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Abstract
Large Language Models (LLMs) have shown
unprecedented performance in various real-
world applications. However, they are known
to generate factually inaccurate outputs, a.k.a.
the hallucination problem. In recent years,
incorporating external knowledge extracted
from Knowledge Graphs (KGs) has become
a promising strategy to improve the factual ac-
curacy of LLM-generated outputs. Neverthe-
less, most existing explorations rely on LLMs
themselves to perform KG knowledge extrac-
tion, which is highly inflexible as LLMs can
only provide binary judgment on whether a cer-
tain knowledge (e.g., a knowledge path in KG)
should be used. In addition, LLMs tend to pick
only knowledge with direct semantic relation-
ship with the input text, while potentially useful
knowledge with indirect semantics can be ig-
nored. In this work, we propose a principled
framework KELP with three stages to handle
the above problems. Specifically, KELP is able
to achieve finer granularity of flexible knowl-
edge extraction by generating scores for knowl-
edge paths with input texts via latent semantic
matching. Meanwhile, knowledge paths with
indirect semantic relationships with the input
text can also be considered via trained encod-
ing between the selected paths in KG and the
input text. Experiments on real-world datasets
validate the effectiveness of KELP.1

1 Introduction

Recently, Large Language Models (LLMs) such as
ChatGPT (Brown et al., 2020) and LLaMa (Tou-
vron et al., 2023) have shown exceptional perfor-
mance, such as unprecedented reasoning capabili-
ties (Wei et al., 2022), across various NLP tasks (Su
et al., 2019; Lewis et al., 2020; Zhu et al., 2024;
Wang et al., 2021b). However, in scenarios where
certain new knowledge beyond the scope of train-
ing corpus is required, current LLMs are usually

1Our code is available at https://github.com/
HaochenLiu2000/KELP.

criticized for generating factually inaccurate out-
puts (Petroni et al., 2019; Ji et al., 2023; Bang et al.,
2023; Wang et al., 2023a). As a consequence, it be-
comes imperative to develop effective and efficient
techniques for incorporating new knowledge into
pretrained LLMs.
To facilitate the incorporation of new knowl-

edge in LLMs, extracting external knowledge
from Knowledge Graphs (KGs) (known as KG-
Enhanced LLMs (Pan et al., 2024)) has become a
promising way to improve the factual accuracy of
LLM outputs (Wang et al., 2023; Pan et al., 2024;
Wu et al., 2024). Here, the structure of KGs plays
a critical role, since the relationship between enti-
ties can effectively contribute to novel knowledge
required by various tasks, such as multi-hop rea-
soning (Jiang et al., 2023a). In general, there are
two mainstreams to achieve KG-Enhanced LLMs.
The first mainstream incorporates new knowledge
for LLMs during their training phase, which is usu-
ally achieved by designing new training objectives
or tasks (Zhang et al., 2019; Wang et al., 2021a).
Nevertheless, these techniques typically require sig-
nificant computational resources. On the contrary,
the second mainstream incorporates new knowl-
edge for LLM during the inference phase, where
this new knowledge is incorporated by prompt en-
gineering, that is, designing new prompts to in-
clude the triplets (head, relation, tail) derived from
KGs (Kim et al., 2023a). Usually, prompt engineer-
ing stands out as the most computationally efficient
approach to incorporate new knowledge for LLMs,
as new information can be directly introduced to-
gether with the text input without an additional
training process.
Nevertheless, integrating new knowledge for

LLMs with prompt engineering bears two signif-
icant disadvantages despite its effectiveness and
efficiency. First, most existing methods solely rely
on LLMs to identify relevant triplets (Kim et al.,
2023a). However, LLMs can only provide binary
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Input:
Verify this claim. Is this claim true or false?
Context: 
["Akita Prefecture", "specialty", "Akita Inu”]
Claim: 
Akita Prefecture is located in Japan.

Output: True. √

Input:
Verify this claim. Is this claim true or false?
Context: 
["Akita Prefecture", "locate", "Japan”]
Claim: 
Akita Prefecture is located in Japan.

Output: True. √

Input:
Verify this claim. Is this claim true or false?
Claim: 
Akita Prefecture is located in Japan.

Output: False. ×

Semantically 
Unrelated Context

Semantically 
Related ContextNo Context

"Japan", "populationTotal", "126880000”

Figure 1: An example of the phenomenon that semantically unrelated contexts in the input prompts can possibly
contain important knowledge to correct/improve the generation of large language models. In this example, there
exist potential relationships between "Japan" and "Akita Inu" that are challenging to directly identify and capture.

outputs on whether a certain instance of knowl-
edge (e.g., a path in a KG) should be used or
not (Jiang et al., 2023a). As a consequence, ex-
isting approaches bear low flexibility due to their
coarse granularity in determining to what extent a
certain knowledge is useful. Second, solely using
LLMs to select and incorporate instances of knowl-
edge is usually overwhelmed by the knowledge that
has direct semantic relationships with the input text.
However, the knowledge with indirect semantic re-
lationships could also help LLMs achieve factually
accurate outputs. More specifically, instances of
knowledge with indirect semantic relationship to
the input text can also help LLMs generate factu-
ally accurate outputs. We refer to these instances
as potentially impactful knowledge, and an exam-
ple is presented in Figure 1. Such a phenomenon
can be attributed to certain potential relationships
between entities and relations contained in the train-
ing corpus of LLMs, while it can be challenging
for both humans and LLMs themselves to perceive
directly. Therefore, it is usually difficult for exist-
ing approaches to capture this nuanced, potentially
impactful knowledge that can effectively improve
the LLM outputs solely based on the selection of
knowledge instances from LLM themselves.

To properly handle the problems discussed
above, we introduce a novel approach for KG-
Enhanced LLMs, i.e., KELP (Knowledge Graph-
Enhanced Large Language Models via Path Selec-
tion), aiming to flexibly capture potentially impact-
ful knowledge as in-context facts to improve the
factual accuracy of the LLM outputs given input
texts. In particular, KELP consists of three key
components: (i) Knowledge path extraction, (ii)
Sample encoding, and (iii) Fine-grained path se-
lection. Specifically, we first extract knowledge
paths from KG based on the entities identified in
the input texts as the candidate knowledge. Subse-

quently, we train a path-text encoder to encode the
indirect connections between input texts and the
knowledge paths extracted from KG, with similar-
ity defined on the latent semantic space, such that
whether an instance of knowledge (represented by
a path in the KG) is potentially useful for a certain
input text (i.e., is the potentially impactful knowl-
edge) can be quantitatively measured. Based on the
latent similarity score, two coverage rules are intro-
duced to further refine the selected paths with high
flexibility. Through these meticulously designed
steps, KELP strives to flexibly capture potentially
impactful knowledge with fine granularity (based
on quantitative scores) to refine LLM outputs. The
contribution of this paper can be concretely sum-
marized into three folds as follows:

• We critically study the challenges associated
with the lack of flexibility and omission of po-
tentially impactful knowledge in the realm of
prompt engineering for KG-Enhanced Large
Language Models.

• We introduce KELP, an innovative approach
aiming to capture potentially impactful knowl-
edge and incorporate it into the prompts of
LLMs via trained path-text encoding, with two
coverage rules ensuring the flexibility of knowl-
edge extraction.

• Extensive experiments on Fact Verification and
Question Answering (QA) datasets that encom-
pass diverse graph reasoning patterns demon-
strate the effectiveness of KELP.

2 Problem Formulation

In this section, we introduce the task of enhanc-
ing LLM performance with KGs. The KG is
defined as G = (E ,R, T ), where E and R are
sets of entities and relations, respectively, and
T = {(h, r, t)|h, t ∈ E , r ∈ R} represents the
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set of knowledge triplets, each contains a head en-
tity h, a tail entity t, and a relation r. In addition,
we have a pretrained large language model (LLM)
denoted as LM . Given a question q as the given
task, if we denote all the entities contained in q as
a set Eq, the goal is to utilize the background KG G
as input prompts to support the generation of LM
based on question q.

3 Methodology

In this section, we introduce the details of our pro-
posed framework KELP, which is presented in Fig-
ure 2. KELP is structured into three phases: (i)
Knowledge path extraction, (ii) Sample encoding,
and (iii) Fine-grained path selection. During knowl-
edge path extraction, we extract a set of knowledge
paths for each entity in the entity set Eq of q from
the background KG G. For sample encoding, we
employ a sentence encoder M trained on the latent
semantic space that can encode the input question
q and paths in the extracted knowledge path sets
to obtain their distance (i.e., the possibility that
the paths can influence the output of LLMs), thus
ensuring capturing the potentially impactful knowl-
edge in the paths. In the final fine-grained path
selection phase, we propose two coverage rules to
guarantee that the selection of knowledge paths is
sufficiently flexible, thereby ensuring the acquisi-
tion of the most diverse and representative paths
for the inference of LLMs regarding the input ques-
tion q. Additionally, we also design an alternative
strategy called Relation-Only Ranking to general-
ize KELP to cases where the sizes of the knowledge
path sets become substantially massive.

3.1 Knowledge Path Extraction

In this subsection, we introduce the knowledge
path extraction in KELP. The objective is to iden-
tify valuable paths in the background Knowledge
Graph G, i.e., knowledge paths, that contain poten-
tially impactful knowledge for a given input ques-
tion q, which could be used as additional contexts
in the prompt to improve the factual accuracy in the
generation process of the LLM. To achieve this, we
propose the following path extraction procedure:
For each entity e in the entity set Eq, we first extract
a knowledge path set denoted as follows:

Pe = {(e → r → o)|o ∈ E , r ∈ R}∪
{(e → r1 → o1 → r2 → o2)|o1,2 ∈ E , r1,2 ∈ R},

(1)

which contains all 1-hop and 2-hop paths starting
from the entity e. These selected paths serve as the
candidates for the sample encoding phase.

3.2 Sample Encoding

From the extracted path set Pe, sample encoding
aims to further refine the candidate knowledge
paths that could help LLMs generate factually ac-
curate answers for question q via learned encoding.
Specifically, we encode both the question q and
candidate knowledge paths in Pe via an encoder
M fine-tuned on latent semantic space. The fine-
tuning steps of M are introduced in Sections 3.4
and 3.5. In this manner, we could quantify the
usefulness of each path based on the learned repre-
sentations obtained byM .
To utilize the pretrained knowledge of the en-

coder M , we construct a path sentence for each
knowledge path before encoding. The conversion
depends on the number of triplets in the knowledge
path: For a path containing only one triplet (h, r, t),
we formulate the path sentence p′ as p′ = “h r t.”
For a path consisting of two triplets (h1, r1, t1) and
(h2, r2, t2), we construct the path sentence p as fol-
lows: p′ = “h1 r1 t1, h2 r2 t2.” The embeddings
hq and hp for the question q and the knowledge
path p is acquired by encoding q and p′ using the
encoderM as follows:

hq = M(q), hp = M(p′). (2)

With the encoded representations hq, hp, we are
ready to learn the beneficial paths that contain po-
tentially impactful knowledge, based on the learned
latent semantic similarity between hq and hp.

3.3 Fine-Grained Path Selection

In this phase, we aim to select the most suitable
paths as in-context facts for the input question q
based on the cosine similarity between their rep-
resentations as scores with our proposed coverage
rules. In this manner, we can address the chal-
lenge of rigid path selection by flexibly adjusting
the hyperparameters within the coverage rules con-
trolling the diversity and amount of the selected
paths. Specifically, we aggregate the path sets of
all entities in Eq as Pq =

⋃
e∈Eq Pe. Notably, the

paths in Pq inevitably involve redundant triplets
that are shared in a larger number of paths. There-
fore, we need to remove paths with overlapping
triplets for selection. We first divide the entire
path set Pq into subsets, each of which contains
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Knowledge
Graph

Question: What is the capital of France?

Knowledge paths:
France        capital       Paris
France        language       French
France        population       67 million
...

→ →
→
→

→
→

encoder

path 
selection Context: (France, capital, Paris),

(France, population, 67 million)
 Question: What is the capital 
of France? LLM

Answer: The capital 
of France is Paris.

Knowledge
Graph

Question: Who wrote “Hamlet”?

Knowledge paths:
Hamlet     author     William Shakespeare

→
→
→

→
Hamlet       first performed       1609

Context: (Hamlet, author, 
William Shakespeare)
 Question: Who wrote 
“Hamlet”?
Context: (Hamlet, first 
performed, 1609) 
Question: Who wrote 
“Hamlet”?

LLM

Answer: William 
Shakespeare wrote 
“Hamlet”.

LLM

Answer: Christopher 
Marlowe wrote 
“Hamlet”.

√

×
encodertraining 

set

optimize

Training

Inference

Figure 2: The overall pipeline of the proposed KELP. During the inference phase, we identify knowledge paths
from the knowledge graph that are associated with the entities present in the input question. An encoder is then
trained to select valuable paths as knowledge contexts. Finally, the selected knowledge contexts, along with the
input question, are input into the LLM to generate the final answer.

paths that share a specific triplet. By denoting the
set of paths sharing a specific triplet (h, r, t) as
Pq(h, r, t) = {p|(h → r → t) ⊂ p, p ∈ Pq},
we select the k1 paths with highest scores for each
triplet (h, r, t) as follows:

P ′
q(h, r, t) = argmax

P ′
q(h,r,t)

∑

p∈P ′
q(h,r,t)

cos(hp,hq),

s.t. |P ′
q(h, r, t)| = k1, P ′

q(h, r, t) ⊂ Pq(h, r, t).
(3)

P ′
q(h, r, t) represents the subset of Pq(h, r, t) with

k1-top paths in scores. By restricting the size of
P ′
q(h, r, t) to k1, we could prevent including multi-

ple high-scoring 2-hop triplets that share the same
1-hop triplet, precluding overly long contexts in
the prompt with redundant information. We then
select paths based on the scores from these subsets,
where another rule is introduced to further restrict
the number of distinct sharing triplets. Particularly,
we denote the set of distinct sharing triplet subsets
T ′ obtained as follows:

T ′ = argmax
T ′

∑

(h,r,t)∈T ′
max

p∈P ′
q(h,r,t)

cos(hp,hq),

s.t. |T ′| ≤ k2.
(4)

Here, we introduce another parameter k2 to control
the size of T ′, which consists of the distinct sharing
triplets that can constitute the aggregated path set:

P ′
r =

⋃

(h,r,t)∈T ′
P ′
q(h, r, t), (5)

where P ′
r is the aggregated path set from triplets in

T ′. By restricting the size of T ′, we can avoid the

inclusion of excessive, irrelevant information in the
context. Nonetheless, there still exist specific paths
with low similarity to the input question q. Thus,
we additionally consider a threshold to reduce the
impact of such low-similarity paths. Particularly,
we set the threshold as the lowest similarity score
among the highest similarity scores among all se-
lected P ′

q(h, r, t), which is formally described as:

γ = min
(h,r,t)∈T ′

max
p∈P ′

q(h,r,t)
cos(hp,hq), (6)

where (h, r, t) ∈ T ′. In this manner, we could filter
out the low-similarity paths in P ′

r to obtain a high-
similarity path set. The final selected reference
path set is denoted as follows:

Pr = {p|p ∈ P ′
r, cos(hp,hq) ≥ γ}. (7)

As all paths in Pr are highly close to q, they will
be selected as a context of the prompt fed to LM .
By adjusting the value of k1 and k2 in Eqs. (3)

and (4), we can flexibly control the path selection
process in KELP and the amount of new knowledge
introduced as context in the prompt, which allows
for a more dynamic and tailored selection process,
and ensures that the selected knowledge paths are
optimally aligned with the knowledge required by
q to generate the desired outputs.

3.4 Training-Set Establishment

To facilitate the training of encoder M to match
the candidate knowledge paths that can potentially
improve the factual accuracy of the output of LLM,
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we construct a specialized dataset for encoder train-
ing, which contains both positive and negative in-
stances that can or can not influence generation
of the LLM. This dataset is constructed based on
an original dataset comprising input questions and
their corresponding ground-truth responses. Specif-
ically, for a given input question q that the Lan-
guage Model LM fails to generate the correct an-
swer, we select the knowledge path set Pq as de-
scribed in Section 3.3. We select the knowledge
paths in Pq and individually use each of them as
the context for the LLM input. If the inclusion of
a specific path results in the LLM generating the
correct answer (i.e., the answer is consistent with
ground truth), we consider this knowledge path as
a positive sample of the training set. Similarly, we
recognize it as a negative sample of the training set
if it still leads to an incorrect answer.
This training set is constructed using samples

in the background KG and therefore encompasses
a wide spectrum of reference paths that are both
semantically related and semantically non-related
to the input question q. This design ensures that our
encoder M is capable of learning the latent seman-
tics that match both directly semantic-connected
knowledge paths to the input question q, but also
the potentially impactful knowledge paths that may
not be (directly) semantically-related to the input
question q, which substantially improves the gener-
alization ability of the learned encoder in KELP.

3.5 Pairwise Optimization
With the positive and negative samples selected
to establish the dataset, we proceed to train the
sentence encoder M . During the training of the
encoder M , we encode the input question q and
the corresponding path sentences converted from
positive and negative samples (see subsection 3.2),
denoted as p+q and p−q . The representations of q,
p+q and p−q are hq, h+

q and h−
q respectively.

To train the encoder M , we design a pairwise
loss with both the positive and the negative knowl-
edge path samples for a given input question q. The
loss function L is defined as follows:

L =
∑

q

max(cos(hq,h
−
q )− cos(hq,h

+
q )+ η, 0).

(8)
Here, cos(·, ·) represents the cosine similarity func-
tion, and η is a threshold to prevent the model from
excessively focusing on positive or negative sam-
ples. The loss function defined in Eq. (8) encour-
ages the embeddings of positive samples (where q

and the path p are related) to be closer in similarity
compared to the embeddings of negative samples
(where they are not related), where the latent se-
mantic learned by the encoder can be well aligned
with the matchfulness between a potentially im-
pactful knowledge path and an input question q.
Through this optimization process, the model ac-
quires the capability to capture useful knowledge
that can enhance the output of LLMs, encompass-
ing even potentially impactful knowledge that may
not be immediately apparent or directly related.

3.6 Relation-Only Ranking
The above training strategy can be well applied
to the number of candidate path of normal KGs.
However, in situations where the number of paths
becomes substantially massive, we introduce an
alternative path selection strategy called Relation-
Only Ranking to efficiently select important paths
from the KG. This approach is particularly useful
for large knowledge graphs where the k-hop (k =
1, 2) neighboring subgraph of entities mentioned in
the question tends to be excessively dense for path
selection. In such cases, encoding every path we
extract can be time-consuming. Recognizing that
it is primarily the relations within the paths that
provide the most valuable enhancements, we pivot
to the Relation-Only Ranking strategy.
In this strategy, when dealing with a specific

extracted path p, we first construct the path sen-
tence p′ exclusively from the relations present in
p. This means that for a path comprising only one
triplet (h, r, t), we formulate a path sentence p′

as follows: p′ = “r.” For a path containing two
triplets (h1, r1, t1) and (h2, r2, t2), we construct
a path sentence p as follows: p′ = “r1, r2.” This
path sentence serves as the input to another encoder
specifically designed for path sentences with only
relations, denoted asMr.
The encoder Mr is trained in a similar manner

as M , but it utilizes the new path sentences con-
structed solely from relations within the knowledge
paths. Subsequently, we employMr to rank the co-
sine similarity between the representations of input
question q and path sentence p′ containing rela-
tions, similar to how we generally rank knowledge
paths. From the selected relations with high scores,
we then use the original encoder M to rank all
the knowledge paths associated with these selected
relations. The paths with higher scores are cho-
sen as our contexts. With the introduced Relation-
Only Ranking approach, we significantly reduce
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the number of candidate path sentences that require
encoding in case of huge KG, resulting in a more
efficient matching process that consumes less time
while still being able to select valuable contexts
based on the Relation-Only information.

4 Experiments

In this section, we introduce the extensive experi-
ments conducted on two different tasks to demon-
strate the effectiveness of the proposed method
KELP. Our experimental setup closely follows the
experimental settings outlined in KG-GPT (Kim
et al., 2023a), ensuring consistency and compara-
bility with existing research in the field.

4.1 Datasets
In this paper, we focus on two important tasks re-
spectively on two different types of datasets for KG-
Enhanced LLM: (i) Strongly Semantic Knowl-
edge, where the majority of questions have di-
rectly relevant semantic knowledge available in
the KG, and (ii) Weakly Semantic Knowledge,
where only a minority of questions have directly
relevant semantic knowledge accessible in the KG.
For the Strongly Semantic Knowledge task, we
utilize MetaQA (Zhang et al., 2018), i.e., a cru-
cial benchmark dataset containing subsets of ques-
tions with 1-hop/2-hop reasoning steps respec-
tively, and featuring a wide variety of questions.
Each question in MetaQA comes with a set of
supporting facts and a corresponding query over
a knowledge graph, challenging models to per-
form intricate multi-hop inference to derive accu-
rate answers. With its rich contextual information,
MetaQA presents significant challenges for models
to effectively reason over interconnected entities
and relations within the knowledge graph. For the
Weakly Semantic Knowledge task, we utilize the
FACTKG dataset (Kim et al., 2023b). The FAC-
TKG dataset comprises 108,000 claims categorized
as either True or False, where claims are subject to
validation with DBpedia, i.e., a knowledge graph
developed by (Lehmann et al., 2015) which is not
directly connected to most questions. In our exper-
iments, we employ a subset of DBpedia provided
by (Kim et al., 2023b) in FACTKG.

4.2 Baselines
We include the same baselines as previous stud-
ies (Kim et al., 2023a). We conduct all tasks
with the large language model “gpt-3.5-turbo-
0613” (Brown et al., 2020).

Table 1: Comparison between the accuracy(%) and
standard deviations over Few-shot settings of KELP and
baselines on both tasks. Here LLME represents LLM-
based evidence. ∆PE is the improved value of KELP
compared to LLME. Stongly and Weakly respectively
represent Strong Semantic Knowledge and Weakly Se-
mantic Knowledge. The best results in each learning
strategy are shown in bold, respectively.

Task Method
Accuracy (%)

σ
4-shot 8-shot 12-shot

GPT 54.4 61.5 63.0 4.59

Strongly LLME 94.7 95.8 96.3 0.82

1-hop KELP 97.5 97.0 97.1 0.26

∆PE +2.8 +1.2 +0.8 -0.56

GPT 22.6 22.8 28.3 3.23

Strongly LLME 92.8 93.8 94.4 0.81

2-hop KELP 93.7 94.3 93.8 0.32

∆PE +0.9 +0.5 -0.6 -0.49

Weakly

GPT 54.6 55.2 64.0 5.26

LLME 59.5 67.7 72.7 6.66

KELP 68.5 68.6 69.2 0.38

∆PE +9.0 +0.9 -3.5 -6.28

For all datasets, we conduct a question-only set-
ting without evidence (i.e., context) in all few-shot
learning scenarios. Moreover, for LLM-based ev-
idence setting, where LLMs are utilized to cap-
ture the useful knowledge in KGs as prompts, we
employ KG-GPT (Kim et al., 2023a) in the same
settings to assess its performance across varying
levels of evidence support from the KG. These ex-
periments are designed to assess the model’s perfor-
mance across a spectrum of scenarios employing
4-shot, 8-shot, and 12-shot configurations.

Besides few-shot learning settings, we also com-
pare these performances with fully supervised mod-
els: For Strongly Semantic Knowledge setting, we
implement five widely recognized baselines for
Knowledge Graph Question Answering (KGQA),
i.e., KV-Mem (Xu et al., 2019), GraftNet (Sun
et al., 2018), EmbedKGQA (Saxena et al., 2020),
NSM (He et al., 2021), and UniKGQA (Jiang
et al., 2023b). For Weakly Semantic Knowledge
setting, we also compare these performances of
few-shot learning settings with two encoder-only
transformer-based text classifiers, BERT (Devlin
et al., 2019) and BlueBERT (Peng et al., 2019),
and an evidence retrieval approach GEAR (Zhou
et al., 2019), which comprises an evidence graph
retriever and a claim verification model.
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4.3 Implementation Details

In this subsection, we provide the detailed settings
for the implementation of our framework. The
baseline LLM used in our experiments is “gpt-3.5-
turbo-0613” (Brown et al., 2020), which is an en-
hanced version within the GPT-3 series. During
the establishment of the training set, we use 20%
of the samples from the original training sets to
identify certain positive and negative triplets. Then,
a pretrained DistilBert Model with 66 million pa-
rameters is introduced as the encoderM to judge
whether a triplet can potentially contain the impor-
tant knowledge to correct/improve the generation
of the baseline LLM. For optimization, we use
AdamW (Loshchilov and Hutter, 2018) as the opti-
mizer, with the learning rate set as 2× 10−6. We
set k1 = k2 = 4 in the coverage rules based on
their performance.
Here, for the FACTKG dataset, due to the large

size of the neighboring subgraph associated with
the entities, we employ the Relation-Only Ranking
strategy introduced in Section 3.6 to select diverse
and concise triplet paths from the KG. Furthermore,
our preliminary analysis of the FACTKG dataset
reveals notable accuracy in scenarios where a claim
is determined to be True. Conversely, in instances
from the FACTKG dataset where a claim is pre-
dicted as False, there exists a possibility that it
could actually be a True example, but with context
information that has been inadequately captured.
To mitigate this issue, for claims predicted to be
False within this dataset, we employ the LLM for a
secondary verification process devoid of any con-
textual information.

4.4 Results and Analysis

In this subsection, we compare and analyze the
performance of KELP and various baselines on
the Strongly Semantic Knowledge and Weakly Se-
mantic Knowledge tasks. The results of few-shot
learning settings are summarized in Tables 1. From
the table, we can find that adding LLM-identified
useful knowledge in the prompt, i.e., LLM-based
evidence, demonstrates significant performance im-
provement over the baseline GPT. This indicates
that a lack of certain knowledge can indeed result
in serious performance degradation in the LLM
generation due to factual inaccuracy. However,
since LLMs mainly encode direct semantic infor-
mation, potentially useful knowledge with indirect
semantic similarity with the input texts can be over-

Table 2: Baselines of fully supervised models on both
tasks. Stongly and Weakly respectively represent Strong
Semantic Knowledge andWeakly Semantic Knowledge.

Semantic Knowledge Methods
Accuracy (%)

1-hop 2-hop

Strongly

KV-Mem 96.2 82.7

GraftNet 97.0 94.8

EmbedKGQA 97.5 98.8

NSM 97.1 99.9

UniKGQA 97.5 99.0

BERT 65.20

BlueBERT 59.93Weakly

GEAR 77.65

looked by LLM-based evidence. By finetuning
pretrained encoder to capture the latent similarity
between the collected sample pairs of impactful
knowledge paths and input texts, in the experiments
conducted within both 4-shot and 8-shot frame-
works, our methodology obtains superior outcomes
compared to those achieved through LLM-based
evidence. Notably, in the 12-shot scenario, our ap-
proach’s performance in 1-hop Strong Semantic
Knowledge task with a retrieval surpassed that of
LLM-based evidence. Furthermore, in other exper-
imental settings within the 12-shot scenario, our
method’s results approached the efficacy levels of
LLM-based evidence, demonstrating the potential
of our approach to closely match or exceed LLM
capabilities under varying conditions of informa-
tional support, especially in scenarios with a lower
number of shots. The analysis of the relationship
between performance and shots will be discussed
in Section 4.5.
In table 2 we provide the performances of fully

supervised models. Our research indicates that the
method KELP we propose in few-shot learning
settings surpasses the performance of some fully
supervised models, achieving results that are close
to the highest accuracy benchmarks among these
models. This finding underscores the effective-
ness of our approach in leveraging limited data to
achieve high levels of accuracy.

4.5 Sensitivity w.r.t. Shots
Furthermore, we compare KELP with the method
on LLM-based evidence, when different shots of
knowledge are included in the prompt. As the re-
sults illustrated in Figure 3 and the standard de-
viations in Table 1, the number of shots does not
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Figure 3: Comparison between the baseline GPT no-context, KG-GPT (LLM-based evidence), and our proposed
method KELP on the FACTKG dataset and MetaQA dataset w.r.t. different shots in the learning setting.

significantly affect the performance of KELP. This
phenomenon can be attributed to KELP’s empha-
sis on capturing potentially impactful knowledge
aiming at effectively refining the outputs of LLM.
In contrast, in-context examples serve merely to
enhance the LLMs on a semantic level. Given
that these in-context examples are crafted manu-
ally, it becomes challenging to determine the exact
influence of increasing their number. Furthermore,
the addition of more in-context examples can po-
tentially introduce learning noise, detracting from
the model’s performance. Consequently, KELP ex-
hibits minimal fluctuation in its performance across
various numbers of shots, particularly excelling in
contexts where the shots are limited. This stability
and superior performance, even with scant exam-
ples, render KELP especially relevant in practical
scenarios where acquiring a large volume of ex-
amples is challenging. The consistency of KELP
under these conditions not only demonstrates its
robustness but also its practical applicability, offer-
ing a compelling solution in environments where
data limitations are a significant constraint.

4.6 Ablation Study

In this subsection, we design different variants of
KELP to demonstrate the effectiveness of various
components in our framework. In particular, we
consider the following variants: (1) KELP w/o
Ru1, which removes the k1 in coverage rules and
directly selects paths with the highest scores in each
set Pq(h, r, t). As a result, we did not incorporate
measures for fault tolerance regarding the selection
of useful knowledge within the set. (2) KELP w/o
Ru2, which removes the k2 in coverage rules and
directly selects the top-1 set with the highest scores.
As a result, the diversity of selected paths cannot

Table 3: Experimental results of ablation studies.
Stongly and Weakly respectively represent Strong Se-
mantic Knowledge and Weakly Semantic Knowledge.
Strongly 1-hop is not applicable to KELP w/o Ru1.

Tasks Methods
Accuracy (%)

4-shot 8-shot 12-shot

Strongly 1-hop

KELP 97.5 97.0 97.1

KELP w/o Ru1 - - -

KELP w/o Ru2 90.0 89.4 89.6

KELP w/o Ra 82.9 82.2 82.3

Strongly 2-hop

KELP 93.7 94.3 93.8

KELP w/o Ru1 88.1 88.2 88.2

KELP w/o Ru2 81.0 80.9 81.2

KELP w/o Ra 70.4 70.1 69.7

Weakly

KELP 68.5 68.5 69.2

KELP w/o Ru1 67.0 67.4 68.3

KELP w/o Ru2 66.5 67.0 67.7

KELP w/o Ra 66.1 64.6 66.3

be ensured. (3) KELP w/o Ra, which removes the
ranking performed by the encoder and randomly
selects paths in the subgraphs. As a result, the
selected paths contain less beneficial information.
The results of the ablation study, presented in Ta-
ble 3, validate the effectiveness of the coverage
rules and the ranking method. Removing each of
them will lead to a decrease in the accuracy of pre-
diction, which demonstrates the effectiveness of
our design.

5 Related Work

5.1 Large Language Model (LLM)

Large language model (LLM), such as GPT (Brown
et al., 2020), BERT (Devlin et al., 2019), and
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T5 (Raffel et al., 2020), represents a pivotal de-
velopment in natural language processing (NLP).
Based on transformers (Vaswani et al., 2017)
trained extensively on diverse datasets that encom-
pass a wide spectrum of textual sources (including
books, articles, and websites), LLMs acquire a pro-
found understanding of semantics and reasoning
ability in multiple languages. In the era of LLMs,
prompt engineering is a specialized technique to
efficiently adapt pretrained LLMs to downstream
tasks, aiming to elicit desired responses from these
models by careful design and optimization of the
input text presented to the LLM known as prompts
for different tasks. Prompt engineering leverages
the extensive training of LLMs on diverse datasets
to guide and instruct them to generate specific out-
puts or perform particular tasks without laborious
fine-tuning for each downstream task.

5.2 Knowledge Graph-Enhanced LLM

Knowledge Graphs (KGs) (Chen et al., 2020) are
organized repositories for knowledge structured
as a collection of triplets KG = {(h, r, t) ⊆
E × R × E}. E and R represent the set of enti-
ties and relations, respectively. Each triplet in the
KG consists of a head entity h, a relation r, and
a tail entity t. KG-Enhanced LLM aims to use
KG as external knowledge to support LLM genera-
tions (Wang et al., 2023b). Two primary strategies
are prevalent for integrating KG knowledge into
LLMs: training phase enhancement and inference
phase enhancement. The former involves embed-
ding KG knowledge into LLMs via novel training
objectives or directly incorporating KG data into
input sequences (Wang et al., 2022), exemplified
by models like ERNIE (Zhang et al., 2019) and K-
BERT (Liu et al., 2020). However, these methods
require extensive computational resources and fre-
quent updates. Alternatively, the inference phase
enhancement incorporates new knowledge through
graph models or innovative prompt engineering,
as seen in QA-GNN (Yasunaga et al., 2021) and
KG-GPT (Kim et al., 2023a). It is noteworthy that
these methods offer a computationally efficient and
flexible method for KG integration, where LLMs’
reasoning capabilities can be enhanced without con-
stant retraining.

6 Conclusion

In this paper, we present KELP, an innova-
tive method to enhance Large Language Models

(LLMs) with Knowledge Graphs (KG), aiming to
flexibly capture potentially impactful knowledge
that may lack direct semantic relevancy to the input
texts. Specifically, we establish a training dataset
with real examples of path-text pairs that demon-
strate the correction of LLM outputs by including
external knowledge as contexts. Subsequently, we
train a path-text encoder to measure whether an in-
stance of knowledge (represented as a given path in
KG) contains potentially impactful knowledge for
a specified input text. Based on the similarity score,
two coverage rules are introduced to further refine
the selected knowledge paths with high flexibility.
Through experimental validation on two datasets,
KELP has proven its superiority over other state-
of-the-art baselines on KG-Enhanced LLMs.

7 Limitaions

Our work performs path selection via an encoder
trained on the latent semantic space. As introduced
in Section 3.4, to train an encoder proficient in cap-
turing valuable knowledge contexts encompassing
both direct and indirect semantic relationships, it
is essential to construct a training set that covers a
diverse spectrum of data types. Nevertheless, man-
ually testing the paths surrounding entities within
a text input via Large Language Models to discern
and select positive and negative samples would be
an exceedingly time-consuming process.

8 Ethics Statement

In our work, the knowledge in the background
knowledge graph (KG) and the pretrained large
language model (LLM) may involve information
from raw data in the real world with social bias.
Nevertheless, our method only selects knowledge
path samples from KGs based on their relations
to the input texts. Thus, as long as the input texts
and samples do not preserve harmful information,
we believe that our method does not present any
negative social impacts.
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