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Abstract—Stochastic control is a fundamental concept in
control theory. Traditionally, it is assumed that the system
disturbances are independent. This assumption does not
always hold. In this paper, we look into cases where the
disturbances are correlated. We provide a modified version of
the Dynamic Programming algorithm to find optimal policies
without the independence assumption. Then, we look into
the classic LQG problem but with correlated disturbances.
We show that the optimal policy is closely related to the
trajectory-following LQG problem. The trajectory in this
problem is defined by estimating future disturbances and
is time-varying. We provide numerical examples to illustrate
the theoretical results.

I. INTRODUCTION

The stochastic control problem is a fundamental con-
trol concept defined as xt+1 = ft(xt, ut, wt), where
xt, ut and wt represent state, control, and disturbance,
respectively. It is assumed that the disturbances are
independent of each other [1], [2].

Although this assumption simplifies the discussion
and development of optimal policies, it is not always ac-
curate. In some physical systems, the disturbances may
be correlated. For example, when the vehicle’s dynamics
are described in the time domain, the process noise
should be time-correlated. That’s because the surface
that the vehicle is moving on is smoothly changing.
Thus, the disturbances depending on the surface are
correlated [3].

There have been a variety of relevant works where the
independence assumption does not hold. The simplest
model is where we assume that the noise is dependent
on the previous noise and an independent disturbance
through a deterministic function [1]. Another method for
solving stochastic control problems where noises are not
independent is H∞ method where the cost performance
is just dependent on the noise energy [4], [5], [6]. There
are also works where future disturbances can be esti-
mated [7], [8], [9].

In this paper, we will analyze the stochastic control
problem where disturbances are not independent. First,
we start by deriving a Dynamic Programming algorithm
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for correlated disturbances. Then, we will tackle the
Linear Quadratic Gaussian (LQG) control problem. We
show that optimal control in this case is closely related
to the trajectory-following LQG control. The trajectory
in this problem is defined using our estimate of future
disturbances and changes over time (contrary to the
conventional trajectory-following problem). This work
differs from [7]- [9] because disturbances are estimated
using the previous disturbances and the covariance ma-
trix.

The rest of this paper is organized as follows: In
section II, we briefly summarize the classical stochastic
control concepts; Section III presents the main theoretical
results including correlated disturbance DP and LQG. In
section IV, two methods for finding suboptimal policies
are introduced. Section V illustrates the theoretical re-
sults through two numerical examples and section VI
concludes the paper.

II. INDEPENDENT DISTURBANCES

In this section, we provide a review of the stochastic
control concepts with independent disturbances.

A. General Problem

We define the problem as below [1], [2]:

xt+1 = ft(xt, ut, wt)

yt = ht(xt, vt)

Where xt is the state (x0 is the first state and is
a random variable), ut is the input, and wt is input
disturbance or error at time t. yt is the observation
or output and vk is the unknown measurement error
or noise. Also, we assume a finite horizon T for the
problem.

Remark. We assume that the random variables
x0, w0, . . . , wT−1, v0, . . . , vT are all independent.

A feasible policy is defined as π = {π0, π1, . . . , πT−1}.
The set of all possible policies is called Π. We define the
expected cost associated with policy π as follows:

J(π) := E[
T−1

∑
t=0

ct(xπ

t , uπ

t ) + cT(xπ

T )]
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where ct is called the immediate cost and cT is called the
terminal cost. We are looking for the minimum expected
cost and the associated optimal policy for it:

J(π∗) = J∗ = In f {J(π)|π ∈ Π}

B. Dynamic Programming

In the case of complete information (yt = xt), the
optimal policy is Markovian which is defined below.

Definition. A policy π is called Markovian if πt only
depends on xt. We call the set of Markovian policies ΠM.

Dynamic Programming is a method used to find the
optimal policy shown in algorithm 1.

Algorithm 1 Dynamic Programming (DP)

1: Define V∗
T (xT) := cT(xT)

2: t=T-1
3: while t g 0 do
4: Let:

f (xt, ut) := ct(xt, ut) + Ewt [Vt+1(xt+1)|xt] (1)

5: Then:
π
∗
t (xt) = arg inf

u∈U
f (xt, ut)

6: And:
V∗

t (xt) = inf
u∈U

f (xt, ut)

7: t = t − 1.
8: end while

C. Linear Quadratic Gaussian Problem (LQG)

Consider the complete information system below:

xt+1 = Axt + But + wt (2)

Where wt ∼ N(0, Σw) are independent Gaussian random
variables. The cost function is:

J(π) = E[x′TQxT +
T−1

∑
t=0

(

x′tQxt + u′
tRut

)

] (3)

Where Q is positive semi-definite and R is positive
definite. With some assumptions on observability and
controllability, we would have the following theorem.

Theorem 1. For the system dynamics 2 and the cost function
3, The optimal policy will be

πt(x) = Ltx (4)

Where:
Lt = −(B′Kt+1B + R)−1B′Kt+1 A (5)

and

Kt = Q + A′(Kt+1 − Kt+1B(B′Kt+1B + R)−1B′Kt+1)A

KT = Q
(6)

Furthermore, the optimal cost will be:

J∗ = E[x′0K0x0] +
T

∑
t=1

Tr(KtΣw) (7)

D. Trajectory following LQG

In the traditional LQG problem, the cost function is de-
signed to keep both actions and states close to zero. But,
we can modify the cost function to capture a trajectory
we want to follow [10]. Let x̄ = (x̄0, x̄1, . . . , x̄T) be the
trajectory we want to follow. Also define x̃t := xt − x̄t.
The cost function will be:

J(π) = E[x̃′TQx̃T +
T−1

∑
t=0

(

x̃′tQx̃T + u′
tRut

)

] (8)

This cost function is designed to reflect the desire to
keep the system state close to the given trajectory. The
optimal policy here is similar to the regular LQG (linear
policy) but it includes an intercept. The next theorem
summarizes the results.

Theorem 2. For the system dynamics 2 and the cost function
8, The optimal policy will be

πt(x) = Ltx + Mt, (9)

where Lt and Kt are defined the same as equations 5 and 6,
respectively. The intercept (Mt) is:

Mt := (R + B′Kt+1B)−1B′Ct+1, (10)

where
Ct = (A + BLt)

′Ct+1 + Qx̄t,

CT = Qx̄T ,
(11)

Furthermore, the optimal cost will be:

J∗ = E[x′0K0x0]− 2C′
0E[x0] + D0 +

T

∑
t=1

Tr(KtΣw) (12)

Where Dt is defined as:

Dt = Dt+1 + x̄′tQx̄t − C′
t+1B(R + B′Kt+1B)−1BCt+1,

DT = x̄′TQx̄T .
(13)

III. CORRELATED DISTURBANCES

We are interested in finding optimal policies for con-
trolling stochastic systems with correlated disturbances.

A. Dynamic Programming with Correlated Disturbances

We update the conventional DP algorithm to consider
disturbance correlation. Define xt,π as all the states up
to time t under policy π. We similarly define ut,π and
wt. We will assume that the disturbances and states are
observed completely. We provide the following lemmas.

Lemma 1. For any set A ¦ Rn:

Pr(xπ

t+1 ∈ A|xt,π , ut,π , wt−1) = Pr(xπ

t+1 ∈ A|xπ

t , uπ

t , wt−1)
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Proof. Plugging in the formula for xt+1:

Pr(xπ

t+1 ∈ A|xt,π , ut,π , wt−1)

= Pr( ft(xπ

t , uπ

t , wt) ∈ A|xt,π , ut,π , wt−1)

= Pr( ft(xπ

t , uπ

t , wt) ∈ A|xπ

t , uπ

t , xt−1,π , ut−1,π , wt−1)

= Pr( ft(xπ

t , uπ

t , wt) ∈ A|xπ

t , uπ

t , ut−1,π , wt−1)

= Pr( ft(xπ

t , uπ

t , wt) ∈ A|xπ

t , uπ

t , wt−1)

Where the third equality comes from the fact that xt−1,π

is a function of ut−1,π , wt−1. And the final equality
comes from the fact that wt conditioned on previous
disturbances is independent of the previous inputs.

Definition. A policy π is called Pseudo-Markovian if πt only
depends on xt, and wt−1. We call the set of Pseudo-Markovian
policies ΠPM. Also, note that ΠM ¦ ΠPM.

Definition. The updated cost-to-go function is defined as:

Jπ

t (xt,π , wt−1) = E[cT(xπ

T ) +
T−1

∑
k=t

ck(xπ

k , uπ

k )|x
t,π , wt−1]

Lemma 2. Let π ∈ ΠPM and Define these functions
recursively:

Vπ

T (xT , wT−1) := cT(xT)

Vπ

t (xt, wt−1) := ct(xt, uπ

t ) + Ewt [V
π

t+1(xπ

t+1)|xt, wt−1]

Then Vπ

t (xπ

t , wt−1) = Jπ

t (xt,π , wt−1).

Proof. We prove this using backward induction. The base
step (t = T) is true because:

Vπ

T (xπ

T , wT−1) = cT(xπ

T ) = Jπ

T (xT,π , wT−1)

For the induction step, assume that Vπ

t+1(xπ

t+1) = Jπ

t+1.
We have:

Vπ

t (xπ

t , wt−1)

= ct(xt, uπ

t ) + Ewt [V
π

t+1(xπ

t+1, wt)|xπ

t , wt−1]

= Ewt [ct(xt, uπ

t ) + Vπ

t+1(xπ

t+1, wt)|xπ

t , wt−1]

= Ewt [ct(xt, uπ

t ) + Jπ

t+1(xt+1,π , wt)|xπ

t , wt−1]

= Ewt [E[cT(xπ

T ) +
T−1

∑
k=t

ck(xπ

k , uπ

k )|x
t+1,π , wt]|xπ

t , wt−1]

= Ewt [E[cT(xπ

T ) +
T−1

∑
k=t

ck(xπ

k , uπ

k )|x
π

t+1, xπ

t , wt]|xπ

t , wt−1]

= E[cT(xπ

T ) +
T−1

∑
k=t

ck(xπ

k , uπ

k )|x
π

t , wt−1]

= E[cT(xπ

T ) +
T−1

∑
k=t

ck(xπ

k , uπ

k )|x
t,π , wt−1]

= Jπ

t (xt,π , wt−1)

Where the third equality comes from the induction hy-
pothesis. In the fifth and seventh equalities, the Pseudo-
Markovian property is used. The sixth equality comes
from the law of iterated expectation.

Using the lemmas above and the Comparison Princi-
ple, we can show that the following algorithm provides
an optimal policy. (The proof is analogous to the uncor-
related disturbance case)

Algorithm 2 Correlated Disturbance DP

1: Define V∗
T (xT , wT−1) := cT(xT)

2: t=T-1
3: while t g 0 do
4: Let:

f (xt, ut, wt−1) := ct(xt, ut) + Ewt [Vt+1(xt+1)|xt, wt−1]
(14)

5: Then:

π
∗
t (xt, wt−1) = arg inf

u∈U
f (xt, ut, wt−1)

6: And:

V∗
t (xt, wt−1) = inf

u∈U
f (xt, ut, wt−1)

7: t = t − 1.
8: end while

Remark. Comparing equations 1 and 14, we will get that
the procedure for finding the optimal policy in correlated
disturbances case is very similar to the independent case.
The only difference is, in order to find the optimal policy, at
each step, we should condition the expected value on previous
disturbances as well.

Remark. We can extend this algorithm to the incomplete
information case. In order to do that the estimator needs to
both estimate xt and all previous disturbances (i.e. wt−1).

Now, that we know the procedure for finding the
optimal policy, we will tackle the LQG problem in the
next section.

B. LQG with correlated disturbances (CorLQG)

In this section, we will go back to the LQG problem
presented in II-C but with correlated disturbances. We
will assume that disturbances are zero-mean and have a
covariance matrix Σ. More specifically:

w =

















w0

w1

.

.

.
wT−1

















∼ N (0, Σ) (15)

Before moving on to presenting the optimal control for
this system, we provide the following famous lemma [1].

Lemma 3. Let X, and Y be jointly Gaussian random variables
(X ∼ N (X̄, ΣX), Y ∼ N (Ȳ, ΣY)), and cov(X, Y) = ΣXY,
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then random variable Zy which is defined as Z ∼ (X|Y = y)
is also Gaussian, i.e. Zy ∼ N (Z̄y, ΣZy), where:

Z̄y = X̄ + ΣXYΣ−1
Y (y − Ȳ) (16)

ΣZy = ΣX − ΣXYΣ−1
Y Σ′

XY (17)

Now, the lemma above provides two important in-
sights:

1) Note that in the lemma 3, ΣZy is independent of
the value y. Thus, at time t, the covariance matrix
of wt given the previous disturbances (i.e. wt−1) is
independent from the values of wt−1. Thus, we can
define Σt as the covariance matrix of wt given the
previous disturbances.

2) Also, at time t, the expected value of the future
disturbances given previous ones can be computed
using equation 16. Define:

w̄t1,t2(w
t2−1) = E[wt1

|wt2−1]. (18)

Let w̄t1,t2(wt2−1) = (w̄t1,t2(w
t2−1), . . . , w̄T−1,t2

(wt2−1)).
Now, at each time, −w̄t2,t2(wt2−1) act as a trajectory we
want to follow. Thus, we see a connection between this
stochastic system and the trajectory following LQG pre-
sented in II-D. The main distinction is that the trajectory
is changing over time. We will formalize the optimal
policy in the following theorem.

Theorem 3. For the system dynamics 2 and the cost function
3, and disturbances described in equation 15. The optimal
policy will be:

πt(x, wt−1) = Ltx + Mt(w̄
t,t(wt−1)), (19)

where Lt and Kt are defined the same as equation 5 and 6,
respectively. Let:

Ft(w
t−1) = Ct+1(w̄

t+1,t(wt−1)) + Kt+1w̄t,t(w
t−1),

where

Ct(w̄
t,t(wt−1)) = (A + BLt)

′Ft(w
t−1),

CT = 0,
(20)

Then the intercept (Mt) will be:

Mt(w̄
t,t(wt−1)) := −(R + B′Kt+1B)−1B′Ft(w

t−1), (21)

To summarize, theorem 3, argues that the optimal
input should be a linear function where the slope is the
same as the regular LQG, and the intercept is selected
based on our estimate for future disturbances.

Remark. Similar to the regular LQG, the certainty equiv-
alence principle holds here (With a slight update where we
replace E[wk] with E[wk|w

t−1] at time t).

Before proving the theorem, we provide the following
lemmas.

Lemma 4. Let, W̄t1(wt2−1) be defined as:

W̄t1(wt2−1) =







w̄t1,t2(w
t2−1)

...
w̄T−1,t2

(wt2−1)







Then, we can write Ct(w̄t,t(wt−1)) defined at 20, as
ZtW̄

t(wt−1) where Zt is the appropriate matrix.

Proof. We prove this using backward induction. The base
case is trivial.
Now, assume Ct+1(w̄

t+1,t+1(wt)) = Zt+1W̄t+1(wt). Then
we have:

Ct(w̄
t,t(wt−1))

= (A + BLt)
′Ft(w

t−1)

= (A + BLt)
′(Zt+1W̄t+1(wt−1) + Kt+1w̄t,t(w

t−1))

Thus, we write:

Ct(w̄
t,t(wt−1)) = (A + BLt)

′ [Kt+1, Zt+1

]

W̄t(wt−1) (22)

Thus, the induction is complete.

Lemma 5.

E[Ct+1(w̄
t+1,t+1(wt))|wt−1] = Ct+1(w̄

t+1,t(wt−1))

Proof. Using lemma 4, we have:

E[Ct+1(w̄
t+1,t+1(wt))|wt−1] = E[Zt+1W̄t+1(wt)|wt−1]

= Zt+1E[W̄t+1(wt)|wt−1]

= Zt+1W̄t+1(wt−1)

= Ct+1(w̄
t+1,t(wt−1))

Where the third equality comes from the law of iterated
expectation.

Now we are ready to prove theorem 3.
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proof of theorem 3. We make the following claim for the optimal value function:

V∗
t (x, wt−1) = x′Ktx + 2C′

t(w̄
t,t(wt−1))x + Dt(w

t−1) (23)

We prove this claim using backward induction. The base case is true. Now, assume the claim holds for t+1. Then,
the value function at stage t is:

V∗
t (x, wt−1)

= inf
u

{

x′Qx + u′Ru + Ewt [V
∗
t+1(Ax + Bu + wt)|x, wt−1]

}

= inf
u
{x′Qx + u′Ru + Ewt [(Ax + Bu + wt)

′Kt+1(Ax + Bu + wt) + Dt+1(w
t) + 2C′

t+1((w̄
t+1,t+1(wt))(Ax + Bu + wt)|x, wt−1]}

= inf
u
{x′(Q + A′Kt+1 A)x + u′(R + B′Kt+1 A)u + 2x′A′Kt+1Bu

+ Ewt [2(Ax + Bu)′[Kt+1wt + C′
t+1((w̄

t+1,t+1(wt)] + Dt+1(w
t) + w′

tKt+1wt + 2C′
t+1((w̄

t+1,t+1(wt))wt|w
t−1]}

Now, we can use lemma 5,

= inf
u
{x′(Q + A′Kt+1 A)x + u′(R + B′Kt+1 A)u + 2x′A′Kt+1Bu + 2(Ax + Bu)′[Kt+1w̄t,t(w

t−1) + C′
t+1((w̄

t+1,t(wt)]

+ Ewt [Dt+1(w
t) + w′

tKt+1wt + 2C′
t+1((w̄

t+1,t+1(wt))wt|w
t−1]}

Now, the last line only depends on wt−1. Call it St(wt−1). We will have:

V∗
t (x, wt−1) = St(w

t−1) + x′(Q + A′Kt+1 A)x + 2F′
t (w

t−1)Ax + inf
u
{u′(R + B′Kt+1 A)u + 2[F′

t (w
t−1) + x′A′Kt+1]Bu}

From the strict convexity of the function to infimize, we can use the first-order optimality condition to deduce the
optimal input:

u∗ = −(R + B′Kt+1 A)−1B′(Ft(w
t−1) + Kt+1 Ax)

Which is the same as equation 19. Finally, by plugging in the optimal control we will see that:

V∗
t (x, wt−1) = x′Ktx + 2C′

t(w̄
t,t(wt−1))x + Dt(w

t−1)

Where Kt and Ct, come from equations 6 and 20, respectively. Thus the induction is complete.

IV. APPROXIMATE METHODS

In this section, we will present two approximate meth-
ods to find suboptimal controllers for the control system
with correlated disturbances.

A. K-step ahead trajectory

In the LQG problem, to compute Ct in theorem 3, we
need to compute Zt and W̄t(wt−1) at step t (lemma 4).
Assume, xk ∈ Rn and. Note that Zt has a dimension
n(T − t − 1)× n.
Thus, for large horizons computing the intercept be-
comes inefficient.

To ameliorate this problem, we will restrict ourselves
to estimating the next K disturbances only. In other
words, at time t, we will assume that wl for l > t + K
conditioned on the previous disturbances are still zero-
mean.

Remark. In the special case where K = 1, we can define:

W̃t(wt−1) =
[

w̄t,t(wt−1), 0, . . . , 0
]′

Thus, replacing W̄t with W̃t in equation 22, we will have:

C̃t(w̄
t,t(wt−1)) = (A + BLt)

′ [Kt+1, Zt+1

]

W̃t(wt−1)

= (A + BLt)
′Kt+1w̄t,t(w

t−1)

We can replace the Ct in theorem 3 with C̃t for this method.

Remark. Notice that in order to compute w̄t,t(wt−1), we need
to compute the inverse of a tn × tn matrix. We can use the
most recent L disturbances to estimate it sub-optimally.

B. Model Predictive Methods

Another useful method for solving stochastic control
problems where disturbances are not independent is
the CE-MPC method which reduces the problem to a
deterministic problem at each time. Implementing this
controller in cases with correlated disturbances is worth-
while as by using the estimation that we have for future
disturbances and solving the deterministic problem each
time we can get a good suboptimal controller. Also,
note that this method is optimal for the LQG problem
described in III-B.
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V. NUMERICAL RESULTS

In this section, we illustrate our theoretical results
through two numerical examples. In section V-A, we
consider a simple control system where all the random
variables are scalars. We will compute the gain by taking
the correlation of disturbances into consideration. [9]. In
section V-B, we consider a widely-used two-dimensional
robot control system but with correlated disturbances
[11], [12], [13].

A. Scalar LQG

To see the benefit of taking the correlation into con-
sideration, we will explore a simple one-dimensional
problem. We have T = 10, x0 ∼ N (0, 1), and A = B =
Q = R = 1. We also assume:

cov(wt, wk) =

{

1, t = k

0.9, t ̸= k

We will consider two different policies; regular LQG
(which doesn’t take the correlation into consideration)
and CorLQG with 1 step ahead trajectory. It can be
shown that the cost of regular LQG is equal to 17.042
while the CorLQG achieves a cost of 5.4758. This shows
a 67 percent decrease in cost.

Note that if we plug in the covariance matrix of this
problem into equations of lemma 3, we will get that the
variance of wt conditioned on previous disturbances is
less than or equal to 0.19. However, the cost of CorLQG
is more than 19 percent of the regular LQG. This happens
for two reasons. First, the initial random variables (x0

and w0) still have a variance equal to 1. Second, as the
disturbances are positively correlated CorLQG anticipat-
ing the next disturbance, may take a bigger step. Thus,
for example, if we change the covariance to -0.9 the cost
of corLQG will drop to 3.6211.

B. Two-dimensional Robot Control

In this example, we will consider a 2-D robot move-
ment control system where T=40 and:

A =









1 0 0.2 0
0 1 0 0.2
0 0 1 0
0 0 0 1









, B =









0 0
0 0

0.2 0
0 0.2









,

Q =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









, R =

[

0.01 0
0 0.01

]

,

We will also assume that the covariance matrix of dis-
turbances is as follows:

Σwt ,wt =









1 0.5 0.2 0.2
0.5 1 0.2 0.2
0.2 0.2 1 0.5
0.2 0.2 0.5 1









, Σwt ,wk
= 0.8Σwt ,wt , ∀k ̸= t

We will implement the same policies as the previous
part. We run the experiment 10000 times and we see
that the LQG has a cost of 658.926 compared to a cost of
625.556 of CorLQG. Figure 1, provides a cost histogram
for the 10000 experiments.

Fig. 1. Cost Histogram of two policies (regular LQG and CorLQG)

VI. CONCLUSION

In this paper, we looked at stochastic control in cases
where the disturbances are correlated. First, we updated
the Dynamic Programming algorithm to capture the
correlation between disturbances. Then, we found the
optimal policy of the LQG problem and showed that it
has a connection to the trajectory-following LQG prob-
lem. The trajectory is determined by estimating future
disturbances using previous disturbances. We called the
optimal policy CorLQG. Finally, two examples are pro-
vided to further illustrate the theoretical results.
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