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Abstract

In recent years, federated minimax optimiza-
tion has attracted growing interest due to
its extensive applications in various machine
learning tasks. While Smoothed Alternative
Gradient Descent Ascent (Smoothed-AGDA)
has proved successful in centralized noncon-
vex minimax optimization, how and whether
smoothing techniques could be helpful in a
federated setting remains unexplored. In this
paper, we propose a new algorithm termed
Federated Stochastic Smoothed Gradient De-
scent Ascent (FESS-GDA), which utilizes the
smoothing technique for federated minimax
optimization. We prove that FESS-GDA can
be uniformly applied to solve several classes
of federated minimax problems and prove
new or better analytical convergence results
for these settings. We showcase the practi-
cal efficiency of FESS-GDA in practical fed-
erated learning tasks of training generative
adversarial networks (GANs) and fair classi-
fication.

1 INTRODUCTION

Minimax optimization is widely encountered in mod-
ern machine learning tasks such as generative adver-
sarial networks (GANs) (Goodfellow et al., 2014a),
AUC maximization (Liu et al., 2019), reinforcement
learning (Zhang et al., 2021), adversarial training
(Goodfellow et al., 2014b), and fair machine learning
(Nouiehed et al., 2019). In recent years, many pro-
gresses on minimax optimization problems have been
reported, with the majority focusing on solutions at a
single client level. However, modern machine learning
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tasks usually demand a huge amount of data. A signif-
icant portion of this data may be sensitive, rendering it
unsuitable for sharing with servers due to privacy con-
cerns (Léauté and Faltings, 2013). Furthermore, data
sourced from edge devices can be hindered by the lim-
ited communication capabilities with the server. To
preserve data privacy and to address communication
issues, federated learning (FL) was proposed (McMa-
han et al., 2017). In FL, clients do not send their data
directly to the server. Instead, each client trains its
model locally using its own data. Periodically, clients
communicate with the server, sending their models
for aggregation. The server then returns the updated
model to the clients.

Solutions and analyses for federated minimax prob-
lems have been developed in recent years. Some focus
on convex-concave problems (Deng et al., 2020a; Hou
et al., 2021; Sun and Wei, 2022), and others are de-
voted to more general nonconvex minimax problems
(Deng and Mahdavi, 2021; Sharma et al., 2022, 2023).
Because the objective functions are usually noncon-
vex in the min variables for many practical applica-
tions, we mainly focus on federated nonconvex mini-
max problems in this paper.

Gradient descent ascent (GDA) and its stochastic ver-
sion stochastic gradient descent ascent (SGDA) are the
simplest single-loop algorithms for centralized mini-
max problems. Most existing federated minimax algo-
rithms are extensions of GDA (SGDA) to the federated
setting, i.e. Local SGDA (Deng and Mahdavi, 2021),
Fed-Norm-SGDA (Sharma et al., 2022). Zhang et al.
(2020) propose Smoothed-AGDA,; a single-loop algo-
rithm utilizing the smoothing technique, and prove
that it has a faster convergence rate for centralized
nonconvex-concave problems compared with GDA.
Yang et al. (2022b) then prove that Smoothed-AGDA
and its stochastic version Stochastic Smoothed-AGDA
also have faster convergence rates for centralized
nonconvex-PL  (Polyak-Lojasiewicz) problems com-
pared with GDA (SGDA). A natural question arises:
Can we utilize the smoothing techniques to de-
sign a faster algorithm for federated nonconvex
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Table 1: Comparison of per-client sample complexity and communication complexity for different classes of nonconvex

minimax problems.

For comparison, we only give the convergence results for finding an e-stationary point of ®

(Definition 2.2) for NC-PL and of ®,,4; (Definition 2.4) for NC-1PC under full client participation (m = M). We
also provide convergence results of finding an e-stationary point of f (Definition 2.1), and consider partial client
participation (m < M) in our paper. & :={/u is the conditional number.

) ) Full Client Participation (FCP)
Algorithms Partllall Ch.ent Per-client Sample | Communication
Participation . .
complexity complexity
Nonconvex-Strongly-Concave (NC-SC)/ Nonconvex-PL (NC-PL)
Local SGDA (Sharma et al., 2022) X O(k*m~te ™) O(k3e™3)
SAGDA (Yang et al., 2022a) v O(k*m~te?) O(k2e72)
Fed-Norm-SGDA (Sharma et al., 2023) v O(k*m~te %) O(k?e7?)
FedSGDA-M* (Wu et al., 2023) X O(k*m~1e™3) O(K%72)
FESS-GDA Corollary 3.1 v O(k?>m~te™?) O(ke™?)
Nonconvex-One-Point-Concave (NC-1PC)
Local SGDA+? (Sharma et al., 2022) X O(e™®) O(e™")
Fed-Norm-SGDA+P¢ (Sharma et al., 2023) v O(m~1e78) O(e %)
FESS-GDA Theorem 3.2 v O(m~1te7®) O(e %)
Nonconvex-Concave (NC-C)
Local SGDA+" (Sharma et al., 2022) X O(m~1e7®) O(e™7)
Fed-Norm-SGDA+" (Sharma et al., 2023) v O(m~1te8) O(e™%)
FedSGDA+ (Wu et al., 2023) X O(m~1e™®) O(e®)
FESS-GDAY Theorem 3.2 v O(m=1e™8) O(e™?)
Objective function has a form of (2) (A special case of NC-C problems)
FESS-GDA Theorem 3.4 ‘ v ‘ O(m~te %) ‘ O(e™?)

? Their better performance comes from using additional variance reduction, while we do not.

P Their proofs need additional assumptions that each local loss function f; also satisfies the NC-C (NC-1PC) condition, while ours
only needs the global loss function f to be NC-C (NC-1PC). They also assume Hy1|\2 < D, but do not mention how to guarantee
this. We use a projection operator in our algorithm to guarantee this.

¢ Their proof requires additional assumption that each local loss function f; satisfies the one-point-concave condition with a common

global minimizer y* (x).

4 We have better convergence results for the NC-C setting of finding an e-stationary point of f; see Theorem 3.3 for details.

minimax optimization?

Furthermore, in the current literature, usually two
different algorithms (such as Local SGDA and Lo-
cal SGDA+ (Deng and Mahdavi, 2021; Sharma et al.,
2022)) are needed for different nonconvex minimax set-
tings, which limits their practical applicability. An-
other question thus arises: Can we design a sin-
gle, uniformly applicable algorithm for feder-
ated nonconvex minimax optimization?

1.1 Problem Setting

In this paper, we study the federated minimax opti-
mization problems in the following form:

mip o { £(o.y) = ]\;;f@cy)} 1)

zeX yey

where X = R4, Y C R%, M is the number of clients,
fi(z,y) = E¢,op, [f(z,y;&)] is the local loss function

at client 4, and f(z,y;&;) denotes the loss for the data
point &;, sampled from the local data distribution D;
at client 3.

For the nonconvex-concave setting, we also consider a
special case:

min max f(z,y) = mig max F(z)"y, (2)

where Y = {(y1,..,yn)? | Yie1 ¥ = 1,y; > 0} and
F(z) = (fi(z), ..., fu(z))T is a mapping from X = R®:
to R™. Note that (2) is equivalent to the problem of
minimizing the point-wise maximum of a finite collec-
tion of functions:

min max fi(x). (3)
Problems in the form of (2) and (3) commonly appear
in practical applications such as adversarial training
Nouiehed et al. (2019); Madry et al. (2017) and fairness
training Nouiehed et al. (2019).
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Table 2: Comparison of per-client sample complexity and communication complexity needed to find (zr,yr) that satisfy
Ellzr — 2*||* + E|lyr — y*||*> < €2. We use O to hide logarithmic terms.

i Partial Client Data Per-client Sample | Communication
Algorithms Type o ) ) )
Participation | Heterogeneity complexity complexity
Local SGDA? SCLSC X X O(M~te2) O(M)
Deng and Mahdavi (2021) X v O(M~1e7?) O(e™ 1)
FESS-CDA X v O(M~te2) O(1)
- 25 PL-PL v X O(m~1e2) 0(1)
eorem 3. - -
v v O(m~1e72) O(m~te ?)

2 Their proofs need an assumption that each local loss function f; satisfies the SC-SC condition, while ours only needs the global loss

function f to satisfy the PL-PL condition (Assumption 3.7).

1.2 Contributions

We propose a new algorithm termed FEderated
Stochastic Smoothed Gradient Descent Ascent
(FESS-GDA). We prove that FESS-GDA can be uni-
formly used to solve several classes of federated
nonconvex minimax problems, and prove new or
better convergence results for these settings. We
summarize our main theoretical results in Tables 1, 2
with the following abbreviations:

SC-SC': Strongly-Convex in x, Strongly-Concave in y,

PL-PL: PL condition in «, PL condition in y (Assump-
tion 3.7),

NC-5C'": Nonconvex in x, Strongly-Concave in y,

NC-PL: Nonconvex in z, PL condition in y (Assump-
tion 3.1),

NC-C': Nonconvex in z, Concave in y (Assumption
3.5),

NC-1PC: Nonconvex in z, One-Point-Concave in y
(Assumption 3.4).

More specifically, our contributions are the following.

e For NC-PL and NC-SC problems, we prove that
FESS-GDA achieves a per-client sample complexity
of O(k?m~te~*) and a communication complexity of
O(ke2) in terms of the stationarity of both f and ®.
The previously best-known results without variance
reduction in the federated setting are O(k*m~1te=*)
per-client sample complexity and O(k?e~2) commu-
nication complexity. We improve these results by
a factor of O(k?) in the sample complexity and a
factor of O(k) in the communication complexity.

e To the best of our knowledge, we are the first to
prove convergence results of solving (2) under a fed-
erated setting. We prove that FESS-GDA has a sam-
ple complexity of O(m~te~*) and a communication
complexity of O(¢~2) in terms of the stationarity of
both f and ®, which is much better than the com-

plexity we can achieve for general NC-C problems.

e For general NC-C and NC-1PC problems, we prove
that FESS-GDA achieves comparable performances
as the current state-of-the-art algorithm, but with
weaker assumptions. Moreover, we provide addi-
tional convergence results for these two settings in
terms of the stationarity of f. For the NC-C prob-
lems, we prove a best-known per-client sample com-
plexity of O(m~'e %) and a communication com-
plexity of O(¢~?) in terms of stationarity of f.

e To the best of our knowledge, we are the first to pro-
vide convergence results of general federated mini-
max problems with the PL-PL condition. We prove
a better communication complexity of FESS-GDA in
the PL-PL setting, compared with Local SGDA un-
der the SC-SC setting (Deng and Mahdavi, 2021),
despite that PL-PL is much weaker than SC-SC.

1.3 Related Works

Nonconvex-Strongly-Concave. For stochastic NC-
SC problems, Lin et al. (2020) proved that SGDA
achieves O(k3¢~1) sample complexity with a batch
size of O(¢72). Qiu et al. (2020); Luo et al. (2020)
improved the sample complexity to O(k3¢~3) with
a variance-reduction technique. Yang et al. (2022b)
proved that Stochastic Smoothed-AGDA can achieve
O(k?e~*) sample complexity.

Nonconvex-Concave. Lin et al. (2020) analyzed
GDA and SGDA for NC-C problems and proved that
GDA can achieve O(e~%) sample complexity for the de-
terministic setting and SGDA can achieve O(e~®) sam-
ple complexity for the stochastic setting. Zhang et al.
(2020) proposed Smoothed-AGDA and proved that it
can achieve O(e~*) sample complexity for the deter-
ministic setting. For the stochastic setting, Rafique
et al. (2021); Zhang et al. (2022) improved the com-
plexity to O(¢~%) with a nested structure.

Federated minimax. There is a growing interest in
solving federated minimax problems. Some focused
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on the convex-concave setting (Deng et al., 2020a;
Hou et al., 2021; Liao et al., 2021; Sun and Wei,
2022). There is also progress in the nonconvex set-
ting. Deng et al. (2020b) analyzed a nonconvex-linear
setting. Reisizadeh et al. (2020) formulated robust
federated learning problems as special cases of feder-
ated PL-PL and NC-PL minimax problems and ana-
lyzed the convergence results of their proposed meth-
ods for these settings. Deng and Mahdavi (2021) pro-
posed Local SGDA and Local SGDA+ and analyzed
their convergence results under several nonconvex set-
tings. Sharma et al. (2022) improved the convergence
results in Deng and Mahdavi (2021). Yang et al.
(2022a) proposed SAGDA and improved the commu-
nication complexity for the NC-PL setting. Sharma
et al. (2023) proposed Fed-Norm-SGDA and Fed-
Norm-SGDA+ and further improved the convergence
results under several nonconvex settings. Tarzanagh
et al. (2022) proposed FEDNEST with a nested struc-
ture and showed O(r3e~*) sample complexity for the
NC-SC setting. Huang (2022) designed AdaFGDA al-
lowing for adaptive learning rates and improved the
sample complexity to 0(6_3) for NC-PL setting with
variance-reduction techniques. Recently, Wu et al.
(2023) proposed FedSGDA-M and improved the sam-
ple complexity to O(x3e~3) for the NC-PL setting with
variance-reduction techniques.

2 PRELIMINARIES

Notations. We denote the I3 norm as || - ||2. For a
differentiable function g(z,y), we denote its gradient
as Vg(z,y) = (Veg(z,y)T, Vyg(x,y)T)T. We define
®(z) = maxyey f(x,y), Py(y) = argming ey 5ly —
Y[l

We state some common assumptions that will be used
throughout the paper. They are commonly used in
(federated) minimax optimization; e.g., (Yang et al.,
2022b; Zhang et al., 2020; Deng and Mahdavi, 2021;
Sharma et al., 2022).

Assumption 2.1 (Lipschitz smooth) FEach local
function f; is differentiable and there exists a positive
constant | such that for all i € [M], and for all
x1,T9 € X,y1, y2 €Y, we have

IV fi(z1,y1) — Vi(z, y2)|| < Ullzr — z2f] + [ly1 — yall]-

Assumption 2.2 (Bounded variance) The gradi-
ent of each local function f;(x,y,&;), with a random
data sample & ~ Dy, is unbiased and has bounded vari-
ance, i.e., there exists a constant o > 0 such that for
alli € [M], and forallz € X,y € Y, E[V fi(z,y;&)] =
Vfi(z,y), and ||V fi(x,y; &) — V fi(z,y)|* < o2

Assumption 2.3 (Bounded heterogeneity)

To bound the heterogeneity of the local functions
{fi(z,y)} across the clients, we assume there exits a
constant og > 0 such that

sup ||V fi(z,y) = V(2 y)l* < ot
zeX,yeY,ie[M]

Assumption 2.4 ®(z) = maxyey f(z,y) is lower
bounded by a finite ®* > —oo.

The following notions of stationarity measures are also
commonly used in the study of minimax optimization.

Definition 2.1 (Stationarity measures of f)

We say (%,9) is an (e1,€2)-stationary point of a
differentiable function f(-,-) if |Vf(Z,9)] < €1 and
WPy (G + 119, f(,9)) - 3l < e If (2,9) is an
(e, €)-stationary point of f, we say it is an e-stationary
point of f.

Definition 2.2 (Stationarity measures of ®)
We say T is an e-stationary point of a differentiable
function ®(-) if |[VO(2)] <e.

When f satisfies the PL condition in y, ®(z) =
maxycy f(z,y) is 2kl-Lipschitz smooth (Nouiched
et al., 2019). Thus, the stationarity measure of @
is widely used in NC-PL and NC-SC settings. How-
ever, for other settings like NC-C, NC-1PC, ®(z) is not
guaranteed to be smooth, and the stationarity measure
of the Moreau Envelope of the ®(x) (Definition 2.4) is
commonly used.

Definition 2.3 (Moreau envelope) A function
®,(2) is the Moreau envelope of ®(x) with A > 0, if
for all z € X, ®5(2) = min, ®(z) + (1/2)\) |z — z||*.

Definition 2.4 (Stationarity measures of ®,5)
We say & is an e-stationary point of ®q,9(-) if
[IV®1/2(2)| < €.

3 FESS-GDA

3.1 Algorithm

Inspired by the success of Smoothed-AGDA in the cen-
tralized setting (Zhang et al., 2020; Yang et al., 2022b),
we propose FESS-GDA, which is compactly presented in
Algorithm 1, for the federated minimax optimization
problem. We consider a system with M clients and
one central server. In each communication round, the
server first randomly samples m clients and then sends
them the current global model (a¢,y;). For all par-
ticipating clients, they synchronize their local models
with the global model and perform K local updates
with their local data and local learning rate 1,7,
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After the completion of local updates, each client sends
back their local models to the server. Then, instead
of a standard aggregation for local models like Local
SGDA (Deng and Mahdavi, 2021), the key difference
of FESS-GDA here is that we introduce an auxiliary pa-
rameter z; to smooth the update of ;.

Note that with a small local learning rate that xfz ~
Ty, yf’i ~ y; and Assumption 2.2, the local updates can
be approximated as

mf.jl ~ xfii - na:,lva:fi(mta yt)7

k
yt,;‘rl ~ yfﬂ + ny,lvyfi($t7 yt)7
and with Assumption 2.3, the update of z;,y; can be
approximated as

Tpp1 R Ty — NNz, g K [V f(@e, ye) + plae — 24)],
Yi+1 =~ Y + ny,lny,gKvyf('rtv Yt),
Zep1 = 2t + B(Xe41 — 21),

which has a similar form as the Smoothed-AGDA in
the centralized setting.

Define f(z,y,2) = f(z,y) + Bllz — 2||>. Thus, in each
communication round, we approximately perform gra-
dient descent ascent of the following problem

. 2 p
lelnm:jle(fﬂ,y,zt) = f(xay) + 5”1' - ZtH2'

We set 5 € (0,1) to guarantee that z; is not too far
from x;. We choose p = 2l for the NC-PL, NC-1PC,
NC-C settings so that f(z,y,z) is I-strongly convex
in x. For the PL-PL setting, since f satisfies the PL
condition in x, we set p = 0. Note that when p =
0,Y = R?% FESS-GDA is equivalent to FSGDA (Yang
et al., 2022a), and when p=0,Y =R% n, , =9, , =
1, FESS-GDA is equivalent to Local SGDA (Deng and
Mahdavi, 2021).

3.2 Convergence

We analyze the convergence behaviors of FESS-GDA un-
der the following settings. All proofs are deferred to
the appendix.

3.2.1 Nonconvex-PL

Nonconvex-PL is a well-known weaker setting com-
pared with Nonconvex-Strongly-Concave (NC-SC).
Thus, the results in this section also hold for NC-SC.

Assumption 3.1 (PL condition in y) Assume

X = R"Y = R®%. For any fized z € X,
maxycy f(z,y) has a nonempty solution set and
a finite optimal value. There exists p > 0 such

that: |Vyf(z,y)|I* > 2u[max, f(z,y) — f(2,y)],Vz €
X,yeyY.

Algorithm 1 FESS-GDA

L. Input: o, Yo, 20, Ma,ts My,ls Nx,gs My.gs B> 0, Ty K

2: fort=0,1,--- , T —1do

3:  Server randomly samples a subset S; of clients
with |S;| = m, and send them (zy,y;).

4:  for each client ¢ € S; do

5: x%l = xt,yt{i = Y¢.

6: for k=1,2,--- ,K do

T mfjl = xfz - ”z,lvwfi(xﬁm yf,m 5?1)

8: Yeit = Py(yls + gV (et vt €)

9: end for

10: Each client send their local models
(T YT to the server.

11:  end for

12:  Server aggregate local models and compute
(Teg1,Yeg1)-

13: Tip1 = T + 77%9(% Eies’t l‘t{(j_l
N, g KD(T¢ — 2t)

4y = Py (ye + My (5 e, via - = ve))

15:  zpp1 = 2z + B(zeg1 — 2¢)

16: end for

_xt)_

We denote x :={/p in this section.

Theorem 3.1 Under Assumptions 2.1, 2.2, 2.8, 2.4
and 3.1, if we apply Algorithm 1 with appropriately
chosen parameters (see Appendiz D) and full client
participation: m = M or with homogeneous data:
o =0, we can find an (¢, €/+/K)-stationary point of f
with a per-client sample complezity of O(k*m~le %)
and a communication complexity of O(ke=2). For
partial client participation: m < M and heteroge-
neous data: og > 0, we can find an (e,€/\/K)-
stationary point of f with a per-client sample complex-
ity of O(k®>m~Ye™*) and a communication complexity
of O(k?>m~1le ).

The formal statement and proof of Theorem 3.1 can
be found in Appendix D. When m = M or og = 0,
we set the number of local updates K = O(km~1e~2)
and can have a communication complexity of O(ke2).
However, when m < M and og > 0, our result does
not show any convergence benefits from multiple local
updates and can set K = O(1) with a communica-
tion complexity of O(k?>m~1te=*). Similar behaviors
have also been observed in other federated minimiza-
tion and minimax works (Yang et al., 2021; Jhunjhun-
wala et al., 2022; Yang et al., 2022a; Sharma et al.,
2023). As for the complexity, our per-client sample
complexity exhibits a linear speedup w.r.t the number

of participated clients.

When M = 1, our results recover the convergence
results of Smoothed-AGDA in the centralized setting
(Yang et al., 2022b). Similar to Yang et al. (2022b),
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we can also translate an (e, €/+/k)-stationary point of
f to an e-stationary point of ® under the federated
setting, as stated below.

Proposition 3.1 (Translation)  Under Assump-
tions 2.1, 2.2, 2.3, 2.4 and 3.1, if (%,9) is
an (e, €/+/K)-stationary point of f, then we can
find an Of(e)-stationary point of ® by solving
min, max, {f(z,y) + Uz — Z||*} from the initial point
(Z,9) using FESS-GDA. When m = M or og = 0, we
need additional O(k>m~te=2log(k)) per-client sample
complezxity and O(klog(k)) communication complex-
ity. When m < M and og > 0, we need additional
O(k®m~te 2 log(k)) per-client sample complexity and
O(k’m~ e 2log(k)) communication complexity.

With Proposition 3.1, we have the following corollary.

Corollary 3.1 Under Assumptions 2.1, 2.2, 2.8, 2.4
and 3.1, when m = M or og = 0, we can use
FESS-GDA to find an e-stationary point of ® with
a per-client sample complexity of O(k*m~te * +
kSm~te 2log(k)) and a communication complexity of
O(ke™2 + klog(k)). When m < M and og > 0, we
can use FESS-GDA to find an e-stationary point of ®
with a per-client sample complexity of O(k*m~te™* +
kSm~te?log(k)) and a communication complezity of

O(k*m~te™* + kPm~Le 2 log(k)).

When ¢ is small such that ¢ < O(k~%/?), the sam-
ple and communication complexity needed to find an
e-stationary point of ® have the same order as the
complexity in finding (e, €/+/k)-stationary point of f.
Therefore, in terms of finding an e-stationary point of
®, our result presents the best-known communication
complexity under similar settings. Compared with
previous algorithms without variance reduction, we
improve the sample complexity by a factor of O(k?).
We also establish additional convergence results in
terms of stationarity of f.

3.2.2 Nonconvex-One-Point-Concave

Nonconvex-One-Point-Concave (Assumption 3.4) is a
weaker setting than Nonconvex-Concave, and is stud-
ied in many federated minimax works (Deng and Mah-
davi, 2021; Sharma et al., 2022, 2023). We use the
following assumptions for this setting.

Assumption 3.2 (Compactness in y) X = R%.
Y is a conver, compact set of R, and D(Y) denotes
the diameter of Y.

Assumption 3.3 (Lipschitz continuity in y) For
any x € X,y,y € Y, we have a finite number G,
such that || f(z,y) — f(z.y)| < Gylly ="l

A similar assumption (Lipschitz continuity in z) is also
used in Deng and Mahdavi (2021); Sharma et al. (2022,
2023).

Assumption 3.4 (One-Point-Concave in y)
For all x € X, for oll y € Y, we have

where y*(z) € argmax,cy f(v,y).

Theorem 3.2 Under Assumptions 2.1, 2.2, 2.8, 2.4,
3.2, 8.3, 8.4 and €2 < ID(Y), if we apply Algorithm
1 with appropriately chosen parameters (see Appendiz
F), with full client participation: m = M or with
homogeneous data: og = 0, we can find an (e,€?)-
stationary point of f and an e-stationary point of 1 9
with a per-client sample complexity of O(m~te~%) and
a communication complezity of O(e~%).

We achieve comparable sample and communication
complexity as the state-of-the-art algorithm Fed-
Norm-SGDA+ (Sharma et al., 2023). However, their
proof requires an additional assumption that each lo-
cal loss function f; satisfies the NC-1PC condition
with a common global minimizer y*(x), while ours
only requires the global loss functions to be NC-1PC.
Moreover, several federated minimax works (Deng and
Mahdavi, 2021; Sharma et al., 2022, 2023) assume
llyel|> < D, but did not specify how to guarantee it.
We not only use this assumption but also use the pro-
jection operator in our algorithm to achieve this guar-
antee.

If we set M = 1, K = 1, and assume o = 0, then
Problem (1) reduces to the centralized determinis-
tic minimax optimization problem and FESS-GDA re-
duces to Smoothed-GDA (Algorithm 2) (Zhang et al.,
2020). Additionally, we have the following corollary
for Smoothed-GDA under a centralized deterministic
NC-1PC setting.

Algorithm 2 Smoothed-GDA

1: Input: zo, Yo, 20, Mz, My, B, 0, T’

2: fort=0,1,...,7 —1do

3 wpr = ¢ — N[V (T, ye) + plae — 2¢)]
4 Y1 = Py (ye + 0y Vy f(2,90))

5. zip1 = 2z + B(@g1 — )

6: end for

Corollary 3.2 Under Assumptions 2.1, 2.4, 3.2, 3.3,
3.4, and when M = 1, €2 < ID(Y), if we apply Al-
gorithm 2 with appropriately chosen parameters (see
Appendiz F), we can find an (e, €?)-stationary point
of [ and an e-stationary point of ®,,9; with a sample
complexity of O(e™%).

Compared to the O(e™?) sample complexity of
Smoothed-GDA achieved in Zhang et al. (2020) under
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NC-C setting, we achieve the same sample complexity
under a weaker condition (NC-1PC).

3.2.3 Nonconvex-Concave

Since NC-1PC is weaker than NC-C, the results in
Theorem 3.2 also hold for NC-C. Moreover, we have
improved complexity results in terms of the stationar-
ity of f, as presented in this section.

Assumption 3.5 (Concavity in y) For all v € X
and all y,y' € Y, we have f(z,y) < f(z,9y) +
<Vyf(30, y/)a Yy — y/>

Theorem 3.3 Under Assumptions 2.1, 2.2, 2.8, 2.4,
8.2, 3.3, 8.5 and e < 2ID(Y), if we apply Algorithm 1
to optimize f(z,y) = f(z,y) — mpwyly —voll*, o €Y
with full client participation: m = M or with homoge-
neous data: o = 0, we can find an e-stationary point
of f with a per-client sample complezity of O(m~te )
and a communication complexity of O(e?).

To the best of our knowledge, this is the best-known
sample and communication complexity achieved in
terms of stationarity of f under similar settings.

Moreover, we have the following corollary for the cen-
tralized deterministic setting.

Corollary 3.3 Under Assumptions 2.1, 2.4, 3.2, 3.3,
3.5, when M =1 and € < 20D(Y'), we can apply Algo-
rithm 2 to optimize f(x,y) = f(z,y)— ﬁm”y—yOHQ,
Yo € Y, we can find an e-stationary point of f with a
sample complexity of O(e™3).

We improve the sample complexity of Smoothed-GDA
under centralized deterministic NC-C setting from
O(e*) to O(e™?) in terms of stationarity of f.

3.2.4 Minimizing the Point-Wise Maximum
of Finite Functions

We now counsider optimizing f in a form of (2), which
is widely used in practical applications. Zhang et al.
(2020) proved that Smoothed-AGDA can achieve a
sample complexity of O(¢~2) in terms of stationar-
ity of f for solving (2) under centralized and deter-
ministic settings, which is much better than the com-
plexity needed for solving general nonconvex-concave
problems. However, to the best of our knowledge, solv-
ing (2) under stochastic and federated settings remains
unexplored.

For any stationary solution of (2) denoted as (z*, y*),

the following KKT conditions hold:
VF(z*)y* =0,

> yr =1y, >0,Vi€ nl,

i=1

A—v; = fi(z"),Vi € [n],v; >0,
Viy;k = O,V’L € [n]7

where VF(z) denotes the Jacobian matrix of F at x,
A and v are the multipliers for the equality constraint
Z?zl y; = 1, and the inequality constraint y; > 0
respectively. We denote Z, (y*) as the set of indices
for which y7 > 0. We make following assumption on
this set.

Assumption 3.6 (Strict complementarity) For
any stationary solution (x*,y*) of (2), we have
v; > 0,Yi ¢ Iy (y*).

Remark 3.1 Assumption 3.6 is commonly used in
the optimization literature (Forsgren et al., 2002; Car-
bonetto et al., 2009; Liang et al., 2014; Namkoong and
Duchi, 2016; Lu et al., 2019; Zhang et al., 2020). This
assumption generally holds if there is a linear term in
the objective function and the data is from a continu-
ous distribution (Zhang and Luo, 2020; Lu et al., 2019;
Zhang et al., 2020).

Theorem 3.4 Under Assumptions 2.1, 2.2, 2.8, 2.4,
8.8, 8.6, if we apply Algorithm 1 with appropriately
chosen parameters (see Appendiz H) to solve Prob-
lem (2), and assume ||x¢|| < D, for all t, then with
full client participation: m = M or with homoge-
neous data: og = 0, we can find an e-stationary
point of f and ®y,9 with a per-client sample complez-
ity of O(m~te™*) and a communication complexity of

O(e72).

To the best of our knowledge, we are the first to prove
convergence results for solving Problem (2) under a
federated setting. Setting M = 1, our results also
indicate that we can find an e-stationary point of f and
®, /9 of (2) with a sample complexity of O(e~*) under
the centralized stochastic setting. Assumptions similar
to ||lz¢]| < D, are also made in Deng and Mahdavi
(2021); Sharma et al. (2022, 2023).

3.2.5 PL-PL

The PL-PL condition is much weaker than SC-SC
and contains a richer class of functions. For ex-
ample, according to Yang et al. (2020), h(z,y) =
22 +3sin? zsin? y—4y? — 10 sin? y satisfies Assumption
3.7, 3.8 (see Proposition 1 in Appendix of Yang et al.
(2020)). However, h(z,y) is nonconvex-nonconcave.
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Reisizadeh et al. (2020) formulated robust federated
learning as a special case of general federated minimax
PL-PL problems and proposed FLRA. In their robust
federated learning settings, each local client has its
own local max variables and FLRA only communicates
the min variables between the clients and the server.
In this section, we consider a more general federated
minimax setting (1) with the PL-PL condition. To
the best of our knowledge, we are the first to prove
convergence results for this general setting.

Assumption 3.7 (Two-sided PL condition)
Assume X = RMY R, For any fived y,
min, f(z,y) has a nonempty solution set and a finite
optimal wvalue, and for any fixed x, max, f(x,y)
has a mnonempty solution set and a finite optimal
value. There exist constants pi,pe > 0 such that:
V:r,y, ||fo(x,y)\|2 2 2H1[f(93ay) — min, f(x,y)] and
IVy f(z,y)|I? > 2uz[max, f(z,y) — f(z,y)].

Assumption 3.8 (Existence of saddle point)
(z*,y*) is a saddle point of f if for any
(SL"y) : f(x*ay) S f(x*ay*) < f(xay*) We as-
sume f has at least one saddle point.

Since f is already p1-PL in z, we set p = 0 in this
section. We further denote ' = max{l/u1,l/pa},
k" =min{l/p1,1l/ps2} in this section.

Theorem 3.5 Under Assumptions 2.1, 2.2, 2.3, 2.4,
8.7, 8.8, if we apply Algorithm 1 with appropriately
chosen parameters (see Appendiz I) for full client
participation: m = M or with homogeneous data:
oc =0, we can find (xr,yr) satisfying E||zr —z*||* +
Ellyr — y*||? < €2 with a per-client sample complez-
ity of O(m™ k3" e 2log(e k') and a communi-
cation complexity of O(x'k"?log(e~1x')). For partial
client participation: m < M and heterogeneous data:
og > 0, we can find xr,yr satisfying E||lzr — z*||* +
Ellyr — y*||? < €% with a per-client sample complexity
of O(m~1k"3k"* e 2log(e 1)) and a communication
complezity of O(m~1 kK" e 2 log(e 1x')).

When M = 1, our results recover the convergence re-
sults in Yang et al. (2020). For full client participation
with heterogeneous data, we achieve a better commu-
nication complexity compared to Deng and Mahdavi
(2021) and Reisizadeh et al. (2020). Moreover, we pro-
vide additional convergence results for partial client
participation.

4 EXPERIMENTS

We perform GAN training and fair classification tasks
in the federated setting to demonstrate the practical
effectiveness and efficiency of FESS-GDA and verify our

theoretical claims. We conduct our experiments on a
computer with two NVIDIA RTX 3090 GPUs.

4.1 GAN

We consider a setting similar to Yang et al. (2022b),
Loizou et al. (2020), using a Wasserstein GAN (Ar-
jovsky et al., 2017) to approximate a one-dimensional
Gaussian distribution in the federated setting. We first
randomly generate a synthetic dataset of n = 10000
datapoints z sampled from a normal distribution with
zero mean and unit variance and their corresponding
real data 27 = ji+62, where i = 0,6 = 0.1. We then
evenly divide them into 10 disjoint sets for 10 clients.
The generator is defined as G, »(2) = 1 + 0z and the
discriminator is defined as Dy, ¢,(z) = ¢12 + ¢z
The problem can be formulated as

n

1
min max , 0,01, = - Dy (x5 —
s (w0 = 150,05

Do(Ga2)) = N6},

where A > 0 is the regularization coefficient to make
the problem strongly concave.

We set a batch size of 100 for every update, and each
client communicates with the server after every 10 lo-
cal updates. We use the term (u — f1)2 + (0 — &) to
measure the algorithm performances.

With A = 0.001,0.005 and 0.01, we compare the
performances among Fed-Norm-SGDA, SAGDA and
FESS-GDA (see Figure 1). We use 8 = 0.05,p = 1
for FESS-GDA. For each algorithm, we test their local
learning rate from {le — 1,1e — 2,1e — 3} and global
learning rate from {1,2} in order to select the best
for each algorithm under different A\. Each experiment
is repeated 5 times and we report the average per-
formance. As we can see from Figure 1, FESS-GDA
achieves a significant speedup over Fed-Norm-SGDA
and SAGDA with carefully tuned learning rates under
different A. Especially, when X is relatively small, the
performance gap between Fed-Norm-SGDA, SAGDA
and FESS-GDA is more pronounced. Note that a
smaller A\ means a larger condition number & (if we as-
sume that the problem has a similar Lipschitz smooth
constant [ for different ). This clearly validates our
theoretical results that FESS-GDA improves the depen-
dence of k for nonconvex-strongly-concave problems.

4.2 Fair Classification

We consider a similar setting as Wu et al. (2023);
Sharma et al. (2022); Nouiehed et al. (2019). The fair
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(4= f1)%+ (0 —6)%, A =0.001

(L—f)?+ (0 —6)?, A =0.005

(u—[)%+(0-6)%, A=0.01
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Figure 1: Comparison among Fed-Norm-SGDA, SAGDA and FESS-GDA for training a regularized WGAN with different

regularization coefficients .

0.7 1 _

)
o

o
wn

Test Accuracy
o
i~y

o
W

o
N
L

0.1

0 10 20 30 40 50 60 70
Communication round

Figure 2: Comparison between Fed-Norm-SGDA+ and
FESS-GDA for the fair classification task on CIFAR-10.

classification problem can be formulated as

c
min max 2 F.(z)ye,

where YV = {(yl,...7yc)T|ZcC:1 Ye = 1,y. > 0}, x is
the parameters of the model, and F, is the loss func-
tion of class ¢. Clearly, this problem has the same
form as (2) and is nonconvex-concave. We run the ex-
periment on the CIFAR-10 dataset (Krizhevsky et al.,
2009) with a convolutional neural network. We evenly
divide the dataset into 10 disjoint sets for 10 clients.
We compare the performances of Fed-Norm-SGDA+
and FESS-GDA for solving this problem and use the
test accuracy as the performance measure. We set a
batch size of 100 and inner loop K = 20. For both
algorithms, we adjust their local learning rate from
{le —1,1e — 2} and global learning rate from {1,1.5}.
For FESS-GDA, we adjust its 8 from {0.1,0.5,0.9} and
its p from {0,1e — 2,1e — 1}. For Fed-Norm-SGDA+,
we adjust its S from {1,5,10,20}. We tune all the
parameters to achieve the best empirical performance
for both algorithms. Each experiment is repeated 5
times and we report the average performance. As we
can see from Figure 2, FESS-GDA achieves a better per-
formance than Fed-Norm-SGDA+.

5 CONCLUSION

In this paper, we have proposed a new federated min-
imax optimization algorithm named FESS-GDA. We
showed that FESS-GDA can be uniformly used for solv-
ing different classes of federated nonconvex minimax
problems and theoretically established new or better
convergence results for the considered settings. We
further showcased the practical efficiency of FESS-GDA
in practical federated learning tasks of training GANs
and fair classification tasks.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(¢) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes] See Sections 2, 3.

(b) Complete proofs of all theoretical results.
[Yes] All proofs are in Appendix.

(c) Clear explanations of any assumptions. [Yes]
See Sections 2, 3.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
See Section 3.2.5.

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] See Section 3.2.5.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes] See Section 3.2.5.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes] We used the CIFAR10
dataset and cited it.

(b) The license information of the assets, if ap-
plicable. [Not Applicable]
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(¢) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Supplementary Material: Stochastic Smoothed Gradient Descent
Ascent for Federated Minimax Optimization

The supplementary material is organized as follows. In Section A, we introduce notations that will be used
throughout the supplementary material. In Section B, we present some preliminary lemmas. In Section C, we
introduce necessary lemmas of the potential function for NC-PL and NC-1PC. In the subsequent sections, we
provide the convergence results of FESS-GDA for NC-PL functions (Section D), NC-SC functions (Section E),
NC-1PC functions (Section F), NC-C functions (Section G), functions having a form of (2) (Section H), and
PL-PL functions (Section I). In Section J, we prove Proposition 3.1. Finally, in Section K, we provide additional
results and details of our experiments.

A Notations

We introduce the following notations, which will play a significant role in our proof.
f(@,y.2) = fla,) + Slle = 2%
U(y, 2) = min f(z,y,2),
®(z) = max f(z,y),

P = f
(z,2) max f(z,y,2),,

P(z) = mi f
(2) ggg}ryneagf(x,y&),
Vi =V(xe,ye, ) = f(ﬂft, Yt 2t) — 29 (Y, 2¢) + 2P (2),
*(y, 2) = argmin f(z,y, 2),
x*(z) = arg miy (z, 2),
y*(x) € argmax f(x,y),

yey

7% (z) € argmax ¥(y, z),
yey

.’£+(y72) =T — anme(x,y,z),
y*(2) = Pr(y + 0, KV, f(2*(y,2).9)).

We denote wy = (24, Yt), e = Na,gNa,is My = Ny,g7y, for simplicity.

We summarize the main updates of FESS-GDA as:

T4l = Tt — nwK[uz,t —€xt +p(xt - Zt)]a
Yer1 = Py (ye + 0y K (uyt — ey 1)),
Ze41 = 2t + B(Teq1 — 21),

1
Ugt = — > Vafiwy),

1€ES

1
Uy = — Z Vy fi(wy),

1€St

eei= e 3 S (Vedilw) ~ Vefitwln€l).

€S je[K]
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i€S: jEK]
1 . .
epi == 3 (Vyfilwe) = Vo il €)
1€S; jE[K]
_ 1 j
€yt = Eley ¢] = K Z Z (vyfi(wt) - Vyfi(wi,i)) .
i€S; je[K]

We further define the following notations
dpt = ]E”vmf(wtu 2t) = Upy + €xp — Pl — 20) |17,
dy,t = ]E”vyf(wf) — Uyt + ey,t”z'

Define 141 = Py(y: + ny KV, f(w;)), when Y = R%, we have §r41 = y + 7y KV,f(w;). Define ®*
minwEX maxycy f(xay)a A= VO — ®*. Because V(x7yv Z) = P(Z) + (f(x7y7 Z) - lIJ(yy Z)) + (P(Z) - \I’(ya Z))
P(z) > ®*, we have

Vvl

Vo— Vi < Vo —minV; < Vo — & = A, (

W
=

B Preliminary Lemmas

Lemma B.1 (Lemma C.1 (Yang et al., 2022b)) When p > [, we have
=" (y, 2) = 2 (y, 2) | < mllz = #'|],
l2*(2) — (&) < mllz = 2|,

2" (y, 2) — 2" (¥, 2l < v2lly = ¢l

_ I+
where 1 = —_f+p, Yo = _lfp,

Lemma B.2 (Karimi et al. (2016)) If function g(x) is l-smooth and satisfies the PL condition with constant
u, then the following conditions hold

9(w) = ming(=) = S, - af,
IVag(@)|? = 2u(g(x) — min g(2)),
IVag(@)I* = pllzy — ||,
where x,, is the projection of x onto the optimal set.

Lemma B.3 When p = 2l, we have
[Va®(@™ (z)) | = IVa®yya(xo)l| = pllee — 2™ ()]

Proof Note that z*(z;) = argmin,{max, f(z,y) + 5|z — z¢|*}. According to Lemma A.4 in Yang et al.
(2022b), we have ||V ®(z*(z¢))|| = (V2 P1j2i(2s)]| = pllwe — 2% (24)]]- [ |

Lemma B.4 When the local step sizes 1y,1,my,1 satisfy

1
N, < 5
21,/2(2K — 1)(K — 1)
1
<
W =51 RRK — 1)K - 1)

the following inequalities hold:

Elles||* < P[24K%03 Bl Vo f (we)||? + 245205 BV f (we) |* + 24K3 (03, + 3 )0 + 3K (02, + 2K )o”],
Elley|* < P[24K%03 Bl Vo f(wo)lI* + 24K %05 BV, f (we) |? + 24K (07, + 1) + 3K (07, + 2Ky )0
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Proof According to the definition of ||é; .||, we have

Ellw, —w] ;|

:EH%J‘ - nz,szfi(w{,p 51{1) - xt”Q + EHPY(in + ny,lvyfi(wg,m fiz)) - yt||2
(a) , A . o
<Elx]; — 2 = 0oV fi(w )? +EI Py (yl; + 0y Vo fiwi ;€)= vel® + 02 10°

(®) 1 . - 1 :
2 (14 i ) Bl —al? + 20 9 i )P + (1 2 ) Bl — P+

2K
QKEHPY(?J{J + ny,lvyfi(Wf,i, 5571)) — Ui, ZH2 + 773,1‘72

s<1+2K_ ) Bl — el 4 2K BNV S P + 2K I i I + 22,107

(d) . ,
(143 1>MW1WW+%ﬁﬂWMWMP+MﬁﬂVMWHW+@JWM@W
) Bl =l ARG IVl + AR BV S|+ 02+ 2K )%+

(s

K73 zEHV filwe) = Vo filw] )|I? + 4Kn5 BV, fi(ws) =V, fi(w] )|

(e)
< (14 g ) Bllwd = wdl? + AR BT i) P+ AR BV, ) P + 621+ 22 )0

4K77m,ll ||wt —w],||* + 4Kn; 1P llwe — w7

1 .
(14 gy + KPR 40 Bl = wnl? + 4K BV Al + 4K 9, i) P+
(77:3,1 + 2K775,l)02

(f) 1 _ 2 2 2 (2 24\ 2
1+ K — E”wtz th +4K77:1: IIEHv fl(wt)” +4K77y IIEHv fl(wt)” (nm,l+2Kny,l)0

(9) 172 1 4
< Z (1 + K—l) [4Kﬂ§,lEHszi(wt)H2 + 4K77§,1E|Wyfi(wt)“2 + (773,1 + 2K77§,l)02]

(h)

<12K°m3 K|V fi(wy)[|” + 12K %02 BV, fi(w)||? + 3K (n2, + 2K, ;)0

(1)

§24K277§,Z]E”vxf(wt)“2 + 24K277§,11E||Vyf(wt)\|2 + 24K2(77§,l + TIZ,Z)U%: + 3K(7792c,l + 2K77§,1)02

(a), (d) are a consequence of the bounded variance of the stochastic gradient. (b) arises from the property that
la+0b]2 < (1+¢)lall®*+ (1 +1/c)||b]|*,c¢ > 0. (c) is a result of the nonexpansiveness of the projection operator.
(e) is derived from the l-smoothness of the function f, while (f) is established based on the condition:

1

82K —1)(K — 1)’
l27] 1

vl —8(2K —1)(K -1)

2,2
lnx,lS

(h) is due to
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(i) is from Assumption 2.3. We thus have
Elleq,l|* < 245707 B[ Vo f(we)|[* + 245205 B[V, f (we) |* + 2453 (07, + 0 )0 + 3K (07, + 2K )o).

The inequality for y can be proven in a similar fashion. |

Lemma B.5 The following inequalities establish upper bounds for dy; and dy ¢:

o2
R 2
d$ :]E x - Uz x,t - 2<2E_m 2 4M7 = 5
¢ BNV f (0 2) — s+ e — e — 20)? < 2Bl + 4 (M —m) Z6 4 252,
dy =BV £ (w0) — e + gl < 2Bl +4 (M —m) 28 4 252,
7 y Ys Ys = Y mM  mK
Proof According to the definition of d, ¢, we have
Ayt :E||wa(wt, 24) = Ugt + €z — P(@r — Z’t)”2
:]E”Vl’f(wt) - um’,t + ex,t||2
<2E|| Vo f(wi) — ug]|* + 2E|[eg,¢]?
2
2
<2E||— Z Vi f] wy) — — ;V o fi(wt) +2E”éw,t”2 + WUQ
2
1 1 1 —-m
<2E <M_m> vafj(wt)_m<M_)v f(wye) + Z Vo fi(wy) Vo f(we)|| +
JES: Z6[1\4]/St
2
QEHéz,tHQ + ﬁOj
2
1 1 1 1
<iB| (57 = ) X Vaditw = m (57 = ) Vat(wn)| +
JES:
2
1 m 2
B\ D Vefilw) - Vaf ()| +2Elles|* + —=0
i€[M]/S:
(a) 1 1\? 1 _ 2
S4 m (M — m) =+ (M — m)w O'é + 2EH€I7,§||2 + WUQ
2
< S 12 _ UG 2
<2E|[eg || +4 (M —m) —; + o
where (a) is due to || Zf 7|2 < ka ||z;||* and Assumption 2.3. Similarly, we have
5 i 02 2
dyt =E|IVy f(wi) —uy i + ey 4l|” < 2E[€y¢]|" +4 (M —m) L TR

Lemma B.6 Under the update rule of FESS-GDA, we have

Elzis1 — ze)|? <202 K2E| Vo f(we, 20)|1* + 202 K2dy s,
Ellyes1 — yell* <2E|Grs1 — yell* + 20 K2dy 1.

When'Y = R%, we have E|lyi11 — yil|* < 202 K2E||Vy, f (w) || + 202 K3d, ¢
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Proof According to the update rule of x;, y;, we have
Ellzi1 — zl|* =n2 K?Bl|ugs — e — plar — z)|?

SQ??iKQE”VxJE(wn Zt)||2 + 2U§K2E||fo(wt7 24) = Ugp + €zt — P(T4 — Zt)||2

=2 K| Vo f (wi,20)|” + 202 K>,

Ellyit1 — vell® =E|| Py (ye + 0y K (uy,e — €y1)) — vl

(a)
S2E| Py (ye + 1y KV f (we)) — well” + 20, K2 ||V f (wy) — wy e + eyl
=2E[[ge1 — well” + 203 K2dy 1,

where (a) is due to the nonexpansiveness of the projection operator. |

C Intermediate Lemmas for Potential Function

Recall the potential function is defined as

Vi =V(xe,ye, z) = f(@e, ye, 26) — 29 (ye, 2¢) + 2P ().

The outline of the convergence proof for FESS-GDA aims to demonstrate the monotonic decrease of V;. In this
section, we present the essential lemmas required to establish bounds on the potential function.

Lemma C.1 When n, < ——, we have the following inequality:

A(prHK’
]Ef(wu 2t) — Ef(th, Zt)
:EK P mK — p + l
> |V f w217 = Pl = (p+ DK s + BV f (w0), ye = yr1) — P Ellyess — will®

Proof Because of the (p + [)-smoothness of f(-, z), we have

Ef(wt, Zt) — Ef(thrl, Zt)

>E(Vo f(we, 20), 0 — Tes1) + E(Vy f(we, 20), 4 — Yer1) — Z%IEH%H —z? - z%l]EHytH —uel?
= KE(V (10, 70) e+ D1~ 2) = ) + BTy 001~ vern) — aBllzis 2l = L Bl — wil?
=0 KE(V o f (w1, 2¢), Ve [ (Wi, 20) = Eae) + E(Vy f(we), e — Yes1) — pT—H]EthH —z|? - pT—HEHytH —yel)?
=0 KE[| Vo f (wy, 20) > + %QKE”fo(wt,Zt) ] nIQKEHfo(wt,Zt)HQ - nZQKE”éx,t >+
E(9y /w0, e~ verr) — Lo Bl — il — LBl - il
>R BV, fwn, 2l — T Bl al? + BV, f ), v = vesn) — Bl — 2l L By - wl?
SO OEDEIV fn 2 - 0+ 2K - R B, 2
B(Vy f(we), ye — yes1) — Z%Z]E”ytﬂ — el
SRR, flwe 22— Bl — (0 + D+ BT £ w0, 1~ i) — L Ellges —

where the (a) is due to the Lemma B.6, and (b) is due to the condition 7, < m.

Lemma C.2 The z-update in FESS-GDA yields

; : p
fwegr, 20) = fwesr, ze41) ==z — 241 ||

=%
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Proof By definition of f and the update rule of z, as 0 < § < 1, we have

f(wt+1, zt) — f(thrla Zpp1) = B H|9Ct+1 = ze|? = llze1 — ze41]]
1
2 | ol =20l = 1 = B)aens — 1P
_p
)

1 1 —f)?
{62||Zt+1 th (Wﬁ)llztﬂ—ztlﬁ]

725 Hzt - Zt+1||

Lemma C.3 With Ly =1+ lys, 72 =

Ly
W (Yir1,2t) — Yy, 2) >(VyW(Ye, 20), Yes1 — Ye) — 7\|yt+1 — %,
>

(i1, 2e01) = (et 21) _g(zt+1 —20) " [ze1 + 20 = 227 (Yer1s 2001
Proof Since the dual function ¥(-,z) is Lg-smooth by Lemma B.3 in Zhang et al. (2020), we have
Ly 9
V(Y15 20) — Y (Y, 20) 2(Vy W (Y, 2t)s Yes1 — Yi) — 7Hyt+1 — yel”
By the definition of z*(ys11, 2¢), we have

‘I’(ytﬂ, Zt+1) - ‘I’(ytﬂ,zt) :f(x*(l/tH, Zt+1)a Yt+1, Zt+1) - f(fﬁ*(yurh Zt)a Yt+1, Zt)
Zf( “(Yoa1s 2641)s Yoot 2e41) — @ Wrg1s 2e1)s Yer1, 2t)

5 [||Zt+1 — 2" (Y41, Zt+1)|| 2t — ™ (Yet1, Zt+1)||2]

@

= (2041 — 20) 21 + 26 — 227 (Yer1s 2e41)]-

l\D

Lemma C.4

Pern) = P(s) <5 (e = ) [oen + 21— 20° (5 (s10), 1))

Proof By the definition of §*(2;) and z*(§*(2¢41), 2t+1), we have

P(z11) — P(%) = ( “(2t41), 2e41) — V(" (2t), 2¢)

I (2e41), ze41) — WG (2141), 20)

( 0" (2e41)s 26401), 97 (2e41), 2e41) — f( Y0 (2e41)s 20), U7 (241), 2¢)
(97 (2141), 20), 0" (2e41)s 2041) — F(@ (07 (2041)5 20), 57 (2041), 22)

=5 (ze41 — ) 2o + 2 — 227 (5" (2041), 20)]-

Lemma C.5 The following inequality holds:
2E(W (Y41, 2e41) — V(Yet1, 20)) — 2E(P(2041) — P(2t))
<2p71 + = 63 48pﬁ7%> Ize41 = 2¢l|* — 24pBE[|a* (z) — 2* (ye, 2)|* — 48pBY3 | Ger1 — el >~

481057%77;[( dy,t.
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Proof Combining Lemmas C.3 and C.4, we have

2E(V(Yi41, 2e41) — V(Yea1, 20)) — 2E(P(2041) — P(21))
>2pE (2011 — 20) ' [ (" (2041)5 20) — 2 (Y41, 2041)]

(¥
=2E (2041 — 2) | [#° (0" (241), 20) — 2" (57 (2e41), 2e41)] + 20E (2041 — 20) ' [0 (57 (2e41), 241) — @ (Y41, 2e41)]
(a)
> = 2pillze1 — 2?4 20E (241 — 2) T [27 (57 (2041 2e41) — T (Yeg1, 2e41)]

(2]971 + Gﬂ) 241 — 2¢]|* — 6pBE[|z* (ze41) — 2% (Yeq1, 2e41)|?

(21771 + GB) 2041 — 21> — 24pBE[|2*(20) — 2% (ys, 20)|| — 24pBE[|2* (21) — 2* (2011) I -
24pBE[|z” (Y41, 2e41) — @ Y1, 20) 1° — 24pBE|a™ (Yer1s 2¢) — 2™ (3o, 20) ||
== (o & 480802 ) s = 2l = 28" (o) = " 201 = 2408 s — wl?
2= (o & 180992 aess =l = 208" o) = 0”0l = 4853 s — el
A8pBrymy K dy 1,
where (a) and (b) are due to Lemma B.1, and (c¢) is due to Lemma B.6. |

Lemma C.6 Suppose we have 1y < m, Ny = 1z/256 and p = 2l. In the unconstrained case when
Y =R?% we have

Ef(w, 2t) — Ef (west, 2z¢) + 2B (Yoy1, 2¢) — BV (g, 2¢))

o K . K K
> PV f (we, 20) |2 + =BV, f () = =Bl = (p+ DK dy,—

3
”y Elley|* — (2L + 1+ p)2K>dy ;.

In the constrained case when Y C R is convexr and compact, we have

Ef(we, 2e) — Ef (wer, z2) + 2B (Yr1, 2) — EV(ye, 21))

I? I* -

—(p+ 1)K dy 1~

o f(we, 2t) — Yt

477yK]E||éy,t ||2 —2nyKdy 4,

Proof Combining Lemmas C.2 and C.3, we have
Ef(we, 2) — Ef (wert, z) + 2B (Yer1, 2) — EC(ye, 22))
. +1
of (Wi, 2¢) — (P DK dy e + E(Vy f (i), ye — Yer1) — pTE”ytJrl — P+

2E(Vy U (ye, 2¢)s Y1 — Ye) — LoE|lyer1 — e (5)

I* -

Denote A; = E<vyf(wt)ayt —Yir1) — pT—HE”yt+l ytH2 + 2]E<V U(ye, 2t), Yerr — Y) — LoE|lyir1 — ytH
When Y = R%, we have

2L\1,+l+p

E _ 2
9 Hyt yt+1||

Ay =]E<Vyf(wt), Yt+1 — yt> + 2E<Vy‘1’(yt7 Zt) - Vyf(wt)vyt-H - yt> -

(a)
ZnyK]EW fwy), Uyt — €y, t> - 277yKIE<V Uy, 2) — Vyf(wt)a Uyt — 6y,t>—
Ny K2 2Ly + 1+ p)|IVy fw)|? = ni K*(2Lw + 1+ p)dy .
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>77yK]E<V J(wy), yf(wt) — €y, t) — 277yK]E||Vy\IJ(yt7Zt) - Vyf(wt)”Hvyf(wt) — &y,
Ny K2(2Ly + 1+ p)E||Vy f(we)|* = 2 K*(2Lw + 1 + p)dy.«

K ny K _
>y KE[|V, f (w)||* - yTEIIVyf(wt)IIQ - y2 Elley,|I” — yTEIIVyf(wt) — &y,
81y KE|Vy U (ye, 2¢) — Vy f (we)||* = 2 K*(2Lw + 1+ p)E||Vy f(we)|* = n2 K* (2L + 1 + p)dy ¢

ny K nyK ny K nyK
>yTIEIIVyf(wt)H2 - yTElley,tH2 - yTEIIVyf(wt)IIQ - LElley elI>—
81y KIPE||a* (ye, 20) — @l — ny K*(2Lw + 1 + p)E||V,, f(wy)[|* — 0 K*(2Lw + 1 + p)dy

2 (K e ony 1) BN, ) - 2 B, 2 Ly 4 14 oK,
= 4 y Yy t yt v y,t

SUUKZ
)

SEIVaf(we, 2)|?

()

3
||vyf(wt)H2_877yK]E||vxf(wtazt)”2 77y Elléye|* — 2Ly + 1+ p)ny K*dy, (6)

where (a) is due to Lemma B.6 and when Y = R y; 11—y = 0, K (uy — €y,), (b) is because of the (p —1)-
strongly convexity of f(, y, %), and (c) is due to the condition 7, < m and p = 2. Combining (5) and
(6), we have

Ef(we, z) — Ef (west, z0) + 2B (yer1, z¢) — BV (g, 2¢))

a:K P
> (5 = s ) BV fan 20| -

3n, K _
BBy |? — (2Lu + 1+ p)Kdy

uf(wo)]? ~

. K K
of(we, 2| + LBV, fw)]? ~ — (0 + 02K d
377y 2 2 7-2
Elley¢l* — 2Ly + 1+ p)n, K=dy s,
where the last inequality is because of the condition 7, = 1, /256.
When Y ¢ R% is convex and compact, we have
2Ly +1+p
A1 =E(Vy f(we), yer1 — ye) + 2E(Vy W (ye, 2¢) — Vi f(we), yer1 — ye) — fEHyt — Yrr1|?
>E(uy, e — ey, Yer1 — Ye) FE(Vy f(wi) —uy e + eyt Yer1 — Jeyr) + BV f(we) — uy s + eyp, Jeyr — ye)—
2Ly +1+p
2E[|Vy W (ye, 2t) = Vy fwe) l[[yes1 — well — fEIIyt - yt+1||2
=E(uy,t — ey,t, Py (ye + my K (uy,e — €y,t)) — ye)+
E(V, ( t) — Uyt + ey, Py (ye + 0y K(uy e — eyr)) — Py (ye + ny KV f(we)))+
2Ly +1+p
E(€y.t,Gev1 — ye) — 2BV W (ye, 2¢) — Vy f (we) [[lye+1 — yell — flﬁll\yt — Y1
_ 1 _
KEHym —yil® = 0y KE[|V, f(wy) — — Ay KE|leyil|* — o Ellgers — v~
y
1 2Ly +1+p
3 Ellyer1 — vell> = 8ny KE[Vy U (yt, 2t) — Vo f (we)|? = =——F—"Ellys — yr1a [
1y K 2
1 1 2Ly +1+p 2 _ 2
- - E —yell? = n,Kdy, — 40, KE -
(= 5o~ 2 ) Bllens = wlP — 0Ky — 4n, KBy
1 X
8 KE||yt+1 — yell* = 8ny KI°E||ze — 2™ (ye, z0) ||
(a) 8n, K12
=7 KIEHym —yel® = nyKdy, — 40, KE[|e,.||* — o g Bl — [ (p“ iE SE(Vaf (we, 2) ||
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(b) 1
_4 y K

1
Elld s — .12
81 K 1Ge+1 — yell

IE||yt+1 - yt|| - 7E||yt+1 - yt+1|| —nyKdy,: — 477yKH‘EHEy,t||2 - SWyKE||sz(wt7zt)H2—
ny K
Y

= yell* = 2y Kdye — 4y KE|leyol|* — 80y KE||Va f(we, z0)|1, (7)

_8K

where (a) is due to the condition 7, < m and the (p — I)-strongly convexity of f(-,y,z), (b) is due to
the condition p = 21 and ||a||* > %[l — b]|* — 2[|b||*. Combining (5) and (7), we have

Ef(we, 2t) — Ef (wes, z¢) + 2B (Ys1, 2¢) — EV(ye, 21))

zK P
> (22— 8, ) B flwn, ) -

1 _
81 K]E||3/t+1 - ?Jt”2 - 477.1,/KEH€y,t||2 — 20y Kdy .

— (p+ 2K dy i+

ZI—EHfo(wt,zt)HQ + I” -

-+ l)niszz,t*

— Yt
477.7;-K-]E||éy,t||2 —2nyKdy.,

where the last inequality is because of the condition 7, = 71, /256.

Lemma C.7 Define potential function Vi = V(v yr,2:) = f(zt,yf,zt) — 2U(ys, z) + 2P(z), with p =
2l,m, < 1/(1000K1),n, = n./256,8 < n,KI1/80000, n,; < min {21\/2(% SR A/ SRS b
min{ ——L1—

2l\/2(2K —1)(K 1)

| _ md
30720, 2 K2 }, when Y =R%, we have

IN

EV, —EVi4

zi—MVmemW+%;wvfwmﬁ+—mmfawfmwmmQO—xmamﬁ—
2
25In2 K2(M — m)mM 15102 K— 74%1(12[241(2(77“ +77yl)c7G +3K(nzl+2Knyl) 2,

when Y C R% is convex and compact and under Assumption 3.3, we have

EV; — EViyy

pB . .
||2 16 KE||yt+1 _yt||2+ 6E||xt_2t||2—24pﬂEHx (Zt) — (yt7zt)H2_
2 0.2 0_2 477 0_2
— 152 K— — 8y, K(M —m)—& — =~ _
R R ) T
477le2[24](2<%[ +02,) (0% + G2) + 3K (02, + 2Kn2,)0?).

x A(U}ty Zt)

252K (M —m)— %6

Proof Combining Lemma C.2, Lemma C.6 and Lemma C.5, when Y = R% we have

EV; — EViyy

5 K * *
of (e, 20)|? + ("yS - 48p/3v2n2K2> EIIVy f ()l = 24pBE|a” (1) — " (e, 20)

3K

p 2
— -2 — 48 E —
(25 Py — Gﬁ pﬁ’h) z¢41 — 2el|” —

(p+0)n2K?*d,, — (2Ly +p+l+48p572)772K dy.t
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I?

uf (we)|[* +

o f (we, 1) EHzm — z|?—

4
3K

24pBE||z* (2) — ™ (yi, z)||* — Elléy.|I>—
(p+ )2 K?dy s — (2L¢ +p+ 1+ 48pBv3) MK dy

()771,

|V, f(wi, 20 + IO+ Bz, — 2l - LBy — a0~

317y

S Eley.|*-
(p+ D2 K3 dye — (2Ly + p+ 1+ 48pBa3) 1, K dy,t

)y, K . K

> RV f(wn, ) + BN, ) + 2

« . neK 3ny K
24pBE[a” (1) — 2" (ye 20)I* = =5 Ellexe|* — = —Elley. [~
(p+l 2K dyy — (2Ly +p+ 1+ 48pBy3) n K° dy,t

K pB . .
of (we, z) || + 77“’—E\Ivyf(wt)llz + g Bllee — ze)|? — 24pBE|la* (2¢) — 2™ (ye, 2¢) | —

Ellz; — z||* — pBn2KE||V, f(we, 2)||* — pBn2K3dy

3
’7” Elley. > = (p+ 1+ pB)2 K2dy s — (2L +p + 1 + 48pB~3) 2K 2d, 4
where in (a), we use
P pB
B||Zt+1 — zll* = pBllwi — zl* > 7”% — z|]* — 2pBllwegr — @, (8)

and in (b), we use Lemma B.6.

Denote Ay = _n'T'zKEHéx,tHz _ 3nzK

—(p+1+pB)n2K3d,, — (2Lq; +p+1+ 48p572) 772K2dy +, we have

(@)
Az 2 — (oK + 100, K*)E|&g.||* — (TIyK + 24l K*)E|8y.q||*
o 2
2 2 72 9¢c
200n2 K*(M — m)—4- M IOlnIK— 481n, K (M—m)mM

2
— 242K
m

2
— 151n QK——

> — 2502 K2 (M —m)— %6

4anl2[24K277§zEIIV f(wt)\|2+24K2n EIVy f(we)|? + 24K% (02, + 1)0¢ + 3K (07, + 2K, )0
2

> 252K (M — m)-2C
e K (M —m)

- 15”73](% - 477zKl2[24K2(77925,l + 775,[)0'?} + 3K(Tli,z + 2K77§,l)02]_

A0, KI[48K 02 K|V f (we, 2)|1> + 48K°p*n2 Ellwy — 2|* + 24K 02 K[|V, £ (w)[*]
(c) 0.2 0.2
> = 25l K2 (M = m) 2 — 15l K — — dn, KP[24K2 (0, +1m,0)0¢ + 3K (1, + 2K )o*) -

; ny K pB
of (Wi, 20)|* = gTEIIVyf(wt)HQ - T6]E”‘“ -z,

where (a) is because (p+ 1+ pB) < 51, (2Ly +p +1 +48pBy3) < 121 and Lemma B.5, in (b), we use Lemma B.4,
in (¢), we use the condition

"y
3072n,12K?2
773»1 < ’ = : )
’ 6144n,pl2 K3 614412 K2

2
My =

So we have

EV; — EViyy
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> BBV f (we, 20| + 2BV, fwo)|? + T Ellae — 2|2 — 24p8E]la” (1) — 2 (31, 20) [~

32
2 2

252 K2(M — m)n:—](\} - 1517;31(% — A, KIP[24K (02, + 12 )02 + 3K (12, + 2Kn?2,)0?).

When Y C R% is convex and compact and under Assumption 3.3, similarly, we have

EV; — EVitt
K p K 1 i . N
2778 ]E”vxf(wtvzt)”Z + (77318 - 4810573775[(2) W]E”ytﬂ - yt||2 — 24pBE|z*(2) — (Z/tyzt)”Q
Y

|2 - 477yKE||éy,tH2_

p p 2 o MaK
— —2 — — —48pp E|lz¢41 — — E|ée,.
(25 m 65 P 71) Hzt ! Zt” 2 ||e ot

(p + Z)U§K2dx,t - QUyKdy,t

77:vK P 2 1 — 2 pﬁ 2 * * 2
SR e Fw,, E||F,.1 — PP Rz, — 212 — 24pBE — 2y )2
25 [V f(we, 2¢) || + 169, K [Fe+1 — yell” + 16 |2t — 2| PBE|lz*(2) — 2™ (yt, 20|

2 2 2 477 0.2

BI2K2(M — m)-2G 1512 K T — 8y, K (M — m)-26- — ZW7_

Sl K( m) mM Sl m 811y K ( m) mM m

An, KIP[24K>(n3 , + 77;2,71)(‘7%: + G;) +3K(n2, + 2K7712,7z)‘72]-

9)

(10)

The majority of the terms in (10) closely resemble those in (9). There are, however, two notable distinctions.

2 2
First, there is an additional error term of —87, K (M —m)-2&, — 217"

Second, there is an additional error of —967, K 3l2G§, which arises from our utilization of Assumption 3.3.

D Nonconvex-PL

Lemma D.1 Under Assumption 3.1 and p = 2l, we have

. " 2 2 R
|27 (ye, 2) — 2" (20) 1> < mHVyf(wt)ll2 + mIIsz(wt,zt)IIQ-

Proof Because f(-,y,z2) is (p — [)-strongly convex, we have

12 (ye, 2e) — 2™ (2) ||

& 20, ) 20) = )3 (), )
gigmm%m@%@wmmm

—p%l[@(x*(yt, 2e), 2e) — F(@ Yo 20) e 20) + F(@" (Yo, 20), Yoo 22) — (27 (21), 2¢)]
®) 2 * prox

Sﬁ[@(x (Y, 2t), 2¢) — F(@" (Y, 20), Y 21)]

© 1 :

Smllvyf(w*(yt,zt),yt)l

Q2 NV F @I+ [V f (@ (gr 2) o) — Vo F (e uo)l?
“p-Dp Y (p—lp" 7 e vl
S T A T S

(p—Dp 7 (p— :

e 2

S Il + 2V 2P

2 2 .
=m||Vyf(wt)H2 + Ve (e, )%

attributed to the presence of —2n,Kd, ;.
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(b) can be attributed to the fact that f(z*(ye, 2¢), ye, 2e) < ®(x*(2¢),2). (¢) arises from the p-PL property of
f(z,+, 2). In (a), (d), (e), we make use of Lemma B.2. |

Proof of Theorem 3.1

We formally state Theorem 3.1 below.

Theorem 3.1 Under Assumptions 2.1, 2.2, 2.3, 24 and 3.1, with p = 2,9, = 9/256,0

0, K 11/80000, 1y, < min{ \/2(2K1_1)(K_1),,/ 6144nfpl2K3,0(e,/,¢1(ag T o) (KD ™M)}, 1y <
. 1 my VA (0% 1 02) -1 _ _ ~

mln{2l\/2(2K e 1),,/30727] ez, Olen/k™ (o + 02) (K1) )} when m M or og 0, if we apply

Algorithm 1 with K = ©(km~te™2),n, = min{1/(1000K1), (¢, €¢/+/k)-stationary point
of f with a per-client sample complexity of O(k?m~te~%) and a communlcatlon complexity of O(ke2); when
m < M and og > 0, if we apply Algorithm 1 with 7, = min{1/(1000K1), va =1 K = O(1), we can find

an (e, e/+/k)-stationary point of f with a per-client sample complexity of O(K, m 16_4) and a communication
complexity of O(k?*m~1e™1). Here, A = V5 — ®*, k =1/p.

Proof Combining Lemma D.1 and Lemma C.7, we have

an 96B 2, nyK 96ﬁ 2 pB 9
— > — —
EV; — EViqq < 39 m E||V. f(wt,zt)H 35 . E||Vy f(we)||* + 6]E||xt 2t ||

2 2
251n2 K2(M — m)m—M — 15102 K— — A, KI*[24K> (2, + 3 )og + 3K (n3, + 2K, o).

Setting 8 = 1, K 11/80000 yields

EV; — EVi4y
@Ol + R, )P + PO Ee, — 2
25zn2K2(M m) m12\4 - 151@}(%2 — AN, KI?[24K* (03, + m, )0 + 3K (3 + 2K, )o”]. (11)
Further note that
IV f (e, y) 1> <21V f (w, 20) 1% + 20 e — 2|, (12)

which leads to

Z IV f (e ye) 12+ KEVy f (e, y0) I

1 128k 64k 32p
<= 22 2P U gy, Y,
_T;max{nxK’nyK’ B }{ e
2512 K2(M — m) iLe
m 7

2
+ 15ln§K% + dn, KIP[24K> (3 4+, 1)og + 3K (3, + 2Kn§,l)02]}

(@O(1)k _ o2, o?
< _ bl
S KT Vo min Vil + O(1)kn L K (M — m)mM —|—O(1)m7$lm+

0(1)512[—’(2(77925,1 + Wi,l)gé + K(ni,l + 2K’7y,z)0 ]

KA o2 o2

< _ G
_O(l)nzKT +O(1)rn K (M m)—mM +O(1)m]xl—m+

OW)RIP[K* (02, + 2 o + K (02, + 2Kn;, )o”), (13)

where (a) is because p/8 = O(1)k/(n,.K) and (4).
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When m = M or og = 0, with 7, = min{1/(1000K1), UV\/%}, Nag < Olen/w= Yo% +02) (K1) Y),nys <
O(e/k~ (02 + 02)(KI)™1), we have

T—1
1 K K
=Y E|V, 2+ kE Z<oq 1)— 1)€?
T pr ||V1f(33t>yt)|| + A ||Vyf($tayt)|| = O( )\/m + O( )T + O( )6 )

which implies that we can find an (e, ¢/4/k)-stationary point of f with a per-client sample complexity of KT =

O(k?>m~'e™*) and a communication complexity of T = O(ke?).

When m < M and o¢ > 0, with n, = min{l/(lOOOKl),o\ﬁ”;lAK}7 K = 0Q), n,; <
O(ey/k1(0% + 02)(K1) ™),y < O(en/k~ (02 + 02)(K1)™1), we have
1= K
7 2 BVl (e 0) P+ EI Y, ()| < O) 2 + O,
=0

which implies that we can find an (e, ¢/+/k)-stationary point of f with a per-client sample complexity of KT =
O(k?>m~te*) and a communication complexity of T = O(k?>m~te*).

E Nonconvex-Strongly-Concave

Since Nonconvex-PL is weaker than Nonconvex-Strongly-Concave (NC-SC), Theorem 3.1 also holds for NC-SC.
However, for NC-SC, Theorem E.1 proves that FESS-GDA can achieve similar convergence results when Y is a
convex, compact set of R,

Assumption E.1 (Strongly Concave in y) f is p-strongly concave (u > 0) in y, if for any fized x,
maxy f(2,y), Vy,y' € Y, we have

T(ey) < fay) + (Vo @)y o) = Slly - y'I

Lemma E.1 Defineyy(z) = Py (y+n,KV,f(z,y)). Under Assumptions 8.1, 3.2, 2.1, and with n, X < 1/10001,
we have

2
y—y (2)] < y—y+ (),
[ ()|l /myK” +(@)]]
2
yi(z) —y*(2)] < y—yo ().
ly+() ()|l l“?yK” +(@)]]

Proof We define j(y;v) = [[ylI* — 2(y,v) + 1y (y),v1 = y + KV, f(z,y),v2 = y*(z) + n, KV, f(2,y"(2))-
According to the definition of y4 (z), y*(x), we have

y+(z) =arg myin g(y;v1)
y* (z) = argmin j(y; v2)-
Note that g(-;v) is 2-strongly-convex, according to Lemma B.2, we have

9(y+(@):02) = Gy* (2);v2) 2ly+ () — y* ()| (14)
9y (@);01) = 9y (@);v1) 2y (2) — y* (@), (15)

By the definition of §:

9(y+(x);v1) = 9(y+(2);v2) = — 2(y4 (), v1 — v2), (16)
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9(y*(@);v1) = 9(y" (2); v2) = = 2(y"(2),v1 — v2). (17)
Combining (14),(15),(16),(17), we have

ly+ (@) = y™ @)I° < (v (@) =y (), 01 = v2). (18)

Therefore,

19+ (2) =y (@) < flor = w2l (19)

By the definition of vy, v, we have
o1 = wall? =lly — 5™ @)1 + 20, Ky — 5" (), Vo (5,9) — Vo (0,5 @) + K2y £ 5,9) — V(@) 2
lly -y @I + @K — 2Ky — (@), Vol () — Vo f (0" (@)
Ly = @I + Ky — (@), o f(@0) = ¥y f (5 (@)
20— n Kl - v (@)

< (1—”{“) — (20)

where (a) is a consequence of several factors. Firstly, due to the concavity of f in y, we have (y—y*(z), V, f(z,y)—
Vyf(z,y*(z))) <0. Additionally, Assumption 2.1 ensures that |V, f(z,y) — V, f(z,y*(2))|| < |ly —y*(«)]. ()
follows from the condition 1, K < 1/I, and (c) stems from the p-strong concavity of f(z,-).

Combining (19), (20), we have
1Y+ (@) =y (@) < flor = v2ll < (1 =y Kp/2)[ly — y* ().

So

Iy~ ys @) =y =" @)~ s (@) " @) = 2Ly — (@),

2
oyt <
ly —y*(@)]] < K

ly — y+ (@),
y 4

which yields

1y+(2) = y" (@) < (1 =y Kp/2)|ly =y ()] < (@)]-

Lemma E.2 Under Assumption 3.1, 8.2, 2.1, and with n, K < 1/10001, the following inequelity holds

Fa*(y, 2),y* (2" (y, 2)), 2) — F(a*(y,2), 47 (2),2) < 2(1 +n, K1)

oy -yt I

Proof Noting that f s p-strongly concave in y, we have

(@ (5, 2), 5" (2" (4, 2)), 2) = F(@" (4, 2),y7(2), )
2),2),y" (2" (y,2)) —
y7(2),2),y7 (2" (y, 2)) —

1, 2),y7 (@ (5, 2)) =y (2)+
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< A('T* (y7 2)7 y+(z)7 z) - Vyf(x*(% Z)? Y, 2)7 y* ({L‘*(y7 2)) - y+(Z)>

Vy
SR - hy @ ) )
1

INE

%7@ + 0y KV, f(2(y,2),y,2) =y (2),y" (2% (y,2)) — y T (2))+

Uy =y ()lly* (" (y, 2)) =y (2l

)1+, Kl .

<y —y @l (@ 2) — vt R
Ty

)2(1 4 ny K1) 2

3}

(

IN

where in (a), we use the l-smoothness of f and Vyf = V,f, in (b), we use the fact that when Y is a closed
convex set, we have

{(a—Py(a),b—Py(a)) <0, VbEY, (21)

and in (¢), we use Lemma E.1. |

Lemma E.3 Under Assumption 3.1, 3.2, 2.1, and with n, K < 1/1000l, we have

[ (ye, 2¢) — 2™ (20|12

10 _ 5 10 A 5 40 A 9

<—5 - - va: ) ) 79 v:l: ) ) .
< g~ Tl + 19 f o 2017 + Ve 0

Proof Noting that since f(-,y,z) is (I + p)-smooth, we have
F@(y,2), 9™ (2):2) = fla*(y" (2),2), 0™ (2), 2)
(Vo (@ (¥ (2),2), 57 (2),2), 27 (y,2) — 2" (y* (2), 2)) + HTPHJJ*(% z) — 2" (y* (2), 2)|

1 p 2l
<o IV F 0 (20,20, (2, AN + 23 (,2) = 27 (2, 2
<21V F s 2P+ 2V ,2) = Vad @ (0 2), 0 2 Ve f (0 2)o2) = Vaf @ (7 (), 20,9 2)

21V F @ (7 (), 20,9, 2) = Vel @ (7 (2), 20,7 (), )P 4+ 2

PN 2(p+1)2 . 20+ 1)2  204+p\, . .
<V i P+ 2 e = a2+ (22T 4 2R ) - 70 (9, 2+ 2y - o P

lz*(y, 2) = 2" (y* (2), 2)II?

—

)20 P
<7 IVaf(zy, 2)|7 + (2072 + 2)illy — y* (2)II?, (22)

where we use strong convexity of f(-,y, z) and Lemma B.1 to establish (a). By the strong convexity of f(-,y, z),
we have

lz*(y, 2) = 2" (2)II?

s,%[fu*(y, 2,3 (2),2) = f(@*(2), 57 (2), 2)]

(?p i (@2 (y,2),2) = @yt (2),2), 57 (2),2) + F(2* (v (2), 2), 4T (2), 2) — B(a"(2), 2)]
¢ P 2 @ (0,2),97 (@ (4.2)),2) = Fla" (" (2),2), 7 (2), 2)
2 0@ (0200, — S 02022+ T 2P+ (100 + Oy =y Q)P
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@ A(1 + 9y K1) + (4072 + )puln? K2 o 40, ,

< KR ly —y™ (2)]l +Tg||vzf($,y,z)||
5 s A0 ,

Smﬂy—y )l +72\|sz(x»yaz)H ;

where (a) is because that Fla*(y,2), 5% (2), 2) < ®(x*(y,2),2), ®(x*(2),2) = fla*(2),9*(2),2), (b) is because
Fx*(yt(2),2),y7(2),2) < ®(x*(2), 2), (c) is due to (22), and (d) is due to Lemma E.2. Then, we have
12 (e, 2¢) — 2™ (20) |1

0 +oop2 .y 40 2 )
< apraile = v Ol + IVl ye 20l

@ 10 ., 100 . , 40, . )
W”yt — Y ll” 7”% — 2" (ye, 20) |7 + TQHfo(l"tvyt’Zt)H
® 10 S (U 2 40,0 ¢ 2
<W”yt—yt+1” +m”vxf($tayt7zt)H +T2||fo($t,yt7zt)H )
where in (@), we use l-smoothness of f and in (b), we use strong convexity of f(-,y, z). |

Theorem E.1 Under the Assumptions 2.1, 2.2, 2.8, 2.4, 8.2, 83, FE.1, if we apply Al-
gorithm 1 with p = 20, N = min{1/(1000K1), ﬁvKﬁl}, 1y = 1n:/256, @

0y Kp1/80000, 7,; < min{ \/2(2K1—1)(K—1)’ e OeV/m (0% + o) (KDY, ny
min{Ql\/Q(ﬂ(l—l)(K—l)’ ’/307277]7§l2K2’ O(e\/k~ (o +02)(KI)™ ")}, when m = M or og = 0, with

T = O(ke ?),K = O(km~te 2), we can find an (e,¢/\/k)-stationary point of f with a per-client sample
complexity of O(k*>m~te™*) and a communication complexity of O(ke~2). Here, A = Vo — ®*, k =1/p.

IN

Proof Combining Lemma C.7, Lemma E.3, with 5 = 1, K 11/80000, we have

pB
yell” + *EH% — z|*~

K 480 1920 K 480 1
EV; — EVjyy > (naf _ B _ B Nys /B)

E||V.f 2 E|ly
= = BRI )+ (U ) ol -

0'2 0'2 0.2 47) 0.2
25003 13 (M —m) — S~ 15K — 8, K (M —m) €0 — =V

4nxKl2[24K2(77§ L+ z)(cr?‘; +G2) + 3K (n2, +2Kn;, )0’

I”+

B
35 e Bllier = will® + e Ellee — z* -

(wta Zt)

- 64 32 K
25102 K2*(M — m)—5- oG 155772[( — 8, K (M — m)i _ M_
* mM v mM m
4, K242 (37 + my ) (08 + Gf,) +3K (17, + 2Ky ,)0°]. (23)

With T = mK = O(ke ?), K = O(km~te~2), n, = min{1/(1000K1), UVJ?TAT; (k~'me?), B = n, K 11/80000 =
O(k*me?), when M =m or og =0, and 72 ; < O(H71€2)K72,77§’l < O(k te?) K2, we have

= ( ) Nelo? o?
}:E\lvxf (we, 20)|* S A+ O() T + O(1) " + O(D)r ™' < O(1)r~"e? (24)
O(1) nzlo? o? _ _
= —yl]* <—=A 1)—— 1)— Drte < 12 2
; n§K2 Bllgis — yill* <, = + 00T+ 0(1) 2 + 0! < O(1)r (25)
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1 Il Ok Knglo? oo
2 Z 2 2 < knglo? Ko? . )
T t:op Flle == _nxKTAJrO(l) m JrO(l)mK +0(1)e” < O(1)e (26)

Because 1, K < 1/1, we have

P[Py (ye + 1)1y f (2o, 00)) — wel®

1
Snng HPY(Z/t =+ UyKvyf(l’t, yt)) - ytH2
Y
1
=——— %1 — uell*-
ng K>

So, we have

T-1
1
T Z PE| Py (ye + 1/IVy f(ze, 1)) — wel> < O(1)r "€ (27)
According to (12), we have
L T T
T > E|Vaf (e w)|? < T Z 2RV f(wr, 20)|1* + 2p°Ellze — 2> < O(1)€. (28)
P t=0

Thus, we can find an (e, €/y/k)-stationary point of f, with K = O(km~te"2),T = O(ke?), which means a
per-client sample complexity of KT = O(k*m~te*) and a communication complexity of T = O(ke~2). [ ]

Corollary E.1 Under the Assumptions 2.1, 2.4, 3.2, 8.8, E.1, when M = 1, if we apply Algorithm 2 with
p=2l, n,=1/(1000K1), mn, =mn,/256, B =n,Kp/80000, we could have

T-1
1
= S IV et I+ K2 Py (31 + 119, ) —

t=0

2 <clA/£
— T )

where A = Vo — ®*, k =1/, c is an O(1) constant. This implies an sample of O(ke~2) to find an (e,¢/\/r)-
stationary point of f.

Proof Applying Algorithm 2 with p = 2[, n, = 1/(10000), n, = 1,/256, B = nyKu/8000O is equiva-
lent to applying Algorithm 1 with m = M =1, K =1, p = 2l, 7, = min{l1/(1000K1), \/7%}, Ny =
n2/256, B =1, K /80000 and any appropriate 1, 7,,. Thus, according to Theorem E.1 and (23), we have

BV; — EVen > Ve f (e, )+ g5 Elns ol + Bl — (29)
Telescoping and rearranging, we have
T—

1 . 5 64
7 2 IVafwo 0l <0 (30)
Z ||Z/t+1 - ytH <7A (31)

—o ny T

O(l),‘{

pr th—th ST ﬂ 0T A (32)

t=0
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Because 1, < 1/l, we have
l2HPy(yt +1/IVy f(x,9¢)) — yt||2

1
SEHPY(% + 0y Vy (e, ue) — vl
Y

1
== |Ge41 — el
U

Thus, we have

T—
Z IV f (e, ye) |2+ K Py (ye + 1/1V, f (24, 90)) = yel?

<= ZQHV Flws, 2) 7 + 20°||Jwe — 2* + 772||Z7t+1 — el

( )

= T .

F Nonconvex-One-Point-Concave

Lemma F.1 Under the Assumptions 2.1, 8.2, 3.4, we have

2(1 4 n, Kl 4 1, Klvy,)
* * () + 2 Y Y
r(z) =2 (Y (2),2)||” < Yy —

¥ (2)D(Y),
where D(Y') is the diameter of Y.

Proof Note that Under the Assumption 3.4, we have

2),2), 97 (@ (5t (2),2)), 2) = F(@" (y7(2), 2), 9 (), 2)

(Vyf (@ (7 (2),2),57 (), 2). " (2" (" (2), 2)) — " (2))

=(Vy f (@ (y,2),9,2), 5" (2" (y7 (2),2) =y (2))+

(Vo f (@ (57 (2),2), 7 (2),2) = Vi f (a7 (9, 2), 9, 2), 5" (@7 (v (2), 2)) =y (2))

—~
8
*
—~
<
+
—

R WK ...~ 00 @ () ) - vt )+

(4 1)l — v )l @ (2),2)
<R IRy )y o (7 (2 2) ~ v ()

141, K1+ n,Kly
Sy — ()| DY), (33)
Ty

where in (a), we use the [-smoothness of f , Vyf =V, f and Lemma B.1, in (b), we use the fact that when Y is
a closed, convex set, we have

(a = Py(a),b— Py(a)) <0, VbeY. (34)

Then by the strong convexity of f(, Y, z), we have

lz* (y*(2), 2) — 2" (2)II”
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p—1
2(1 + 0y Kl + ny Klvy2)

ly —y* (2)[ID(Y).

ny K (p —1)
(a) can be explained by the fact that f(z*(y™(2), 2), 7*(2), 2) < ®(z*(yT(2),2), 2). (b) arises from the relationship
fla*(yt(2),2),y7(2),2) < ®(x*(2), 2). (c) can be attributed to (33). |

Lemma F.2 Under the Assumptions 2.1, 3.2, 3.4, and when 1, < 1/(1000K1),p = 2, we have
6D(Y) 2D(Y)

* * (o 4+ 2 2 2

o () = " (7461, < gy (2) —wll + 22

Proof When 5, < 1/(1000K1),p = 2, we have

2 (2) — 2*(y " (2), 2)|I”
2(1 + ny Kl + 1, Klvys)

ly =y ()| DY)
nyK(p—1)
+ DY
o UREACILLS
2D( ) 2D(Y)
< + 2 2
<prcaaly () P+ =
where in the second inequality, we use Lemma F.1. |

Lemma F.3 Under the Assumptions 3.2, 3.3, with p = 2l,n, < 1/(1000K1),n, = 1,/256,5 < n,K1/80000,
: 1 8 : 1 Ny
Nz, < mln{ 21\/2(2K—1)(K—1)7 \/ 6144%]912}(3},77@;,1 < mln{ 21\/2(2K—1)(K—1)7 307202 K2 }; we have

]EVi —EVia
ﬁ * *
> 64 of (we, 22)|1* + o1 KEH% (2) = yell” + 16]E||$t — z||* — 48pBE[la* (2¢) — 2™ (31 (2¢), 20) 1>~
2 o2 2 dn, 0?
952 K2(M — m)—C- — 1 — 8y, K(M —m)—& . Z7__
5In; K*( m)—=— A 52K 8, K ( m) —; -
A, KIP[24K% (02, + ) (08 + Gf,) +3K (07, +2K1y,)0’].
Proof According to Lemma C.7, we have
EV; —EVitq
7 2 1 2 pﬂ 2 * * 2
of (e, 2) |7 + 167 KEHyt+1 yell +173]E||$t — z||” — 24pBE|[|lz (2¢) — 2™ (yr, 20) |7 —

2

2 4 2
250K (M —m) - 15117sz — 8, K (M —m)—&. — Z7_

mM m
An, KIP[24K>(n3, + ny,l)(oG + Gi) +3K(n2, + 2Kny,l) o’
1 1 ~ pp
1%+ 320 KE|\yt+(Zt) —yell® - E||ge+1 — i (20) I + *]EHﬂft — |~
Y

8 16
A8pPE||a (z) — ™ (4" (20), 20)|I” — A8pBE|2” (3" (22), 2

x A(wn Zt)

—m*(yt,zt)IIQ—
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952 K2(M — m)—2C- L 15ln2K o’ — 8y, K (M —m)-2C- o6 _ Amot
x mM z Y mM m
@&Kﬂm4Kﬂmzr+mﬂxaG+<ﬂ>+3K@ﬁJ+2kwiooﬂ
12 pﬁ

<)$
BBV fwr, )2 + TeEle - =)~

Ellyi (z¢) — well* —

32 K KE||x*(yt7Zt) _xt”2

48p5E||1’ (2¢e) — 2*(yf (20), 2 )||2—48p6722E\\y?(2t)—yt\|2—

2 2 4,,7 0.2
20512 K2 (M — 151 K—f K(M —m)-26. _ 29 _
5l K= ( m)mM 5ln2 8ny K ( m)mM -

477mKl2[24K2(715,z + ny,z)(ac + Gi) + 3K(77x,z + 2K77§ 1)o’]

(e VBNV fuwn e + (e — 459803 ) Bl o) — sel? + 2By — P
- Sk b2 zJ (W, 2t 321, K P 72 Yy (2t Yt 16 Ty — 2t
9 2 ol 4,0

* * (og g
ASIEa (20) — o (o (20) 20| = 502K (M —m) 76 512K T — s K (M —m) 26 T
An, KI*[24K>(n3 ) + ni,z)(oé +G2) + 3K (2, +2Kn )0’

of (we, z) || + 61 KEHyt (z¢) — el + 1§Ellxt—2tH2 A8pPBE|[|z* (2¢) — " (y; (2¢), 20) [P —
2 2 2 2
25200 — ) 26 1e12i T oy 9G  AmyoT
25 K*(M m)mM 15177sz 8ny K (M m)mM -

477:1:K12[24K2(77320,z + 772,1)(0%: + Gi) + 3K(7732c,l + 2KU§,1)02]7

where in (a), we use [|a|? > 3|l — b]|> — 2||b||?, in (b), we use Lemma B.1, in (c), we use the (p — I)-strongly

convexity of f(-,y, 2). |

Proof of Theorem 3.2

Theorem 3.2 Under Assumptions 2.1, 2.2, 2.3, 24, 32, 3.3, 34 and ¢ < ID(®Y), if we

apply Algorithm 1 with p = 2, 5, = min{l/(1000K1), U”?(ATZ}, ny = 1n3/256, @

0, Ke2/(80000D(Y)), n,y < min{ \/2(2K1_1)(K_1), Ve, 0@V 0%+ oKD},
. 1 [ 2 2 2 -1 _ — ; —
mln{2l\/2(2K S s e O€ V(oG +0?)(KD)7)}, when m = M or og = 0, with T' =

O(e™*),K = O(m~te™?), we can find an (e, €*)-stationary point of f and an e-stationary point of ®;/5; with a
per-client sample complexity of O(m~'e~®) and a communication complexity of O(¢~*). Here, A = Vj — ®*.

Proof Combining Lemma F.2 and F.3, with €2/D(Y) < [, and 8 = n,Ke?/(80000D(Y)) < n,K1/80000, we
have

IN

n K 1928D(Y)
Sl + (= 2P ) i o -l

&wm—%W—wwaw—

EV;, — EVi4y >

ot Anyo?
mM m
Ana KIP[24K* (2, +n. 1) (08 + Gi) +3K(n3, +2Kn; )0’

2
25In2 K% (M — m)mM 1517721{ —SnyK(M m)—<-

Ellyit () — vl + 2OBllr, — 22— 1928D(Y) >

o f(we, z) |2 +

128n, K
25102 K2(M — m)—5- % 15177217{ o’ —8n K(Mfm)i _Anyo”
A, KIP[24K3 (02, + ) (08 + GZ) +3K(n7, +2Kn3,)0”). (35)

Choosing T' = mK = O(e™%),K = ©(m~te %), n, = min{1/(1000K1), m/L?(ATl} = O(me*), when M = m or
oG =0,and 72, <O(e") K212, < O(e*) K2, we have
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1= o(1) nzlo? o?
— N E|V, 2 A 1)=— 1)— et < 4
7 2 BV fun 20l <2+ 0) T +0() T 40t <0t (36)
| , _ O(1) Nulo? o? . .
— < L et R <
72 gl () ~ul < p 8+ 00 4 00) 7 + 0t < O (37)
1= 0O(1) nzlo? o?
= Ellze — z]|* < A )= 1)——s 1)e* < %,
= ;p lae = 2ll” < g A + 075 + 0(1) 5 +0(1)e < 01)e (38)
Combining (12), (36), (38), we have
= = R
7 O BIVaf@ny)l® < 7 D 2B Ve f(we, 20)|° + 20°Elley — 2> < O(). (39)
= =

Since n, K < 1/1, we have
ZZHPY(% +1/IVy f(ze, 90)) —

1Py (e + my KV y f (@1, 90)) — well”

wel|?
— 2K2
SWHPY(% + 0y KV f (2" (e, 2) s ye)) — wel|>+

Y

2 Prox

W”PY(% + nyKvyf(x (yt7 Zt)ayt)) - PY(yt + UyKVyf(%“t, yt))”2

Yy

2
SWHyf(Zt) — ||+ 2|2 (ye, 21) — e

2 )
STmlly?(Zt) = el + 21/ (0 = D[ Vo f(we, 20) |

<= 2K2 i (20) — well? + 20| Vo f (we, 22) || (40)
Combining (40),(36), (37), we have
1 71 T—
LS BB 1+ I 7)) — il < 32BN w2 + Bl Gl 0. ()
t=0 t=0
According to Lemma B.3, we have
V@1 yau(we)|* = pPlle — ™ (a0) ||
<4p?|lxy — 2 (ye, 20) II” + 49212 (Yo, 20) — * (0 (20), 20) |2+
4?2 (g (20), 20) — 2™ (20) |* + 4p?||2* (20) — 2" ()|
4p? A
<ol Vel (w2l + il — i GOIP+
4D 2D(Y
sl (o) =l + 22 b -l (12)

where in the second inequality, we use the (p — [)-strongly convexity of f (,y,2), Lemma B.1 and Lemma F.2.

Combining (42), (36), (37), (38), we further have
=
L3 By < O(E), (43)

t=0
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Hence, we can identify an (e, €?)-stationary point for f and an e-stationary point for ®; /21, With respective values
of K =©(m~te %) and T = ©(¢~*). This results in a per-client sample complexity of KT = O(m~'e~%) and a
communication complexity of T = O(e™%). |

Proof of Corollary 3.2

Corollary 3.2 Under Assumptions 2.1, 2.4, 3.2, 3.3, 3.4, and when M = 1, €2 < [D(Y), if we apply Algorithm
2 with p = 21, 5, = 1/(10000), n, = n,/256, B = n,e?/(80000D(Y)), T = O(e~*), we can find an (e, €?)-
stationary point of f and an e-stationary point of ®; /5 with a sample complexity of O(e™™).

Proof Applying Algorithm 2 with p = 2I, n, = 1/(10001), n, = nx/256 B = nye?/(80000D(Y)) is
equivalent to applying Algorithm 1 with p = 21, 7, = min{1/(1000K1), \/ﬁ}’ Ny = Ng/256, B =
ny K€% /(80000D(Y')) and any appropriate 1., 7,,. Thus, according to Theorem 3.2 and (35), we have

EV; — EVi zg—ZEnvxf(wt,zt)H? + Toa Ellvif (20) — il + ]i—gEnxt —z|> = 1928D(Y)e*  (44)

28

Telescoping and rearranging, we have

1
T D Ve f (we,z0)l| (De* < O(e") (45)
t=0
T—1
1=, , 128 . y
— — Iy (z0) =yl <—=A+0(1)e* < O(e 46
72 i 0 —ulP < 778+ 0t < 0(eh (16)
=
7 2 #Pllee— =l <78+ 0()¢ < O(@) (47)
=0
Thus, we have
= = K
7 2 Vel ey < 5 Y 20IVaf (w20l + 20 |2 — 2]* < O(€). (48)
t=0 t=0
According to (40), we have
T—1 T—1

Z Pl Py (ye + 1)1V, f(xe,90)) = wel® < Z 2|V f (w20 | + 2 ||yt+(2t) —ull* <O(h).  (49)
Y

With (42), we have

1 T—1
T [Va®1 /0 (z0)]?
t=0
T—1
1 4p? A
<= 5 I Va f (we, 20) I + 4p° 3 lye — vl (z) 1P+
T = (-1

< O(e?) (50)

4D 2D(Y
4p2{121((2)2|yt () — well® + ;)62} +4p°7 |1z — z?

Thus, we can identify an (e, €2)-stationary point for f and an e-stationary point for ®, /21 With a sample complexity
of T'=O(e™™). |
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G Nonconvex-Concave

Proof of Theorem 3.3 and Corollary 3.3

Proof We define f(z,y) = f(x,y) — ﬁ(y)ﬂy —yoll®. Then f is (I + €/2Dy)-smooth, and e/2D(Y)-strongly-
concave. When e < 2[D(Y), f is 2l-smooth, we have

20D(Y
L AD()

=0(e ).

€

Proof of Theorem 3.3: According to Theorem E.1, applying Algorithm 1 to optimize f , with M =m or og =0,
we can find (&,9), an (e, €/Vk')- btatlonary point of f, with a sample complexity of O(k?>n"te™*) = O(n~!e _6)
and a communication complexity of O(kte™2) = O(e3).

(2,9) is an (e, e/\/g)—stationary point of f means
Vo f (2,9l < e
IV, f(@,9)]| < e/Vi <e.

By the inequality max,ex yey ||V f(z,9) — VF(z,9)| < €/2, we have

IVF@& ) <IVFE D)+ IVF(E,9) — VI §)] < 2.

Therefore, (&, §) is a O(e)-stationary point of f. We can find an e-stationary point of f with a per-client sample
complexity of O(n~te~%) and a communication complexity of O(e3).

Proof of Corollary 3.3: Similarly, according to Corollary E.1, applying Algorithm 2 to optimize f , with M =1,
we can find (&,9), an (e, e/v/s/)-stationary point of f, with a sample complexity of O(k’e2) = O(e™3).

(Z,9) is an (Qd@)—stationary point of f means
IV f(@,9)|| < e
IV, f(@, D)l < e/Vi <e.

By the inequality max,ex yev |V f(z,y) — Vf(x, y)|| < €/2, we have

IVF@& ) <IVFE )+ IVF(&,9) — VI §)] < 2.

Therefore, (Z, ) is a O(e)-stationary point of f. We can find an e-stationary point of f with a sample complexity
of O(e3). [ |

H Minimizing the Point-Wise Maximum of Finite Functions

Lemma H.1 (Lemma B13(Zhang et al., 2020)) Let 2 (y,2) = & — 0. KV, f(z,y,2). If Assumption 3.6
holds for problem (2), then there exists § > 0, such that if ||z|| is bounded by a constant D, as

2]l < D-,

and
max{||z — 2" (y, 2)|; ly — y* ()|l |2 * (v, 2) = 2[I} <&,
we have
lz(y ™ (2),2) — 2" ()| < yslly —y* ()]

for some constant 3 > 0.
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Proof of Theorem 3.4

Theorem 3.2 Under Assumptions 2.1, 2.2, 2.3, 2.4, 3.3, 3.6, if we apply Algorithm 1 with p = 2, n, =
min{1/(1000K1), mA ny = Ng/256, [ = min{nyKl/SOOOO,5/2)\1,5/4)\2,77yK5/4)\37m

na:,l S mln{2l\/2(2K171)(K71),\/6144nfp12K37O(6\/ (O—é+02)<Kl)_1)}7 77y,l
min{zz\/g(zKl_l)(K_n"/3072:775121(2’0(6‘/(0%+02)(Kl)_1)}’ when m = M or og = 0, with

T = 0(e72),K = ©(m~'e?), we can find an e-stationary point of f and an e-stationary point of Dy /9
with a per-client sample complexity of O(m~'e™*) and a communication complexity of O(e~2). Here,
A =Vy — D*, §, A\, A2, A3 are O(1) constants defined in following proof.

\-«4

IN

Proof According to Lemma F.3, we have

EV; —EVit1
> )P + G Bl () =l + 2Bl — 4805 () = i () )
2 2 2 4n o2
WBIN2 K2(M — m)-29— — 1512 KT — 8p, K(M — m)-26- — 27" _
K m)mM e m K ( m)mM m

A KIP[24K>(n3 4+, ) (08 + Go) + 3K (n3, + 2Kn3 )o?].

With T = mK = ©(e ), K = ©(m™"e?), n, = min{1/(1000K1), 12} = ©(me*), § < n, K1/80000, when

M =morog=0,and 72, <O()K 212, < O(*)K 2, we have

Evt ~EVint

o f (w, 20)|1” +

>0t 5 KEuyt (20) = will? + T Bllwe — 2l — 48pBE|a” (1) — & (y (1), )|~
O(1)é2. (51)

Note that we assume ||z¢|| < D, for all ¢, we define D, = max{D,, | 20|}, then we can prove that, for all ,
l2t|| < D, we prove it by induction. First for ¢t = 0, ||20]| < D, we assume when ¢ = 4, we have ||z;|| < D,, then
for t =i+ 1, we have ||z;11]] < B|lzi|| + (1 = B)||z:|| < BD. + (1 —B)D, < D,. So, for all ¢, we have ||z < D,.

Next, we will prove that for all ¢, we have

BEH% — z]|? — O(1)é. (52)

>
EV; — EViyy + o

2
> 128 EHV Flw, z) )1 +

2

For any ¢, there are two cases.

e Case 1:
5 max of (we, 2|2 ! i (z) — wel|® ﬂth — 2|*} < 48pBlla*(z) — 2 (v (20), z0) 1. (53)
2 128 ’ " 1281, K / ' 32 = ’

e Case 2:
- max of (e, 2) | ! Iy (z) = well® pﬁl\xt — z|1?} > 48pBl* () — " (y;f (20), z0) >, (54)
2 128 ’ ’128nyK t ' 32 = ¢ ’

For Case 1, combining (53) and Lemma F.1, we have

2(1+ ny Kl 4+ nyKlvys) 4D(Y)

“(a) =" () =< —y (2)|D(Y) < +(2) —
o (z0) = & (i ), 2| £ = P S e O IDOY) < = 5 i () =
1 . . 192pBD(Y
5 e (20 il < 489Bl () — 20 20 ) < f;y@(;)uy;(zt) i

Iyt (z0) — el < O(1)B =\
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AD(Y), B

2" (2¢) — ™ (5" (2), 20| <
This leads to the following results:

=11, K[|V f (wi, 20) |

[l —xj(yt,zt)|

(OVEFIR e (0) = o (4 (). 20 < O 222 —0(1)8 = Mo
Yy
e — 2l SO 2" () — 2° (57 (z0), 22)]| < o<1>an Y nﬂK
i (e 2) — 22| <N K[|V fwn 22)]| + e an.

Therefore, if we choose 8 = min{n,K1/80000,0/2A1, /42, n, K5 /4 s}, we will have

max{[lz — 2" (y, ), ly —y* (D), |27 (y, 2) — 2} <.

According to Lemma H.1, with ||z|| < D, and § = min{n,K1/80000, 5/2)\1,6/4)\2,77yK5/4A3,W},
3

where J, A1, Ao, A3 are all O(1) constants and are independent of €, we have

48pPE||a (z¢) — ™ (4 (20), 20)I” <48pBYVENys (20) — well* < 5 Elly (2¢) — wel*. (55)

1
- 128n, K

Combining (51) and (55), we get the (52). In Case 2, we can easily get the (52). Combining these together, for
all ¢, we have

EV; — EVipy 27002 Elly," (2e) = yell* + %Ellzt =zl - 0(1)€. (56)

=z 128 ]E”fo(wt, Zt)||2

1281, K

Note that 8 = min{n, K1/80000,6/2A1, /4 2, 7, K5 /4 A3, m}, where 0, A1, A2, A3 are all O(1) constants
Y 3
and are independent of €, so 3 is also an O(1) constant and is independent of €, we have

1 5 o(1)
— N E|V, 2 < A 1)e? < O(1)e
7 2 BIVaf w0l < 7pa + 0 < 0e, 67)
o)
—~ E 2 < A e2 < 0(1)e?
= Z I (20—l < 7pA + O < 0, (58)
T-1
o1
T z;pQEth ze|? < 1(, )A +O0(1)e? <0(1)é%. (59)
t
Combining (12), (36), (38), we have
1 Il 1Tl R
T D EVaf(zyo)l* < T Y 2E[Vaf(wi, z)|* + 20°Ellee — 2> < O(). (60)
t=0 t=0
Combining (40),(57), (58) yields
1 T2 = X
7 2 EEIPY (ot 11V, )~ l? < 12 3 2BV )l Bl (=)~ wl* < O (61)
t=0 t=0

Note that from previous proof, for any 0 <t < T, we have

A8pPE|z* (20) — 2™ (5 (20), 20) || Ellys (z¢) — vell*. (62)

<
= 2561, K
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According to Lemma B.3, we have

IVa®1 (@) |* = p?llze — 2™ (22)|®
<dp?|xe — " (ye, 2|1 + 497" (g1, 20) — 2 (i (22), 20) [+
4p |l (g (21), 2) — 2" (z0) |1 + 4pP[l2* (20) — 2™ ()|

4p? A
5IVaf (we, 20) 12+ 40° %3 1y — w1 (z0) 1P+

<7
“(p—1)
Tﬂ”yt =y (20)|” + 4p*7 |2 — e %, (63)

where in the second inequality, we use the (p—1)-strongly convexity of f (,9, 2), Lemma B.1 and (62). Combining
(63), (57), (58), (59), we have

1 T-1

T Y EIVe@ym(z)|? < O(). (64)
t=0

Therefore, we can find an (e, €2)-stationary point of f and an e-stationary point of ®, with K = O(m~te2),T =
©(e~2), which means a per-client sample complexity of KT = O(m~!¢~*) and a communication complexity of
T = 0(e?). |

I PL-PL

Since p = 0 and Y = R% in this section, the updates of FESS-GDA are:

Ti41 = Tt — UmK(um,t - ez,t)a

Y1 = Ye + My K (uyr — €yt).
We cite the following known results for ease of exposition.

Lemma 1.1 (Nouiehed et al. (2019)) In the minimax problem, when —f(x,-) satisfies PL condition with
constant po for any x and f satisfies Assumption 2.1, then the function ®(x) := max, f(z,y) is L-smooth with
L:=1+41%/py and V®(x) = V, f(z,y*(x)) for any y* () € Argmax,, f(z,y).

Lemma 1.2 (Yang et al. (2020)) In the minimaz problem, when the objective function f satisfies Assump-
tion 2.1 (Lipschitz gradient) and the two-sided PL condition with constant py and po, then function ®(x) =
max, f(z,y) satisfies the PL condition with p;.

Proof of Theorem 3.5

Proof We denote k1 =1/p1, ke =1/ua, K = max{k1, ka}, £ = min{k1, k2 } in this section.

2
e _ Nyk : 1 / N
Parameters setting: p = 0. When pq > s, we choose 1, = s Nl < min{ AR (k=1)’ | 15360, PR

O(ew'2\/(0Z + o2)(KI)™")}, nyu <min{2l\/2(2K1 " /e, Olen' =2/ (0% + o2)(K1)~ 1)}, when m =

M or og = 0, we choose K = O(1)m ™1 ﬁm@e 2T = 0(1)k1K31og(e7'K'), 1y = g%, when m < M and o > 0,
we choose 7, = min{ =, O(1)mr'~ k1 k5 %€}, K O), T =O0(1)m™ 'k k2kie 2 log(e1K').

_ neli ; 1 /1
Conversely, when 1 < o, we choose 1y = s Nl < min{ S aeR DR V TR
_ 1 Y _ _
O(er! 2 /(0’% +02)(Kl) )}, Myt < mln{Ql\/2(2K—1)(K—1)”/ 153677]71l2K2’O(6’<5/ 2 (o’é +02)(Kl) 1)}’ when
m = M or og = 0, we choose K = O(1 )m_ln'ﬂgmle_Q T = O(1)kar?log(e *w'), n, = 57, when m < M

and o > 0, we choose 7, = min{ %, O()mr'~ 7’k '€}, K = O(1), T = O(1)m ™ x'k3rie 2 log(e 1x’).

We first consider the proof when puq > po.
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Since ®(-) is L-smooth, L =1 + L—Z = (1 + k2)! by Lemma I.1, we have

L
Eq)(l‘t) — E(I)(J}H_l) Z E(Vwé(xt),xt — $t+1> — §EH.’L} — xt+1H2~

Because of the [-smoothness of f(-), we have

Ef(wiy1) — Ef(wy)

l l
ZE<sz(wt),$t+1 - $t> + E<Vyf(wt)ayt+1 - yt> - §E||Z‘t+1 - $t||2 - §EHyt+1 - yt||2

_ l l
=E(V, f(we), 2141 — xe) + y KE(Vy f(w), Vi f(we) — €ye) — §E|\xt+1 —a|® - §E||yt+1 — el

K _ K .
=E(V.f (we), 21 — 22) + 0y KE[V, f (we)|? + LBV, f(wr) = &2 - W @I — L=Elje, 4]~

l l
SEllzee = a1l = JElyiar —

2
K_.._ l l
>E(Vof (we), @1 — 21) + 2|V, fwo)]]? = Z=ElEyl? = SElvess — ool = SEllyess — el
@ n,K K l
> (1= — b2 K2E|V, f(w)| — 2Ky — Pyl + E(Vaf (), w1 — 20) = 5Ellwess — el
®)n, K 1y K l
> S w)|I” — y2 Elléyl* — Iy Ky, + E(Va f(wy), 241 — 34) — ]E||$t+1 —z|?,

where (a) is due to the Lemma B.6, and (b) is due to the condition 7, < ;.
Define Wy = ®(x) — ®* + ®(x¢) — (@, ye) = 2®(x¢) — f (2, y:) — P*, we have
EW; — EWytq

K K
>2E(V®(1), @0 - we1) — LE|2 — w2 + LBV, fw)|2 = 2=ElE,|? - i K2dy,+

l
E<fo(wt)7$t+1 - 9Ct> - §E||$t+1 - $t||2-

Denote A3z = 2E(V,®(z¢), s — x441) — LE||xy — 2431 ||? + E(Vaf(wy), 441 — 74) — éEthH — x¢||?, we have
2L +1

Az =2E(V,®(z¢) — Vo f(wi), 0 — T411) — Ellze — 21 ||” + E(Vo f(we), Te1 — @)

2L +1

>0y KE(V, f(wi), Vi f(wi) — €xt) — 20 KE|| Vo @(2¢) — Vo f (wi) [V f(wi) — €z 4 — Ellz: — zeqa |

(a) wK wK _ wK =
> BBV (w)|? = Tl - 80, KEVo®(ar) = Vaf (w)|* = BB Vaf (wr) - 0>
(2L + D02 KBV f(wo)||? = (2L + Dn2 Koy

el « N K
of (we)||* — ”TEllex,tIP — 8. KIPEl|ys — y* (z)|* — ”TEIIfo(wt)Ilz -

Q2L+ Dy KZE||Va f (we)l|” — 2L + iz K dyy

© (0K 30,
>(”4nﬁK2<2L+l>)E||vmf<wt>||2 K B, 2 — (2L + Dr2Ka, -

sanl

E||V, f (w)|?

EHV Flwd)l* = IEHemll2 (2L + D)z K dy g,

Dn, K

2 g, ) -
where (a) is due to Lemma B.6, (b) is due to l-smoothness of f, (¢) is due to us-PL condition of f(z,-), (d) is
due to the condition 7, = GZ—% < m.
Then, we have

EW; — EWyiiq
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Ny K 8anl nyK
)+ (2 BV, fw) 2~ P Ele, ? - m2K?d,

4
3% Bl ~ 2L+ Dn2k>duy
2R g9, ol + MBI, w2 - ey - 02K,
3”ZKE|| eodll? = 2L+ D2 Kd s
K 19 )+ B ) — (0, K€+ 2B 2 — 22K — A2 — ) 25
(0, + 2021 + KB, — 2021 + 2K T — 4@L + KM — m) 2%
SR . fla + RIS, fn) 2 — 2 T S — m) 26

mM
477yK12[24K277 E(Ve f(wt)\|2+24K277 JENVy f(wt)\|2+24K2(77zz+77§z)0%+3K(77§,z+2K?7§,z)02]

( 7 o2
2B 1, P + 2, )2 — by L st (0 — m) 25
477yK12[24K2(77x,1 + ni,z)aé + 3K(’73,l + 2K77y,l) 7,
where (a) is due to the condition 7, = %1723 = GZZE’ (b) is due to Lemma B.5, (c) is due to Lemma B.4, (d) is

e 2 § 1
due to the condition 77 ; < W@mlg, Myl < 153672

Note that
ofw)? + L o (we)]?

() — (21) = Vo fwn) | + LBV, £ (w)
@)l - ”IKZ Ellye — y* (@) + BBV, f(w)

H n§f 2D(@)|” — "ngl E||Vy f (we])? + uf (wi)ll”

OB 19, b + B, )

S (@) — @%) + R 2B (2,) — (e, p0)

Z%E(Q(xt) — O + ®(x) — f(2e, 1))

nzﬁulEWu

where (a) is due to po-PL condition of f(x,-), (b) is due to the condition 7, = %ﬁff; = GZZ%, and (c) is due to the

two-side PL condition of f and Lemma I1.2.
Thus, we have
o? ol
EW, — 4577;1(5 — 8ln2 K*(M —m) m;}—
Any KI*[24K>(n3 , +n )od + 3K (n2 ; + 2Kn; )o?].

K
EW; — EWiia 277 M

By telescoping and rearranging, we have

N K pa 5.0 2 72 e

mM
Any KI*[24K>(n3 , +n3 o + 3K (2, + 2Kn3 )o?],
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K\ 64lnZo?  126ln2K
EWt§<1"16’“> B, 1 S | PROUK ) o6

N 01710 N1 mM
64,1 5 o b , Y
W[MK (2, +n2)0% + 3K (02, + 2Kn2 o]
¢ 2, 2 )
My K1 K1K51y0 ) o
=\~ 62 ) B =" 1 K(M —m)-—2G-
< 25611 2> Wo + O(1)—""— + O()r1rgny K(M —m) —o+

O( )K1K2l[24K2(nfcl+nyl)0G+3K(nml+2K77yl) ]

Note that

* 2 *
Ellz, —2*|* < oy EO () — @),
1

Ellye — y*[* < 2Ellye — y*(x) > + 2E[|y* () — y*|* < g(@(fﬂt) — flze,ye) + EE(‘P(%) — 7).

t fe 20 2 )
Ny K1 K K1K5Ny0 L o2
sre 2 | EWo+O(1)——=——+0(1 K(M —m)—¢&
256&1/@%) 0+0(1) m + O(1)K" K1 Kgmy, K ( m) mM+

O(V)K' k1R3I4K* (2 ) + 5 )og + 3K (3, + 2K, )o?]. (65)

Ellzs — o*|2 + Elly: — y* |2 <O(L)K (1 -

When M = m or O'G =0, With K = O()m W' riK3e 2, n, = 1/(4K) = O()mk'"'ky k52, T =
O(1)k1r3log(e™ k"), n2, < O( V&'~ ZK262, na, < O(1)k' k] kg 2 K262, we have

Elzr —*|* + Elyr —y*|* < O(1)¢?

which means a per-client sample complexity of O(m~'x'k?k3e 2log(e 1x’)), a communication complexity of
O(k1k3log(e 1K")).

When m < M and og > 0, with Ny = O(l) K7 Ry /{2 62 K =0(1), T = O(1)m™ v k2r3e 2 log(e 1x’),
773:,1 <O(1)K"~ 1’ﬁ Ko 52K 2 s M l<0(1)li/ lill 72K , we have

Elzr —*|* + Elyr — y*|* < O(1)¢?

which means both per-client sample complexity and communication complexity are O(m ™ x’rk3k5e¢ =2 log(e~1x')).
Using Kakutoni’s Theorem, we have

minmax f(z,y) = maxmin f(z,y) = minmax(—f(z,y)) = min max g(y, x),
z Yy Yy x Yy T Yy T

where we denote g(y, z) = —f(z,y).

Thus, the minimax problem of a function with p1-PL-u9e-PL is equivalent to minimax problem of a function with
pa-PL-p11-PL. When M = m or og = 0, it is guaranteed to find zr, yr satisfying E||zr — 2*||2 + E|lyr — y*||* <
O(1)€* with a per-client sample complexity of O(m~'x’'rk]r3e 2 log(e~'x’)) and a communication complexity of
O(k3K2log(e71K")).

Overall, when M = m or og = 0, we can find xr, yr satisfying E||zr — 2*||?> + E|lyr — y*||* < O(1)€e? with a per-
client sample complexity of O(m~1x/3k"*e~2 log(¢~1x’)) and a communication complexity of O(k'k"? log(e~1x’)),
where ' = max{k1, Ko}, K’ = min{x1, K2}

Similarly, when m < M and og > 0, we we can find zr,yr satisfying Ellzr — z*||* + E|yr — v*|*> <
O(1)e? with a per-client sample complexity of O(m™1x"3k"4e=2log(e1x’)) and a communication complexity
of O(m™1k3k"*e=2log(e~'k')), where ' = max{r1, K2}, k” = min{ry, k2 }. [ |
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J Proof of Proposition 3.1

) is an (e, €/+/kK)-stationary point of

Proof According to Proposition 2.1 and (7) in Yang et al. (2022b), if (Z,
| then

Y
f, then ||V, ®q/5(Z)| < 2v2e. If we could find & such that E[|Z — 2*(2)|| < 5,
E[[V,®(@)|| < E[[Vo®(a"(2))]| + E[[V2®(2) = Vo (2 (7))l

SE[Ve®1/2(2)| + 2kIE|2 — 2% (2)]]

< (2V2 + 2)e,
where the second inequality is because of Lemma B.3 and Lemma I.1. Note that z*(Z) is the solution to
min, max, f(z,y) = min, max, f(z,y) + ||z — Z|*.

Note that f(z:,y) = f(z,y) + |z — 7|?* is 3l-smooth, [-strongly convex in x, u-PL in y. According to
Theorem 3.5, we can use FESS-GDA to optimize f(z,y) from initial point (Z,g). Furthermore, according to

(65), with n, < 1/(4lK),n, = 7&72, Ne,l < min{Ql\/Z(QKl_l)(K_l)a\/ 1536%21(270(6’1_3\/(U%‘*‘Jz)(Kl)_l)}v
Ty, < ming zl\/2(2K1—1)(K—1)’ \ e Oen ™/ (04 + o) (K1) ™)}, we have

o2

“EW +0(1)*’”277f””2 + O, K (M — m)—C- + O(1)k 22
0 m e mM ’

1. K1
256 x 9k

E|lz; — 2*||* < O(1)k (1 —

where since min, max, f(x y) = min, max, (- f(z,y)), we redefine W = ¥* — U(y) + f(z,y) — U(y), ¥(y) =
min, f(z,y) = ming(—f(x,y)). We then have
Wo =" —¥() + f(3,5) — ¥()
@. -1
SV = W(g) + 5 1Va f(@,9)I1°

= maxmin f(z,y) - max f(Z,y) + max f(,y) = /(7,9) + f(,9) — min f(z,5) + Qilnvmf(i:, 0l

1 PO 1 PO 1 PP
<AV f@ DI+ IV F (@ DI + 5 1V (@ D)

where (a) is due to l-strongly convexness of x, (b) is due to l-strongly convexness of x and p-PL of y, (c) is
because that (Z,7) is an (e, ¢/+/k)-stationary point of f. Thus, we have

2

mM

N K1

_ N BAE ~2,2
256 X 9k +0()s ’

k H277 o?
Elz: — 2*||* < O(1) ke (1 - ) + 0(1)Tx + O(1)K*n, K (M —m)

Therefore, when m = M or og = 0, with 7, = 1/(4IK) = O(1)me*s~%, K = O(1)m~te 2k*, T = O(1)x log(x)
we can find & such that E[z — 2*(Z)|| < O(£) and E[|V,®(2)|| < O(¢) with KT = O(m_lm5e 2log(k)) per-
client sample complexity and T" = O(klog(k)) communication complexity. When m < M and og > 0, with
K =0(1), n, = min{1/(4lK),O(1)me?x~*} = O(1)me?s=*, T = O( ym~1k%e=21og(k), we can find £ such that
E||lz—= (~)|| < O(£) and E[|V,®(2)|| < O(e) with KT = O(m x°e~%log(k)) per-client sample complexity and
T = O(m 'k 21og(x)) communication complexity. |

K Additional Experiments

Fair Classification

For the fair classification task, we have presented the average test accuracy results in Section 4.2. To compare
the fairness of models trained with FESS-GDA and Fed-Norm-SGDA+, following the same setting in Section 4.2,
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Figure 3: Comparison between Fed-Norm-SGDA+ and FESS-GDA for the worst test accuracy over 10 categories
of CIFAR-10.

we now present the worst-case test accuracy of models over 10 categories in Figure 3. Figure 2 and Figure 3
show that models trained with FESS-GDA not only have better average test accuracy over all categories, but also
have better worst-case test accuracy over all categories, which demonstrates that models trained with FESS-GDA
have better overall performance as well as fairness compared to models trained with Fed-Norm-SGDA+.

Communication Savings from Multiple Local Updates
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Figure 4: FESS-GDA for the fair classification task on CIFAR-10 with different number of local updates.

We test FESS-GDA for the fair classification task on the CIFAR10 dataset using the same setting as in Section 4.2
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with 1z =0y = 0.1,1z,9 = 1y,g = 1,p = 0.1, 3 = 0.9 and number of local updates K from {10,20,30}. Each
experiment is repeated 5 times and we report the average performance. As we can see from Figure 4, FESS-GDA
has significant communication savings from multiple local updates.

Model Architecture for Fair Classification

Table 3 shows the architecture of the convolutional neural network we used for the fair classification task.

Table 3: Model Architecture for CIFAR10 dataset

Layer Type Shape padding
Convolution + ReLLU 3x3x16 1

Max Pooling 2 %2

Convolution + ReLU 3x3x32 1

Max Pooling 2x2

Convolution + ReLLU 3x3x64 1

Max Pooling 2 %2

Fully Connected + ReLU 512
Fully Connected + ReLU 64
Fully Connected 10
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