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Abstract—The importance of secure wireless communication
is increasing as adversaries’ eavesdropping capabilities become
more advanced. In this paper, we propose a novel steganogra-
phy method that utilizes error pattern embedding to minimize
the likelihood of detection by eavesdroppers. Unlike existing
error pattern embedding steganography, we introduce a secret
codebook generation algorithm designed to maximize the secret
codebook size. Our algorithm is applicable to any coding scheme
that possesses a predefined maximum number of correctable
errors. In addition, we propose a novel steganalysis scheme for
error pattern embedding steganography. Our method is based on
comparing two distinct empirical relative entropies: one derived
from the empirical probability mass function (pmf) of observed
transmitted signals and the other from the empirical pmf of
randomly generated signals following a Bemoulli(%) distribution.
Simulation results indicate that our algorithm enhances security
by effectively reducing the detection probability by the eaves-
dropper while simultaneously increasing the capacity for secret
information.

Index Terms—Steganography, Steganalysis, Error Control
Coding, Secret Codeword, Secret Codebook.

I. INTRODUCTION

Wireless networks have seen exponential growth in popular-
ity due to the inherent accessibility provided by the broadcast
nature of the wireless medium. However, this ease of reception
also introduces significant security vulnerabilities. Within the
range of wireless transmissions between transmitters and le-
gitimate receivers, passive eavesdroppers can intercept signals
without risk of detection [1]. To enhance security in wire-
less communications, the employment of cryptography and
steganography stands as an effective strategy. Cryptography
is the technique of securing information using mathemati-
cal concepts and rule-based calculations, ensuring that only
the intended recipient can read the message. Conversely,
steganography aims to conceal the very existence of the secret
message within the transmitted signal, thereby preventing the
eavesdropper from recognizing that a message is being sent,
maintaining its confidentiality.

Information-theoretical analysis of steganography is com-
prehensively examined in [2]-[4]. The fundamental structure
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of steganography involves ‘cover data’ and ‘stego data.” The
transmitter embeds the secret message into the cover data,
resulting in the stego data. The goal is to ensure that the
probability distribution of the stego data closely resembles that
of the cover data, making it difficult for an eavesdropper to
distinguish between the two. Relative entropy, or Kullback-
Leibler (KL) divergence, is commonly employed as a metric
for measuring the similarity between the two probability
distributions.

In practical steganography studies, images are often chosen
as the cover data. The most prevalent scheme in image
steganography involves embedding the secret message into
the least significant bit (LSB) of each pixel data [5], [6].
Correspondingly, steganalysis techniques, which aim to detect
hidden messages within given data, have been developed
specifically for LSB steganography [7]-[9].

Error-correcting codes are extensively employed in
steganography. These can be classified into two categories:
syndrome embedding and error pattern embedding. In
syndrome embedding steganography, it is assumed that the
transmitter and receiver share a parity check matrix H. The
transmitter embeds secret messages by flipping the bits of the
cover data so that the syndrome of each codeword conveys
secret information. The Bose—Chaudhuri-Hocquenghem
(BCH) code is utilized in [10], [11], with [10] focusing
on minimizing the time complexity of embedding the
secret message, and [11] aiming to reduce distortion in
JPEG images. Filler et al. [12] proposed syndrome-trellis
code steganography with a general non-binary embedding
operation, presenting a near-optimal solution for minimizing
additive distortion in steganography while ensuring that the
time and space complexity increase linearly with the cover
data size.

The utilization of error patterns in error-correcting codes
for steganography has been explored in several studies [13],
[14]. Reed-Solomon (RS) codes and BCH codes are employed
in [13] and [14], respectively. Both studies leverage the re-
dundant data in error-correcting codes as containers for secret
messages. In [13], secret messages are embedded by flipping
bits in the RS codeword, ensuring the number of flipped bits is
within the error-correcting capability of the RS code. In [14],



the locations for embedding secret messages are determined
using a pseudo-random number generator, with a shared se-
cret key between the transmitter and receiver. These studies
assumed that nearly evenly distributed errors in the codeword
due to secret message embedding will be sufficient to deceive
eavesdroppers. However, they fail to present any steganalysis
schemes to counteract their methodologies. Additionally, the
maximum capacity of secret information per codeword is not
investigated.

In this paper, we propose a method for steganography and
steganalysis specifically designed for error pattern steganog-
raphy. Additionally, we present an algorithm for generating a
secret codebook with nearly maximum size, thereby increasing
the capacity for secret information. By maximizing the size of
the secret codebook, the codewords containing the embedded
secret message achieve a broader dispersion within the {0, 1}"
space, where n is the codeword size. This dispersion makes it
more difficult for eavesdroppers to identify the coding scheme
used, thereby enhancing its confidentiality. Our simulation
results demonstrate that increasing the size of the secret
codebook reduces the detection probability of our steganalysis
scheme. Moreover, our steganography method is flexible and
can be applicable to a wide range of error-correcting codes,
including RS codes and BCH codes, where the maximum
correctable errors are known.

Notation: In our notation, uppercase calligraphic letters de-
note sets, lowercase letters represent real values, and boldface
letters indicate vectors. For binary vectors a,b € {0,1}",
a + b denotes an element-wise XOR operation. The Ham-
ming distance between two vectors is defined as dy(a,b) =
Sy Lo(a; — b;), where 1, (z) =1 if 2 =y, and 1,(z) =0
otherwise, with a; and b; representing the ¢-th entry of a and
b, respectively. The weight of a vector is defined as its one-
norm, expressed as ||all; = dg(a,0), where 0 € {0,1}" is
the all-zero vector. |z denotes the largest integer less than or
equal to x. a denotes the estimated vector of a, and a denotes
the estimated scalar value of a. The set of natural numbers is
represented by N. The binary random variable u follows the
Bernoulli(p) distribution implies that P(u = 0) = 1 — p and
Plu=1)=p.

II. SYSTEM MODEL

The proposed steganographic communication system is
illustrated in Fig.1. The transmitter has two encoders: the
forward error correction (FEC) encoder and the secret message
encoder, f,(-). The normal binary source is modeled as
generating a normal binary vector x € {0,1}* with each
entry drawn from independently from Bernoulli(%) distribu-
tion. Subsequently, the FEC encoder converts x into a FEC
codeword y € {0,1}"™. Simultaneously, the secret message
m e M = {1,2,..., M} is encoded into a secret codeword
sm € {0,1}" by fn(-). The set of all secret codewords is
referred to as the secret codebook, S. Thus, the size of the
secret codebook is M, i.e. |S| = M, meaning log, M bits of
secret information are conveyed per codeword. To embed the
secret message into the FEC codeword, s,, is XORed with

y, i.e. s;, + y, and this vector is referred to as a stealth
codeword. It should be noted that in our scheme, the error-
correcting capabilities of FEC significantly affect the recovery
performance of both the normal binary vector x and the secret
message m.

The discrete memoryless channel (DMC) in Fig.1 introduces
error bits e € {0,1}", leading to r = y + s, + e at the
receiver. The FEC decoding process aims to simultaneously
extract both x and m at the receiver. It begins immediately by
FEC decoding the received signal r, generating the estimated
normal binary vector X. If the total error per FEC codeword,
||sm + e]|1, is less than or equal to the maximum correctable
errors of the FEC, then X = x, indicating successful decoding
of the normal binary vector. Otherwise, a decoding failure of
normal binary vector occurs, leading to the decoding failure of
the secret message as well. For secret message decoding, X is
first FEC encoded to produce y, which is added with r to yield
S, + €. The secret message decoder g, (-) then subsequently
decodes it to generate the estimated secret message, M.

Assuming the FEC decoder successfully decodes the normal
binary vector, i.e., X = x, the input to g,(-) can be expressed
as s, + e. Since g, () must accurately extract the secret
message from the corrupted secret codeword s,, + e, it is
essential to design the secret codeword such that it can
be correctly recoverd from the channel error e. Otherwise,
the errors from the DMC will pose confusion at g,(-) in
distinguishing whether the observed errors originate from s,
or from the channel-induced errors, e.

III. SECRET MESSAGE ENCODER/DECODER DESIGN

For successful extraction of the secret message m from the
corrupted secret codeword s,,, + e, we develop the secret mes-
sage encoder f,(-), considering both the maximum correctable
error bits of the FEC scheme and the upper bound of weight
of e.

Let ¢ denote the largest number of correctable error bits per
codeword, and let the weight of the channel error per stealth
codeword be upper bounded with high probability, ||e||; < ¢,
signifying that ||e||; could exceed ¢ albeit such occurrences
are rare. Our objective is to devise f,,(-) and g, (-) capable of
successfully encoding and decoding secret messages under the
assumption that ||e||; < . Furthermore, we aim at maximizing
the size of the secret codebook |S|, thereby increasing the
dispersion of the stealth codeword y+s,, in the {0, 1}" space.
This will make it more challenging for the eavesdropper to
discern which error control coding method is employed at the
transmitter.

1) Secret Message Encoder f,(-): The generation of the
secret codebook S can be expressed as the following opti-
mization problem:

(P1)

M|

Ism +eli <t, VmeM,
dH(y +Si7y<i>sj) > 2He||1a
Vi,j € M,i# j. (1b)

maximize
MEN

subject to

(1a)
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Fig. 1. Error-control code-based steganography communication system.

Successful decoding of x requires that the total weight of
errors to the FEC codeword, i.e., ||s,, + e|1, is no greater
than ¢ in (1a). Furthermore, to distinguish two distinct stealth
codewords conveying different secret messages, the Hamming
distance between them must exceed 2|/e||; in (1b). Otherwise,
two distinct stealth codewords may exist within a Hamming
distance of ||e||; from the received signal r, resulting in a
failure to decode the secret message. To ensure the worst-case
error correction capability of f,(-) and g,(-), we substitute
le|l with £. Then (P1) is simplified to

(P2) maximize | M|
MeN

subjectto 0 < |spli <t—¥¢, YmeM, (2a)

dH(Si7Sj)Z2l+1, Vi, j € M,i # j.

(2b)

Our approach to secret codebook generation relies on the
random generation of codewords that adhere to specified
constraints. In each generation of a random codeword, we
assess the compatibility of newly generated secret codewords
by comparing them with those already present in the secret
codebook S. The process for generating this secret codebook
is detailed in Algorithm 1.

Although Algorithm 1 does not guarantee that S will contain
the maximum feasible number of secret codewords, iterating
Algorithm 1 a sufficiently large number of times can yield an
S with a sufficiently large achievable secret codebook size.

2) Secret Message Decoder g, (-): Given that we have al-
ready devised the secret codewords to adhere to the constraint
d(si,s;) > 2¢ 4+ 1, we can employ a minimum distance
decoder as the secret message decoder. The pseudocode for
the minimum distance decoder for secret messages is outlined
in Algorithm 2.

IV. THREAT MODEL

To quantitatively evaluate our steganography method, we
propose a novel steganalysis scheme specifically designed for
error pattern steganography. Since relative entropy, D(p||q),
also known as KL divergence, represents the statistical dis-
tance between two probability distribution, it is widely used
for steganography in many other studies [2], [4], [15]-[17].
However, in our system, conventional steganalysis schemes
applied to the distribution of individual bits result in poor
performance. This is because, for most linear block codes,
the occurrence of 0’s and 1’s is statistically equi-probable.
Consequently, it becomes challenging for an eavesdropper
to distinguish between random bit streams and error control
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Algorithm 1: Generation of secret codebook S

1
2

3

4
5
6

9
10
11
12
13

Input : n - codeword length, ¢ - maximum
correctable error bits per codeword, ¢ -
maximum channel error bits per codeword

Output: S - secret codebook

> sc_weight: weight of a newly generated secret

codeword
> sc_new: newly generated secret codeword
S« 0
sc_weight <— randomly pick one from
{0,1,--- ,t —{};

sc_new < length n binary vector where total
sc_weight 1’s are located randomly with 0’s
elsewhere;
S + SU {sc_new};
for n=1:sufficiently large number of iteration do
sc_weight < randomly pick one from
{0713"' 7t7£};

sc_new < length n binary vector where total
scWeight 1’s are located randomly with 0’s
elsewhere;

if sc_new satisfies minimum Hamming distance

constraint for current S then
| S+ SU{sc_new};

else

| discard sc_new;
end

end

Algorithm 2: Pseudo code 2 - Secret message decoder

gn()

[§)

o e N & s

Input :s,, +e, S - Secret codebook
Output: m - decoded secret message
for i=1:|S| do

temp<— s,, +e+s;

P(i) + sum of all elements in temp. ; // Find
the Hamming distance between s,, +e
and s;.

end
if the minimum element in P is unique then
‘ m < index of the minimum element in P;
else
‘ decoding error occurs;
end
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Fig. 2. The threat model of eavesdropper when the window size is w = 3.

codes. In our study, we propose a more sophisticated threat
model to enable the eavesdropper to differentiate between
random binary data and codewords.

As illustrated in Fig.2, we place the eavesdropper in a sce-
nario where it observes transmitted bits with specific window
sizes, denoted by w. Let a; be a random observed binary signal
at time ¢ € N with a window size w. The total number of
observations at the eavesdropper is denoted by 0bsyym. The
number of events that the observation matches to u € {0, 1}*
is given by Zfisl“”“‘ 14, u. Thus, the empirical probability mass
function (pmf) of the observed vectors from the transmitted
signals is defined as p(u) = %ﬁuiafu, Yu € {0,1}>.
We denote g as the theoretical pmf of u where every compo-
nent independently follows the Bernoulli() distribution, i.e.,
g(u) = (1), vue {01},

After a total of obsym binary observations, each with a
length w, the eavesdropper calculates the relative entropy
between p(u) and g(u) which is denoted as A:

A = D(p(u)lg(w)),

Z p(u)lo

ue{0,1}»

> p(u)log (p(u)2®).

ue{0,1}»

p(u)

q(u)’ 3)

Thus, the value of A varies depending on the realizations of
the transmitted signals of a total number of bits 0bsyum X w.

Prior to the observation of the transmitted signals, the
eavesdropper generates total obsp,, X w bits, where each bit
independently follows the Bernoulli(4) distribution. Similarly
in the Fig.2, the eavesdropper observes the generated signal
with window size w. Let b, € {0,1}" be a random ob-
served binary vector at time t for 1 < t < obspym. The
count of events where b, matches u € {0,1}" is given
by Z:isl““‘“ 1p,u. Consequently, the empirical pmf of by,
referred to as the empirical Bernoulli pmf, is defined as

obsnum
pes(u) = Z=LEE oy e (0,1}

Therefore, the pgg(u) value depends on the specific gen-
eration of random obs,,, X w bits, but is independent of the
transmitted signals. Subsequently, the eavesdropper finds the

relative entropy between pgg(u) and g(u), which is denoted

as B:
B = D(pgg(u)|g(n)),

= Z pEB(u)IngEB(u)

we (o} q(u) 4)
= Z pes () log (pes(u)2").
ue{0,1}w

Readily, the eavesdropper conducts a hypothesis test, with
the null hypothesis Hy suggesting that the observed signals
are derived from a Bernoulli(%) distribution. Conversely, the
alternative hypothesis H; represents that the signals have
undergone alterations, raising suspicions of potential inclusion
of a concealed message. The determination of Hy and H;
depends on the threshold value of v according to

H;
[A—B| 2. (5)
0
One could have query regarding why we do not simply
set a steganalysis metric as A = D(p(u)||¢(u)) and perform
the hypothesis test A Ig €. This approach appears plausible
since a smaller valueH(;)f A suggests that p is statistically
closer to gq. However, the value of A alone is not a stable
metric for determining whether the transmitted signal follows
a Bernoulli(3) distribution. Assume each bit of the transmitted
signals independently follows a Bernoulli (%) distribution, but
obsnum 18 not sufficiently large for a fixed window size w. Due
to these restricted observations, the observed vectors a;, for
1 <t < 0bsyum, are unlikely to be evenly distributed over the
{0,1}* space, causing the A value to be larger. Consequently,
when obtaining the A value from a transmitted signal with an
unknown distribution, it is challenging to discern whether the
modified FEC code or the observation constraints primarily
affect A. This ambiguity complicates setting the threshold
value e. To mitigate this issue, we compare A and B. Note
that A is equivalent to B when each bit of the transmitted
signal independently follows a Bernoulli(%) distribution. The
difference between A and B, i.e., |A — B], effectively removes
the influence of restricted observations at the eavesdropper
from A.
Assuming that the prior probabilities of Hy and H;
are equal, ie., P(Hy) = P(Hy) = %, the decision er-
ror probability at the eavesdropper is given by Perror =




P(Hy)P(Hy|Ho) + P(Hy)P(Ho|Hy) = % [Pra+ Pup],
where Prs = P(H;|Hp) stands for false alarm probability
and Py;pP(Hy|H,) stands for mis-detection probability.

By computing the values of A and B over m iterations using
different observed data, we can obtain a distribution of A and
B. In this context, we assume the eavesdropper can select the
optimal threshold 7’ to minimize the decision error probability,
P.rror, based on the decision rule D(p(u)|g(u)) 25; v
Conversely, the transmitter’s objective is to maximize Pe,op-

Eve’s overall performance will vary depending on the win-
dow size w and the number of observation obs,,,. We could
expect that when w is substantially smaller than the codeword
length n, there will be a very small difference between A and
B, making it almost impossible to differentiate them. When w
equals n, then it is much more likely to differentiate between A
and B. The simulation outcomes are detailed in the subsequent
section.

V. SIMULATION

The Bose—Chaudhuri-Hocquenghem (BCH) code is used as
an error control code in our stealth communication simulation.
Thus, the BCH codeword can be regarded as a specific instance
of the FEC codeword. We set the codeword length n = 31,
and input data length k£ = 11. Then, the maximum correctable
error bits per codeword is t = 5. We set the stealth codeword
can correct an error per codeword, so the secret codebook is
generated based on the following optimization problem:

(P3) maximize | M|
MeN
subject to 0 < |[|sp]|1 <4, VmeM (62)
d(si;s;) >3, Vi,j € M,i#j. (6b)

Throughout the experimentation, we generated a secret code-
book of size 981 using Algorithm 1, indicating that approx-
imately 9.938 bits of secret information are conveyed per
codeword (log, 981 ~ 9.938).

To investigate the impact of observation window size w
on relative entropy, we varied the window size from 1 to
32 while maintaining a fixed total observed bit count of
31 x 215 = 1,015, 805 bits. The selection of observation bit
count was empirically determined to ensure minimal variation
in relative entropy across different realizations of transmitted
signals. Any remaining bits beyond the observed |112803
vectors were discarded, as their effect on relative entropy
values was found to be negligible. We compared the relative
entropy, D(p(u)||g(u)), for different types of observed signals.

1) A;: This indicates the relative entropy value in (3)
when the transmitted signals are concatenated BCH code-
words. These transmitted signals do not contain any secret
information.

2) As, Az, Ay, As: These represent the relative entropy val-
ues in (3) for transmitted signals that are concatenated stealth
codewords. However, the stealth codewords corresponding to
each A; for ¢ = 2,3,4,5 utilize different size of the secret
codebook. The size of the secrete codebook is determined by

the formula |981 x 155 | for z = 1,5, 30, 100, respectively.

3) By: This indicates the relative entropy value in (4)
when each bit of the generated signals independently follows
a Bernoulli(4) distribution.

Fig.3 presents a comparative analysis of Ay, Ao, Az, A4, As
and B; for varying window sizes. Additionally, Table I pro-
vides the exact values of the differences between A; and B;
for the selected window sizes.
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Fig. 3. The relative entropy values for different types of transmitted signals
across various observation window sizes are shown. Enlarged images are
provided for window sizes around w = 20 and w = 31.

|Al - Bl‘ for i = 17 ceey 5
7 w=15 | w=20 | w=25 | w=30 | w=31 | w=32
1 1.1111 1.1452 0.5853 0.1748 2.8046 0.0100
2 0.0497 0.0561 0.0255 0.0068 0.8948 0.0035
3 0.0226 0.0112 0.0031 0.0010 0.2092 7.9e-04
4 0.0221 0.0057 9.4e-04 2.2e-04 0.0360 4.3e-05
5 0.0148 0.0036 4.1e-04 1.6e-04 0.0103 8.7e-05
TABLE T

DIFFERENCE BETWEEN A; AND B FOR DIFFERENT WINDOW SIZES.

The curves in Fig.3 demonstrate consistent values of the
relative entropies for window sizes ranging from 1 to 11.
However, for the window sizes between 11 and 29, a notice-
able deviation is observed in A; compared to other values,
while Ao, A3, A4, A5 and By exhibit similar distances. This
suggests that within the window size ranging from 11 to 29,
the eavesdropper can readily identify plain BCH codewords
from the Bernoulli(%) distribution given a sufficient number
of observed bits, but can struggle to distinguish the stealth
codeword from the Bernoulli(%) distribution. Notably, for the
window size w = 31, which matches the codeword size
n = 31, the difference between A; and Bj is significant
compared to other window sizes. Additionally, the values of
|A; — By| for i = 2,3,4,5 are relatively large. As i increases,
or equivalently, as the secret codebook size increases, | A; — B
becomes smaller, making it more challenging for the eaves-
dropper to differentiate the signals. This phenomenon occurs




because the embedded secret codewords effectively disperse
the distribution of plain BCH codewords across the entire
{0,1}" space. For window sizes w = 30 and 32, all A; values
closely align with B;. This likely arises from the significant
least common multiple of w and n, where the observation
window size introduces greater randomness to the observed
vectors.

Now, we analyze the worst-case scenario where w = n
under the constraint of limited observation bits. Due to the high
precision achieved by eavesdroppers with sufficiently large
observations in distinguishing between Bernoulli(%) signals
and those that have undergone alterations, we limit the number
of observation windows to 0bsp,,m = 512 for the calculation of
the relative entropy value A;. Consequently, the eavesdropper
observes a total of w x 0bs,ym = 115,872 bits to calculate
each A;. We conducted tests on 50 different realizations for
each A; and B;. The simulation results are depicted in Fig.4.

[ "/i\ ﬂ‘ :R‘\
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Fig. 4. Relative entropy values under w = 31 and obsyum = 512.

Optimal ’Y/ Pra Py Perror
Ay 15.28 0 0 0
Ao 15.2517 0 0 0
A3z 15.2506 0 0.1 0.05
Aa 15.2506 0 0.7 0.35
As 15.2506 0 0.96 0.485
TABLE IT

OPTIMAL THRESHOLD VALUE ’y, AND MINIMUM ERROR PROBABILITY AT
THE EAVESDROPPER.

Based on our simulations, B; = 15.2492 for all 50 different
realizations. Since all A; values are greater than or equal to By,
the eavesdropper can appropriately choose a threshold value
~' to achieve Pr4 = 0 while minimizing P.;,,. The optimal
threshold value 4’ and the minimum error probability P,
for different types of transmitted signals A; are summarized
in Table II. It is observed that as the secret codebook size
increases, the eavesdropper’s decision error probability also
increases. Therefore, it can be concluded that the transmitter
can effectively reduces the detection probability by increasing
the secret codebook size.

VI. CONCLUSION

In this paper, we proposed a novel error-pattern embedding
steganography method and its corresponding steganalysis ap-
proach. The proposed secret codebook generation algorithm
meets the necessary constraints for correct recovery at the
receiver while ensuring a sufficiently large secret codebook
size. Under the observation data constraints faced by the
eavesdropper, we demonstrated that increasing the secret code-
book size effectively reduces the detection probability by the
eavesdropper.
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