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Quasirandom groups enjoy interleaved mixing
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Abstract: Let G be a group such that any non-trivial representation has dimension at least

d. Let X = (X1,X2, . . . ,Xt) and Y = (Y1,Y2, . . . ,Yt) be distributions over Gt . Suppose that X

is independent from Y . We show that for any g ∈ G we have

|P[X1Y1X2Y2 · · ·XtYt = g]−1/|G|| f
|G|2t−1

dt−1

√
Eh∈Gt X(h)2

√
Eh∈GtY (h)2.

Our results generalize, improve, and simplify previous works.
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Quasirandom groups, introduced by Gowers [Gow08], are groups whose non-trivial representations

have large dimension. Multiplication in such groups is known to behave like a random function in

several respects. The prime example of this is that if X and Y are independent, high-entropy distributions

over a quasirandom group then XY (i.e., sample from each and output the product) becomes closer to

uniform in L2 norm. For a discussion of this result and its many proofs we refer to Section 13 of [Gow17].

Other random-like behaviors are known with respect to, for example, progressions [BHR22] and corners

[Aus16] (cf. [Vio19]).

In this work we are interested in a question posed by Miles and Viola [MV13]. Let X = (X1,X2) and

Y = (Y1,Y2) be high-entropy distributions over G2 such that X is independent from Y (but X1 needs not

be independent from X2 and Y1 needs not be independent from Y2). They asked if the interleaved product

X1Y1X2Y2 “mixes,” i.e., if it is close to uniform, for suitable groups G. Their question was motivated by

an application to cryptography (which follows from a positive answer to a more general question they

asked).

Gowers and Viola give a positive answer to this question for non-abelian simple groups, which are

known to be quasirandom. For the special case of G = SL(2,q) they prove a strong error bound. A
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simpler exposition of the latter proof appears in [Vio19]. A follow-up paper by Shalev [Sha16] gives

stronger error bounds for non-abelian simple groups.

These proofs are somewhat complicated and use substantial machinery, and they only apply to simple

groups. Here we give a very short and elementary proof that applies to any quasirandom group, as stated

in the abstract.

To illustrate the bound in the abstract, suppose that X is uniform over a set of density α and

Y is uniform over a set of density β . Then the right-hand side is |G|2t−1 · d−t+1 · (αβ )−1/2/|G|2t =
|G|−1 ·d−t+1 · (αβ )−1/2. Our results also slightly improve the parameters in the cases where interleaved

mixing could be established. For example for t > 2 the bounds in [GV19] and [Sha16] have (αβ )−1

instead of (αβ )−1/2.

The paper [GV19] also shows that from interleaved mixing there follow a number of other results

(including the solution to the more general question in [MV13], thus enabling the motivating application).

Hence our results yield these applications for any quasirandom group. Since this is an immediate

composition of proofs in [GV19] and this paper, we refer the reader to [GV19] for precise statements.

Proof of the statement in the abstract. We follow standard notation for non-abelian Fourier analysis,

see for example Section 13 of [Gow17] or [GV22]. It suffices to prove the theorem for g = 1G. Let Z be

a distribution over G. By Fourier inversion, and using that ρ(1) = I and Ẑ(1) = 1/|G| we have

|P[Z = 1]−1/|G||= |∑
ρ

dρ tr(Ẑ(ρ)ρ(1)T )−1/|G||= | ∑
ρ ̸=1

dρ tr(Ẑ(ρ))| f ∑
ρ ̸=1

dρ |tr(Ẑ(ρ))|, (1)

where ρ ranges over irreducible representations.

The main claim is that if Z is the interleaved product X1Y1X2Y2 · · ·XtYt where X and Y are as in the

abstract then for any ρ

|tr(Ẑ(ρ))| f |G|2t−1|X̂(ρ¹t)|2|Ŷ (ρ
¹t)|2. (2)

Assuming the claim the proof is completed as follows. Plugging Inequality (2) into (1) and multiplying

by (dρ/d)t−1 which is g 1 for ρ ̸= 1, the error is at most

|G|2t−1

dt−1 ∑
ρ ̸=1

(
d

t/2
ρ

∣∣X̂(ρ¹t)
∣∣
2

)(
d

t/2
ρ

∣∣Ŷ (ρ¹t)
∣∣
2

)
.

By Cauchy-Schwarz this is at most

|G|2t−1

dt−1

√
∑

ρ ̸=1

dt
ρ

∣∣X̂(ρ¹t)
∣∣2
2

√
∑

ρ ̸=1

dt
ρ

∣∣Ŷ (ρ¹t)
∣∣2
2
.

Note that dt
ρ is the dimension of ρ¹t .

The representations ρ¹t are irreducible representations of Gt , so each sum can be bounded above

by summing over all irreducible representations of Gt . Hence by Parseval the sum with X is at most

Eh∈Gt X2(h) and the same for Y , proving the theorem.

Next we verify Inequality (2). By definition we have

Ẑ(ρ) = EgZ(g)ρ(g) = Eg ∑
g1,g2,...,g2t :∏gi=g

X(g1,g3, . . . ,g2t−1)Y (g2,g4, . . . ,g2t)ρ(g).
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This summation is the same as summing over all gi and setting g to be the product. Further, because ρ is

a representation one has ρ(∏i gi) = ∏i ρ(gi). Hence we get

Ẑ(ρ) =
1

|G| ∑
g1,g2,...,g2t

X(g1,g3, . . . ,g2t−1)Y (g2,g4, . . . ,g2t)∏
if2t

ρ(gi).

And now the critical equation:

trẐ(ρ) = ∑
i

1

|G| ∑
g1,g2,...,g2t

X(g1,g3, . . . ,g2t−1)Y (g2,g4, . . . ,g2t) ∑
i2,i3,...,i2t

ρ̄(g1)i,i2 ρ̄(g2)i2,i3 · · · ρ̄(g2t)i2t ,i

=
1

|G| ∑
i,i2,i3,...,i2t

(

∑
g1,g3,...,g2t−1

X(g1,g3, . . . ,g2t−1)ρ̄(g1)i,i2 · ρ̄(g3)i3,i4 · · · ρ̄(g2t−1)i2t−1,i2t

)

·

(

∑
g2,g4,...,g2t

Y (g2,g4, . . . ,g2t)ρ̄(g2)i2,i3 · ρ̄(g4)i4,i5 · · · ρ̄(g2t)i2t ,i

)

= |G|2t−1 ∑
i,i2,i3,...,i2t

(
X̂(ρ¹t)i,i2,i3,...,i2t

)(
Ŷ (ρ¹t)i2,i3,...,i2t ,i

)
.

Inequality (2) now follows by applying the Cauchy-Schwarz inequality.
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