the default setting. As shown in Table 2, Transformer-based
REMASKER largely outperforms the other variants, which may be explained by that the self-attention
mechanism can effectively capture the intricate inter-feature correlation under limited data [11].

letter california letter california
backbone loss
RMSE WD AUROC | RMSE WD RMSE WD AUROC|RMSE WD
Transformer | 0.0611 0.0217 0.7892 | 0.0663 0.0172 Tmask+ U Zunmask |0.0616 0.0219 0.7909 |0.0663 0.0172
Linear 0.1732 0.1604 0.7821 | 0.1786 0.1329 Timask+ 0.0629 0.0237 0.7890 |0.0840 0.0311
Convolutional | 0.1694 0.1582 0.7836 | 0.1715 0.1286 Tonmask 0.2079 0.1129 0.7901 |0.1932 0.1906

Table 2. Performance of REMASKER with differ-
ent backbones. (note: AUROC is inapplicable to the
california dataset)

Table 3. Performance of REMASKER with reconstruc-
tion loss w/ or w/o unmasked values.

Reconstruction loss. We define the reconstruction loss as the error between the reconstructed and
original values on the re-masked values Z,,,,sx+ and the unmasked values Z,;;,masx- We measure the
performance of REMASKER under three different settings of the construction loss: (i) Zyask+ U
Tunmasks (i1) Imask+ only, and (iii) Zynmask only on the letter and california datasets, with
results shown in Table 3. Observe that using the reconstruction of unmasked values only is insufficient
and yet including the reconstruction loss of unmasked values improves the performance, which is
especially the case on the california dataset. This finding is different from the vision domain
in which computing the loss on unmasked image patches reduces accuracy [10]. We hypothesize
that this difference is explained as follows. Unlike conventional MAE, due to the naturally missing
values in tabular data, relying on re-masked values provides limited supervisory signals. Moreover,
while images are signals with heavy spatial redundancy (i.e., a missing patch can be recovered from
its neighboring patches), tabular data tends to be highly semantic and information-dense. Thus,
including the construction loss of unmasked values improves the model training.

4.4 Practice of REMASKER

Finally, we explore the optimal practice of REMASKER.

x102 x10? x107 x107
8.0 26 @ 8.0
RMSE WD AUROC 35
o PEE
® O 3.5
o— © I
7.0 \\ 2.4 79 o ././ %3'0 3.0
I 8 2.5
=25
.\ L S 2.0
o \ £2.0 15
6.0 ® 22 o—o¢—o /8 5 0510152025
o1.5
13
[~
1.0
5.0 2.0 7.7
100 200 400 800 1600 100 200 400 800 1600 100 200 400 800 1600 0 200 400 600
(a) Max Training Epochs (b) Training Epochs

Figure 4: (a) REMASKER performance with respect to the maximum number of training epochs; (b) Convergence
of REMASKER’s reconstruction loss. The experiments are performed on the letter dataset under MAR with
0.3 missingness ratio.

Training regime. The ablation study above by default uses 600 training epochs. Figure 4(a) shows
the impact of training epochs, in which we vary the training epochs from 100 to 1,600 and measure
the performance of REMASKER on the letter dataset. Observe that the imputation performance
improves (as RMSE and WD decrease and AUROC increases) steadily with longer training and
does not fully saturate even at 1,600 epochs. However, for efficient training, it is often acceptable
to terminate earlier (e.g., 600 epochs) with sufficient imputation performance. To further validate
the trainability of REMASKER, with the maximum number of training epochs fixed at 600 (which
affects the learning rate scheduler), we measure the reconstruction loss as a function of the training
epochs. As shown in Figure 4(b), the loss quickly converges to a plateau within about 100 epochs
and steadily decreases after that, demonstrating the trainability of REMASKER.

. . letter california . letter california
masking ratio base imputer
RMSE WD AUROC |RMSE WD RMSE WD AUROC|RMSE WD
0.1 0.0668 0.0215 0.0789 | 0.0888 0.0230 default |0.0564 0.0215 0.7899 |0.0722 0.0134
0.3 0.0562 0.0207 0.7897 | 0.0654 0.0151 REMASKER |0.0554 0.0212 0.7935 [0.0702 0.0115
0.5 0.0554 0.0212 0.7935 | 0.0663 0.0172 Table 5. REMASKER as the base imputer within Hy-
0.7 0.0906 0.0366 0.7878 | 0.1320 0.0650 perImpute. The results are evaluated on letter and

Table 4. Performance with respect to masking ratio. california under MAR with 0.3 missingness ratio.
The results are evaluated on letter and california

under MAR with 0.3 missingness ratio.

Masking ratio. The masking ratio controls the number of re-masked values (after excluding missing
values). Table 4 shows its impact on REMASKER. Observe that the optimal ratio differs across
different datasets, which may be explained by the varying number of features of different datasets
(16 versus 9 in letter and california). Intuitively, a larger number of features affords a higher
masking ratio to balance (i) encouraging the model to learn missingness-invariant representations and
(71) having sufficient supervisory signals to facilitate the training.

Standalone vs. ensemble. Besides using REMASKER as a standalone imputer, we explore its use as
a base imputer within the ensemble imputation framework of HyperImpute, with results summarized
in Table 5. It is observed that compared with the default setting (with mean substitution as the base
imputer), using REMASKER as the base imputer improves the imputation performance, suggesting
another effective way of operating REMASKER.

5 Discussion

Theoretical justification. The empirical evaluation above shows REMASKER’s superior perfor-
mance in imputing missing values of tabular data. Next, we provide theoretical justification for its
effectiveness. By extending the siamese form of MAE [15], we show that REMASKER encourages
learning missingness-invariant representations of input data, which requires a holistic understanding
of the data even in the presence of missing values.

Let fo(-) and dy(-) respectively be the encoder and decoder. For given input x, mask m, and re-mask
m’, the reconstruction loss of REMASKER training is given by (here we focus on the reconstruction

of re-masked values):

Z(x,m,m') = ||ds(fo(x®m © m')) ©01- m') Om-x0(1- m') ® mH2 “4)

where ® denotes element-wise multiplication. Let m* 2 m ®m’ and m~ 2 m ® (1 — m’). Eq(4)
can be simplified as: /(x, m*,m~) = ||dy(fo(x ®m*)) ®©m~ —x ©® m~||%. As the embedding
dimensionality is typically much larger than the number of features, it is possible to make the
autoencoder lossless. In other words, for a given encoder fy(-), there exists a decoder dy- (-), such
that dy/ (fo(x ®m™)) @ m~ ~ x ©® m~. We can further re-write Eq (4) as:

(o, m* m) =|do (folx ©m*)) ©m — do- (falx ©m) @ m |
st. 0" =argminEy||dg (fo(xX’ ©m™))om™ —x' om |? ©)
,19/

We define a new distance metric Ay g/ (z,2') = ||(dy(z) — dy(z')) © m~|2. Then, Eq(4) is
reformulated as:

L(x,m*, m™) =Ay 9+ (fo(x ©m"), fo(x ©m™))
st. 0" =argminEy||dg (fo(x ©m) om™ —x' om |? (6)
19/

Note that optimizing Eq (6) essentially minimizes the difference between x’s representations under
m™" and m~ (with respect to the decoder). As m™ and m~ mask out different values, this formulation
promotes learning representations insensitive to missing values.

To validate the analysis above, we empirically 0

measure the CKA similarity [16] between the o
latent representations (i.e., the output of RE- .
MASKER’s encoder) of complete inputs and in- :
Missingness Ratio

puts with missing values, with results shown in ingness
Figure 5. Observe that the CKA measures under 03
different missingness ratios all steadily increase 0r
with the training length, indicating that RE- 57
MASKER tends to learn missingness-invariant
representations of tabular data, which may ex-

plain for its imputation effectiveness.

CKA Similarity
g

200 400 600
Training Epochs

Figure 5: CKA similarity between the representations
of complete and incomplete inputs (with the number
of missing values controlled by the missingness ratio).
Limitations. As revealed in the above analy- Thq testefi model i.s tfained on]:etter under the MAR
sis, REMASKER encourages learning represen- Setting with 0.3 missingness ratio.

tations invariant to re-masked values. Therefore,

it tends to perform better if the re-masked values and the missing values follow similar distributions.
For example, in MCAR, both re-masked and missing values are evenly distributed across different
features. While in MAR, as the observable features are fixed, the re-masked values are more likely to
be selected from the observable features, which also biases the representation learning toward the
observable features. This bias is reflected in our experimental results, in which REMASKER tends to
perform better under MCAR. Another bias we observe is that in some cases (e.g., the climate dataset
in Figure 2), REMASKER outperforms alternative methods in terms of RMSE but underperforms
in terms of WD. One explanation is that REMASKER is trained to optimize the reconstruction loss
measured by MSE. Thus, it is biased towards re-constructing individual missing values rather than
the distributions of missing values.

6 Conclusion

In this paper, we conduct a pilot study exploring the masked autoencoding approach for tabular data
imputation. We present REMASKER, a novel imputation method that learns missingness-invariant
representations of tabular data and effectively imputes missing values under various scenarios. With
extensive evaluation on benchmark datasets, we show that REMASKER outperforms state-of-the-art
methods in terms of both imputation utility and fidelity. Our findings indicate that masked tabular
modeling represents a promising direction for future research on tabular data imputation.

References

[1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT Pre-Training of Image
Transformers. In Proceedings of International Conference on Learning Representations (ICLR),
2022.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of Annual
Conference of the North American Chapter of the Association for Computational Linguistics
(NACCL), 2018.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv e-prints, 2020.

[4] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[5] Pedro J. Garcia-Laencina, José-Luis Sancho-Gémez, and Anibal R. Figueiras-Vidal. Pattern
Classification with Missing Data: A Review. Neural Computing and Applications, 19(2):263—
282, 2010.

[6] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In Proceedings
of Advances in Neural Information Processing Systems (NeurIPS), 2014.

[7] Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On Embeddings for Numerical Features
in Tabular Deep Learning. ArXiv e-prints, 2022.

[8] Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix Completion and
Low-Rank SVD via Fast Alternating Least Squares. J. Mach. Learn. Res., 16(1):3367-3402,
2015.

[9] G. Hawthorne and P. Elliott. Imputing cross-sectional missing data: comparison of common
techniques. Aust N Z J Psychiatry, 39(7):583-90, 2005.

[10] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
Autoencoders Are Scalable Vision Learners. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[11] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. TabTransformer: Tabular Data
Modeling Using Contextual Embeddings. ArXiv e-prints, 2020.

[12] Drew A.Hudson and C. Lawrence Zitnick. Generative Adversarial Transformers. In Proceedings
of IEEE Conference on Machine Learning (ICML), 2021.

[13] Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyper-
Impute: Generalized Iterative Imputation with Automatic Model Selection. In Proceedings of
IEEE Conference on Machine Learning (ICML), 2022.

[14] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. TransGAN: Two Pure Transformers Can Make
One Strong GAN, and That Can Scale Up. In Proceedings of Advances in Neural Information
Processing Systems (NeurlPS), 2021.

[15] Xiangwen Kong and Xiangyu Zhang. Understanding Masked Image Modeling via Learning
Occlusion Invariant Feature. arXiv e-prints, 2022.
[16] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of

Neural Network Representations Revisited. In Proceedings of IEEE Conference on Machine
Learning (ICML), 2019.

[17] Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. MIRACLE: Causally-
Aware Imputation via Learning Missing Data Mechanisms. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2021.

[18] Chao Ma and Cheng Zhang. Identifiable Generative Models for Missing Not at Random Data

Imputation. In Proceedings of Advances in Neural Information Processing Systems (NeurIPS),
2021.

[19] Pierre-Alexandre Mattei and Jes Frellsen. MIWAE: Deep Generative Modelling and Imputation
of Incomplete Data. In Proceedings of IEEE Conference on Machine Learning (ICML), 2018.

10

[20] Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing Data Imputation Using
Optimal Transport. In Proceedings of IEEE Conference on Machine Learning (ICML), 2020.

[21] Alfredo Nazabal, Pablo M. Olmos, Zoubin Ghahramani, and Isabel Valera. Handling Incomplete
Heterogeneous Data Using VAEs. Pattern Recognition, 107:107501, 2020.

[22] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
Encoders: Feature Learning by Inpainting. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[23] Marcin Przewigzlikowski, Marek gmieja, F.ukasz Struski, and Jacek Tabor. MisConv: Convolu-
tional Neural Networks for Missing Data. ArXiv e-prints, 2021.

[24] Alec Radford and Karthik Narasimhan. Improving Language Understanding by Generative
Pre-Training. ArXiv e-prints, 2018.

[25] D. J. Stekhoven and P. Buhlmann. MissForest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112-8, 2012.

[26] Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3):1-67, 2011.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2017.

[28] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
Composing Robust Features with Denoising Autoencoders. In Proceedings of IEEE Conference
on Machine Learning (ICML), 2008.

[29] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing Data Imputation using
Generative Adversarial Nets. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[30] Seongwook Yoon and Sanghoon Sull. GAMIN: Generative Adversarial Multiple Imputation
Network for Highly Missing Data. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[31] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang Wen, Yong Wang, and
Baining Guo. StyleSwin: Transformer-based GAN for High-resolution Image Generation. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[32] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Towards Deeper Understanding of Variational
Autoencoding Models. In Proceedings of ACM SIGIR International Conference on Theory of
Information Retrieval (ICTIR), 2022.

References

[1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT Pre-Training of Image
Transformers. In Proceedings of International Conference on Learning Representations (ICLR),
2022.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of Annual
Conference of the North American Chapter of the Association for Computational Linguistics
(NACCL), 2018.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv e-prints, 2020.

[4] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[5] Pedro J. Garcia-Laencina, José-Luis Sancho-Gémez, and Anibal R. Figueiras-Vidal. Pattern
Classification with Missing Data: A Review. Neural Computing and Applications, 19(2):263—
282, 2010.

11

[6] IanJ. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In Proceedings
of Advances in Neural Information Processing Systems (NeurIPS), 2014.

[7] Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On Embeddings for Numerical Features
in Tabular Deep Learning. ArXiv e-prints, 2022.

[8] Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix Completion and
Low-Rank SVD via Fast Alternating Least Squares. J. Mach. Learn. Res., 16(1):3367-3402,
2015.

[9] G. Hawthorne and P. Elliott. Imputing cross-sectional missing data: comparison of common
techniques. Aust N Z J Psychiatry, 39(7):583-90, 2005.

[10] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollér, and Ross Girshick. Masked
Autoencoders Are Scalable Vision Learners. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[11] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. TabTransformer: Tabular Data
Modeling Using Contextual Embeddings. ArXiv e-prints, 2020.

[12] Drew A. Hudson and C. Lawrence Zitnick. Generative Adversarial Transformers. In Proceedings
of IEEE Conference on Machine Learning (ICML), 2021.

[13] Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyper-
Impute: Generalized Iterative Imputation with Automatic Model Selection. In Proceedings of
IEEE Conference on Machine Learning (ICML), 2022.

[14] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. TransGAN: Two Pure Transformers Can Make
One Strong GAN, and That Can Scale Up. In Proceedings of Advances in Neural Information
Processing Systems (NeurlPS), 2021.

[15] Xiangwen Kong and Xiangyu Zhang. Understanding Masked Image Modeling via Learning
Occlusion Invariant Feature. arXiv e-prints, 2022.

[16] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
Neural Network Representations Revisited. In Proceedings of IEEE Conference on Machine
Learning (ICML), 2019.

[17] Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. MIRACLE: Causally-
Aware Imputation via Learning Missing Data Mechanisms. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2021.

[18] Chao Ma and Cheng Zhang. Identifiable Generative Models for Missing Not at Random Data
Imputation. In Proceedings of Advances in Neural Information Processing Systems (NeurIPS),
2021.

[19] Pierre-Alexandre Mattei and Jes Frellsen. MIWAE: Deep Generative Modelling and Imputation
of Incomplete Data. In Proceedings of IEEE Conference on Machine Learning (ICML), 2018.

[20] Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing Data Imputation Using
Optimal Transport. In Proceedings of IEEE Conference on Machine Learning (ICML), 2020.

[21] Alfredo Nazabal, Pablo M. Olmos, Zoubin Ghahramani, and Isabel Valera. Handling Incomplete
Heterogeneous Data Using VAEs. Pattern Recognition, 107:107501, 2020.

[22] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
Encoders: Feature Learning by Inpainting. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[23] Marcin Przewiezlikowski, Marek Smieja, Fukasz Struski, and Jacek Tabor. MisConv: Convolu-
tional Neural Networks for Missing Data. ArXiv e-prints, 2021.

[24] Alec Radford and Karthik Narasimhan. Improving Language Understanding by Generative
Pre-Training. ArXiv e-prints, 2018.

[25] D. J. Stekhoven and P. Buhlmann. MissForest-non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112-8, 2012.

[26] Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3):1-67, 2011.

12

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2017.

[28] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
Composing Robust Features with Denoising Autoencoders. In Proceedings of IEEE Conference
on Machine Learning (ICML), 2008.

[29] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing Data Imputation using
Generative Adversarial Nets. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[30] Seongwook Yoon and Sanghoon Sull. GAMIN: Generative Adversarial Multiple Imputation
Network for Highly Missing Data. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[31] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang Wen, Yong Wang, and
Baining Guo. StyleSwin: Transformer-based GAN for High-resolution Image Generation. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[32] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Towards Deeper Understanding of Variational
Autoencoding Models. In Proceedings of ACM SIGIR International Conference on Theory of
Information Retrieval (ICTIR), 2022.

13

A Experimental Details

A.1 Datasets

Table 6 summarizes the characteristics of the datasets used in our experiments.
Experiment Dataset Dataset Size # Features

(California) Housing 20,640 9

(Climate) Model Simulation Crashes 540 18
Concrete (Compressive) Strength 1,030 9
(Diabetes) 442 10

Estimation of (Obesity) Levels 2,111 17
(Credit) Approval 690 15

(Wine) Quality 1,599 12

(Raisin) 900 8

(Spam) Base 4,601 57

(Bike) Sharing Demand 8,760 14

(Letter) Recognition 20,000 16

(Yacht) Hydrodynamics 308 7

Table 6. Characteristics of the datasets used in the experiments.

A.2 Parameter Setting

The default parameter setting of REMASKER is listed in Table 7.

model ‘ parameter ‘ setting

optimizer | Adam
initial learning rate | le-3
global LR scheduler | cosine annealing
gradient clipping threshold | 5.0
training epochs | 600
batch size | 64

masking ratio | 0.5

Transformer block | 8
encoder embedding width | 64
number of heads | 4

Transformer block | 4
decoder embedding width | 64

number of heads | 4
Table 7. Default parameter setting of REM ASKER.

B Additional Results

B.1 Overall Performance

Figure 6, 7, and 8 respectively show the imputation performance of REMASKER and § baselines on
12 benchmark datasets under the MAR, MCAR, and MNAR scenarios with the missingness ratio
varying from 0.1 to 0.7. Observed that REMASKER performs on par with or outperforms almost
all the baselines across a wide range of settings. Note that the MIRACLE imputer does not work
on the Compression dataset and the Raisin dataset under some settings, of which the results are
not reported. Given that both Compression and Raisin are relatively small datasets, one possible
explanation is that MIRACLE requires a sufficient amount of data to train the model.

14

(a)

0.6
Bl ReMasker WM hyperimpute [gain M mice [missforest M sinkhorn [0 miwae M miracle [softimpute
0.5
0.4
]
s 03
z
0.2
N | I) -I*m Il
N e X = e S| o
© \«0‘ o Q@ﬁs‘ o« & & o @ RS
0.6,

BN ReMasker EEN hyperimpute [N gain EEEl mice [==] missforest =N sinkhon [miwae EEE miracle =3 softimpute

04
20.3
0.2
Dio el W JORC P S S A

e xe \ “ i e @ N A < e X
o \\\a(“ R @*" & - & o @ e o e

BN ReMasker ~EEN hyperimpute [N gain EEEl mice [==] missforest [N sinkhon [=J miwae NNl miracle =3 softimpute

o] 1

N Y o o & 5 oo) N i® &
o o 4@ e o« o @ o @ B ¥
«®

AUROC
° ° °
2 4 4

(b) MAR-0.1
©

I ReMasker [N hyperimpute [gain EEEl mice [] missforest ~[EE sinkhon [miwae M miracle [softimpute

st abithad ool .

e ©
¥ @

RMSE
°
w

- @ o 5o o)
A o Q‘a@" & @ &

BN ReMasker ~EEE hyperimpute [EE gain EEEl mice [missforest ~EEE sinkhon <[miwae EEE miracle =3 softimpute

immMmﬂjmmJMm

s Ao S¢ 53 e S} o
\\\o‘ & o o« ﬁ‘,v.‘ [& @
o
11
BB ReMasker EEE hyperimpute [N gain EEE mice [missforest ~[EEE sinkhorn [miwae EEE miracle [softimpute
1.0
Q
e}
09,
2
<
) . I I .Tﬂ
0.7

W‘\‘

e xe o N d et o A\ i e
o w‘“ o 5 @ oo [t & @ % o
v(z &

(d) MAR-0.3

Figure 6: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MAR scenario
with 0.1 and 0.3 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD,
and AUROC scores (AUROC is only applicable to datasets with classification tasks).

B.2 Sensitivity Analysis

Figure 9 shows the sensitivity analysis of REMASKER and other 6 baselines on the california
dataset under the MAR, MCAR, and MNAR settings. The observed trends are generally similar to
that in Figure 3, which further demonstrates the observations we made in § 4 about how different
factors may impact REMASKER’s imputation performance.

15

BB ReMasker EEN hyperimpute [gain EEEl mice [missforest [sinkhom [miwae HEE miracle [softimpute

il .ot

=3 @ I 0 < e <
3"2‘ & o 2 e o S

BN ReMasker EEN hyperimpute [N gain EEE mice [missforest [sinkhom [miwae EEE miracle =3 softimpute

bl ahidud ool

o

X3 o a* @ o o o
\\\o«\ c\\‘“b e o« o & o @

¥

BN ReMasker EEN hyperimpute SN gain EEEl mice [missforest =S sinkhom [miwae HEEl miracle =3 softimpute

1.0
Q
o
o 0.9
2
2
0.8 I
o7 A 3 A0 © e x
&‘“e‘ e vzs\ @ <& i &
(e) MAR-0.5
0.6
B ReMasker EEE hyperimpute EEE gain EEE mice [missforest [sinkhorn =[] miwae EEE miracle [EX softimpute
0.5
0.4
w
Los.
z
0.2
0.1
ad\ ane‘eﬁ \&e ,,\\ \e\‘\ cho e P‘“
o
0.6
EEE ReMasker R hyperimpute mm gain E mice [missforest @A sinkhorn 3 miwae W miracle =3 softimpute
0.5
0.4
g 0.3
0.2
0.0 e & 5 1 o o e &
N N 2 O N @ xet o o 2 o€ e
o E a\\@ o m"‘aﬁe\ «@ 3‘0‘ A& va’= @ o ol ¥
e
1.1
I ReMasker B hyperimpute == gain E mice =3 missforest @ sinkhorn =3 miwae EEE miracle =3 softimpute
1.0
Q
o
< 0.9
2
2
. Wi M
0.7 o & < o a0 © ¢ *
o \\@ L\\«\‘ v(esé\ «@ a\“"a‘ (o & @ & i o

(f) MAR-0.7

Figure 6: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MAR scenario
with 0.5 and 0.7 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD,
and AUROC scores (AUROC is only applicable to datasets with classification tasks).

B.3 Ablation Study

The ablation study of REMASKER on the california dataset is shown in Table 8. Observed that
the performance of REMASKER reaches its peak with encoder depth = 6, decoder depth = 4, and
embedding width = 32.

B.4 Training Regime

Figure 10 shows the imputation performance of REMASKER on the california dataset when the
training length varies from 100 to 1,600 epochs. Figure 11 plots the convergence of reconstruction
loss in REMASKER, showing a trend similar to Figure 4(b).

16

BB ReMasker EEN hyperimpute [gain EEEl mice [missforest [sinkhom [miwae HEE miracle [softimpute

%mmmmm%mMJmmﬂ

N X o N & o 0 i e
¥ «,«\ & Q@ﬁs@ @ 3‘,& & o 25" & o *aa\

BN ReMasker EEN hyperimpute [N gain EEE mice [missforest [sinkhom [miwae EEE miracle =3 softimpute

& o 3¢ e e o = o
\\\et (,\\mb & o« & & o @ &

¥

BN ReMasker EEN hyperimpute SN gain EEEl mice [missforest =S sinkhom [miwae HEEl miracle =3 softimpute

1.0
Q
e}
© 0.9
2
E
) - I I .Tﬂ
07 e @ e o & < & < e x
G xS Ao X & e = 2 RX X
o &\»\w‘“ 4@ \ov‘eé o &‘“E‘ o S @ «° R &
(2) MCAR-0.1
0.6
BN ReMasker [EE hyperimpute gain EEE mice [missforest [EE sinkhorn =[] miwae B miracle [softimpute
05
0.4
w
Los.
=
0.2
‘m i
0.0 o o © 3 -
S & \M@ o ,,\\ @ o @ o
&
0.6
BN ReMasker BN hyperimpute [N gain EEE mice [missforest N sinkhom =) miwae NN miracle [softimpute
0.5
0.4
g 0.3
0.2
00 e ~ 9 &
¥ © e S & &) &
o g a\\w“\ o o (aae‘ @ b@ & o @ o
o
11
BN ReMasker W hyperimpute BN gain EEE mice [missforest BN sinkhom =) miwae N miracle [softimpute
1.0
Q
e}
o« 0.9
2
Ed
) m m
0.7 . ’ & o © e *
N 5 o S & o o 2 ¢ S
o \\@ ae® v(esé\ o« & & o @9 o R e

(b) MCAR-0.3
Figure 7: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MCAR scenario

with 0.1 and 0.3 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD,
and AUROC scores (AUROC is only applicable to datasets with classification tasks).

B.5 Optimal Masking Ratio vs Pairwise Mutual Information

We report below the average pairwise mutual information (PMI) between different features and the
performance of ReMasker under varying masking ratios over each dataset. It is observed that in
general the PMI value is positively correlated with the optimal masking ratio. This may be explained
by that with higher feature correlation (or more information redundancy), a larger masking ratio often
leads to more effective representation learning, which corroborates the existing studies on MAE [10].

17

BB ReMasker EEN hyperimpute [gain EEEl mice [missforest ~[EE sinkhom [miwae M miracle [softimpute

el ot cark]

< o e
\kc“\ & o bna‘e & vaé\“ @ & o \,3‘5\
o

BN ReMasker ~EEN hyperimpute [N gain EEEl mice [==] missforest [sinkhon [miwae EEE miracle == softimpute

LS ks L . Lo

e xe & S AN N o
W A2 6 o @ e W
@ <

&

5%
e
o
o

BN ReMasker EEN hyperimpute [N gain EEEl mice [==] missforest S sinkhon ~[=J miwae M miracle =3 softimpute

10 eeeeees
Q
o}
© 0.9
2
2
0.8 I
07 e N *
o R & & “e@ o @ & o
«
(c) MCAR-0.5
0.6
B ReMasker EEE hyperimpute [ESS gain EEE mice [missforest ~[ESE sinkhomn [miwae WM miracle =3 softimpute
0.5
0.4
w
Los.
o
0.2
" m
0.0 ‘ . I
< ©
- e o &
0.6
BN ReMasker EEE hyperimpute EEE gain EEE mice [missforest @EE sinkhorn [miwae EEE miracle X3 softimpute
0.5 ™ ™
0.4
g 0.3
0.2
N J‘I'h
00 o N 5 < o N <
& o
o ™ o & o & o <
S
o
11
BN ReMasker ~EEE hyperimpute EEE gain EEE mice [missforest @EE sinkhorn [miwae EEE miracle EZ3 softimpute
1.0
Q
o
@ 09
2
<
0.8
07 . I‘ I h . s .
5 o o
5 o® z¢\° & o o ¥

Figure 7: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MCAR scenario
with 0.5 and 0.7 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD,
and AUROC scores (AUROC is only applicable to datasets with classification tasks).

depth | RMSE | WD width | RMSE | WD depth | RMSE | WD
2 10.0783 | 0.0230 16 |0.0678 | 0.0213 2 10.0886 | 0.0334
4 10.0663 | 0.0172 32 | 0.0663 | 0.0172 4 10.0738 | 0.0203
6 | 0.0821 | 0.0225 64 |0.0974 | 0.0322 6 | 0.0663 | 0.0172
8 0.0834 | 0.0244 128 | 0.1125| 0.0388 8 0.0878 | 0.0322
10 | 0.0726 | 0.0196 256 | 0.0877 | 0.0324 10 | 0.0776 | 0.0239
(a) Decoder depth (b) Embedding width (c) Encoder depth

Table 8. Ablation study of REMASKER on the california dataset. The default setting is as follows: encoder
depth = 6, decoder depth = 4, embedding width = 32, masking ratio = 50%, and training epochs = 600.

18

0.5

RMSE
° o o
MRS

°

0.0

1.0

AUROC
°
©

°
®

0.7

1.0

AUROC
°
©

°
®

0.7

BB ReMasker [N hyperimpute [gain EEEl mice [missforest ~[EE sinkhon [miwae M miracle [softimpute

IO | P T

e 5 o & e N © o e
o «,«\ & v‘aﬁ"\ = & o @ o o

BN ReMasker EEN hyperimpute [N gain EEEl mice (=] missforest [N sinkhon =[] miwae EEE miracle [softimpute

BT Y I S B

© e \o° S e e o o X
\<°‘° o @ o & & o @ S
oF

BN ReMasker EEN hyperimpute [N gain EEEl mice [==] missforest [N sinkhon [=J miwae N miracle =3 softimpute

I]

n
o @ve@é & s\‘ o e

q”““‘

X o™
@ N
& o

v‘er’

*0‘

(a) MNAR-0.1

BN ReMasker [hyperimpute SN gain EEM mice [missforest SN sinkhom < [==) miwae M miracle [softimpute

M%WMﬂmﬂ

S xe° e] o o
o & & o @ ¥
B ReMasker B hyperimpute == gain . mice =2 missforest &= sinkhorn £ miwae . miracle B3 softimpute
e X o S e C S} 0 < e
o s & o o o & o o o o
E

BN ReMasker ~EEN hyperimpute SN gain EEE mice [==] missforest ~EEE) sinkhorn [miwae N miracle =3 softimpute

0 W mmwmm

N g o xe® e o o o
& & v@gé et @ o @ e

(b) MNAR-0.3

Figure 8: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MNAR with
0.1 and 0.3 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD, and
AUROC scores (AUROC is only applicable to datasets with classification tasks).

19

BB ReMasker [N hyperimpute [gain EEEl mice [missforest ~[EE sinkhon [miwae M miracle [softimpute

|

@ & i *56‘

o o o
> B N

o
&
&

e @ 3 s
o R & %
0\\@ S o

BN ReMasker EEN hyperimpute [Nl gain EEEl mice (=] missforest [sinkhomn miwae EEE miracle [softimpute

R I T g

e o & & 5 N Y © @
g a\\@‘\ L\\«\a o5 o« 3‘,2‘ I &2 @ & W

WD
2 o o o o o
s 2% 2 23

o

<
(P«\v

BN ReMasker EEN hyperimpute [N gain EEEl mice [==] missforest [N sinkhon [=J miwae N miracle =3 softimpute

o
Q
]
& 09
=)
<
08
My M T
. @ 2@ &
o

i n
o @ve@ & s\‘ o e

P

.
RS 'o““
e

*0‘

(c) MNAR-0.5

BN ReMasker [hyperimpute SN gain EEM mice [missforest SN sinkhom < [==) miwae M miracle [softimpute

0s
0.4
w
Los
F
0.2
01 n
0.0 o ry ’ o 3 3] i e
< 5 X & o S
e o & o o o < S
(P«\
0.6
BB ReMasker ~EEE) hyperimpute Sl gain EEE mice [==] missforest E=E sinkhorn miwae EEE miracle =3 softimpute
05
0.4
o
Sos
0.2
00 o ¢ 5 X 3 © < e
5o & & = X
@\@a“‘ A & o« & & o @ & W
00«\9
11
B ReMasker BN hyperimpute BN gain EEEl mice =1 missforest B sinkhorn [miwae BN miracle B3 softimpute
10
9]
<]
& 09
E
ES
o B

NS & o o xe® et N o Nl o
A & e o o o & o @ o @

(d) MNAR-0.7

Figure 8: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MNAR with
0.5 and 0.7 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD, and
AUROC scores (AUROC is only applicable to datasets with classification tasks).

20

—— ReMasker ~ —— hyperimpute ~ —}— ice = —— missforest sinkhorn —}— miwae gain
. 0.225
0.225 0.35
| 0.200
| o I
0.175
1 0.25
0175 | 0.150 ! |
0.20
E 0.150 R | 0.125
4 0.15 I
0.125 0.100 —
0.100 0.10 0.075 — ‘
0.075 | 0.05 | 0.050
0.050 I 0.00 I 0.025
: 1000 7000 13000 20000 1 3 5 7 9 0.1 0.3 0.5 0.7
0.14 010 025
0.12 | |
0.08 0.20
0.10
- | —
o 0.08 | 0.06 0.15
0.06
0.04 0.10
004 |] Ng/
~—] 0.02 0.05
0.02 | | |
0.00 0.00 0.00
1000 7000 13000 20000 1 3 5 7 9 0.1 0.3 0.5 0.7
Observed data size Feature count Missigness rate
(a) MAR
—— ReMasker ~ —— hyperimpute =~ —— ice = —— missforest sinkhorn —}— miwae gain
0.275 0.30
0.20
0.250 0.25
0.18)
0.225 k
w 0.16 0.200 0.20
z
0.14 0.175 015
0.150 — ’
0.12
0125 0.10
0.10 0.100
1000 7000 13000 20000 1 3 5 7 9 0.1 0.3 0.5 0.7
0.20 | 0.18 1.0
o \|\‘\ o i 0.8
0.16 0.14
0.14
0.12 1 0.6
fa)
0.12
B 0.10
0.10 ' 0.4
0.08
0.08 /
L —_— 0.06 02
0.06 \'\‘_\- /
0.04 j _
0.04 0.0 =
1000 7000 13000 20000 0.02 1 3 7 9 0.1 0.3 0.5 0.7
Observed data size Feature count Missigness rate
(b) MNAR

Figure 9: Sensitivity analysis of REMASKER on the california dataset under MAR and MNAR scenarios.
The results are shown in terms of RMSE and WD, with the scores measured with respect to (a) the dataset size,
(b) the number of features, and (c) the missingness ratio. The default setting is as follows: dataset size = 20,000,
number of features = 9, and missingness ratio = 0.3.

21

0.20

0.18

0.16

RMSE

0.14

0.12

0.10

0.16

0.14

0 0.12

0.10

0.08

0.06

0.04

1000

7000

—}— ReMasker

13

000

1000

7000

13

000

Observed data size

—+

0.275

0.250

0.225

0.200

0.175

0.150

0.125

0.100

20000

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

20000

hyperimpute

—}— ice —}— missforest sinkhorn —}— miwae gain

0.275
0.250
0.225
0.200
0.175

A\

\

0.150
0.125
0.100
0.075

0.8
0.6
0.4
\f/ 0.2 /
,/;__/-o;q
0.0 *
3 5 7 9 0.1 0.3 0.5 0.7
Feature count Missigness rate

(c) MCAR

Figure 9: Sensitivity analysis of REMASKER on the california dataset under the MCAR setting. The results
are shown in terms of RMSE and WD, with the scores measured with respect to (a) the dataset size, (b) the
number of features, and (c) the missingness ratio. The default setting is as follows: dataset size = 20,000, number
of features = 9, and missingness ratio = 0.3.

0.0700

0.0675

0.0650

RMSE

0.0625

0.030
0.025
S 0.020
0.015
100 200 400 800 oo 2% 100 200 400 800 1600
Max epoch Max epoch
(a) RMSE (b) WD

Figure 10: REMASKER performance with respect to the number of training epochs on the california dataset
under MAR with 0.3 missingness ratio.

Loss

0.40

0.35

0.30

0.25

0.20

0.15

0.10

5 10 15 20 25
100 200 300 400 500 600
Epoch

Figure 11: Convergence of REMASKER’s fitting on california under MAR with 0.3 missingness ratio.

22

. . climate compressive diabetes obesity
masking ratio
RMSE WD AUROC |[RMSE WD |RMSE WD |RMSE WD AUROC
0.1 0.2825 0.2315 0.9544 | 0.1739 0.0544 | 0.1827 0.0691 | 0.2078 0.0588 0.9411
0.3 0.2832 0.2336 0953 | 0.1129 0.0439 | 0.1432 0.0614 | 0.1943 0.0617 0.9422
0.5 0.2823 0.2481 0.9543 | 0.1046 0.0306 | 0.1496 0.0694 | 0.193 0.0743 0.9417
0.7 0.2837 0.2544 0.9533 | 0.1635 0.0825 | 0.1542 0.0784 | 0.2129 0.1093 0.9408
PMI 0.023 0.7829 0.1106 0.147
masking ratio credit wine raisin spam
RMSE WD AUROC | RMSE WD AUROC | RMSE WD AUROC | RMSE WD AUROC
0.1 0.2298 0.1075 0.9255 | 0.1171 0.0255 0.7954 | 0.1497 0.0727 0.9931 | 0.0451 0.0097 0.9998
0.3 0.2277 0.0993 0.9279 | 0.1122 0.0303 0.7949 | 0.0917 0.0431 0.9929 | 0.0434 0.0084 0.9998
0.5 0245 0.1243 09247 | 0.1151 0.0395 0.7955 | 0.0904 0.0347 0.9943 | 0.0435 0.0099 0.9998
0.7 0.3175 0.2176 0914 | 0.1401 0.0757 0.7934 | 0.1172 0.0727 0.9946 | 0.0507 0.0197 0.9998
PMI 0.069 0.1612 0.5246 0.0771
. . bike yacht letter california
masking ratio
RMSE WD AUROC |RMSE WD |RMSE WD AUROC|RMSE WD
0.1 0.1068 0.0244 0.97 0.2882 0.1339 | 0.0668 0.0215 0.0789 | 0.0888 0.023
0.3 0.096 0.0226 0.9736 | 0.2185 0.0812 | 0.0562 0.0207 0.7897 | 0.0654 0.0151
0.5 0.1015 0.0277 0.9707 | 0.2174 0.0996 | 0.0554 0.0212 0.7935 | 0.0663 0.0172
0.7 0.1306 0.0561 0.9687 | 0.3188 0.1948 | 0.0906 0.0366 0.7878 | 0.132 0.065
PMI 0.1614 0.8229 0.1421 0.1576

Table 9. REMASKER performance with respect to masking ratio. The results are evaluated under MAR with 0.3
missingness ratio.

23

	Introduction
	Related Work
	ReMasker
	Problem Formalization
	Design of ReMasker

	Evaluation
	Overall Performance
	Sensitivity Analysis
	Ablation Study
	Practice of ReMasker

	Discussion
	Conclusion
	Experimental Details
	Datasets
	Parameter Setting

	Additional Results
	Overall Performance
	Sensitivity Analysis
	Ablation Study
	Training Regime
	Optimal Masking Ratio vs Pairwise Mutual Information

