2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton) | 979-8-3503-2814-1/23/$31.00 ©2023 IEEE | DOI: 10.1109/Allerton58177.2023.10313418

Delay Performance Optimization
with Packet Drop

Faraz Farahvash
Electrical and Computer Engineering
Cornell University
ff227@cornell.edu

Abstract—In this paper, we aim to improve delay perfor-
mance of an M/M/1 queue by dropping the right packets at
the right time. First, for a given dropping budget, we explore
the average delay metric and prove that dropping from the
head of the queue is optimal. Next, we look into cases where
packets have a deadline they need to make. We introduce the
concept of gain and propose a policy called "Drop Positive
Gain Policy (DPGP)” that increases the percentage of packets
meeting their deadline. Finally, some numerical examples are
provided to confirm that DPGP outperforms conventional
policies.

I. INTRODUCTION

Cloud computing has revolutionized our world by
finally realizing the longstanding dream of computing
as a utility. [1] However using clouds as a centralized
server, increases the frequency of communication be-
tween users and cloud servers [2]. This results in several
shortcomings including (a) High latency for real-time
applications, (b) Security and privacy, and (c) Energy
consumption [3].

With the recent advent of edge computing, the possi-
bility of performing parts of computation on edge nodes
(i.e. devices, routers, switches, and base stations) has
emerged [4]. By doing so, much lower latency can be
achieved. These advancements have made the need for
better scheduling and queue management techniques
more evident, since queueing delay becomes more no-
table with reduced propagation delay.

In this paper, we explore delay-minimization in
M/M/1 queues with smart dropping policies. There
have been numerous works on queue management tech-
niques [5]. [6] characterizes the stability conditions, and
queue metrics in an M/M/1 queue with packet drop
and unlimited buffer. [7] extends the analysis to M/G/1
queues. There have also been various papers on queues
with finite buffer sizes [8], [9], [10], [11]. However, the
problem of optimal dropping policy with regard to delay
has not been studied.

We will analyze two different delay metrics. The first
metric we look into is the average delay. Initially, we
restrict ourselves to policies that drop the packets from

This work was supported by National Science Foundation (NSF).
Grant number: 2133481.

Ao Tang
Electrical and Computer Engineering
Cornell University
atang@cornell.edu

the tail of the queue. We show that the optimal policy
is a widely used policy. Then, we will allow packets to
be dropped from anywhere in the queue. In this formu-
lation, a packet that enters the queue is not necessarily
served. Implementing some of these policies results in
a "leaky queue”. In a leaky queue, some of the packets
are dropped after entering the queue. Such queues don’t
have the simple delay distribution of the M/M/1 queue.
[12] We argue that dropping from the head of the queue
will optimize the average delay of the system. This result
aligns with the algorithm proposed by [13].

The second metric analyzed is the percentage of pack-
ets meeting a deadline. In some scenarios, packets have
a deadline that they should meet. The packet should
be delivered by that deadline otherwise, it is useless
[14], [15], [16]. In these situations, the percentage of
packets meeting the deadline is a natural metric to be
optimized. We will first focus on a special case which is
an extension of the M/M/1/K queue. We will introduce
the concept of gain. We show that dropping from the
head maximizes the gain in that case. We will then
propose a policy called the Drop Positive Gain Policy
(DPGP) that increases the expected percentage of packets
meeting the deadline in comparison with conventional
policies.

The rest of the paper is organized as follows. In section
II, we formally define the problem. Section III explores
the average delay metric. In section 1V the deadline
metric is discussed. Section V presents some simulations.
Section VI concludes the paper.

II. PROBLEM FORMULATION

In this section, we will formally define different as-
pects of the problem. We will use conventional termi-
nology to define the M/M/1 queue. We assume that the
queue has a First Come, First Served policy. The queue
has an arrival rate A (a Poisson process), and service
time has an exponential distribution with parameter .
we also define p = A/p.

Let € be the dropping budget (meaning the probability
of dropping a packet should be less than or equal to €).
Define D, to be the family of dropping policies where
the dropping probability is less than or equal to e.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 31,2024 at 06:09:23 UTC from IEEE Xplore. Restrictions apply.

A. Delay Metrics

Various delay metrics can be of interest including but
not limited to:

(a) Average delay: One of the natural metrics to opti-
mize is the average delay. In the most general case,
the problem can be formulated as follows. Let T; be
the Random variable of the packet delay under drop-
ping policy d. The general optimization problem will

be min E[T}]

1
stde D,)

(b) Percentage of packets making the deadline: In some
scenarios, packets have a deadline that they should
meet. The packet should be delivered by that dead-
line otherwise, it is not useful. In these situations,
the percentage of packets meeting the deadline is a
better metric than the average delay alone.

In the simplest case, we assume that all packets
have the same hard deadline D. We define Fr,(x)
to be the Cumulative Distribution Function (CDF)
of the packet delay. The optimization problem then

becomes:
max Fr,(D)
’ @

st. de D,
(c) Tail latency: An important metric to assess network
quality is the tail of the delay distribution. We define
k" percentile delay as s’{fl under dropping policy d,
where k percent of packets experience a lower delay
than sZ.

Pr[T; < sk] = k/100 3)

Lower k' percentile delay is preferred. We can write
our optimization problem as:

min sg
d 4)
s.t. d € D¢

B. Policy families

Note that the optimization problems in equations 1,
2, and 4 are too general. We will consider some special
families of policies throughout this paper. First of all, we
restrict ourselves to dropping policies that are triggered
by the arrival of a new packet (a packet can only be
dropped after the arrival of a new packet). Furthermore,
we can have further restrictions on the policies as fol-
lows:

o Drop from the tail policies. In these policies, packets
are only dropped from the tail. Most conventional
dropping policies (for example M/M/1/K queues)
are from this family.

e Drop from the head policies. These policies are
similar to drop-the-tail policies but packets are only
dropped from the head of the queue instead of the
tail.

e Drop from anywhere policies. In this family of
policies, we are allowed to drop from anywhere in
the queue.

We can also further categorize the policies into determin-
istic and probabilistic policies.

C. State definition

We can define the state of the queue in different ways.
We will look into two different definitions.

(@) Queue length: Traditionally, the state of the queue is
defined as its length. Thus, we can show the state as
N where N is the length of the queue.

(b) Extensive states: In conventional methods, we as-
sume that the only information that we have about
the current state of the queue is its length. Including
more information about the queue’s state, can lead
to better queue management policies.

A simple extension to the state could be storing the
time each packet has spent in the queue. Let N be
the length of the queue and T = (Ty, ..., Tyy) denote
the time each packet has spent in the queue until
now. (let T; be the head of the queue and Ty the tail
of the queue.)

As packets are served in an FCFS manner, the pack-
ets that are closer to the head have spent longer times
in the queue. Thus, T} > T, > ... > Ty.

As we are only looking into policies where we drop after

an arrival, state transitions only happen after an arrival

or departure. In the case of extensive states, we have:

1) Service: After a packet service, the new state will
be T = (T, + 7, T3+ 7,..., Ty + T), where T is the time
it took from the last state to serve a packet.

Lemma 1. Assume X and Y are independent random vari-
ables with parameters y, A. Then

_ K
p(X <Y)= m @)
and
FxIX <Y) = (A4 p)e- A0 ©)

Using the lemma above, we get that T comes from an
exponential distribution with parameter y 4 A. Further-
more, the probability of a packet service triggering the
state transition is %

2) Arrival: After a packet arrival, the new state will be
T'=(T1+71,Ta+7,.., Ty +7,0), where T is the time it
took from the last state to serve a packet. Now we have
two possibilities:

e N > 0: If the queue is not empty, an arrival
happens if the service time is longer than the
next arrival time. Thus, T has the distribution of
f (arrival|service > arrival). Using lemma 1, we get
that T comes from an exponential distribution with
parameter y + A. Furthermore, the probability o}f a

packet arrival triggering the state transition is o

Authorized licensed use limited to: Cornell University Library. Downloaded on August 31,2024 at 06:09:23 UTC from IEEE Xplore. Restrictions apply.

e N = 0: If the queue is empty, a packet arrival will
trigger the state transition. Also, T comes from an
exponential distribution with parameter A.

3) Packet drop: After an arrival event, the dropping
policy could decide to drop packets from the queue. If
the dropping policy decides to drop the i packet, the
next state will be (T, ..., T;_1, Tj11, .-, TN).

In this paper, we explore two different metrics. First,
we explore the average delay where states are defined as
their queue length. Then, we explore the deadline case
with the extensive states definition. Further exploration
of different metrics, policy families, and states can be
interesting for future works.

IIT. AVERAGE DELAY

This section will look into policies that try to minimize
the average delay. We will first consider policies that
drop packets from the tail of the queue. After that, we
will allow packets to be dropped from anywhere in the
queue.

A. Drop from tail

The conventional method of packet-dropping policies
involves dropping packets from the end of the queue,
meaning that packets are discarded before they enter the
queue.

We can show these policies by d = (do,dy, ..., d;, ...)
where d; is the probability of dropping a newly arrived
packet when the system is at state i (i.e., the queue length
is 1).

These policies result in the queue having this nice
property: "Any packet added to the queue will be
served.”

We denote p = (po, p1, -, Pi, ---) to be the probability of
the system being at state i.

Lemma 2. Given a dropping policy d, if the queue is stable,
p can be computed as [6]:

|
p; = P]fli:o(l—dk)
DT T (1 - d)
Proof. The Markov Chain associated with this queue is
a Birth-death process where A; = A(1 —d;) and y; = u.

Thus, using the formula for the stationary distribution
of such processes, we get:

@)

P ! 8)
0= — -
1+Y2, 0 Hi:})(l —dy)
and,
p= (20, - Pl
= T+ Y52 o T (1 —dy)
O

As every packet entering the queue is served, the
average delay is equal to the average number of packets
in the system at each time (expected length of the queue).

Therefore, we can formulate the optimization problem
as follows:

min) jpj
=0

s.t. Z dipj <e€ (10)
=0

0<d; <1, ¥j=0,1,.

Where the objective function is the expected length of
the queue and the constraint is the probability of packet
drop (It is computed using the law of total probability by
conditioning on the length of the queue). The following
theorem provides the optimal policy from this family.

Theorem 1. The optimal d should have one of these two
forms:
(i) d;is equal to 0 for i < K, and dx = 1. (M/M/1/K queue)
(ii) d; is equal to O for i < K, dg € (0,1), and dgq = 1.
(A policy between M/M/1/K and M/M/1/(K+1))
Note that K here is the minimum number that doesn’t violate
the dropping constraint.

Proof. First, we derive the Lagrange multiplier for this
optimization problem:
L{d pa) =) jpi+u(ldipi—e) (1)
j=0 j=0
—dTa—(1-a)TB

Let d* be a locally optimal policy, the KKT conditions
would be:

LW’ 1, p) é;‘i""’ﬁ) —0, Vi (12)
];) d;‘p;«‘ <e (13)
0<d <1 (14)
«,B,u>0 (15)
wdf =0, Vi (16)
Bi(di —1)=0, Vi 17)

o . . ap;
before continuing with the proof, we first compute TZ{'

For simplicity, define S; = Y"i_, p;. We have two condi-
tions:
.] S i:

;i _ (¢ TTo(1 = de)) (540 0 TIZH (1 — dy))

i (1—di)(1+ T2 p' TT_p(1 — di))?
1 - pi(1—=5;)
= —0; === 18
1— di p] t:;i_l pt (1 _ dz) ()
.] > i
dpj pjSi
871« =7) (19)

Authorized licensed use limited to: Cornell University Library. Downloaded on August 31,2024 at 06:09:23 UTC from IEEE Xplore. Restrictions apply.

Using the equations above we have:

0
Tig _y it

7d_i

=0 P =it
i
= ﬁ(szj —Si ijj) (20)
' j=0 j=0
And:
ap] P] p]
Zd]ad Zd 1—d Z d 7
- Td 2”%‘ =S 2djpj) 1)
L j=0 j=0
Now to compute M:
aL(,#/lx ﬁ) * . JRp—
T ad, o4 Z]P]+Vad Zd —ai+pBi=0
22)
We have:
1 L s
wj — pi = W(Z]pj -5 Z]p].)
i j=0 j=0
1 i * ¥ * a * %
P +@(]§de;‘ = 5i j;)djpj)) (23)

Now, we define a few new variables:
i i
V=YY = v el = Zd*p],e* =en (24)
j=0 j=0
We can rewrite equation 23 as follows:
pp; (1 —di) +ef =Sje’) = (1—di)(a; = Bi) +5{7" —(%)
25

Define A; = u(pf(1—d;)+e’ —Sfe*) and B; = S v* —
7. We have the following properties.
. Ai+1 — Ai <0.
—B; = pj (7" —i—1) which is non-decreasing
at first and non-increasing after.
. AOZBOEOandAOO: OOIO.
o If 1 > df > 0, then B; = A;, and if df = 0 then
B; < A;.
Using the properties above, it is easy to see, that d* can
only be of the forms described in theorem 1. O

e Biny

Thus, the optimal policy is pretty simple and widely
used.

B. Drop from anywhere

Now, we look into policies that allow packets to be
dropped after entering the queue. In this formulation, a
packet that enters the queue is not necessarily served.
Implementing some of these policies results in a “leaky
queue”. In a leaky queue, some of the packets are
dropped after entering the queue. Such queues don't

have the simple delay distribution of the M/M/1 queue.
[12]. These policies potentially could have a lower av-
erage delay than drop-the-tail policies. As a simple
example, consider an M/M/1/K queue where we drop
packets from the head instead of the tail. A simple
analysis shows that this policy has a lower average delay
than the regular M/M/1/K queue.
We can define these policies by

d = ((do1), (d11,d1,2), -+ (dig, - dii1),--), Where d;; is
the probability of dropping j* packet in the queue when
the system is at state i (i.e., the queue length is i) and
a new packet arrives (d;;y; denote the probability of
dropping the newly arrived packet).

Remark. Drop-the-tail policies can be described as

{d:dij=0,j<i} (26)
Theorem 2. Dropping from the head is always the best
dropping policy (it minimizes the average delay).

Proof. Let d be an optimal dropping policy. We define d’
to be the dropping policy that drops packets exactly like
d, except for one drop:

"When d decides to drop a packet from anywhere
other than the head of the queue for the first time, d’
drops the packet from the head of the queue.”

As the system is memoryless, both dropping policies
have the same dropping probability (If d € D, then we
would also have d’ € D).

Define G to be the time all packets spend in the queue
and H as the time dropped packets spend in the queue.
Also, let N be the number of packets served.

E[G4] — E[Hy]

E[Ty] = N

(27)
As the system is memoryless (the decision of which
packet to drop doesn’t affect the next state of the system),
E[G4] = E[Gy]-

As for the dropped packets, the only difference is
the packet dropped differently. As the time spent in
the queue is non-increasing from the head to the tail,
E[H4] < E[Hy]. Therefore, E[T;] < E[T].

Repeating the following procedure will lead to an
optimal policy that only drops from the head of the
queue. O

Finally, we present this conjecture without proof.

Conjecture 1. The optimal d should have one of these two
forms:

(i) d;j is equal to O for i < K, and dg, = 1. (M/M/1/K
queue drop from the head)

(ii) d;;is equal to 0 fori < K, dg € (0,1), and dgy 11 = 1.
(A policy between M/M/1/K and M/M/1/(K+1) drop from

the head)

Authorized licensed use limited to: Cornell University Library. Downloaded on August 31,2024 at 06:09:23 UTC from IEEE Xplore. Restrictions apply.

IV. PERCENTAGE OF PACKAGES MEETING
THE DEADLINE

In this section, we explore the deadline problem. We
assume packets have a deadline that they should meet.
In this problem, we don’t have a limited dropping bud-
get, but the percentage of packets meeting the deadline
is computed from all of the packets arriving at the
queue (not just the ones served.) The packet should be
delivered by that deadline otherwise, it is not useful.
Furthermore, we assume that all packets have the same
hard deadline of D. When deciding to drop a packet,
two factors should be considered:

(a) The probability of the packet making the deadline:
In the case of M/M/1 queue, if the packet is at the i'"
position in the queue, the probability of the packet
making the deadline is Frjqne(D — Ti; i, 4t)-

(b) The effect of the packet dropping on other packets’
chance to make the deadline: By dropping a packet,
the packets arriving after the packet dropped will
have a better chance of meeting the deadline.

In the next part, we will discuss a special case to further

explore the trade-off between these factors.

A. Special case: M/M/1/K queue

We consider a special case of the problem. We have an
M/M/1/K queue and we want to decide which packet
to drop when the queue is full. In other words, deciding
to drop a packet has two components.

o When to drop a packet

o Which packet to drop
In this case, the first component is enforced by the
physical constraints of the system and the policy can
only affect the second component.

Remark. The probability of the i*" packet making the deadline
is equal to Fpyjang (D — Ti;i,), Where F is the CDF function.

Proof. Define X; to be the service time of packet j.
We know that Xj,..,X; are ii.d exponential random
variables with parameter u. Let, 5; = Z§:1 X;. Then §;
is an Erlang random variable with parameters i and p.
Also, the time that packet i spends in the queue is equal
to S; + T;. Thus, the probability of packet i making the
deadline is equal to P(S; + T; < D). We have:

P(Si <D- Ti) = FErlung(D — Tj1, “l/l) (28)

O
To decide which packet to drop, we will define the
gain of dropping the i packet in state s as:

K+1

..Z_H(FEH(D - T]'] - 1/7") - FErl(D - Tj;j/ "l/l))
j=i

—Fpy(D — T, 1)

gaing (p) =
29)

The first part computes the increase in the probability
of the packets further back in the queue making the

deadline after dropping packet i. The second part is the
probability of packet i making the deadline (which is lost
when packet i is dropped).

Remark. Note that gain is a myopic concept as it is only
concerned with the packets that are already in the system and
doesn’t take into consideration the effect of future arrivals or
future packet drops.

We propose a policy that will drop the packet with
maximum gain. The following theorem helps formulate
such a policy.

Theorem 3. gain](y) is the maximum gain.

Proof. We will compute gain;(u) — gaini ; (p):

1
gaini (u) — gaing 4 (4)
= Fe(D — Tiv;i, p) — Fen (D — Tiga5i,)
+ Fg(D — Tiq1;i+ 1,“11) —Fgy(D—T; i,‘u)
= Fen(D — Ty, 1) — Fen(D — Ty i, p)

Now as T;;1 < T; and CDF is a non-decreasing function.

We have gaing(u) — gaini, ;(n) > 0. Thus, we get that
gaini(u) is the maximum.

(30)

O

Thus, the policy that will drop the packet with the
maximum gain is the same as the policy that drops
from the head of the queue every time.

Using the theorem above, we will propose a new
policy.
B. Drop Positive Gain Policy (DPGP)

Now, note that theorem 3 is true for the general
M/M/1 queue. Assume we don’t have a constraint
on the dropping budget, i.e. we only care about the
number of packets making the deadline. We propose the
following policy:

DPGP: “"Drop packets from the head of the queue if and
only if gaing(u) is positive.”

Results in section V show that DPGP outperforms
conventional queue management techniques.

In the next part, we will extend DPGP to some differ-
ent scenarios.

C. Extensions of DPGP

This approach (DPGP) can handle different scenarios
by changing the definition of gain; to fit the scenario.
We present some of those possible scenarios here.

1) Different deadlines: Assume that packets have differ-
ent deadlines (we show the deadline of the i packet in
the queue by D;.) Now, the gain function can be changed
to:

K+1

Y (Fen(Dj—Tj;j —
j=it1
—Fpa (D — T i, 1)

gaini (pu) = Lp) = Fen(Dj = Tj;j, 1))

(D)

Authorized licensed use limited to: Cornell University Library. Downloaded on August 31,2024 at 06:09:23 UTC from IEEE Xplore. Restrictions apply.

2) Different rewards: Assume that packets have differ-
ent rewards (we define the reward of the i packet in the
queue by r;.) and we want to maximize the accumulative
reward of the packets meeting the deadline. We derive
the gain function as:

K+1
gain; () =
j=it+1

—1iFgn(D; — Tj;i,) (32)

Remark. This gain function computes the change in the
expected reward of packets meeting the deadline at each time
by dropping packet i.

3) Delay-based utility function: Suppose that instead of
a hard deadline, there exists a utility function u that
maps the delay of a packet to a reward. We want to
maximize the expected utility of packets.

Remark. The standard hard deadline case can be expressed

as follows:
u(®) = {(1) le;r?uilsje (33)
The gain function, in this case, will be:
gain; (p) = —Es,gp(iu) [4(Ti + S;)] (34)

K+1

+ 3 (Bsyetrto (T +)] = Bs 0 [1(T; + 7))

j=it1

The DPGP is still the same policy but we look at all
i and drop them if their gain (with a new definition of
gain for each situation) is positive.

We have no theoretical results for this extension of
policies but they perform well in experiments as seen in
section V.

V. NUMERICAL RESULTS AND EXPERIMENTS

In this section, we will present some numerical results
and simulation results.

A. Simulations for section IV-A

We have an M/M/1/K queue and we want to decide
which packet to drop when the queue is full. We consider
4 different policies:

1) Drop from the tail: This is the standard M/M/1/K
queue where packets are dropped before entering
the queue.

2) Drop from the head: This policy drops packets from
the head of the queue.

3) Drop the least probable: This policy drops the packet
with the least probability of making the deadline.

4) Drop the biggest gain: This policy drops the packet
with the largest gain.

Figure 1 shows the percentage of packets making the

deadline across different policies for different deadlines.
(Also A =099, y =1, and K =5)

Y. 7j(Fen(D = Tj;j = 1, u) — Fen(D = Tj3j, 1))

0.8 4 -
—— Drop from the tail

A Drop from the head
0.7 4 — Drop the least probable
Drop the largest gain

0.6 -

0.5 4

0.4

Deadline making percentage

0.3

0.2

T T T T T T T T T
1.0 15 2.0 205 3.0 3.5 4.0 4.5 5.0
Deadline

Fig. 1. performance of different policies for the M/M/1/K problem

Remark. Drop First and Drop best perform exactly the same
which aligns with theorem 3. Also, for all deadlines, they have
the best percentage of packets making the deadline.

B. Simulations for DPGP

Here, we compare the DPGP with 3 other policies:

e M/M/1/3 queue that drops from the head of the
queue when full.

e M/M/1/5 queue that drops from the head of the
queue when full.

e M/M/1/10 queue that drops from the head of the
queue when full.

In figure 2, we see that the DPGP outperforms all other
policies. (A =0.99, and u = 1)

o
o
i

24
o
|

1~
S
L

Deadline making percentage
o o
w (=]
| |

— M/M/1/3 drop head

— M/M/L/5 drop head

—— M/M/1/10 drop head
DPGP

o
N
L

o
—
L

T T T T T
2 4 6 8 10
Deadline

Fig. 2. DPGP performance compared to M/M/1/K with different K

Authorized licensed use limited to: Cornell University Library. Downloaded on August 31,2024 at 06:09:23 UTC from IEEE Xplore. Restrictions apply.

C. Extensions of DPGP

We will consider a case where each packet has a
reward that comes from a uniform distribution from
0 to 2. We implement the extension of DPGP for dif-
ferent rewards cases and compare it to the 3 policies
described in the previous part. We also, compare with
M/M/1/K queues where the packet with minimum
reward is dropped. Figure 3 shows that the extension
of DPGP outperforms all other policies. (A = 0.99, and

p=1

—

0.8 4

0.6

M/M/1/3 drop head
M/M/1/5 drop head
M/M/1/10 drop head

DPGP

M/M/1/3 drop min reward
M/M/1/5 drop min reward
M/M/1/10 drop min reward

Average reward

0.2

T - T T T
2 4 (1 8 10
Deadline

Fig. 3. Expected reward of different policies

VI. CONCLUSION

In this paper, we looked into M/M/1 queue with
packet drop and we tried to optimize delay metrics by
finding smart dropping policies. First, our analysis of the
average delay metric confirmed that dropping packets
from the head of the queue is the optimal strategy. This
approach minimizes the delays experienced by subse-
quent packets, thereby improving the overall efficiency
of the system.

Furthermore, we addressed the challenge of meeting
packet deadlines by introducing the concept of gain.
We proposed the Drop Positive Gain Policy (DPGP).
Our evaluation demonstrates that DPGP increases the
percentage of packets meeting their deadlines, leading to
enhanced system performance. The numerical examples
provided in this paper validates the effectiveness of the
DPGP policy. In comparison to conventional policies,
DPGP consistently outperforms in terms of meeting
packet deadlines and improving overall system perfor-
mance, independent of the deadline.

One line of future work includes finding a farsighted
policy for the deadline metric. Also, further exploration
of different metrics, policy families, and states can be of
interest for different applications.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-

winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,

“A view of cloud computing,” Commun. ACM, vol. 53, p. 50-58,

apr 2010.

B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and

D. Nikolopoulos, “Challenges and opportunities in edge comput-

ing,” 11 2016.

[3] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge

computing research,” IEEE Access, vol. 8, pp. 85714-85728, 2020.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:

Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,

pp. 637-646, 2016.

[5] R. Adams, “Active queue management: A survey,” IEEE Commu-

nications Surveys Tutorials, vol. 15, no. 3, pp. 1425-1476, 2013.

[6] A. Chydzinski, M. Barczyk, and D. Samociuk, “The single-server

queue with the dropping function and infinite buffer,” Mathemat-

ical Problems in Engineering, 2018.

A. Chydzinski and P. Mrozowski, “Queues with dropping func-

tions and general arrival processes,” PLOS ONE, vol. 11, pp. 1-23,

03 2016.

[8] T. Bonald, M. May, and].-C. Bolot, “Analytic evaluation of red
performance,” in Proceedings IEEE INFOCOM 2000. Conference on
Computer Communications. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies (Cat. No.0OCH37064),
vol. 3, pp. 1415-1424 vol.3, 2000.

[9] W. Hao and Y. Wei, An Extended GIX/M/1/N Queueing Model for
Evaluating the Performance of AQM Algorithms with Aggregate Traffic,
vol. 3619, pp. 395-404. 09 2005.

[10] W. M. Kempa, “On main characteristics of the m/m/1/n queue
with single and batch arrivals and the queue size controlled by
aqm algorithms,” Kybernetika, vol. 47, no. 6, pp. 930-943, 2011.

[11] A. Chydzifiski and Lukasz Chrést, “Analysis of agm queues with
queue size based packet dropping,” International Journal of Applied
Mathematics and Computer Science, vol. 21, no. 3, pp. 567-577, 2011.

[12] A.Tang,]J. Wang, and S. Low, “Understanding choke: throughput
and spatial characteristics,” IEEE/ACM Transactions on Networking,
vol. 12, no. 4, pp. 694-707, 2004.

[13] S. Abbasloo and H. J. Chao, “Bounding queue delay in cellu-
lar networks to support ultra-low latency applications,” ArXiv,
vol. abs/1908.00953, 2019.

[14] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” in
Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM
11, (New York, NY, USA), p. 50-61, Association for Computing
Machinery, 2011.

[15] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp
(dctep),” in Proceedings of the ACM SIGCOMM 2010 Conference,
SIGCOMM 10, (New York, NY, USA), p. 63-74, Association for
Computing Machinery, 2010.

[16] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware dat-
acenter tcp (d2tcp),” in Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ‘12, (New York, NY,
USA), p. 115-126, Association for Computing Machinery, 2012.

[2

—

[4

—_

[7

—

Authorized licensed use limited to: Cornell University Library. Downloaded on August 31,2024 at 06:09:23 UTC from IEEE Xplore. Restrictions apply.

