
Towards Certified Unlearning for Deep Neural Networks

Binchi Zhang 1 Yushun Dong 1 Tianhao Wang 1 Jundong Li 1

Abstract

In the field of machine unlearning, certified un-
learning has been extensively studied in convex
machine learning models due to its high efficiency
and strong theoretical guarantees. However, its ap-
plication to deep neural networks (DNNs), known
for their highly nonconvex nature, still poses chal-
lenges. To bridge the gap between certified un-
learning and DNNs, we propose several simple
techniques to extend certified unlearning meth-
ods to nonconvex objectives. To reduce the time
complexity, we develop an efficient computation
method by inverse Hessian approximation without
compromising certification guarantees. In addi-
tion, we extend our discussion of certification to
nonconvergence training and sequential unlearn-
ing, considering that real-world users can send
unlearning requests at different time points. Ex-
tensive experiments on three real-world datasets
demonstrate the efficacy of our method and the
advantages of certified unlearning in DNNs.

1. Introduction
In modern machine learning applications, model training
often requires access to vast amounts of user data. For exam-
ple, computer vision models often rely on images sourced
from platforms such as Flickr, shared by its users (Thomee
et al., 2016). However, as concerns about user data privacy
grow, recent legislation such as the General Data Protec-
tion Regulation (GDPR, 2016) and the California Consumer
Privacy Act (CCPA, 2018) have underscored the impor-
tance of the right to be forgotten, which enables users to
request the deletion of their data from entities that store it.
The emergence of the right to be forgotten has prompted
the development of a new research domain known as ma-
chine unlearning (Sommer et al., 2022; Mercuri et al., 2022;
Nguyen et al., 2022; Xu et al., 2023; Zhang et al., 2023), i.e.,

1University of Virginia, Charlottesville, VA, USA. Correspon-
dence to: Jundong Li <jundong@virginia.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

deleting user data and its lineage from a machine learning
model. Although the target data can be effectively unlearned
by retraining the model from scratch, this method can incur
a high computational cost, limiting its practical applications.
To address this problem, certified unlearning was proposed
to find an efficient approximation of the retrained model. In
particular, the difference between the distributions of the un-
learned model and the retrained model is bounded, making
certified unlearning a stringent unlearning notion.

Despite the extensive study of certified unlearning in various
machine learning models such as linear models (Guo et al.,
2020; Izzo et al., 2021; Mahadevan & Mathioudakis, 2021),
general convex models (Ullah et al., 2021; Sekhari et al.,
2021; Neel et al., 2021), Bayesian models (Nguyen et al.,
2020), sum-product networks (Becker & Liebig, 2022), and
graph neural networks (Pan et al., 2023; Chien et al., 2023;
Wu et al., 2023b;a), the understanding of certified unlearn-
ing for deep neural networks (DNNs) remains nascent. Most
of the previous unlearning methods applied to DNNs (Go-
latkar et al., 2020; 2021; Tarun et al., 2023; Chundawat et al.,
2023) only introduced empirical approximation of the re-
trained model and failed to obtain a theoretical certification.
Although Mehta et al. tentatively analyzed the certification
for DNNs, their results strongly rely on the convexity as-
sumption, which is unrealistic and yields a significant gap
between certified unlearning and DNNs.

To bridge the gap between certified unlearning and DNNs,
we investigate the problem of certified unlearning without
relying on convexity assumptions. First, we divide certified
unlearning into two steps, estimating the retrained model
with a bounded error and adding random noises correspond-
ing to the approximation error bound. Existing works (Go-
latkar et al., 2020; 2021; Mehta et al., 2022; Warnecke et al.,
2023) typically estimate the retrained model based on a
single-step Newton update for convex objectives. In this pa-
per, we demonstrate that by making simple modifications to
the Newton update, we can establish an approximation error
bound for nonconvex (more precisely, weakly convex (Davis
& Grimmer, 2019; Davis & Drusvyatskiy, 2019)) functions
such as DNNs. It is worth noting that our proposed tech-
niques can be adapted to different approximate unlearning
strategies for convex models to improve their soundness
in DNNs. To improve the efficiency of the Newton up-
date, we follow previous work to exploit a computationally

1

Towards Certified Unlearning for Deep Neural Networks

efficient method to estimate the inverse Hessian in the New-
ton update and prove that the efficient method preserves a
bounded approximation error. In addition, we explore the
flexibility of our method to complex real-world scenarios
in two specific cases where strategies such as early stop-
ping can stop the training from convergence and users can
send unlearning requests at different time points. Conse-
quently, we adapt our certified unlearning approach to the
nonconvergence training (the trained model is not a local
optimum) and the sequential manner (the current unlearning
process stems from a formerly unlearned model) without
compromising certification guarantees. Finally, we conduct
extensive experiments including ablation studies to verify
the effectiveness of our certified unlearning for DNNs in
practice. In particular, we use different metrics such as
membership inference attacks (Chen et al., 2021) and re-
learn time (Golatkar et al., 2020) to evaluate the unlearning
performance in preserving the privacy of unlearned sam-
ples, providing empirical evidence of the effectiveness of
our approach. Further analysis explores the advantages of
certified unlearning, e.g., stringency (certified unlearning
outperforms other unlearning baselines with a relatively
loose certification budget), efficiency, and robustness under
sequential unlearning.

2. Certified Unlearning
Preliminary. Let D be a training dataset with n data sam-
ples derived from the sample space Z , and let H be the
parameter space of a hypothesis class. Let A : Zn → H
be a randomized learning process that takes the training set
D as input and outputs the optimal w∗ ∈ H that minimizes
the empirical risk on D as

w∗ = A(D) = argminw∈HL(w,D). (1)

L is the empirical risk function that measures the error
of a model over each training sample as L(w,D) =
1
n

∑
x∈D l(w,x), where l(w,x) is the loss function of the

model w on the sample x, e.g., cross-entropy loss and mean
squared error. After the learning process, we obtain a trained
model w∗ = A(D).

In machine unlearning, to remove some training samples
Du ⊂ D from the trained model w∗, a common way is
to leverage a randomized unlearning process U to update
w∗ and obtain an unlearned model w− = U(w∗,Du,D),
consequently. We denote the number of unlearned samples
as nu = |Du|. A straightforward but exact unlearning
process is to retrain the model from scratch. Let w̃∗ be
the retrained model and Dr = D\Du, then we have w̃∗ =
argminw∈HL(w,Dr). Despite the rigor of retraining, the
high computational cost makes it a trivial method that cannot
be used in practice. Instead, certified unlearning processes
find an unlearned model similar to the re-trained model, but

with much less computation cost. Next, we introduce the
definition of certified unlearning (Guo et al., 2020).

Definition 2.1. (ε − δ certified unlearning) Let D be a
training set, Du ⊂ D be an unlearned set, Dr = D\Du

be the retained set,H be the hypothesis space, and A be a
learning process. U is an ε− δ certified unlearning process
iff ∀ T ⊆ H, we have

Pr (U (D,Du,A (D)) ∈ T) ≤ eεPr (A (Dr) ∈ T) + δ,

Pr (A (Dr) ∈ T) ≤ eεPr (U (D,Du,A (D)) ∈ T) + δ.
(2)

Certified Unlearning and Differential Privacy. It is worth
noting that Definition 2.1 is derived from the notion of dif-
ferential privacy (Dwork, 2006). Specifically, a randomized
algorithmM : Nn → R gives ε− δ differential privacy iff
∀ T ⊆ R and ∀ x,y ∈ Nn such that ∥x− y∥1 = b,

Pr(M(x) ∈ T) ≤ eεPr(M(y) ∈ T) + δ. (3)

Here, x and y can be seen as two adjacent datasets with
b different data records. Noting the similarity of certified
unlearning and differential privacy, we clarify their relation-
ship as follows.

Proposition 2.2. If learning algorithm A provides ε − δ
differential privacy, A(D) is an ε − δ certified unlearned
model.

Proposition 2.2 indicates that differential privacy is a suf-
ficient condition of certified unlearning. One of the ad-
vantages of differential privacy is its weak assumptions:
differential privacy can be achieved without any require-
ments on convexity or continuity. Such property perfectly
fits DNNs, which are usually nonconvex. Luckily, Proposi-
tion 2.2 enables achieving certified unlearning by borrowing
the techniques in differential privacy. Consequently, we
have the following theorem for certified unlearning.

Theorem 2.3. Let w̃∗ be the empirical minimizer over Dr

and w̃ = F(w∗,Du,D) be an approximation of w̃∗. De-
fine ∆ as an upper bound of ∥w̃ − w̃∗∥2, then we have
U(w∗,Du,D) = w̃ + Y is an ε − δ certified unlearning
process, where Y ∼ N (0, σ2I) and σ ≥ ∆

ε

√
2ln(1.25/δ).

The proof of Theorem 2.3 is provided in Appendix A. With
Theorem 2.3, we divide the problem of certified unlearning
into two parts, estimating the retrained model and adding
noise corresponding to the approximation error. We il-
lustrate the framework of certified unlearning in Figure 1.
Next, our primary goal is to find the approximation func-
tion F where the output w̃ = F(w∗,Du,D) estimates the
minimizer w̃∗ with a bounded approximation error.

Additional Remarks on Privacy and Unlearning. The de-
duction of our certification budgets stems from results in dif-
ferential privacy (Dwork et al., 2014). According to recent
literature (Balle & Wang, 2018) in differential privacy, we

2

Towards Certified Unlearning for Deep Neural Networks

Learning
Algorithm

Learning
Algorithm

Adding Noise

Step 1

Step 2

Bounded Difference
with Budgets 𝜀𝜀, 𝛿𝛿

Newton
Update

Training

Retraining

𝐷𝐷

𝐷𝐷𝑟𝑟
𝐷𝐷𝑢𝑢

Certified
UnlearningOriginal Model

Unlearn Model
Distribution

Input Data

Input Data
Retrain Model

Retrain Model
Distribution

Unlearn Model

Figure 1. Illustration of certified unlearning, where the first step is
to estimate the retrained model based on the original model, and
the second step is to add noise to it. According to Theorem 2.3, we
can guarantee the difference in distributions between the unlearned
model and the retrained model is bounded by certification budgets.

notice that our certification budgets can be further tightened,
i.e., we can achieve ε− δ certified unlearning by adding a
noise with a smaller variance σ. In particular, we can find a
smaller σ by satisfying Φ(∆

2σ −
εσ
∆)− eεΦ(− ∆

2σ −
εσ
∆) ≤ δ,

where Φ is the cumulative distribution function of the stan-
dard Gaussian. For simplicity, we still use the results in
Theorem 2.3 in the following discussion.

In addition, in the classical differential privacy (Dwork et al.,
2014), the value of privacy level ε is less than 1. However,
this condition is sometimes difficult to satisfy in certified
unlearning for DNNs. Luckily, according to the Theorem 4
in (Balle & Wang, 2018), the certification of unlearning can
be preserved when ε ≥ 1 by increasing the variance of the
noise σ (scaled by a factor O(

√
ε)).

3. Methodology
Existing Studies. In existing studies (Guo et al., 2020; Go-
latkar et al., 2020; 2021; Mehta et al., 2022), a single-step
Newton update is widely used to estimate the empirical
minimizer w̃∗ and then add noise to satisfy unlearning. As-
suming the second-order derivative of L with respect to w
exists and is continuous, one can take the Taylor expansion
of ∇L at w∗ as

∇L(w̃∗,Dr) ≈ ∇L(w∗,Dr) +Hw∗(w̃∗ −w∗), (4)

where Hw∗ = ∇2L(w∗,Dr) denotes the Hessian ofL over
Dr at w∗. We also have∇L(w̃∗,Dr) = 0 since w̃∗ is the
minimizer. Move w̃∗ term to the left-hand side and we have

w̃∗ ≈ w̃ = w∗ −H−1
w∗∇L(w∗,Dr). (5)

In Equation (5), we consider the right-hand side as an ap-
proximation of w̃∗ and use w̃ to denote the approximation
value. Equation (5) cannot directly serve as the function
F unless it satisfies two requirements simultaneously: (1).
bounded approximation error; and (2). computational
efficiency, which are extremely challenging due to the na-
ture of DNNs. However, we found that we can make the

single-step Newton update satisfy these requirements by
making simple revisions to Equation (5). Next, we provide
a detailed analysis.

Approximation Error. In Equation (4), we truncate the
Taylor series and only consider the first-order term, hence
Equation (5) has an error in estimating the value of w̃∗.
Prior to further discussion, we first make the following
assumptions.
Assumption 3.1. The loss function l(w,x) has an L-
Lipschitz gradient in terms of w.
Assumption 3.2. The loss function l(w,x) has an M -
Lipschitz Hessian in terms of w.

Assumption 3.1 and Assumption 3.2 are widely used in
existing works (Guo et al., 2020; Sekhari et al., 2021; Chien
et al., 2023; Wu et al., 2023a;b). In contrast to most existing
works, our assumption does not necessitate the convexity
of the objective, enabling our discussion to be applicable
to DNNs in practice. The following proposition provides a
preliminary result on the approximation error bound.
Lemma 3.3. Let w∗ = argminw∈HL(w,D) and w̃∗ =
argminw∈HL(w,Dr). Let w̃ = w∗ −H−1

w∗∇L(w∗,Dr)
be an approximation of w̃∗. Consider Assumption 3.2, we
have

∥w̃ − w̃∗∥2 ≤
M

2
∥H−1

w∗∥2 · ∥w∗ − w̃∗∥22. (6)

The proof of Lemma 3.3 can be found in Appendix A. From
Lemma 3.3, we can find that the approximation error bound
is determined by two factors: ∥H−1

w∗∥2 and ∥w∗ − w̃∗∥22.
Next, we aim to bound these two factors separately.

(1). The norm of the inverse Hessian ∥H−1
w∗∥2: For noncon-

vex objective L(w,Dr), ∥H−1
w∗∥2 can be arbitrarily large.

To bound the value of ∥H−1
w∗∥2, we exploit the local con-

vex approximation technique (Nocedal & Wright, 2006).
Specifically, we add an ℓ-2 regularization term to the objec-
tive as L(w,Dr) +

λ
2 ∥w∥

2
2 when computing the Hessian.

Then, we have w̃ = w∗ − (Hw∗ + λI)−1∇L(w∗,Dr)
and the norm of the inverse Hessian changes to ∥(Hw∗ +
λI)−1∥2, correspondingly. Intuitively, we use local convex
approximation to make the nonconvex objective (λmin < 0)
strongly convex with parameter λ+ λmin at w∗.

(2). The squared ℓ-2 distance between w∗ and w̃∗: ∥w∗ −
w̃∗∥22: We find that ∥w∗ − w̃∗∥22 is completely determined
by the optimization problem in the learning process. To
bound the value of ∥w∗−w̃∗∥22, we modify the optimization
problem by adding a constraint ∥w∥2 ≤ C in the learn-
ing process. Then we have w∗ = argmin∥w∥2≤CL(w,D)
and w̃∗ = argmin∥w∥2≤CL(w,Dr), correspondingly. It is
worth noting that previous studies (Guo et al., 2020; Sekhari
et al., 2021) assume the objective to be Lipschitz continu-
ous and strongly convex simultaneously. However, these

3

Towards Certified Unlearning for Deep Neural Networks

assumptions are contradictory unless the norm of model
parameters is bounded (see Appendix C). In this paper, we
directly achieve the important requirements of bounded
model parameters which is implicitly required in previous
works. We resort to projected gradient descent (Bertsekas,
1997) to solve this constrained optimization problem in the
learning process. By considering this constraint, we can
obtain a worst-case upper bound of the term ∥w∗ − w̃∗∥22
which is independent of the size of the unlearned set.

By leveraging the local convex approximation and the con-
straint on the norm of the parameters, we can further derive
a tractable approximation error bound.

Theorem 3.4. Let w∗ = argmin∥w∥2≤CL(w,D) and
w̃∗ = argmin∥w∥2≤CL(w,Dr). Denote λmin as the
smallest eigenvalue of Hw∗ . Let w̃ = w∗ − (Hw∗ +
λI)−1∇L(w∗,Dr) be an approximation of w̃∗, where
λ > ∥Hw∗∥2. Consider Assumption 3.2, we have

∥w̃ − w̃∗∥2 ≤
2C(MC + λ)

λ+ λmin
. (7)

The proof of Theorem 3.4 is provided in Appendix A. Theo-
rem 3.4 provides a basic result for the approximation error
bound. In contrast to previous studies, our result does not
require the objective to be convex. We compare the ap-
proximation error bounds with and without the convexity
assumption in Appendix B to show our progress.

Computational Efficiency. The main advantage of certified
unlearning compared with retraining from scratch is com-
putational efficiency. Noting the importance of efficiency
for certified unlearning, we aim to reduce the computational
cost of w̃ = F(w∗,Du,D) while keeping the approxima-
tion error bound. The computation cost contains two parts:
the inverse Hessian (Hw∗ + λI)−1 (with local convex ap-
proximation) and the gradient∇L(w∗,Dr). First, assuming
the number of learnable parameters is p, the computation of
the inverse Hessian requires a complexity of O(np2 + p3).
Since the scale of the DNNs can be extremely large, we
adopt a computationally efficient algorithm, LiSSA (Agar-
wal et al., 2017), to estimate the inverse Hessian. In partic-
ular, we let X ∈ Dr be a random variable of the retained
training samples. Given s independent and identically dis-
tributed (i.i.d.) retained training samples {X1, . . . , Xs}, we
can obtain s i.i.d. samples {H1,λ, . . . ,Hs,λ} of the Hes-
sian matrix Hw∗ +λI , where Hi,λ = ∇2L(w∗, Xi)+λI .
Then, we can construct an estimator of the inverse Hessian.

Proposition 3.5. Given s i.i.d. samples {H1,λ, . . . ,Hs,λ}
of the Hessian matrix Hw∗ + λI , we let

H̃−1
t,λ = I +

(
I − Ht,λ

H

)
H̃−1

t−1,λ, H̃
−1
0,λ = I, (8)

where ∥∇2l(w∗, x) + λI∥ ≤ H , ∀x ∈ Dr. Then, we have

that
H̃−1

s,λ

H is an asymptotic unbiased estimator of the inverse
Hessian (Hw∗ + λI)−1.

The proof of Proposition 3.5 can be found in Appendix A.
By incorporating the Hessian-vector product technique,
we can compute H̃−1

s,λ∇L(w∗,Dr) with a complexity of
O(sp2) which is independent of n. Second, to compute the
gradient∇L(w∗,Dr) efficiently, we leverage the property
of the minimizer w∗ that∇L(w∗,D) = nu

n ∇L(w
∗,Du)+

n−nu

n ∇L(w∗,Dr) = 0. Noting that the number of un-
learned samples is usually much smaller than the number of
retained samples, we can replace the gradient∇L(w∗,Dr)
as ∇L(w∗,Dr) = − nu

n−nu
∇L(w∗,Du) and reduce the

complexity from O(np) to O(nup) where nu ≪ n. Af-
ter exploiting the two efficient techniques, we prove the
approximation error is still bounded as follows.

Theorem 3.6. Let w∗ = argmin∥w∥2≤CL(w,D) and
w̃∗ = argmin∥w∥2≤CL(w,Dr). Let λmin be the small-
est eigenvalue of Hw∗ , and s be the recursion number
for the inverse Hessian approximation. Let w̃ = w∗ +

nu

(n−nu)H
H̃−1

s,λ∇L(w∗,Du) be an approximation of w̃∗,
where λ > ∥Hw∗∥2. Consider Assumption 3.1 and Assump-
tion 3.2, the following inequality holds with a probability
larger than 1− ρ.

∥w̃− w̃∗∥2 ≤ 2C(MC + λ)

λ+ λmin
+

(
32
√

ln d/ρ

λ+ λmin
+

1

8

)
LC. (9)

The proof of Theorem 3.6 is provided in Appendix A. Fi-
nally, we obtain a computationally efficient F with bounded
approximation error as

F(w∗,Du,D) = w∗ +
nu

(n− nu)H
H̃−1

s,λ∇L(w∗,Du). (10)

Based on our discussion, the complexity of computing F
is O(sp2 + nup). Consequently, we can achieve certified
unlearning based on F according to Theorem 2.3. We for-
mulate the overall algorithm for certified unlearning in Al-
gorithm 1.

4. Practical Consideration
Nonconvergence. In previous results, we let w∗ and w̃∗

be the exact minimum of L over D and Dr, respectively.
However, the training process of DNNs usually stops before
reaching the exact minimum, e.g., early stopping, for better
generalization. Hereby, we analyze the approximation error
bound under the nonconvergence condition. In the noncon-
vergence case, w∗ and w̃∗ are not the exact minimum which
is intractable. We further assume that the norm of the gradi-
ent ∥∇L(w∗,D)∥ and ∥∇L(w̃∗,Dr)∥ are bounded by G.
Consequently, we have the adjusted approximation error
bound in nonconvergence cases.

4

Towards Certified Unlearning for Deep Neural Networks

Algorithm 1 Single-Batch Certified Unlearning for DNNs
Input: original trained model w∗; certification budget ε and
δ; local convex coefficient λ; norm upper bound C; Hessian
norm bound H; number of recursion s; unlearned set Du.
Output: certified unlearning model w−.

1: Compute s i.i.d. Hessian samples {H1,λ, . . . ,Hs,λ}.
2: P0,λ ← ∇L(w∗,Du).
3: for j = 1, . . . , s do
4: Pj,λ ← ∇L(w∗,Du) + (I − Hj,λ

H)Pj−1,λ.
5: end for
6: w̃ ← w∗ + nu

(n−nu)H
Ps,λ.

7: Compute the error bound ∆ based on Equation (11).
8: σ ← ∆

ε

√
2ln(1.25/δ).

9: w− ← w̃ + Y , where Y ∼ N (0, σ2I).

Proposition 4.1. Let w∗ and w̃∗ be two learned model in
practice such that ∥∇L(w∗,D)∥, ∥∇L(w̃∗,Dr)∥ ≤ G and
∥w∗∥, ∥w̃∗∥ ≤ C. Let λmin be the smallest eigenvalue of
Hw∗ , and s be the recursion number for the inverse Hessian
approximation. Let w̃ = w∗ + nu

(n−nu)H
H̃−1

s,λ∇L(w∗,Du)

be an approximation of w̃∗, where λ > ∥Hw∗∥2. Consider
Assumption 3.1 and Assumption 3.2, the following inequality
holds with a probability larger than 1− ρ.

∥w̃ − w̃∗∥2 ≤ 2C(MC + λ) +G

λ+ λmin

+

(
16
√

ln d/ρ

λ+ λmin
+

1

16

)
(2LC +G).

(11)

The proof of Proposition 4.1 is provided in Appendix A.
With Proposition 4.1, we can derive a more precise approxi-
mation error bound in practice, knowing the tractable resid-
ual gradient of the learning algorithm A: ∥∇L(w∗,D)∥.

Sequential Unlearning. In practical scenarios, the user
can send unlearning requests at different time points in a
sequential order (Guo et al., 2020; Nguyen et al., 2022).
For example, after unlearning one user’s data, another user
sends the unlearning request. In such a case, we should
unlearn the second user’s data based on the unlearned model
of the first user’s data. Consequently, certified unlearning
should be able to work in a sequential setting to fit real-
world scenarios. We next show that our certified unlearning
algorithm can be easily implemented in a sequential manner.
Let Duk

be the unlearned set of the k-th unlearning request
and Drk = D\ ∪ki=1 Dui

be the retained set after the k-
th unlearning request. We estimate the retrained model
sequentially as w̃k = w̃k−1− 1

H H̃−1
s,λ,k−1∇L(w̃k−1,Drk)

where H̃−1
s,λ,k−1 is the approximation of the inverse Hessian

over Drk at w̃k−1. Note that in sequential approximation,
we cannot use the efficient computation of ∇L(w̃k−1,Drk)
as w̃k−1 is not a minimum. After estimating the retrained
model after the k-th unlearning request, we add noise to

Algorithm 2 Sequential Unlearning for DNNs
Input: original trained model w∗; certification budget ε and
δ; local convex coefficient λ; norm upper bound C; number
of recursion s; unlearned sets {Du1

, . . . ,Duk
}.

Output: certified unlearning model w−.
1: w̃0 ← w∗, Dr0 ← D.
2: for i = 1, . . . , k do
3: Dri ← Dri−1

\Dui
.

4: Obtain∇L(w̃k−1,Drk) and {H1,λ,i, . . . ,Hs,λ,i}.
5: P0,λ,i ← ∇L(w̃k−1,Drk).
6: for j = 1, . . . , s do
7: Pj,λ,i ← ∇L(w̃k−1,Drk)+(I−Hj,λ,i

H)Pj−1,λ,i.
8: end for
9: w̃i ← w̃i−1 − Ps,λ,i

H .
10: end for
11: Compute the error bound ∆ based on Equation (11).
12: σ ← ∆

ε

√
2ln(1.25/δ).

13: w− ← w̃k + Y , where Y ∼ N (0, σ2I).

obtain the unlearned model according to Theorem 2.3. We
can prove that our sequential approximation also has the
same approximation error bound as single-step cases.

Proposition 4.2. Let w̃0 be a model trained on D,
w∗

k be a model trained on Drk , and w̃k = w̃k−1 −
H̃−1

s,λ,k−1∇L(w̃k−1,Drk) be an approximation of w∗
k =

argmin∥w∥2≤CL(w,Drk) for k = 1, 2, . . . , where λmin

is the smallest eigenvalue of ∇2L(w̃k−1,Drk) and λ >
∥Hw∗∥2. Consider Assumption 3.1 and Assumption 3.2 and
assume ∥∇L(w̃k,Drk−1

)∥, ∥∇L(w∗
k,Drk)∥ ≤ G for k =

1, 2, . . . , the sequential approximation error ∥w̃k −w∗
k∥2

has the same upper bound as Proposition 4.1.

The proof of Proposition 4.2 is provided in Appendix A.
Proposition 4.2 provides a theoretical guarantee on the certi-
fication for sequential unlearning. As mentioned before, our
constraint on model parameters provides a worst-case upper
bound of ∥w∗ − w̃∗∥22 independent on Du so that our error
bound in Equation (11) remains unchanged as the number
of unlearned data gradually increases. We illustrate the de-
tails of sequential unlearning in Algorithm 2. It is worth
noting that we fix the number of unlearned samples in a sin-
gle unlearning process to be b in Definition 2.1. During the
sequential unlearning process, the number of unlearned sam-
ples keeps increasing. We can adapt the value of b after each
unlearning request to fit the size of the current unlearned set
in a post hoc manner. Another rigorous way to preserve the
certification while fixing the unlearning granularity b is to
incorporate the group privacy notion (Dwork et al., 2014)
into the sequential unlearning process. Specifically, we can
fix the unlearning granularity as the number of unlearning
samples in a single unlearning request by linearly increasing
the certification budget ε as kε, where k is the number of

5

Towards Certified Unlearning for Deep Neural Networks

the unlearning requests.

Reducing the Approximation Error Bound. With a lower
approximation error bound, we can achieve the same cer-
tification budget by adding a smaller noise, leading to a
smaller impact on the performance of the unlearned model.
Therefore, we summarize our results and list several ways
to reduce the approximation error bound in practice.

• Increasing the value of λ. According to Equation (11),
we can easily obtain that the approximation error bound
decreases after increasing the value of λ.

• Decreasing the value of C. Similarly, we can reduce the
approximation error bound by decreasing the value of C.
However, reducing C can impact the effectiveness of the
original model. We should carefully select a proper C
without compromising the model performance distinctly.

• Increasing the regularization. Adding a larger regular-
ization would increase the value of λmin. According to
Equation (11), the approximation error bound decreases
when λmin increases, which is consistent with the empiri-
cal results in (Basu et al., 2021).

5. Experiments
5.1. Dataset Information

We conduct experiments based on three widely adopted
real-world datasets for image classification, MNIST (Le-
Cun et al., 1998), SVHN (Netzer et al., 2011), and CIFAR-
10 (Krizhevsky et al., 2009) to evaluate certified unlearning
for DNNs. The MNIST dataset consists of a collection of
60,000 handwritten digit images for training and 10,000
images for testing. The CIFAR-10 dataset contains 60,000
color images in 10 classes, with each class representing a
specific object category. The dataset is split into 50,000
training images and 10,000 test images. The SVHN dataset
consists of house numbers images captured from Google
Street View. The dataset is divided into three subsets: 73,257
training images, 26,032 test images, and 531,131 extra im-
ages. We only use the training set and the test set.

5.2. Baseline Information

To evaluate unlearning methods, we choose three different
types of original models for the image classification task.
In particular, we train a three-layer MLP model, an All-
CNN (Springenberg et al., 2015) model, and a ResNet18 (He
et al., 2016) model for MNIST, CIFAR-10, and SVHN, re-
spectively. Moreover, we compare the performance of our
certified unlearning method with five unlearning baselines
shown as follows. Retrain from scratch: retraining from
scratch is an ideal unlearning baseline since it is usually

considered as an exact unlearning method; Fine tune (Go-
latkar et al., 2020): fine-tuning the original model on the
retained set Dr for one epoch after training the original
model; Negative gradient (Golatkar et al., 2020): conduct-
ing the gradient ascent based on the gradient in terms of
the unlearned set Du for one epoch after training the origi-
nal model; Fisher forgetting (Golatkar et al., 2020): after
training the original model, the Fisher forgetting baseline ex-
ploits the Fisher information matrix to substitute the Hessian
in the single-step Newton update; L-CODEC (Mehta et al.,
2022): after training the original model, L-CODEC selects
a subset of the model parameters to compute the Hessian
based on the Fisher information matrix for efficiency.

5.3. Implementation

We implemented all experiments in the PyTorch (Paszke
et al., 2019) package and exploited Adam (Kingma & Ba,
2015) as the optimizer. All experiments are implemented
on an Nvidia RTX A6000 GPU. We reported the average
value and the standard deviation of the numerical results
under three random seeds. For the values of L and M in our
theoretical results, since finding a practical upper bound of
the Lipschitz constant can be intractable for real-world tasks,
we follow most previous works (Koh & Liang, 2017; Wu
et al., 2023a;b) to set them as hyperparameters which can be
adjusted flexibly to adapt to different scenarios. The choice
of these hyperparameters will not affect the soundness of our
theoretical results, but render an imprecise value of the cer-
tification level, discussed in Appendix D. More detailed hy-
perparameter settings of certified unlearning and baselines
can be found in Appendix D and Section 5.8. Our code is
available at https://github.com/zhangbinchi/
certified-deep-unlearning.

5.4. Unlearning Performance

To evaluate the performance of all unlearning baselines,
we select different unlearning metrics according to exist-
ing studies. Table 1 exhibits the model utility, i.e., micro
F1-score of the predictions over the unlearned set Du, re-
tained set Dr, and the test set Dt. Based on the meaning
of machine unlearning, we expect the results of a desirable
unlearning method to be close to the results of the retrained
model. Hence, we use the retrain-from-scratch baseline as
a standard for evaluating the unlearning baselines. Regard-
ing the performance of unlearning baselines, we have the
following observations derived from the comparison of our
method with unlearning baselines. (1). The micro F1-score
of the certified unlearning method on the unlearned set Du

is closest to the retrained model for most cases. (2). The
micro F1-score of the certified unlearning method on the
retained set Dr and the test set Dt is closest to the retrained
model on MNIST and CIFAR-10. (3). Compared with the
original training, certified unlearning obtains an unlearned

6

https://github.com/zhangbinchi/certified-deep-unlearning
https://github.com/zhangbinchi/certified-deep-unlearning

Towards Certified Unlearning for Deep Neural Networks

Table 1. Comparison between the certified unlearning method and unlearning baselines over three popular DNNs across three real-world
datasets. We record the micro F1-score of the predictions on the unlearned set Du, retained set Dr , and test set Dt.

Method MLP & MNIST AllCNN & CIFAR-10 ResNet18 & SVHN
F1 on Du F1 on Dr F1 on Dt F1 on Du F1 on Dr F1 on Dt F1 on Du F1 on Dr F1 on Dt

Original 98.30 ± 0.51 98.37 ± 0.06 97.50 ± 0.08 87.97 ± 3.01 90.71 ± 1.11 83.04 ± 0.20 94.53 ± 0.74 95.00 ± 0.47 93.26 ± 0.34
Retrain 97.20 ± 0.29 98.27 ± 0.09 97.19 ± 0.15 82.67 ± 0.57 90.10 ± 0.98 82.39 ± 0.98 93.13 ± 0.80 95.73 ± 0.60 93.34 ± 0.15

Fine Tune 97.67 ± 0.33 98.35 ± 0.15 97.22 ± 0.09 89.84 ± 1.99 92.25 ± 0.26 84.31 ± 0.54 93.73 ± 0.33 95.23 ± 0.47 93.75 ± 0.41
Neg Grad 97.83 ± 0.59 98.09 ± 0.28 97.22 ± 0.16 79.60 ± 1.92 85.98 ± 2.97 78.66 ± 1.94 92.13 ± 0.77 92.10 ± 0.60 92.10 ± 0.60

Fisher 97.70 ± 0.90 97.56 ± 0.14 96.69 ± 0.05 87.97 ± 3.69 90.71 ± 1.36 83.04 ± 0.24 94.23 ± 0.91 94.84 ± 0.49 93.06 ± 0.29
L-CODEC 98.27 ± 0.61 98.35 ± 0.07 97.46 ± 0.09 88.20 ± 3.70 90.98 ± 1.28 83.33 ± 0.23 95.00 ± 1.06 95.83 ± 0.35 93.53 ± 0.08
Certified 97.60 ± 0.96 98.28 ± 0.05 97.37 ± 0.11 87.83 ± 3.62 90.68 ± 1.32 83.04 ± 0.38 93.73 ± 0.76 94.61 ± 0.57 92.94 ± 0.49

Table 2. Comparison between the certified unlearning method and unlearning baselines over three popular DNNs across three real-world
datasets. We record the relearn time, the accuracy of the membership inference attack, and the AUC score of the membership inference
attack for measuring the unlearning performance.

Method MLP & MNIST AllCNN & CIFAR-10 ResNet18 & SVHN
Relearn T Attack Acc Attack AUC Relearn T Attack Acc Attack AUC Relearn T Attack Acc Attack AUC

Retrain 25 93.10 ± 0.33 95.16 ± 0.47 17 79.82 ± 0.35 88.71 ± 0.43 7 90.47 ± 0.14 93.07 ± 0.27

Fine Tune 17 93.65 ± 0.23 95.37 ± 0.46 14 79.42 ± 1.05 88.13 ± 0.66 7 90.63 ± 0.32 92.96 ± 0.31
Neg Grad 21 93.73 ± 0.45 95.42 ± 0.43 17 78.63 ± 1.23 87.58 ± 0.96 9 90.02 ± 0.13 92.89 ± 0.22

Fisher 21 93.85 ± 0.22 95.37 ± 0.51 14 79.70 ± 1.03 88.58 ± 0.76 9 90.47 ± 0.84 93.13 ± 0.19
L-CODEC 20 95.05 ± 0.05 95.31 ± 0.21 14 83.60 ± 0.62 92.18 ± 0.17 7 93.22 ± 0.35 93.75 ± 0.54
Certified 24 93.22 ± 0.46 95.28 ± 0.50 25 78.00 ± 1.18 87.22 ± 1.13 9 88.63 ± 1.58 92.18 ± 1.16

MNIST CIFAR-10 SVHN
100

101

102

103

U
nl

ea
rn

in
g…

Ti
m

e

Retrain
Fine…Tune

Neg…Grad
Fisher

L-CODEC
Certified

Figure 2. Comparison of unlearning time between the certified
unlearning method and unlearning baselines over three popular
DNNs across three datasets.

model with a lower F1-score over Du, Dr, and Dt, but the
utility over Du always decreases the most, consistent with
the goal of unlearning. In general, we can find that the neg-
ative gradient baseline leads to a large utility drop over all
subsets and the L-CODEC baseline yields a distinct utility
increase over all subsets. In contrast, our method has a lower
prediction utility over the unlearned set Du and maintains a
desirable utility over the retained set Dr and the test set Dt.

In Table 2, we record several different unlearning metrics,
i.e., relearn time, F1-score of membership inference attack,
and AUC score of membership inference attack. By relearn-
ing the unlearned model over the unlearned set, relearn time
is the number of epochs for the loss function over the un-
learned set Du to descend to a fixed threshold. We tried us-
ing the loss value of the original model over the forget set as
the threshold but led to a very small relearn time that cannot

Table 3. The value of approximation error bound, approximation
error, and approximation error without constraint under different
values of the local convex coefficient λ over the AllCNN backbone
on CIFAR-10.

λ Err Bound Approx Err Approx Err (N)
0 35077.7545 26.5146 46.8936

10 390.3298 26.1841 46.7587
102 78.4548 26.1724 46.7240
103 46.9586 26.1692 46.7091
104 43.8059 26.1688 46.7035

discriminate any two baselines (most methods can recover
the performance within 1 epoch). Finally, we artificially
choose the threshold small enough to make the results of
different baselines distinguishable. As an unlearning metric,
a lower relearn time indicates the unlearned model retains
more information of the unlearned samples. Moreover, we
use the membership inference attack to evaluate the infor-
mation leakage of the unlearning methods. Membership
inference attack trains an adversary to infer whether a data
sample is used to train the unlearned model. We choose the
state-of-the-art membership inference attack method (Chen
et al., 2021) for evaluating machine unlearning methods.
Specifically, we use the accuracy and the AUC score to mea-
sure the utility of the membership inference attack. A higher
attack success rate indicates the unlearned model contains
more information of the unlearned samples. The experimen-
tal results demonstrate that our method is more effective

7

Towards Certified Unlearning for Deep Neural Networks

than other unlearning baselines in removing the information
of the unlearned samples. It is worth noting that the retrain-
ing baseline is less desirable than other unlearning methods
in some cases regarding the membership inference attack
results. The reason is that the retraining baseline is directly
used to train the shadow unlearned model in the member-
ship inference attack framework (Chen et al., 2021) while
the attack model is transferred to attack other unlearning
baselines. In conclusion, our method can effectively remove
the information of unlearned samples from the unlearned
model and preserve the privacy of unlearned samples.

5.5. Efficiency

Efficiency is a crucial advantage of certified unlearning
compared with retraining. We record the time cost in the
unlearning stage for different unlearning baselines and ex-
hibit the results in Figure 2. From the experimental results,
we can observe that (1). Negative gradient has the shortest
unlearning time and retraining has the longest unlearning
time. (2). Certified unlearning has over 10 times speedup
compared with exact unlearning (retrain) over DNNs. (3).
Negative gradient, fine-tuning, and L-CODEC have shorter
unlearning time but less desirable unlearning performance
than certified unlearning. In addition, an important advan-
tage of certified unlearning is its efficiency in adjusting
hyperparameters. In practice, we should choose a proper
group of hyperparameters considering the tradeoff between
the utility of unlearning target data and the utility of pre-
dicting remaining data. Although the prediction utility can
be evaluated efficiently by prevalent utility metrics such
as accuracy and F1-score, evaluating unlearning utility is
much more costly. For the unlearning methods without a
certification, we can only obtain the unlearning utility by
comparing the prediction utility with retrained models or
launching membership inference attacks. In contrast, for
certified unlearning methods, the certification budgets can
be an effective clue of the unlearning utility and we can
adjust the hyperparameters efficiently corresponding to the
certification budgets.

5.6. Ablation Study

Knowing that certified unlearning for DNNs is practical
in real-world experiments, we conduct ablation studies to
verify the effectiveness of adopted techniques separately.
Specifically, to verify the effectiveness of the local convex
approximation, we remove the local convex approximation
by setting λ = 0. We gradually increase the value of λ and
record the approximation error and the approximation error
bound computed by Equation (11). Moreover, to verify the
effectiveness of the constraint ∥w∥2 ≤ C, we remove the
constraint and record the approximation error under each
λ. To compute the approximation error, we compute the
Euclidean distance of the unlearned model parameters and

the retrained model parameters. We present the experimen-
tal results in Table 3. We can observe from Table 3 that
(1). Local convex approximation can distinctly reduce the
approximation error bound and slightly reduce the real ap-
proximation error as well. (2). Certified unlearning with the
constraint ∥w∥2 ≤ C has a much lower approximation error
(bound). (3). There exists a potential of the approximation
error bound to be further tightened.

In addition, we also remove the inverse Hessian approxima-
tion to verify its effect in reducing the time complexity. In
practice, we use torch.linalg.solve function to compute the
exact inverse matrix of the full Hessian instead of using the
inverse Hessian approximation. Due to the memory limi-
tation, we only conduct the experiment with MLP on the
MNIST dataset. The results show that the inverse Hessian
approximation brings 470 times speedup compared with
computing the exact value of the inverse Hessian.

5.7. Sequential Unlearning

We conduct experiments on certified unlearning in a sequen-
tial setting to verify its feasibility in practice. In particu-
lar, we sequentially delete 10,000 training samples from a
trained ResNet-18 model over the SVHN dataset in 10 itera-
tions. Experimental results are shown in Figure 3. Note that
each unlearning step can be seen as a single-step Newton
update that reduces the loss value over the corresponding
retain set. In the sequential setting, the estimation in each
unlearning step reduces the loss value over the correspond-
ing retain set. It is worth noting that the retained set in
each step is a subset of the retained set in any previous step.
Hence, the loss value over the retained set in the k-th un-
learning step Drk is reduced in each previous unlearning
step. Subsequently, the gradient norm ||∇L(w̃k−1,Drk)||
also decreases as the model parameters approach a local
optimum, so does the approximation error bound according
to Equation (11). As a result, in a sequential setting, we can
still launch the certified unlearning method, while robustly
maintaining the utility of the unlearned model.

5.8. Parameter Study

In this experiment, we discuss the tradeoff between certifi-
cation budgets (ε, δ) and the utility of the unlearned model.
According to Theorem 2.3, to achieve a tighter certification
budget, we have to add a larger noise, which can also lead
to utility degradation and limit the practical application of
certified unlearning. To demonstrate the effects of the certi-
fication budgets ε and δ on the unlearned model utility, we
record the micro F1-score of the unlearned model over the
test set when adding Gaussian noises with different stan-
dard deviations. We repeat the experiment with different
values of the local convex coefficient λ and present the re-
sults in Figure 4. We fix the budget δ = 0.1 for Figure 4(a)

8

Towards Certified Unlearning for Deep Neural Networks

1 2 3 4 5 6 7 8 9 10
Unlearning…Steps

2

4

G
ra

di
en

t…
N

or
m

(a) Grad Norm

1 2 3 4 5 6 7 8 9 10
Unlearning…Steps

45.4

45.6

Er
ro

r…
B

ou
nd

(b) Error Bound

1 2 3 4 5 6 7 8 9 10
Unlearning…Steps

93.0

93.5

F1
-S

co
re

(c) Test F1-Score

Figure 3. Gradient norm, approximation error bound, and model utility after each unlearning step.

0 2 4 6
Certification…Level…() 1e3

20

40

60

80

Te
st

…
F1

-S
co

re
…

/…
%

= 1e3

= 1e2

= 1e1

(a) Test F1-ε curve

0.00 0.25 0.50 0.75 1.00 1.25
Certification…Level…()

0

20

40

60

80

Te
st

…
F1

-S
co

re
…

/…
%

= 1e3

= 1e2

= 1e1

(b) Test F1-δ curve

Figure 4. The effect of local convex coefficient λ and certification
budget ε and δ over the MLP backbone on MNIST.

and ε = 1e3 for Figure 4(b). From the experimental re-
sults, we can obtain that (1). The unlearned model utility
will decrease as the certification budget becomes tighter.
(2). Under a fixed certification budget, the model utility
increases when increasing the value of the local convex
coefficient λ. (3). When increasing the value of the local
convex coefficient λ, the model utility becomes more sen-
sitive in terms of the certification level. It is worth noting
that the utility increase indicates a smaller noise added in
the unlearning stage. A smaller noise under a fixed certifi-
cation level further indicates a lower approximation error.
Therefore, Figure 4 also verifies the effectiveness of local
convex approximation in mitigating the approximation er-
ror bound. Although the certification budgets in Figure 4
cannot decrease to a very small value when maintaining a
desirable utility, our certified unlearning outperforms most
unlearning baselines in various unlearning metrics even with
a relatively loose budget according to Table 1 and Table 2,
which verifies the stringency of certified unlearning. Mean-
while, the potential to decrease the certification budget also
necessitates further studies on tightening the approximation
error bound under nonconvex neural models.

6. Related Works
6.1. Exact Unlearning

Exact unlearning is a straightforward method for machine
unlearning. The idea of exact unlearning is to find efficient
ways to retrain the original model from scratch. From the
beginning of machine unlearning, exact unlearning has been
widely studied for statistical query learning (Cao & Yang,

2015), K-Means (Ginart et al., 2019), random forest (Bro-
phy & Lowd, 2021), deep neural networks (Bourtoule et al.,
2021; Aldaghri et al., 2021; Kim & Woo, 2022), and graph
neural networks (Chen et al., 2022). Despite having de-
sirable unlearning effectiveness, exact unlearning methods
cannot scale to large stochastic models or tackle with batch
unlearning settings (Nguyen et al., 2022).

6.2. Certified Unlearning

Certified unlearning was proposed based on the definition
of differential privacy. The idea of certified unlearning is to
find an approximation model similar to the retrained model
in distribution by computationally efficient methods. Exist-
ing certified unlearning methods focus primarily on linear
models (Guo et al., 2020; Izzo et al., 2021; Mahadevan &
Mathioudakis, 2021), general convex models (Ullah et al.,
2021; Sekhari et al., 2021; Neel et al., 2021), Bayesian mod-
els (Nguyen et al., 2020), sum-product networks (Becker &
Liebig, 2022), and graph neural networks (Pan et al., 2023;
Chien et al., 2023; Wu et al., 2023a;b). It is worth noting
that most aforementioned certified unlearning methods are
based on Newton update, i.e., influence function (Koh &
Liang, 2017), to estimate the retrained model. Some existing
works (Mehta et al., 2022) took a tentative step towards cer-
tified unlearning for DNNs, relying on strong assumptions
on the convexity of the objective.

7. Conclusion
Despite the extensive study of certified unlearning in many
convex machine learning models, the application of cer-
tified unlearning in DNNs still poses challenges. In this
paper, we proposed two simple techniques to extend certi-
fied unlearning to nonconvex objectives and incorporated
an inverse Hessian approximation approach to improve effi-
ciency. Regarding the real-world scenarios, we also provide
the theoretical analysis of the certification under noncon-
vergence training and sequential unlearning settings. We
conducted extensive empirical experiments to verify the
efficacy of our proposed methods and the superiority of cer-
tified unlearning in efficiently deleting the information and
protecting the privacy of unlearned data.

9

Towards Certified Unlearning for Deep Neural Networks

Acknowledgements
This work is supported in part by the National Sci-
ence Foundation under grants (IIS-2006844, IIS-2144209,
IIS-2223769, CNS-2154962, CNS-2213700, and BCS-
2228534), the Commonwealth Cyber Initiative Awards un-
der grants (VV-1Q23-007, HV-2Q23-003, and VV-1Q24-
011), the JP Morgan Chase Faculty Research Award, and
the Cisco Faculty Research Award.

Impact Statement
This paper extends the certification of machine unlearning
to nonconvex, nonconvergence, and sequential settings in
real-world scenarios. The goal of this work is to advance
the field of Machine Learning. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.

References
Agarwal, N., Bullins, B., and Hazan, E. Second-order

stochastic optimization for machine learning in linear
time. arXiv preprint arXiv:1602.03943, 2016.

Agarwal, N., Bullins, B., and Hazan, E. Second-order
stochastic optimization for machine learning in linear
time. The Journal of Machine Learning Research, pp.
4148–4187, 2017.

Aldaghri, N., Mahdavifar, H., and Beirami, A. Coded ma-
chine unlearning. IEEE Access, pp. 88137–88150, 2021.

Balle, B. and Wang, Y.-X. Improving the gaussian mecha-
nism for differential privacy: Analytical calibration and
optimal denoising. In International Conference on Ma-
chine Learning, pp. 394–403, 2018.

Basu, S., Pope, P., and Feizi, S. Influence functions in
deep learning are fragile. In International Conference on
Learning Representations, 2021.

Becker, A. and Liebig, T. Certified data removal in sum-
product networks. arXiv preprint arXiv:2210.01451,
2022.

Bertsekas, D. P. Nonlinear programming. Journal of the
Operational Research Society, pp. 334–334, 1997.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159, 2021.

Brophy, J. and Lowd, D. Machine unlearning for random
forests. In International Conference on Machine Learn-
ing, pp. 1092–1104, 2021.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE symposium on security
and privacy, pp. 463–480, 2015.

CCPA. https://oag.ca.gov/privacy/ccpa. 2018. URL https:
//oag.ca.gov/privacy/ccpa.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. When machine unlearning jeopardizes
privacy. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, pp.
896–911, 2021.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. Graph unlearning. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 499–513, 2022.

Chien, E., Pan, C., and Milenkovic, O. Efficient model up-
dates for approximate unlearning of graph-structured data.
In International Conference on Learning Representations,
2023.

Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankan-
halli, M. Can bad teaching induce forgetting? unlearn-
ing in deep networks using an incompetent teacher. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 7210–7217, 2023.

Davis, D. and Drusvyatskiy, D. Stochastic model-based
minimization of weakly convex functions. SIAM Journal
on Optimization, 29(1):207–239, 2019.

Davis, D. and Grimmer, B. Proximally guided stochastic
subgradient method for nonsmooth, nonconvex problems.
SIAM Journal on Optimization, 29(3):1908–1930, 2019.

Dwork, C. Differential privacy. In Proceedings of the 33rd
international conference on Automata, Languages and
Programming-Volume Part II, pp. 1–12, 2006.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, pp. 211–407, 2014.

GDPR. https://gdpr-info.eu/. 2016. URL https://
gdpr-info.eu/.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making ai
forget you: Data deletion in machine learning. Advances
in neural information processing systems, 2019.

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of
the spotless net: Selective forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020.

10

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu/
https://gdpr-info.eu/

Towards Certified Unlearning for Deep Neural Networks

Golatkar, A., Achille, A., Ravichandran, A., Polito, M., and
Soatto, S. Mixed-privacy forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 792–801, 2021.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. Certified data removal from machine learning models.
In International Conference on Machine Learning, pp.
3832–3842, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Izzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. Approx-
imate data deletion from machine learning models. In
International Conference on Artificial Intelligence and
Statistics, pp. 2008–2016, 2021.

Kim, J. and Woo, S. S. Efficient two-stage model retraining
for machine unlearning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 4361–4369, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kurmanji, M., Triantafillou, P., Hayes, J., and Triantafillou,
E. Towards unbounded machine unlearning. Advances in
Neural Information Processing Systems, 36, 2023.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Liu, J., Ram, P., Yao, Y., Liu, G., Liu, Y., SHARMA, P., Liu,
S., et al. Model sparsity can simplify machine unlearning.
Advances in Neural Information Processing Systems, 36,
2023.

Mahadevan, A. and Mathioudakis, M. Certifiable ma-
chine unlearning for linear models. arXiv preprint
arXiv:2106.15093, 2021.

Mehta, R., Pal, S., Singh, V., and Ravi, S. N. Deep unlearn-
ing via randomized conditionally independent hessians.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 10422–10431,
2022.

Mercuri, S., Khraishi, R., Okhrati, R., Batra, D., Hamill,
C., Ghasempour, T., and Nowlan, A. An introduction to
machine unlearning. arXiv preprint arXiv:2209.00939,
2022.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-
delete: Gradient-based methods for machine unlearning.
In Algorithmic Learning Theory, pp. 931–962, 2021.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Nguyen, Q. P., Low, B. K. H., and Jaillet, P. Variational
bayesian unlearning. Advances in Neural Information
Processing Systems, 33:16025–16036, 2020.

Nguyen, T. T., Huynh, T. T., Nguyen, P. L., Liew, A. W.-C.,
Yin, H., and Nguyen, Q. V. H. A survey of machine
unlearning. arXiv preprint arXiv:2209.02299, 2022.

Nocedal, J. and Wright, S. J. Numerical Optimization.
Springer, 2006.

Pan, C., Chien, E., and Milenkovic, O. Unlearning graph
classifiers with limited data resources. In Proceedings of
the ACM Web Conference 2023, pp. 716–726, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T. Re-
member what you want to forget: Algorithms for machine
unlearning. Advances in Neural Information Processing
Systems, pp. 18075–18086, 2021.

Sommer, D. M., Song, L., Wagh, S., and Mittal, P. Athena:
Probabilistic verification of machine unlearning. Proc.
Privacy Enhancing Technol, 3:268–290, 2022.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. Striving for simplicity: The all convolutional
net. In International Conference on Learning Represen-
tations, Workshop Track Proceedings, 2015.

Tarun, A. K., Chundawat, V. S., Mandal, M., and Kankan-
halli, M. Fast yet effective machine unlearning. IEEE
Transactions on Neural Networks and Learning Systems,
2023.

Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni,
K., Poland, D., Borth, D., and Li, L.-J. Yfcc100m: The
new data in multimedia research. Communications of the
ACM, pp. 64–73, 2016.

11

Towards Certified Unlearning for Deep Neural Networks

Ullah, E., Mai, T., Rao, A., Rossi, R. A., and Arora, R. Ma-
chine unlearning via algorithmic stability. In Conference
on Learning Theory, pp. 4126–4142, 2021.

Warnecke, A., Pirch, L., Wressnegger, C., and Rieck, K. Ma-
chine unlearning of features and labels. In Network and
Distributed System Security Symposium, NDSS, 2023.

Wu, J., Yang, Y., Qian, Y., Sui, Y., Wang, X., and He, X.
Gif: A general graph unlearning strategy via influence
function. In Proceedings of the ACM Web Conference
2023, pp. 651–661, 2023a.

Wu, K., Shen, J., Ning, Y., Wang, T., and Wang, W. H.
Certified edge unlearning for graph neural networks. In
Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 2606–2617,
2023b.

Xu, H., Zhu*, T., Zhang, L., Zhou, W., and Yu, P. S. Ma-
chine unlearning: A survey. ACM Computing Surveys,
2023.

Zhang, H., Nakamura, T., Isohara, T., and Sakurai, K. A
review on machine unlearning. SN Computer Science,
2023.

12

Towards Certified Unlearning for Deep Neural Networks

A. Proofs
A.1. Proof of Proposition 2.2

Proof. Let the unlearning process be an identical map in terms of the model, i.e., U(D,Du,A(D)) = A(D). Since A is a
differentially private algorithm, we have ∀ T ⊆ H,

Pr(A(D) ∈ T) ≤ eεPr(A(Du) ∈ T) + δ. (12)

Similarly, we also have ∀ T ⊆ H,
Pr(A(Du) ∈ T) ≤ eεPr(A(D) ∈ T) + δ. (13)

According to Definition 2.1, A(D) is an ε− δ certified unlearned model under our defined unlearning process U .

A.2. Proof of Theorem 2.3

Proof. According to Lemma A.1, we obtain that U is ε − δ differentially private. According to Proposition 2.2,
U(w∗,Du,D) = w̃ + Y is an ε− δ certified unlearning process.

Lemma A.1. Let f be an arbitrary d-dimensional function, define its ℓ2 sensitivity as ∆2f = maxadjacent x,x′∥f(x)−f(x′)∥2.
For c2 > 2ln(1.25/δ), the Gaussian mechanism, adding noise scaled to N (0, σ2) to each of the d components of the output,
with the parameter σ > c∆2f

ε , is (ε, δ) differentially private.

Proof. Refer to the proof of Theorem A.1 (Dwork et al., 2014).

A.3. Proof of Lemma 3.3

Proof. First, we have
w̃ − w̃∗ = w∗ −H−1

w∗∇L(w∗,Dr)− w̃∗. (14)

Considering that w̃∗ = argminw∈HL(w,Dr), we have∇L(w̃∗,Dr) = 0. By substitute this equation into Equation (14)
we have

w̃ − w̃∗ = w∗ − w̃∗ −H−1
w∗ (∇L(w∗,Dr)−∇L(w̃∗,Dr)) . (15)

According to Assumption 3.2, the loss function L has the second-order derivative. Consequently, according to the
fundamental theorem of calculus, we have

∇L(w∗,Dr)−∇L(w̃∗,Dr) =

∫ 1

0

Hw∗+t(w̃∗−w∗)(w̃
∗ −w∗)dt. (16)

By incorporate Equation (16) into Equation (15), we have

w̃ − w̃∗ = H−1
w∗

(
Hw∗(w∗ − w̃∗) +

∫ 1

0

Hw∗+t(w̃∗−w∗)(w̃
∗ −w∗)dt

)
= H−1

w∗ ·
∫ 1

0

(Hw∗ −Hw∗+t(w̃∗−w∗))(w
∗ − w̃∗)dt.

(17)

We compute the norm of both sides and obtain the right-hand side as∥∥∥∥H−1
w∗ ·

∫ 1

0

(Hw∗ −Hw∗+t(w̃∗−w∗))(w
∗ − w̃∗)dt

∥∥∥∥
≤∥H−1

w∗∥ ·
∫ 1

0

∥Hw∗ −Hw∗+t(w̃∗−w∗)∥ · ∥w∗ − w̃∗∥dt.
(18)

According to Assumption 3.2, the loss function l has an M -Lipschitz Hessian. Hence, the loss function L also has an
M -Lipschitz Hessian. Consequently, we have

∥Hw∗ −Hw∗+t(w̃∗−w∗)∥ ≤Mt∥w∗ − w̃∗∥. (19)

13

Towards Certified Unlearning for Deep Neural Networks

Incorporating Equation (19) into Equation (18) leads to∥∥∥∥H−1
w∗ ·

∫ 1

0

(Hw∗ −Hw∗+t(w̃∗−w∗))(w
∗ − w̃∗)dt

∥∥∥∥
≤∥H−1

w∗∥ ·
∫ 1

0

Mt∥w∗ − w̃∗∥2dt

=
M

2
∥H−1

w∗∥ · ∥w∗ − w̃∗∥2.

(20)

To finish the proof, we can incorporate Equation (20) into Equation (17) and let the norm be the ℓ-2 norm.

A.4. Proof of Theorem 3.4

Proof. Following the proof of Lemma 3.3, we have

w̃ − w̃∗ = w∗ − w̃∗ − (Hw∗ + λI)−1(∇L(w∗,Dr)−∇L (w̃∗,Dr)) . (21)

Based on Assumption 3.2, Equation (16) still holds. Incorporating Equation (16) into Equation (21) leads to

w̃ − w̃∗ = (Hw∗ + λI)−1 ·
∫ 1

0

(Hw∗ + λI −Hw∗+t(w̃∗−w∗))(w
∗ − w̃∗)dt. (22)

Then, we compute the norm of both sides and obtain the right-hand side as∥∥∥∥(Hw∗ + λI)−1 ·
∫ 1

0

(Hw∗ + λI −Hw∗+t(w̃∗−w∗))(w
∗ − w̃∗)dt

∥∥∥∥
≤∥(Hw∗ + λI)−1∥ ·

∫ 1

0

(
λ+ ∥Hw∗ −Hw∗+t(w̃∗−w∗)∥

)
· ∥w∗ − w̃∗∥dt.

(23)

According to Assumption 3.2, Equation (19) still holds. By incorporating Equation (19) into Equation (23), we have∥∥∥∥(Hw∗ + λI)−1 ·
∫ 1

0

(Hw∗ + λI −Hw∗+t(w̃∗−w∗))(w
∗ − w̃∗)dt

∥∥∥∥
≤∥(Hw∗ + λI)−1∥ ·

∫ 1

0

Mt∥w∗ − w̃∗∥2 + λ∥w∗ − w̃∗∥dt

=

(
M

2
∥w∗ − w̃∗∥+ λ

)
∥(Hw∗ + λI)−1∥ · ∥w∗ − w̃∗∥.

(24)

For the inverse Hessian term, We then have

∥(Hw∗ + λI)−1∥2 =
√
λmax[((Hw∗ + λI)−1)⊤(Hw∗ + λI)−1]

=
√
λmax[((Hw∗ + λI)(Hw∗ + λI)⊤)−1]

=
1√

λmin[(Hw∗ + λI)(Hw∗ + λI)⊤]

=
1

λmin[Hw∗ + λI]

=
1

λ+ λmin[Hw∗]
,

(25)

where λmin[Hw∗] and λmax[Hw∗] denote the minimum and maximum eigenvalue of the Hessian Hw∗ . In addition, we
also have ∥w∗∥2 ≤ C and ∥w̃∗∥2 ≤ C. Consequently, we have

∥w∗ − w̃∗∥2 ≤ 2C. (26)

To finish the proof, we can incorporate Equation (25), Equation (26), and Equation (24) into Equation (22) and let the norm
be the ℓ-2 norm.

14

Towards Certified Unlearning for Deep Neural Networks

A.5. Proof of Proposition 3.5

Proof. We compute the expectation value for both sides of Equation (8). Considering {H1,λ, . . . ,Hs,λ} are i.i.d. samples
from the Hessian Hw∗ + λI , we have

E[H̃−1
t,λ] =E

[
I +

(
I − Ht,λ

H

)
H̃−1

t−1,λ

]
=I + E[H̃−1

t−1,λ]−
1

H
E[Ht,λH̃

−1
t−1,λ]

=I + E[H̃−1
t−1,λ]−

1

H
E[Hw∗ + λI]E[H̃−1

t−1,λ].

(27)

Let s→∞, the limit E[H̃−1
∞,λ] = limt→∞ E[H̃−1

t,λ] exists as ∥E[Ht,λ]
H ∥ ≤ 1. We then compute the limit for both sides of

Equation (27) and have

E[H̃−1
∞,λ] =I + E[H̃−1

∞,λ]−
1

H
E[Hw∗ + λI]E[H̃−1

∞,λ]. (28)

Consequently, we have

E

[
H̃−1

∞,λ

H

]
=E[(Hw∗ + λI)−1]. (29)

Hence, we have proved that
H̃−1

s,λ

H is an asymptotic unbiased estimator of the inverse Hessian (Hw∗ + λI)−1.

A.6. Proof of Theorem 3.6

Proof. Following the proof of Lemma 3.3, we have

w̃ − w̃∗ = w∗ − w̃∗ +
nu

(n− nu)H
H̃−1

s,λ∇L(w
∗,Du)

= w∗ − w̃∗ −
H̃−1

s,λ

H
∇L(w∗,Dr)

= w∗ − w̃∗ −
H̃−1

s,λ

H
(∇L(w∗,Dr)−∇L (w̃∗,Dr))

= w∗ − w̃∗ −

(
(Hw∗ + λI)−1 +

H̃−1
s,λ

H
− (Hw∗ + λI)−1

)
· (∇L(w∗,Dr)−∇L(w̃∗,Dr)) .

(30)

The right-hand side of Equation (30) can be divided into two parts, (1). w∗ − w̃∗ − (Hw∗ + λI)−1(∇L(w∗,Dr) −
∇L(w̃∗,Dr)) and (2). ((Hw∗ + λI)−1 − H̃−1

s,λ/H)(∇L(w∗,Dr)−∇L(w̃∗,Dr)). We compute the norm for both sides
of Eq. (30) and the norm of the right-hand side is smaller than the summation of the norm of the part (1) and the norm
of the part (2). To find an upper bound of ∥w̃ − w̃∗∥, we can find upper bounds for the norm of part (1) and the norm of
part (2). According to Theorem 3.4, the norm of part (1) is bounded by 2C(MC+λ)

λ+λmin
. Next, our goal is to find the upper

bound of the norm of part (2). In particular, the norm of part (2) is smaller than the product ∥(Hw∗ + λI)−1 − H̃−1
s,λ/H∥ ·

∥∇L(w∗,Dr)−∇L(w̃∗,Dr)∥. Refer to Lemma 3.6 (Agarwal et al., 2016), we have∥∥∥∥∥(Hw∗ + λI)−1 −
H̃−1

s,λ

H

∥∥∥∥∥ >

(
16
√
ln d/ρ

λ+ λmin
+

1

16

)
, (31)

with a probability smaller than ρ. According to Assumption 3.1, we also have

∥∇L(w∗,Dr)−∇L(w̃∗,Dr)∥ ≤ L∥w∗ − w̃∗∥ ≤ 2LC. (32)

Then, we incorporate Equation (31) and Equation (32) and obtain the upper bound of the norm of part (2):(
32
√

ln d/ρ

λ+λmin
+ 1

8

)
LC. To finish the proof, we can combine the upper bounds for the norm of part (1) and the norm

of part (2) and then obtain Equation (9).

15

Towards Certified Unlearning for Deep Neural Networks

A.7. Proof of Proposition 4.1

Proof. Following the proof of Lemma 3.3, we have

w̃ − w̃∗ = w∗ − w̃∗ +
nu

(n− nu)H
H̃−1

s,λ∇L(w
∗,Du)

= w∗ − w̃∗ −
H̃−1

s,λ

H
∇L(w∗,Dr)

= w∗ − w̃∗ −
H̃−1

s,λ

H
(∇L(w∗,Dr)−∇L(w̃∗,Dr))−

H̃−1
s,λ

H
∇L(w̃∗,Dr).

(33)

We compute the norm for both sides of Equation (33) and have

∥w̃ − w̃∗∥ ≤

∥∥∥∥∥w∗ − w̃∗ −
H̃−1

s,λ

H
(∇L(w∗,Dr)−∇L(w̃∗,Dr))

∥∥∥∥∥+
∥∥∥∥∥H̃

−1
s,λ

H
∇L(w̃∗,Dr)

∥∥∥∥∥ . (34)

To find an upper bound of ∥w̃ − w̃∗∥, we can find an upper bound for each norm value on the right-hand side. According to

the proof of Theorem 3.6, we have
∥∥∥∥w∗ − w̃∗ − H̃−1

s,λ

H (∇L(w∗,Dr)−∇L(w̃∗,Dr))

∥∥∥∥ is upper bounded by 2C(MC+λ)
λ+λmin

+

(
32
√

ln d/ρ

λ+λmin
+ 1

8)LC with a probability larger than 1− ρ. Next, our goal is to find the upper bound for
∥∥∥∥ H̃−1

s,λ

H ∇L(w̃∗,Dr)

∥∥∥∥.

In particular, we have∥∥∥∥∥H̃
−1
s,λ

H
∇L(w̃∗,Dr)

∥∥∥∥∥ ≤ ∥(Hw∗ + λI)−1∇L(w̃∗,Dr)∥+

∥∥∥∥∥(H̃
−1
s,λ

H
− (Hw∗ + λI)−1)∇L(w̃∗,Dr)

∥∥∥∥∥
≤ ∥(Hw∗ + λI)−1∥ · ∥∇L(w̃∗,Dr)∥+

∥∥∥∥∥H̃
−1
s,λ

H
− (Hw∗ + λI)−1

∥∥∥∥∥ · ∥∇L(w̃∗,Dr)∥.
(35)

According to Equation (25), we have ∥(Hw∗ + λI)−1∥ ≤ 1
λ−∥Hw∗∥ . According to Equation (31), we have ∥(Hw∗ +

λI)−1−H̃−1
s,λ/H∥ >

(
16
√

ln d/ρ

λ+λmin
+ 1

16

)
with a probability smaller than ρ. We also have ∥∇L(w∗,D)∥, ∥∇L(w̃∗,Dr)∥ ≤

G. By incorporating these results into Equation (35) we have∥∥∥∥∥H̃
−1
s,λ

H
∇L(w̃∗,Dr)

∥∥∥∥∥ ≤
(

1

λ− ∥Hw∗∥
+

16
√
ln d/ρ

λ+ λmin
+

1

16

)
G. (36)

To finish the proof, we can incorporate Equation (36) and results of Theorem 3.6 into Equation (34).

A.8. Proof of Proposition 4.2

Proof. Follow the proof of Proposition 4.1.

B. Comparison Between Convex and Nonconvex Objectives
In this section, we focus on the results shown in Theorem 3.4. Our results proposed in this paper do not require the objective
to be convex. However, if we further assume the objective to be convex, we can obtain a tighter approximation upper bound
as follows.

Proposition B.1. Let w∗ = argmin∥w∥2≤CL(w,D) and w̃∗ = argmin∥w∥2≤CL(w,Dr). Let w̃ = w∗ −
H−1

w∗∇L(w∗,Dr) be an approximation of w̃∗. Consider Assumption 3.2 and assume l(w,x) to be K-strongly convex with
respect to w, then we have

∥w̃ − w̃∗∥2 ≤
2MC2

K
. (37)

16

Towards Certified Unlearning for Deep Neural Networks

Table 4. The hyperparameter settings of original models on the corresponding datasets.
Hyperparameter MLP AllCNN ResNet
learning rate 1e−3 1e−3 1e−3

weight decay 5e−4 5e−4 5e−4

epochs 50 50 50
dropout 0.5 0.5 0.5
batch size 128 128 128
param bound C 10 20 20

Proof. As the loss function l is K-strongly convex, the loss function L is also K-strongly convex. Consequently, we have
∥Hw∗∥2 ≥ K and ∥H−1

w∗∥2 ≤ 1
K . In addition, Equation (26) still holds. By incorporating the upper bound ∥H−1

w∗∥2 ≤ 1
K

and Equation (26) into Lemma 3.3, we can obtain Equation (37).

Considering the similarity between λ + λmin in Equation (7) and K in Equation (37) (both measuring the objective’s
convexity), we use λ+ λmin to replace K in Equation (37) and derive the approximation error bound for convex models as
2MC2

λ+λmin
. Comparing the result with Equation (37), we find that the Newton update method has a lower approximation error

bound for convex models versus nonconvex models. This result highlights the fact that our method works under both convex
and nonconvex objectives. In particular, our approximation obtains a tighter upper bound for strongly convex objectives.

C. Bounded Model Parameters is also Necessary for Convex Models
In this section, we demonstrate our observation that previous works (Sekhari et al., 2021) on certified unlearning for convex
models implicitly rely on the requirement of bounded model parameters ∥w∥2 ≤ C, which means our proposed constraint
on model parameters is also suitable for convex models.

Previous works (Sekhari et al., 2021) studied the certified unlearning and its generalization for convex models. In particular,
they jointly assume the objective to be L-Lipschitz continuous and M -strongly convex in the proof of certification. Next,
we demonstrate that these two assumptions jointly indicate ∥w∥2 ≤ C. Let w1,w2 be two models in the hypothesis space,
and L be the loss function. Based on the strong convexity, we have

∥∇L(w1)−∇L(w2)∥ ≥M∥w1 −w2∥. (38)

In addition, according to the Lipschitz continuity, we have

∥∇L(w)∥ ≤ L, (39)

for any w in the hypothesis space. Incorporate Eq. (39) into Eq. (38) and we have

2L ≥ ∥∇L(w1)−∇L(w2)∥ ≥M∥w1 −w2∥. (40)

Consequently, we have ∥w1 −w2∥ ≤ 2L
M for any w1 and w2 in the hypothesis space. The certification requires any two

models in the hypothesis space to have a bounded distance, which is a non-trivial condition. Luckily, by letting C = L
M ,

our constraint on model parameters ∥w∥ ≤ C satisfy the condition for certification. Hence, we find that the assumptions
in previous works naturally necessitate a constraint of bounded norm to the model parameters. In this paper, we exploit
projected gradient descent to actively restrict the norm of model parameters for bounding the approximation error. We argue
that this technique is also necessary for fulfilling the assumptions made in previous works to derive the certification for
convex models.

D. Implementation
We implemented all experiments in the PyTorch (Paszke et al., 2019) package and exploited Adam (Kingma & Ba, 2015) as
the optimizer for training. For the training of original models, we exploited Adam as the optimizer. We set the learning
rate as 1e−3, the weight decay parameter as 5e−4, and the training epochs number as 50. We ran all experiments on an
Nvidia RTX A6000 GPU. All experiments are conducted based on three real-world datasets: MNIST (LeCun et al., 1998),

17

Towards Certified Unlearning for Deep Neural Networks

CIFAR-10 (Krizhevsky et al., 2009), and SVHN (Netzer et al., 2011). All datasets are publicly accessible (MNIST with
GNU General Public License, CIFAR-10 with MIT License, and SVHN with CC BY-NC License). We reported the average
value and the standard deviation of the numerical results under three different random seeds. For the relearn time in Table 2,
we directly report the rounded mean value without the standard deviation as the value of the epoch number is supposed to be
an integer. The unlearned data is selected randomly from the training set. Detailed hyperparameter settings of the original
models are presented in Table 4. The hyperparameter settings of unlearning baselines are shown as follows.

• Retrain from scratch: size of unlearned set: 1,000.

• Fine tune: size of unlearned set: 1,000; learning rate: 1e−3; epochs: 1.

• Negative gradient: size of unlearned set: 1,000; learning rate: 1e−4; epochs: 1.

• Fisher forgetting: size of unlearned set: 1,000; α: 1e−6 for MLP, 1e−8 for AllCNN and ResNet.

• L-CODEC: size of unlearned set: 1,000; number of perturbations: 25; Hessian type: Sekhari; ε: 100; δ: 0.1; ℓ-2
regularization: 5e−4.

• Certified unlearning: size of unlearned set: 1,000; number of recursion s: 1,000; standard deviation σ: 1e−2 for MLP,
1e−3 for AllCNN and ResNet; continuity coefficients L: 1, M : 1; minimal eigenvalue of Hessian λmin: 0; convex
coefficient λ: 1 for MLP, 200 for AllCNN, 2,000 for ResNet; Hessian scale H: 10 for MLP, 20,000 for AllCNN, 50,000
for ResNet.

The detailed meanings of hyperparameters in unlearning baselines can be found in the original papers. For λ, since finding a
practical upper bound of the norm of Hessian can be intractable for real-world tasks, we follow most previous works (Koh &
Liang, 2017; Wu et al., 2023a;b) to set it as a hyperparameter which can be chosen flexibly to adapt to different scenarios. In
addition, we compute the norm of the Hessian in the case of MLP over MNIST. To reduce the time complexity, we use
the Hessian with respect to a single random mini-batch of Dr as an unbiased estimation of the full Hessian. The results of
the mean value and the variance of the norm of the stochastic Hessian (under 10 different random seeds) is 12.11± 0.63,
which falls into the range of λ in Table 3. When λ < 12.11, the computed error bound is still valid (from Table 3, as the
value of λ decreases, the computed error bound increases correspondingly, indicating that a smaller choice of λ can still lead
to a valid but larger error bound). In this case, the certification requires adding a larger noise to hide the (overestimated)
remaining information of the unlearned data. Different from λ, the values of L, M , and λmin only affect the value of the
approximation error bound ∆. In practice, following previous works (Guo et al., 2020), we first determine the variance
of noise σ (to preserve the model utility after adding noise) and then obtain the certification level ε and δ which can be
achieved. Hence, the certification holds for any choices of L, M , and λmin, but the calculated certification level can be
imprecise in some cases. To weaken the dependency of the approximation error bound on the Lipschitz constants, we leave
more general theoretical results as future works. It is also worth noting that the values of certification budgets ε and δ are
flexible in our experiments. In particular, we fixed the noise and the budgets ε and δ can be tuned in a range for specific
needs (we have ε ∈ [1e2, 5e3] when δ ∈ [0.1, 1], and the decrease of one can lead to the increase of the other). Detailed
results regarding the certification budgets are shown in the parameter study in Section 5.8. In addition, we list some key
packages in Python required for implementing certified unlearning as follows.

• python == 3.9.16

• torch == 1.12.1

• torchvision == 0.13.1

• numpy == 1.24.3

• scikit-learn == 1.2.2

• scipy == 1.10.1

18

Towards Certified Unlearning for Deep Neural Networks

Table 5. The micro F1-score of the original model and the retrained model without using PGD.
MLP & MNIST CNN & CIFAR-10 ResNet & SVHN

Original 97.03 ± 0.25 83.16 ± 0.62 93.92 ± 0.19
Retrain 96.80 ± 0.20 83.39 ± 0.59 93.80 ± 0.31

E. Additional Experiments
E.1. Effect of Bounded Model Parameters

In our experiments, we adopt PGD during the training of the original model and the retrained model. PGD is conducted
solely for ensuring the strictness of our theoretical results while trying not to affect the model utility. To achieve this, we
deliberately choose the value of C in the constraint |w|2 < C to make PGD have little impact on the model utility. After
verifying with experiments, we find that C = 10 for MLP over MNIST, C = 20 for CNN over CIFAR-10, and C = 20
for ResNet over SVHN can be a desirable choice. In this experiment, we record and report the utility metrics (micro
F1-score over the test set) of the original model and retrained model without conducting PGD in Table 5. Compared with
the corresponding results in Table 1, we can verify that our adopted PGD modification with a carefully chosen constraint
does not affect the model utility distinctly.

E.2. Comparison with Advanced Baselines

Table 6. Comparison of accuracy among three advanced unlearning baselines over three popular DNNs across three real-world datasets.
We record the micro F1-score of the predictions on the unlearned set Du, retained set Dr , and test set Dt.

Method MLP & MNIST AllCNN & CIFAR-10 ResNet18 & SVHN
F1 on Du F1 on Dr F1 on Dt F1 on Du F1 on Dr F1 on Dt F1 on Du F1 on Dr F1 on Dt

SCRUB 98.10 ± 0.60 98.12 ± 0.05 97.25 ± 0.04 90.73 ± 2.63 96.83 ± 0.82 86.31 ± 0.31 94.07 ± 0.38 96.09 ± 1.25 94.02 ± 0.38
NegGrad+ 97.43 ± 0.60 98.92 ± 0.01 97.68 ± 0.07 80.70 ± 8.79 96.58 ± 0.47 86.05 ± 1.52 91.03 ± 1.32 97.58 ± 0.45 95.07 ± 0.12
ℓ-1 Sparse 97.83 ± 0.47 98.40 ± 0.19 97.24 ± 0.12 87.17 ± 2.80 92.26 ± 0.37 83.99 ± 0.32 94.33 ± 0.61 95.55 ± 0.33 93.67 ± 0.16

To strengthen the soundness of certified unlearning, we supply three more advanced baselines for approximate unlearning:
SCRUB (Kurmanji et al., 2023), NegGrad+ (Liu et al., 2023), and ℓ-1 Sparse (Liu et al., 2023). For SCRUB, we adopt
the provided hyperparameter settings in the code base (small scale for MLP and large scale for CNN and ResNet). For
NegGrad+, we tune the hyperparameter manually and find the optimal setting α=0.95, epoch=1, and learning rate=1e-4. For
ℓ-1 Sparse (Liu et al., 2023), the proposed framework consists of two parts, pruning and unlearning. The pruning step is
orthogonal to all other unlearning baselines. Hence, we drop the pruning step for all baselines to ensure a fair comparison
(similar to the case that we use PGD during training for all baselines). It is worth noting that other than pruning, ℓ-1 sparse
unlearning proposes a novel unlearning technique as well (adding an ℓ-1 penalty to the objective). As a result, we include ℓ-1
sparse unlearning without pruning in the additional results shown in Table 6. Comparing the additional results with Table 1,
we can observe that our proposed certified method still has the most desirable and robust performance. Compared with the
negative gradient method, NegGrad+ improves the utility over the retain and test sets but still has a lower performance on
the forget set. With the ℓ-1 penalty, the ℓ-1 sparse unlearning has a distinct improvement compared with vanilla fine-tuning.

19

