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Abstract. Machine learning is commonly used to estimate the heterogeneous treatment
effects (HTEs) in randomized experiments. Using large-scale randomized experiments on
the Facebook and Criteo platforms, we observe substantial discrepancies between machine
learning-based treatment effect estimates and difference-in-means estimates directly from
the randomized experiment. This paper provides a two-step framework for practitioners
and researchers to diagnose and rectify this discrepancy. We first introduce a diagnostic
tool to assess whether bias exists in the model-based estimates from machine learning. If
bias exists, we then offer a model-agnostic method to calibrate any HTE estimates to
known, unbiased, subgroup difference-in-means estimates, ensuring that the sign and
magnitude of the subgroup estimates approximate the model-free benchmarks. This cali-
bration method requires no additional data and can be scaled for large data sets. To high-
light potential sources of bias, we theoretically show that this bias can result from
regularization and further use synthetic simulation to show biases result from misspecifica-
tion and high-dimensional features. We demonstrate the efficacy of our calibration method
using extensive synthetic simulations and two real-world randomized experiments. We
further demonstrate the practical value of this calibration in three typical policy-making
settings: a prescriptive, budget-constrained optimization framework; a setting seeking to
maximize multiple performance indicators; and a multitreatment uplift modeling setting.

History: Ravi Bapna, Senior Editor; Gordon Burtch, Associate Editor.

Funding: This work was supported by the National Science Foundation, Division of Information and
Intelligent Systems [Grant IIS 2153468].

Supplemental Material: The online appendices are available at https://doi.org/10.1287 /isre.2021.0343.

Keywords:

causal inference « heterogeneous treatment effects « randomized experiments  calibration « machine learning

1. Introduction

associated with estimating HTEs (Hill 2011; Imai and

Randomized experiments have become essential tools
in various domains, including academia, economics,
and the medical field, as well as the technology indus-
try where A/B testing is widely used by companies
like Facebook, Uber, and Spotify for decision making
and product optimization (Markov et al. 2021, Wu et al.
2022). A distinguishing characteristic of social phe-
nomena is the inherent variability and heterogeneity
among individuals (Xie 2007). Consequently, individual
responses to policies, treatments, and stimuli also exhibit
differences (Xie et al. 2012). Estimating heterogeneity in
treatment effects (HTEs) has emerged as a pervasive
research and practical problem across diverse fields in
the social sciences and healthcare (Imai and Strauss
2011, Wager and Athey 2018). In recent years, the field of
causal inference has embraced flexible estimation tools
derived from machine learning to tackle the challenges

Ratkovic 2013; Athey and Imbens 2015, 2016; Kiinzel
etal. 2019; Chernozhukov et al. 2023; Kennedy 2023).
Our paper introduces a diagnostic tool for assessing
whether these HTE estimates are “well calibrated.”
Additionally, we develop a model-agnostic' calibra-
tion approach, which is a process that reduces depen-
dence between true HTEs and errors in HTE estimates
using model-free subgroup estimates from a random-
ized experiment. Accurate HTE estimation is crucial
for achieving four key goals: (1) investigating hetero-
geneity in the treatment as part of the basic scientific
understanding of the experiment’s mechanism (Athey
and Imbens 2015); (2) assessing whether the experi-
ment can be generalized to a different population
(Athey and Imbens 2015); (3) selecting the best inter-
vention for targeted individuals (Prosperi et al. 2020);
and (4) designing policies that maximize utilities for
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the policy maker (McFowland et al. 2021). These goals
are prevalent in various fields.

Example 1 (IS, Marketing, and Public Policy). Decision
makers face the challenge of constrained optimization
when allocating individuals to different treatment options
to maximize utility, considering the ex ante unknown
and heterogeneous benefits and costs of these options
(McFowland et al. 2021). For instance, a marketer may
incentivize past consumers to generate referrals, where
the costs and benefits are not known beforehand (Jung
et al. 2020). A similar application can be found in stimu-
lating blood donations in public policy (Sun et al. 2019).
In this context, decision makers aim to achieve goals (1)
and (4).

Example 2 (Healthcare). Precision medicine, a tailored
healthcare initiative promoted by the White House”
(Prosperi et al. 2020), aims to choose a personalized
procedure among multiple options that maximize the
probability of a favorable outcome for patients. For
example, doctors may need to decide between admin-
istering amoxicillin or cephalosporin for an upper
respiratory tract infection, considering factors like min-
imizing harm and maximizing efficacy. In this applica-
tion, achieving goals (1), (2), and (3) are critical for the
doctor.

Given the critical role of accurate HTE estimation in
diverse fields, a variety of methodologies have been
explored. Machine learning methods, in particular, have
garnered substantial interest. Yet, despite the promise
and interest, the application of machine learning to
HTEs is not without challenges. The fundamental
problem associated with counterfactual prediction—
that only one potential outcome is observed for each
individual—makes HTE estimation inherently difficult
(Holland 1986). This inherent constraint makes the trans-
lation of HTE estimation into a traditional supervised
learning problem impossible. Absent the individual treat-
ment effects (ITEs), the task must be approximated.

Recent work in causal inference has used flexible
estimation tools from machine learning to better esti-
mate conditional causal effects (Hill 2011, Wager and
Athey 2018, Kiinzel et al. 2019, Nie and Wager 2021,
Kennedy 2023). Common approaches tend to focus on
plugging in machine-learned response (i.e., outcome)
surfaces directly. However, these surfaces are not the
actual quantities of interest; the causal effects are.
The mismatch between analyzing causal effects (the
task of interest) and the task for which machine learn-
ing methods are particularly appropriate—response
surface modeling—may lead to poor bias/variance
tradeoffs in practice. Meanwhile, regularization of the
response surface models may not be ideal for causal
effect estimation (Hahn et al. 2018), even though tradi-
tional machine learning methods navigate that tradeoff

well in the supervised setting. In particular, regulari-
zation, which is typically one of the great benefits of
machine learning, can have negative implications for
estimating HTEs and may lead to bias (Hahn et al.
2018).

This paper uncovers the miscalibration issue in HTE
models by using two real-world randomized control
trials (RCTs) and synthetic scenarios. Miscalibration
occurs when the model-based conditional average treat-
ment effects (CATEs) do not align with the model-free
difference-in-means (DM). We introduce a diagnostic
approach to detect miscalibration using a quantile-
quantile (Q-Q) plot. This diagnostic plot is based on
model-free difference-in-means (DM) conditional average
treatment effects (CATEs) and model-based CATEs aggre-
gated from a machine learning model. These model-free
DM estimates are nonparametrically identified (owing
to the RCT) using a DM estimator, which is often seen
as the gold standard in RCTs. We fit a regression on the
estimated HTEs to “calibrate” them, using additive and
multiplicative scaling to align them with model-free
CATEs. The calibration process can be viewed as regres-
sing the model-free CATE on the estimates implied by
the HTE model. The intercept and the slope of this
regression define the additive and multiplicative scaling
necessary to align the model-based CATE with the
model-free CATE. The flexibility and model-agnostic
nature of this approach makes it well suited for digital
RCTs at scale. This paper offers three key contributions:

1. We highlight the issue of miscalibrated causal
effects using RCTs by Facebook and Criteo Al Labora-
tory. We demonstrate that the model-based CATEs
from many machine learning models may provide a
poor estimator of and differ substantially from the
model-free CATEs. This observation suggests a poten-
tial bias in many machine learning methods. We explore
three mechanisms—regularization and misspecification
in the response model, along with the application of
causal forest in high-dimensional contexts—to elucidate
why standard HTE models may yield biased estimates.
Moreover, Proposition 2 reveals that a high degree of reg-
ularization directly translates into miscalibration when a
T-learner, accompanied by ridge regression as the base
learner, is used. This bias can be effectively mitigated
through calibration.

2. We propose a two-step procedure to investigate
this calibration issue. The first step is a diagnostic test,
a Q-Q plot of the model-free CATE and model-based
CATE, to investigate whether the standard HTE mod-
els align well with the model-free subgroup estimates.
We recommend practitioners and researchers to imple-
ment this diagnostic test after they run an HTE model
to determine whether the estimates are calibrated.

3. Our framework’s second step is a model-agnostic
calibration method for calibrating any HTE models. We
prove that this calibration method provides the best



Leng and Dimmery: Calibration of Heterogeneous Treatment Effects
Information Systems Research, Articles in Advance, pp. 1-22, © 2024 INFORMS

linear predictor (BLP) of the model-free subgroup effects
from randomized experiments (Proposition 1). With both
synthetic simulations and real-world randomized experi-
ments, we show that calibration can improve the ITEs
for a broad class of meta-algorithms and tree-based HTE
methods. Furthermore, we conduct comprehensive pol-
icy simulations, solidifying the practical value of cali-
brated HTE estimation.

2. Related Work

We review related literature in this section. We first
review the literature streams on two main methods for
HTE estimation: meta-algorithms and sample splitting.
We conclude this section with a discussion of the
importance of HTE estimations for data-driven deci-
sion making.

2.1. Meta-Algorithms for HTE Estimation
Meta-algorithms, or meta-learners, offer a flexible frame-
work that combines supervised learning models to esti-
mate HTEs. These methods allow for base learners, the
machine learning models used for response predictions
or treatment assignments, to adopt any form. The
S-learner is a simple HTE model that applies a single
machine learning model to predict responses y based
on treatment w and covariates x (Hill 2011, Green and
Kern 2012): u(x, w) = E[y|X = x, W = w]. The CATE esti-
mate is computed as T(x) = [1(x, 1) — [i(x,0).

Within this framework, Imai and Ratkovic (2013)
provide a model that applies regularization separately
to baseline covariates and covariate-treatment interac-
tions. Grimmer et al. (2017) propose to estimate the
response surface through an ensemble of models
selected using SuperLearner (Van der Laan et al. 2007).
It should be noted, however, that this ensemble opti-
mizes performance on the response surface and not
necessarily on the treatment effect.

The most widely applicable method for predicting
HTEs is the T-learner due to its simplicity (Athey and
Imbens 2015, Kiinzel et al. 2019, Jacob 2020). It uses two
models for the responses of the treatment ,(x) and
control group (i,(x) given covariates x:

py(x) =E[y|X=x,W=1] and
() = E[y|X = x, W = 0]. M)

The CATE is then computed as 7(x) = (i, (x) — fi,(x).

Another widely adopted method is the causal forest,
which is closely related to the two approaches described
previously, which fits a single random forest (e.g., S-
learner). A crucial difference is that the causal forest
enforces splits on treatment just before the terminal nodes
and integrates this into its splitting criteria elsewhere in
the tree (Wager and Athey 2018). It also uses sample split-
ting (“honesty”) to provide guarantees on unbiasedness
of some subgroup effects.

More recent meta-algorithms extend the model-
ing capabilities beyond just response functions to in-
clude treatment probabilities as well. For example, the
X-learner, designed to manage imbalances between
control and treatment groups, uses control group infor-
mation to enhance treatment group estimates (Kiinzel
et al. 2019). This approach is achieved by modeling the
difference between observed outcomes and imputed
counterfactuals and applies this in a vice versa fashion.
Similarly, the R-learner seeks to mitigate selection bias
that could arise from observed covariates using orthogo-
nalization techniques (Nie and Wager 2021). This algo-
rithm initially estimates the two nuisance functions, the
conditional outcome mean and the propensity score,
and then targets a loss function that separates the causal
effects of interest from these nuisance components. A
more recent development is the doubly-robust CATE
estimator known as the DR-learner. This algorithm
extends the T-learner and incorporates a version of
inverse probability weighting on the residual of the
response function models for both the control and treat-
ment groups (Kennedy 2023). Details of these learners
can be found in Online Appendix A.

A common trait of these meta-learners is that the
supervised learning models they are built upon navi-
gate a different bias/variance tradeoff than the one
that would be optimal for the causal estimation task.
Schuler et al. (2018) make this distinction clear in their
comparison of a number of estimators of risk in the
causal setting. Typically, individual models of the
outcome (and of the propensity score in observational
settings) are estimated by independently minimizing
their loss functions (referred to as p-risk by Schuler
et al. (2018)). However, minimizing the loss function
does not imply minimization of causal error—the gap
between estimated and true effects. Indeed, these two
do not typically align. As an illustration, Kennedy
(2023) demonstrates that a transformed outcome meta-
regression can, in theory, asymptotically match an
optimal causal error, but this property does not neces-
sarily hold for finite samples. In a simplified case of
local polynomial regression in Theorem 3 of Kennedy
(2023), undersmoothing the estimation of the propensity
score is necessary to optimally reduce causal error:
Bias must be reduced faster than in the case of a stan-
dard supervised learning problem. Schuler et al. (2018)
provide a number of heuristics for model selection,
but these heuristics entail additional assumptions and
do not equate to causal error (which cannot be directly
measured). Even methods with desirable asymptotic
properties may not retain these properties in finite sam-
ples. The discrepancy between causal error and estima-
tors can result in inappropriate bias/variance tradeoffs
and consequently finite sample bias. We develop meth-
ods that help practitioners and applied researchers to
determine whether the estimators they use on the data
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they have in front of them has bias—not whether their
approach would hold bias if they continue to collect
more data.

We make several contributions to this literature. We
first raise the awareness of the calibration issue using
two real-world RCTs. We introduce a Q-Q diagnostic
plot to assess whether bias exists in HTE estimates from
a certain machine learning model on a given data set.
Furthermore, we contribute a model-agnostic approach
that is broadly applicable to any of the HTE methods in
this literature. Our method requires no additional data
beyond what is necessary for estimating HTEs. It can
be scaled to arbitrarily large datasets. It also can be easily
plugged into the experimentation infrastructure of tech
firms and added to the analysis pipeline of applied
researchers.

2.2. Sample Splitting for HTE Estimation

The second stream of literature uses sample splitting
to estimate and infer the HTEs, using linear, semipara-
metric regression or tree-based methods to character-
ize HTEs. Athey and Imbens (2016) use a Horvitz-
Thompson transformation on the outcome variable
to estimate heterogeneity, most importantly showing
that “honesty”—estimating splits and predicting on dif-
ferent subsets of the data—provides valid inference in
this setting. Crucially, the approach of honesty provides
unbiased estimates of leaf-specific average effects (in
finite samples) when the covariates are low-dimensional
relative to the sample size and are uniformly distributed
within leaves. This does not, however, follow for all
possible subgroup effects. Subject to regularity condi-
tions, honesty implies asymptotically unbiased estimates
of all HTEs as in section 3.2 of Wager and Athey (2018)
so long as the size of individual leaves becomes increas-
ingly small.> Other research also provide noteworthy
methodologies for HTE estimation. Chernozhukov et al.
(2018) estimate the sorted effect, which is a collection
of estimated partial effects, ranked in increasing order
and indexed by percentiles, that represent the heteroge-
neous effects. Zhao et al. (2017a) combine semipara-
metric regression and postselection inference for high-
dimension regression. This method uses semiparametric
regression to remove confounding bias and to increase
the power of discovering effect variation. It then uses
postselection inferential tools to examine whether a cer-
tain covariate interacts with the treatment, thus ascertain-
ing the existence of effect modification. Chernozhukov
et al. (2023) provide a generic method for estimating and
performing inference; they use arbitrary HTE models
that involve sample splitting, an approach that aligns
closely with ours. Unlike existing works, we focus speci-
fically on ensuring that aggregate subgroup effects align
with benchmarks supplied by an RCT. In contrast to
Chernozhukov et al. (2023), we begin from a perspective
of diagnostics for a given model of HTEs through a Q-Q

plot that we recommend. This is motivated by an empiri-
cal application in which extant methods provided poor
characterizations of experimental heterogeneity. Rather
than rely on the individual-level data as in Chernozhu-
kov et al. (2023), we provide an approach to resolve these
diagnosed problems using aggregated data, which can
then be implemented and deployed simply through the
use of the linear rescaling procedure defined in Section 4.
Dwivedi et al. (2020) consider a diagnostic approach
similar to what we present here, but our work is dis-
tinctive from theirs in two primary ways. First, Dwi-
vedi et al. (2020) focus on identifying subgroups that
have larger than “average” treatment effects, whereas
we focus on a different problem: improving the calibra-
tion of HTESs. This differentiation allows our method to
be applied in policy-making settings, enabling the bal-
ancing of within-treatment and between-treatment het-
erogeneity (discussed in greater detail in Section 6).
Such functionality is not offered by the subgroup dis-
covery approach in Dwivedi et al. (2020). Furthermore,
our contribution extends beyond diagnostic insights.
We provide practical solutions to the identified issues
and provide guidance on analytical choices that practi-
tioners face, such as choosing bin sizes in this setting.

2.3. Causal Decision Making and HTE Estimation
for Data-Driven Decision Making
Causal decision making (CDM), which entails decid-
ing on the application of a specific intervention to a
given individual, is a common reason for undertaking
causal effect estimations (CEE). However, as astutely
observed by Fernandez-Loria and Provost (2022b),
CDM and CEE may not be synonymous in certain con-
texts. More intriguingly, they put forth a novel propo-
sition that certain CDM problems may not necessitate
precise causal statistical modeling. In such situations,
the decision-making process could potentially be sub-
stantially streamlined for policy makers (Fernandez-
Loria and Provost 2022a, Ferndndez-Loria et al. 2023).
Yet, in a variety of scenarios, obtaining treatment
effect estimates remains essential. For instance, McFow-
land et al. (2021) devise a prescriptive framework for
investigating a generalized budget-constrained optimi-
zation issue, with benefits and costs being unknown ex
ante. Moreover, organizations and digital platforms gen-
erally endeavor to optimize multiple performance indi-
cators, necessitating the simultaneous optimization of
various metrics (Diemert et al. 2018). This presence of
tradeoffs exemplifies the majority of practical decision-
making problems encountered in the industry (Deng
and Shi 2016, Letham et al. 2019). When more than one
treatment effect needs to be estimated from one or
more experiments, decision makers must be cognizant
of, and reconcile, various forms of heterogeneity
within and between these experiments. Such applica-
tions are prevalent in practical budget-constrained
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optimizations, where achieving calibrated HTEs is a pre-
requisite. In reality, decision makers need to account for
the context of decision-making when selecting data-
driven decision-making methodologies (Fernandez-Lor{a
and Provost 2022c). Calibrated treatment effects and
CDM nicely complement one another because of their
distinct and specialized use cases. Moreover, decision
makers can opt for their preferred methodology based on
their preferences for the decision-making process.*

3. Problem Setup

In this section, we describe the problem setup. Data are
collected from an RCT, where N units are assigned to a
binary treatment, w, using a fair coinflip. Let N; be the
number of units in the treatment group, with w; =1
and Ny, analogously. We rely on the stable unit treat-
ment value assumption (SUTVA) throughout (Imbens
and Rubin 2015) and often suppress indexing by units.
In addition, we collect data on outcomes,

y=wy@)+(1-w)y0), (2)

where y(1) and y(0) correspond to the potential out-
comes for the treatment group and the control group,
respectively. The outcome is a realization of the potential
outcome associated with the assigned treatment status.
We collect pretreatment covariates, X, which exist in
the domain X. We denote S as a subset of this domain,
S C X. Let N(S) indicate the number of units having a
covariate value in the set S (using analogous notation
for the treatment and control groups). The goal is to
understand the conditional expectation function of the
treatment effect. In particular, we propose that one
desirable property of an HTE model (in addition to
high accuracy in predicting effects) is calibration.

What is calibration? Think of a scatter plot between
the estimated treatment effects and the error in each
unit’s treatment effect estimate. If these are uncorre-
lated, then we can call our effect estimates calibrated.
We never directly observe the error for each unit’s esti-
mate. Intuitively, calibration means that positive errors
tend to be balanced by negative ones at every level of
estimated effect. The size of those errors might be large,
indicating low accuracy, but if they are balanced, then
calibration is achieved. This relationship closely ac-
cords with the definition of calibration in classification
and regression problems (Kuleshov et al. 2018), with
the added challenge resulting from the fundamental
problem of causal inference: Labels (i.e., ITEs) are never
observed (Holland 1986). Many options are available
for estimating the conditional expectation function of a
treatment effect (Athey and Imbens 2016, Kiinzel et al.
2019, Nie and Wager 2021, Kennedy 2023); we remain
agnostic about which of these procedures should be
used. Our method requires only a black box model to
estimate the conditional expectation function of a treat-
ment effect for every value of x: 7(x).”

We consider two ways by which subgroup average
conditional effects can be estimated; each is defined on
a subset S of the domain of X, where SC X. The
model-free CATE estimation just takes the difference in
means within the subgroup:

1 1
m Z Yiw; —m Z yj(l —w;). (3)

i X;eS iX;eS

tPM(S) =

This estimator is annotated with “DM” to indicate that
it comes from the difference in means. The typical stan-
dard error of this quantity using the Neyman estimator
is defined analogously as §°M.

The model-based CATE estimation ("NAL(S)) from
a given HTE model is

R 1
UNCAL(S) —

N 2 E K. (4)

i X;eS

The first method (Equation (3)) is simply the difference
in observed outcomes within the subgroup. It makes
no modeling assumptions when, as we have assumed,
treatment is completely randomized (Aronow et al.
2021). This model-free estimator may not always be
interesting (e.g., if the pretreatment covariates are not
informative about heterogeneity). However, it is at least
always unbiased for CATE within the subgroup S. This
estimator may be replaced by an augmented inverse
propensity weighted estimator (AIPWE) for covariate
adjustment, as long as it retains a lack of bias in finite
samples (Zhang et al. 2008). The second method (Equa-
tion (4)) consists of marginalization over the estimated
ITEs from some black box estimator of HTEs.

These two estimators differ because of the response
surface models typically used in the latter. Suppose the
response surface model is linear (in a T-learner®). In this
case, the latter model is essentially just the covariate-
adjusted estimator analyzed in Lin (2013). We analyze
the misspecification of a linear response surface using
quasi-Poisson generalized linear model in our simula-
tion study in Section 5.1.3. In this linear case, the two
models may provide different results in finite samples,
but they both offer a consistent way to estimate sub-
group effects (and the latter is more efficient). However,
for more complicated models of 7(-), the differences
can be stark because typical machine learning models
may not approximate the conditional treatment effect
well. For example, consider a tree-based S-learner
HTE model, which tends to over-regularize estimated
treatment effects to zero (Kiinzel et al. 2019). This
model might provide effect estimates with high rank-
correlation to the truth—but with severely misleading
estimates of the central tendency and magnitude. We
explore the effects of regularization on calibration in
Sections 4.2 and 5.1.1. We now formally define the
concept of linear calibration.



Leng and Dimmery: Calibration of Heterogeneous Treatment Effects
Information Systems Research, Articles in Advance, pp. 1-22, © 2024 INFORMS

Figure 1. (Color online) HTE Models Can Have Poorly Calibrated Aggregate Effects

Distribution of HTE

Mean HTE

Difference-in-means

HTE Quintile

Treatment Effect

1 24+

Notes. At the top is a histogram of the estimated HTEs, colored to indicate quintiles. The middle is the average HTE within each quintile. At the

bottom are the model-free estimates within each quintile of the HTE.

Definition 1 (Linear Calibration). For a given HTE model,
T, and an equally sized partitioning of X’ called P,

L ) a(s) - 1(9)) ©

0=
|P|S€P

where 7(-) and 7(-) are the ground-truth and the esti-
mated conditional average treatment effects.
Calibration in Definition 1 implies that errors in sub-
group effect estimates are zero, on average, and that
they are uncorrelated with the estimated subgroup
effects. From another perspective, we might say that
linear calibration would obtain if we could run a linear
regression of the true (unobservable) ITEs on some set
of covariates. The residuals of this regression would be
independent from the predictors, based on the stan-
dard properties of ordinary least squares (OLS) meth-
ods and the linearity of expectations. Of course, directly
running this simple regression is not possible, as it is
impossible to directly observe the true ITEs (Holland
1986). Although some HTE methods do exhibit this
property of linear calibration (e.g., applying unregular-
ized linear models in a T-learner when the true re-
sponse functions are also linear), many do not. This
especially holds true for methods that employ regular-
ized nonlinear response functions based on machine
learning. These sophisticated techniques often prioritize
model simplicity and predictive accuracy on the re-
sponse surfaces, which may lead to a potential bias-
variance tradeoff, thereby compromising calibration. In
the subsequent sections, we delve deeper into this issue

and propose a solution to mitigate it. To demonstrate
the practical implications of the aforementioned theo-
retical principles, Example 3 illustrates the calibration
challenge in a real-world context, using a randomized
experiment conducted on Facebook.

Example 3 (Randomized Experiment on Facebook).
Figure 1 illustrates the problem of calibration on a real
RCT run on Facebook. In this experiment, a T-learner
model was estimated, with a random forest as the base
learner (Breiman 2001). In this case, the uncalibrated
HTEs (Equation (4)) are noticeably smaller in magnitude
than the model-free estimators (Equation (3)). The aggre-
gated effects estimated through the HTE model appear
to preserve rank order, but they substantially understate
the true magnitude of effects. Moreover, the two estima-
tors are not consistent with one another—the differences
between them are far larger than would be expected
from different unbiased estimates of subgroup effects,
implying that the subgroup effects from the HTE model
are strongly biased. If Facebook took the biased estimates
at face-value, its resulting decisions could be quite poor.

4. Method

Making effective decisions based on treatment esti-
mates, especially when the decision makers have to
prioritize multiple objectives (McFowland et al. 2021),
requires knowing that these estimates are calibrated.
Calibration is a property that errors between the true
subgroup effect and the average HTE in that subgroup



Leng and Dimmery: Calibration of Heterogeneous Treatment Effects
Information Systems Research, Articles in Advance, pp. 1-22, © 2024 INFORMS

7

will be zero on average over subgroups. Slightly more
formally, if errors in subgroup effect estimates are zero
on average and independent of the estimated sub-
group effects, then they are calibrated. Calibration is
distinct from risk minimization in machine learning: It
implies that positive errors in HTE estimates are bal-
anced by negative ones at every level of the predicted
HTE. In supervised learning, this property is obtained
by linear regression, but not necessarily by all learning
methods (Greenfeld and Shalit 2020). We next formally
introduce our calibration method.

4.1. HTE Calibration Method

Although we cannot directly observe the relationship
between the ground-truth ITEs and estimated HTEs, we
can observe the relationship between aggregated and
noisy DM estimates and the estimated HTEs. We pro-
pose that researchers begin by examining this relation-
ship (as we do for the Facebook experiment in Online
Appendix D4). This empirical relationship forms the
foundation of our method. The first step of this proce-
dure is to partition the feature space A" based on quan-
tiles of the estimated HTEs. We estimate ™™ (along
with the associated standard error) in each group. By
comparing these completely agnostic estimates to the
model-based estimates for those subgroups (the aver-
age of HTE estimates within each group), practitioners
can uncover potential issues with their HTE estimates.
When problems are uncovered, the practitioner can try
to improve the the uncalibrated HTE estimates 7"N“A
through a linear transformation:

THN(S) = a4+ ptINAL(S). (6)

We define ’ES,‘?{L(X) comparably. We estimate («, ) by
maximizing the likelihood of 7“*" under t"M. In the
subsequent discussions, we simplify the notation of
’fgf;L(~) to TAL() for clarity, provided the context
remains unambiguous.

This estimation procedure allows us to find the addi-
tive and multiplicative factors of the estimated HTEs,
providing the best approximation of the model-free
estimates of the aggregated subgroup effects. In con-
trast to standard Platt scaling (Platt 1999), we focus on
calibrating to aggregated effects due to the absence of
true labels for the ITEs. This procedure does not modify
the rank order of effects, which is a desirable property.
In practice, our goal typically is not just to understand
order statistics on a single dimension, but to trade off
competing objectives on multiple dimensions. Thus, it
is crucial to accurately measure the cardinal values of
effects, not just their rank order as in the work of Cher-
nozhukov et al. (2018). We show that when the HTE
model (along with partitioning of the data based on the
estimated HTEs) and the calibration procedure occur
on separate subsets of the initial data, our procedure

provides the best linear predictor (BLP) of the unbiased
subgroup effects, as alternatively considered by Cher-
nozhukov et al. (2023).

The pseudo-code for our calibration method is shown
in Algorithm 1. Specifically, we segment the data into K
subgroups, with an equal number of units in each group.
Because we need to estimate two parameters and do not
know the labels (i.e., ITEs) for any individual unit, we
must aggregate the data into subgroups to determine cal-
ibration. We construct these subgroups by ordering units
according to their ITEs (from the uncalibrated model)
and then assigning the first & of the units to the first sub-
group, the subsequent % of the units to the second, and so
on. We need to choose an appropriate K (using parameter
tuning) to estimate @ and f and to avoid overfitting. Typi-
cally, a small K corresponds to poor performance in the
training set, whereas a large K may lead to overfitting as
aresult of the bias-variance tradeoff.

We compute the model-free mean and standard errors
of the subgroup treatment effect of S, which are "M
and §°, respectively. The model-free estimates are
directly derived from DM estimator, which is known to
be unbiased and asymptotically normal under weak
conditions (Aronow et al. 2021). Because these estimates
are normally distributed according to the central limit
theorem, we maximize the normal log-likelihood func-
tion to find the linear parameter o and multiplicative
parameter  that maximize the log-likelihood function
over the parameter space,

UaB)= Y logf(tsH (X)), 7)

iX;eS,SeP

where f is the probability density function of the nor-
mal distribution: N (£PM(S),$PM(S)). Regarding our
use of a likelihood-based approach to estimation, if we
only need effects to attain linear calibration, we could
simply estimate calibration through OLS and discard
information about the variability of effects within each
bin. Different subgroups may have very different stan-
dard errors.” The reason is that the conditional variance
may vary substantially in different parts of the space,
leading to wider standard errors in those regions. In essence,
our likelihood-based estimation approach implies and re-
cognizes that when the CATE is highly variable, small
errors are less important than when the CATE is highly
uncertain. This may be seen as the difference between esti-
mation with OLS and weighted least squares (WLS).

Algorithm 1 (HTE Calibration)
1: Input: y,w,K, fUNCAL
2: Partition individuals into K bins, P, based on the

estimated ITEs 7YNCAL,
3: forSePdo
4:  Computet PM(S) and its standard error, §”M(S).

Compute subgroup estimates, 7NH(S), by

any method.

7

a9
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6: end

7. Optimize: (&, ) = arg max, £(a, )
calibrated ITE:

L‘v’z’ e{1,...,N}L

8: Co ute the tALX) =4 +
UI\EAL (X) ( )

9: returna Bt

Turning to our primary theoretical result, we first
make the following two assumptions.

Assumption 1 (Honesty). Calibration is performed on a
set of data that is independent from the HTE model.

Assumption 2 (Normality). Each of the aggregated sub-

group conditional average treatment effects (t°M(S)) is
normally distributed.

The first assumption can be ensured through sample
splitting; the second holds asymptotically because of
the central limit theorem.

Proposition 1. Algorithm 1 provides the best linear pre-
dictor (BLP) of the subgroup effects.

Proof [Proof Sketch]. Following Theorem 2.1 of Cher-
nozhukov et al. (2023), honesty (Assumption 1) implies
that TYN“AL(S) can be taken to be an exogenous regres-
sor. Normality of #°™(S) implies all necessary regularity
conditions for standard OLS results to apply. The impli-
cation of these two assumptions is that the calibrated
effects are the best linear approximation (in the sense of
likelihood) to the subgroup average treatment effect. O

The full proof is provided in Online Appendix FI1.
With stronger assumptions, a similar result holds that
the calibrated model is the BLP of individual-level effects,
the proof of this is provided in Online Appendix F2.

Our method can be viewed as a simplified and aggre-
gated form of the second-stage regression proposed by
Chernozhukov et al. (2023) through the use of grouped
regression (Prais and Aitchison 1954). This proposition
shows that estimates passed through Algorithm 1 have
linear calibration. More precisely, they undergo the max-
imal likelihood linear transformation of the estimated
subgroup effects. The HTE estimates benefit most from
calibration when the precalibrated estimates are linearly
correlated with (but not equal to) the true subgroup
effects. However, if the HTE model is very poor (e.g.,
Figures 4(c) and 7(c)), our calibration approach may be
of little help because no linear transformation of the esti-
mated subgroup effects can replicate the actual sub-
group effects. For example, a result like Figure 4(c)
might be seen if the covariates used in the underlying
model poorly predict the treatment effect or if there is
excessive noise in the model-free estimates. Results like
Figure 7(c) might be seen as if the HIE model over-
regularizes the covariates, leading to a lack of hetero-
geneity in the initial HTEs. Our calibration method
operates directly on the scale of the treatment effects them-
selves, as in the second-stage models of X-learner (Kiinzel

et al. 2019), but it provides a guarantee of the best linear
prediction in the vein of Chernozhukov et al. (2023).

Our approach can be extended to the Bayesian frame-
work by incorporating a prior over the estimated para-
meters. This prior reflects a prior belief that the HTE
model of interest is well calibrated. The inclusion of this
prior involves an addition to the log-likelihood defined
in Equation (7):

N
> log g(£SAH(X))). ®)
i=1

where g is the probability density function of the nor-
mal distribution: A (TYNAL(X;), 1) and A is the stan-
dard deviation of the prior. It is clear that this prior is
equivalent to a prior on the parameters (a,8) as being
close to (0,1). It is essentially a ridge prior, due to the
duality of ridge regression and the Normal-Normal
conjugate Bayesian model. In our simulations, we adopt
this regularized model, tuning A (which determines the
precision of our prior) using cross-validation. We
describe this cross-validation procedure in Algorithm 2.
Our cross-validation procedure partitions the data into
V folds, wherein V — 1 are used as training (v=0), and 1
is used as the holdout for validation (v =1). This process
then is repeated so that each fold is held out once. The
held-out log likelihood is averaged over all folds, and
this result is used for model selection and for tuning
both the number of bins and the amount of regulariza-
tion (if used) in the calibration procedure. The computa-
tional cost of cross-validation in this setting is relatively
low, as the calibration procedure does not require refit-
ting of individual-level models.

Algorithm 2 (Out-of- Sample Validation)

1: Input: y,w,K, FUNCAL o

2: Subsety,w, ?"NAE to the training set where v = 0.

3: (&,4,t“""=")=HTE Calibration(y*=",w’=K,
FUNCAL,0=0y

4: Compute the calibrated ITE in the holdout: <A™~
(i) = & + pEINAL=N (X)), Vie{je(l,.. N}y:v=1}

5: return The log likelihood calculated in the hold-
out: £°7(&, B)

Our method uses a likelihood-based approach, with
the uncalibrated HTE model nested within this model
(corresponding to a =0, f =1). Consequently, we apply
a simple likelihood-ratio-based specification test to eval-
uate if the initial HTE model necessitates calibration.
This test essentially checks for the presence of bias in the
subgroup effects. This likelihood-ratio test statistic is
given by —2(¢" — {y), where ¢" is the log likelihood under
the optimized a and 8, whereas ¢ is the log likelihood
under the linear restriction that @ =0 and f=1. This sta-
tistic is an asymptotically distributed x* random vari-
able, with two degrees of freedom (Casella and Berger
2002). However, given our parametric setup, this
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specification test detects only linear miscalibration of the
original HTE model.

This calibration method can also accommodate “stack-
ing,” a popular machine-learning technique for increas-
ing generalization performance by combining multiple
models (Wolpert 1992); the stacking can be done directly
on the estimated treatment effects to improve the general-
ization performance. We provide more information about
how it works in Online Appendix B.

4.2. Bias Under a T-learner with
Ridge Regression

Regularization techniques are commonly used to miti-
gate overfitting in these models. However, these techni-
ques can inadvertently introduce bias when used for
HTE estimation. We will specifically explore a bias
mechanism attributable to regularization and establish
the bias within the T-learner framework. The occur-
rence of regularization-induced bias within HTE mod-
els has been recognized previously (Hahn et al. 2018).
This issue arises because models are estimated on indi-
vidual response surfaces, and the optimal regulariza-
tion for each response surface may not correspond to
what would be best for estimating the difference (i.e.,
the ITEs) between them. For instance, this could occur
if the treatment effect function is smoother than the
individual response functions. We derive our theoreti-
cal result using ridge regression as the base-learner.

Proposition 2. Suppose X is an orthonormal basis, and
the BLP of Y for the control and treatment potential out-
come surface is By and B;, respectively. The BLP of the
CATE function is B, — B, = B,. Suppose the CATE is esti-
mated using a T-learner with ridge regression for base lear-
ners with reqularization parameter A, then

e Bias of ATE: E[1(X) — ©(X)] = — 125 B, E[X]

e Bias of CATE: E[1(X) — ©(X)|X] = — 258, X

o After calibration, the ATE is unbiased, E[t(X) — ©(X)] =0

o After calibration, the CATE is unbiased, E[t(X)—

t(X)|X]=0

The proof is deferred to Online Appendix F3. In par-
ticular, this result shows that we can express precisely
what the calibration coefficient on a ridge regression
T-learner will be in expectation: 1+ A. That is, a large
amount of regularization directly translates into misca-
libration in this simple setting, but can be removed
with our calibration procedure.

5. Simulated and Real-World Experiments
In this section, we investigate the impact of HTE meth-
ods on bias and assess the effectiveness of calibration in
mitigating this bias. We begin by running a series of
simulations to demonstrate three types of bias and
show how calibration can help reduce this bias. We
then test the calibration method on both simulated and

real-world RCTs. In all experiments in this section, we
divide our data into training, validation, and test sets.
The evaluation process is as follows:

1. We infer the HTEs using a machine learning
model trained on the training data.

2. We use out-of-sample validation (Algorithm 2) to
obtain the number of bins K and the amount of regulari-
zation A on the validation set. We perform the proposed
HTE calibration approach to learn a and  (Algorithm 1)
using the tune K and A on the validation set.

3. We evaluate the performance of the estimated
ITEs on the test set.

We measure the performance using the mean absolute
error (MAE) by computing the difference between the
truth ITEs (known in simulations) and the estimated
HTEs for each unit. Specifically, this quantity is defined as

Tn(1 &
MAE(?) =1 > (NZ 12(X;) — T<xi>|>, ©
=1 i

where 7(X;) is the estimated HTE for individual i, char-
acterized by feature X;, and 7(X;) is the ground-truth
ITE for individual i. The mean is taken over L simula-
tions and we average the absolute errors in the HTEs
for N individuals in the specific simulation.

5.1. Potential Mechanisms of Bias

5.1.1. Regularization-Induced Bias. We first assess how
our method rectifies the bias introduced by regulariza-
tion, as indicated in Proposition 2. We use a linear data
generation process (DGP), adapted from Kiinzel et al.
(2019), to illustrate this bias, with treatments assigned
randomly, as in randomized experiments. The DGP is
defined as follows:

Y(O) = XBO + €0,
y(1) = XBy + 1 +20X; + €, (10)

where X ~ Uniform([0,1]V*P), N=3,000, D=50; treat-
ment is randomly assigned w ~ Bernoulli(0.5); X; is the
first dimension of X; €y and €, follow a normal distribu-
tion with parameters A/(0,0.1). Each coefficient in B, fol-
lows uniform distribution, and B, ~ Uniform([-5, 51P).

Ridge regression is used as the base learner to dem-
onstrate the regularization-induced bias, and serves as
the input to a T-learner model.” To best estimate the
heterogeneity in HTE, the covariate X; should be under-
smoothed in the underlying response surface models
relative to the covariate if the task was the standard
supervised learning task on y(0)/y(1). In short, HTE
models falsely conflate performance on the response
surfaces with performance on the effect estimate. Only
the latter typically is of interest in causal inference.

As illustrated in Figure 2(a), as regularization (A)
increases, the benefits of our method increase, result-
ing in a greater reduction of the MAE. We explain
this decline by examining the marginal effect of X; in
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Figure 2. (Color online) Benefits of Calibration Grow with Increased Regularization
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the HTE, which is computed as

Figure 2(b), which shows that calibration ensures that
the marginal effect on X is not regularized away. Spe-
cifically, the bias in the coefficients of X; increases as
regularization (1) increases. In fact, we can characterize
the bias in expectation in the slope of the heterogeneous
effect on Xy as 20(1 — ;) (see Section 5.1.1 and Online
Appendix F3 for details). This bias in the marginal
effect is nonzero whenever regularization is applied to
the response surfaces. Calibration on ridge regression
effectively de-biases the marginal effects of the treat-
ment effect by aligning the pink curve closer to the
true effect. With very low regularization, ridge re-
gression works well for estimating the marginal effect
of the treatment effect with respect to X;. However,
as regularization increases, the slope is increasingly
underestimated. Despite this, calibration ensures that
the marginal effect is closer to the true effect than it
would be under uncalibrated HTE methods, at all
levels of regularization. Furthermore, the regulariza-
tion of covariates orthogonal to the treatment effect will
be left unchanged by calibration. As such, calibration
accomplishes a similar aim as the one in Imai and Rat-
kovic (2013) by allowing different amounts of regulari-
zation to be applied to the underlying response surface
and to the determinants of treatment efficacy.

5.1.2. Causal Forest in High-Dimensional Settings. The
causal forest is a popular machine learning method to
estimate HTE in causal inference (Wager and Athey
2018). It adapts the splitting criteria of random forests
to focus on CATE estimation, partitioning bootstrap
samples based on covariate values to explain HTEs.
Wager and Athey (2018) proved unbiased inference

o, where £°AL and tUNCAL

are used as inputs to Equation (9). In (b), the y axis shows the

for CATE when covariates both low-dimensional and
uniformly distributed. (For more detailed discussions,
please refer to Section 2.2). To delve deeper into the
influence of calibration on the performance of causal for-
ests in high-dimensional scenarios, we build on DGPs
originally introduced by Wager and Athey (2018). We
have adapted these DGPs to high-dimensional contexts
to more thoroughly examine the efficacy of calibration
in such settings. The first DGP, following equation (28)
of Wager and Athey (2018), is as follows:

Y(O) ~ N(O, 01)/

1
T+e D(x—1/3)

y(1) = y(0) + T(X), (11)

where X ~ Uniform([0,1]Y*"), N=3,000, and we vary
the dimension D as multipliers of log(N); X; and X, are
the first and second dimensions of X; the treatments are
randomly assigned with w ~ Bernoulli(0.5).

In this second case, the ITE function, following equa-
tion (29) of Wager and Athey (2018), has a sharper spike
when X; and X, approximate one. This DGP can demon-
strate one known weakness of random forest-based meth-
ods. This method can fill in the valleys and flatten the
peaks of the true ITE functions, especially near the edge of
the feature space. The distribution of the true ITE is pre-
sented in Figure C1 in Online Appendix C. The DGP is
similar to Equation (11), whereas the ITE function is

1
T+e2(x—1/2)°
12)

(X) = %C(Xl)C(XZ)/ where ¢(x) =

(X) = %C(Xl)c(Xz), where ¢(x) =
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Figure 3. (Color online) Benefits of Calibration on Causal Forest Increase as the Covariate Dimension (D) Increases
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Figure 3 shows the benefits of calibration in this set-
ting. As shown in Figure 3, (a) and (c), as the dimen-
sionality of the data increases, the performance of the
calibration method improves, reducing the MAE signif-
icantly when dimensionality reaches D =log?*(N), and
this benefit continues to grow with further increase in
dimensionality. Furthermore, the diagnostic plots in
Figure 3, (b) and (d), shed light on why the proposed
calibration improves the performance of causal forest.
In both DGPs, causal forests tend to overestimate smal-
ler ITEs and underestimate higher ITEs, but the calibra-
tion can reduce these inaccuracies, improving the MAE
on ITE significantly.

Specifically, in the DGP delineated by Equation (11),
causal forests show a systematic tendency to overesti-
mate smaller ITEs and underestimate larger ITEs (Figure
3(b)). This pattern is remedied by splitting the data into
five bins and introducing calibration, yielding para-
meters of @ = —0.67 and = 1.49. These parameters sug-
gest that calibration repositions the uncalibrated curve
(displayed in pink) downward by 0.67 units while simul-
taneously increasing the scale of the curve by 0.49. As a
result of the calibration procedure, there is a significant
decrease in the MAE of the ITE by 32.47%. In the DGP
specified by Equation (12), we observe a similar pattern

of causal forests overestimating smaller ITEs and under-
estimating larger ITEs (Figure 3(d)). Additionally, we
observe that causal forests particularly struggles with the
subgroup exhibiting the largest CATE. This observation
aligns with the argument in Wager and Athey (2018)
that causal forests encounter difficulties when handling
data with spikes, especially at the boundaries of covari-
ate regions. By applying the calibration procedure and
partitioning the data into nine bins, we obtain calibration
parameters of a = —0.28 and §=1.58. The calibration
approach effectively shifts the initial estimated curve (in
pink) downward by 0.28 units and amplifies its magni-
tude by 0.58. Consequently, the calibrated estimate curve
(in green) displays a noticeable improvement in accuracy,
reducing the MAE in ITE by 35.94%. Our results demon-
strate that calibration can effectively improve the esti-
mation of ITEs and CATEs, particularly in challenging
scenarios where causal forests yield poor performance.

5.1.3. Misspecification-Induced Bias. Misspecification
of response functions can introduce bias because the
estimation of HTE relies on the predictions of the base
learners. This misalignment is prevalent because cap-
turing complex functional forms of the responses is
challenging when the ground-truth response surface is
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Figure 4. (Color online) Performance of Calibration in Misspecification-Induced Bias
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unknown. In this section, we investigate a DGP where
the ITE is a linear function of two-dimensional covariates:

y(0) =1 +eo,
y(1) = 1+ 10X, + 5% + €1, (13)

where X ~ Uniform([0,1]V*?), N = 3,000, and X; and X
are the first and second dimensions of the covariates X;
€o and €; follow a normal distribution with parameters
N(0,0.1), and w ~ Bernoulli(0.5).

In this DGP, the functions for the potential outcomes
are entirely linear and well behaved. However, an analyst
may mistakenly model the conditional expectations of
the outcome using a nonlinear function of the covari-
ates. We explore two distinct types of such misspecifi-
cations in the base learner. The first type frequently
occurs when analysts run a regression with a log-trans-
formed outcome, inaccurately assuming that the out-
come is an exponential function of the covariates. This
model and analysis approach is commonly adopted in
social science, especially when dealing with dispersed
outcomes and to achieve interpretability of the coeffi-
cients (e.g., the coefficient directly signify the treatment
effect measured as a semi-elasticity). The second type
of misspecification involves the use of a quasi-Poisson
generalized linear model (GLM) (Wooldridge 1999) to
model the treatment and the outcome conditional ex-
pectation. The “quasi” feature of this model adapts
Poisson regression to accommodate continuous out-
comes or data exhibiting overdisperson. This model is
frequently employed in fields of management and eco-
nomics (Galasso and Simcoe 2011, Oettl 2012, Chatterji
and Fabrizio 2014, Kuppuswamy and Bayus 2017,
Kuusela et al. 2017). Although both models could be
considered good modeling choices if the conditional
expectations were correctly specified (Wooldridge

1999), their performance suffers significantly in the
case of these misspecifications. These incorrect modeling
assumptions result in substantial misspecification, lead-
ing to poor modeling of the potential outcome surfaces.

We present the results in Figure 4. The percentage
decrease in MAE of ITEs, aggregated across 100 simula-
tions, is demonstrated in Figure 4(a). Collectively, these
figures attest to the considerable reduction in MAE
achieved through our calibration process compared with
uncalibrated model-based ITEs. The average decreases of
15.40% and 97.75% are observed for the two distinct mis-
specification errors, respectively. Further insights into the
efficiency of our proposed calibration methodology can
be gained from Figure 4, (b) and (c), which display the
Q-Q diagnostic plot from a single simulation. In the case
where an log-transformed outcome is used, the uncali-
brated estimates succeed in bringing all but the subgroup
with the smallest CATE closer to the model-free CATEs.
In the case where quasi-Poisson is used, the uncalibrated
estimates substantially underestimate the true effects,
owing to the misspecification in the response functions.
Fortunately, our calibration method corrects this issue,
aligning the uncalibrated CATE (shown as the pink line)
precisely along the diagonal reference line (representing
the gold standard, model-free CATE). In general, the fact
that incorrect modeling choices lead to inappropriate sta-
tistical tradeoffs should be unsurprising.

5.2. Performance Comparisons in

Synthetic Settings
In this section, we evaluate the performance of calibra-
tion on eleven CATE estimators using two DGPs. Our
analysis looks at the following HTE methods: S-learner
(Hill 2011), T-learner (Kiinzel et al. 2019), X-learner
(Kiinzel et al. 2019), R-learner (Nie and Wager 2021),



Leng and Dimmery: Calibration of Heterogeneous Treatment Effects
Information Systems Research, Articles in Advance, pp. 1-22, © 2024 INFORMS

13

Figure 5. (Color online) Performance Evaluations of Calibration on Two DGPs Using S-Learner, T-Learner, X-Learner,

R-Learner, DR-Learner, and Causal Forest
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DR-learner (Kennedy 2023), and causal forest (Wager
and Athey 2018). More detailed descriptions of these
meta-algorithms and the causal forest are provided in
Online Appendix A. We evaluate our method on two
DGPs with different properties: complex linear and com-
plex nonlinear. In both DGPs, treatments are randomly
assigned (w ~ Bernoulli(0.5)). To capture the complexity
of the CATE functions, we follow two DGPs used in
Kinzel et al. (2019), where the treatment effect is as com-
plex as the response functions. These CATE functions do
not satisfy regularity conditions such as sparsity or linear-
ity, making them challenging to model accurately.

For both cases, we use X € RV, where N = 5,000,

D=1log*’(N) and (-) is the ceiling operator. We use
X ~N(0,X), where ¥ is a random correlation matrix (fol-
lowing the vine method in Lewandowski et al. 2009). We
follow the complex linear DGP used in Kiinzel et al. (2019):

y(0) = X" By + eg, with B ~ Uniform([—5,5]"),

y(1) = X" B, + €1, with B, ~ Uniform([—5,5]°),  (14)

where €j and €, follow a normal distribution with para-
meters’ N'(0,0.1). For each of the five meta-learners, we
separately apply both linear lasso regression and non-
linear gradient-boosted trees (GBT) as the base learner.

We also consider the following complex nonlinear
DGP outlined in Kiinzel et al. (2019):

y(0) = — (X)) + e,

(1) = S c)e0) + e, (15)

where ¢(x) = - X1 and X; are the first and sec-

1
T+e12(x—1/2)
ond dimensions of the high-dimensional covariates X;

forest

MAE(7 “Al)—MAE( UNCAL)

MAB(?ONCALy %, where A and

are used as inputs to Equation (9). A negative value suggests that calibration reduces the MAE of the uncalibrated HTE estimates.

€o and €, follows a normal distribution with parameters
N(0,0.1). To account for the nonlinearity of the true
outcome functions, we use two nonlinear models,
namely random forest and GBT, as the base learners in
our meta-learners.

Figure 5 showcases performance comparisons between
calibrated and uncalibrated HTE methods across 200
simulations of the aforementioned DGPs. We observe
that no single HTE model consistently outperforms others
in all scenarios. However, implementing the proposed
calibration method often leads to improved performance
of existing HTE methods. Considering the complex linear
DGP case, S-learner, T-learner, and X-learner using GBT
and causal forest exhibit enhanced performance with
calibration. This improvement can be attributed to the
regularization-induced bias and misspecification-induced
bias inherent in the base learners. On the other hand,
lasso regression, which aligns well with the true DGP
(Equation (14)), performs accurately in capturing the
response functions and individual treatment effects. As
a result, calibration has minimal impact on the perfor-
mance of lasso regression-based models, with @ ~ 0 and
B = 1. In the scenario of the complex nonlinear DGP, cali-
bration proves beneficial for all HTE methods. Compar-
atively, GBTs generally perform better than random
forests, with calibration leading to stronger improve-
ments in the latter. The performance improvements are
particularly pronounced for the causal forest in both
DGPs due to the high-dimensional setting.

Although our analysis demonstrates the effectiveness
of our calibration approach, it also highlights that our
methodology may not be required in every scenario. For
instance, when the underlying DGP is linear and a cor-
rectly specified base learner, such as lasso regression, is
used, the calibration property is already inherent in the
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original HTE method. However, given that no method
performs consistently well across all scenarios, our two-
stage framework provides practitioners with diagnostic
tools to uncover potential calibration issues within any
HTE model. If a miscalibration issue is identified, our
calibration method can be used to ameliorate such bias.

5.3. Real-World Randomized Experiments

Given that ground-truth ITEs in randomized experi-
ments are unobserved, we use the subgroup CATE as a
surrogate measure to assess accuracy of the model-
based HTE estimates. We calculate the MAE in the sub-
group effects as

1

MAEcate(T(P)) = 7l

Y 1ES) - tPMS)I. (16)

SeP

Recall that tPM(S) is the model-free DM estimates on
the CATE:s for subgroup S (treated as the gold standard
estimator in RCTs); 7(S) is the model-based CATE,
aggregated from the ITEs within subgroup S.

We evaluate calibration on the publicly available
advertising campaign data shared by Criteo Al Labora-
tory (Diemert et al. 2018).” This data set is constructed
by assembling data from several randomized experi-
ments involving advertising campaigns. It consists of
25M observations, each representing a user with 12 fea-
tures, a treatment indicator, and two binary outcome
labels (i.e., visited/converted or not). A positive label
means the user visited or was converted on the adverti-
ser’s website during the two-week test period. The fea-
ture names have been anonymized for privacy reasons.
We train different HTE methods on the training set,
perform calibration on the validation set, and then eval-
uate the MAE on the subgroup CATEs on the test set,
comparing it with the model-free estimator. Because of
the high computation complexity for the GBTs in our
evaluation, we randomly sampled 10% of the data;
from this sample, 48% was used for training 11 HTE

models, 32% was used for calibration, and 20% was
used for testing.

In Figure 6, we showcase the percentage reduction
in the MAE of the subgroup CATE (Equation (16)).
As illustrated in Figure 6, most HTE methods show a
reduction in MAE through calibration. We observe nota-
ble improvements in methods such as the T-learner,
R-learner, and doubly robust (DR)-learner using GBT as
the base learner, and the X-learner and R-learner using
lasso regression as the base learner. To better understand
the effect of calibration, we examine the Q-Q plot using
visits as the outcome in Figure D1 in Online Appendix D
and present selected representative Q-Q plots in Figure 7.
Broadly speaking, calibration (green curve) brings many
of the uncalibrated HTEs (pink curve) closer to the model-
free CATEs (dashed black line). For instance, in Figure
7(a), calibration markedly aligns larger CATEs closer to
the model-free CATEs using DM estimators by mitigating
both underestimations and overestimations.

This pattern is also observed in the X-learner with lasso
regression as the base learner, as well as the R-learner
and DR-learner with GBT base learners (Figure D1 in
Online Appendix D). Figure 7(b) demonstrates how cali-
bration can reduce underestimations for the subgroup
with the largest CATEs for causal forest, bringing them
closer to the model-free CATEs. Similar trends can be
seen in S-learner with both base learners (Figure D1). We
also observe in Figure 6 that the T-learner with a lasso
regression base learner predicts homogeneous ITEs for
all individuals. Similarly, the R-learner and DR-learner
with lasso regression base learners show no heteroge-
neity in the predicted ITEs, as depicted in Figure D1.
This suggests that these methods do not capture any
treatment heterogeneity based on the observed covari-
ates due to the sparsity imposed by the base learner.
Because these initial HTE methods lack informative sig-
nals, calibration offers minimal benefit beyond aligning
the average treatment effect (ATE) with the model-free

Figure 6. (Color online) Performance Evaluation on the RCT by Criteo Al Laboratory
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Causal
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Notes. The test set is bootstrapped with replacements to obtain the confidence intervals. Negative values signify that calibration is able to bring
the HTE estimates closer to the model-free CATEs, which is treated as the gold standard estimator for RCTs.
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Figure 7. (Color online) Q-Q Plot Comparing Model-Free and Model-Based CATEs for the Visit Outcome on a Large-Scale Ran-

domized Experiment Using Data from Criteo Al Laboratory
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Notes. The dashed black line represents a perfect estimate. The black vertical bar is the confidence interval. (a) T-learner (GBT). (b) Causal forest.

(c) R-learner (Lasso).

estimator. This analysis, based on a real-world RCT,
further emphasizes the broad applicability of our pro-
posed calibration method, showcasing its effectiveness
across a range of HTE methods. The impact of calibra-
tion on reducing HTE estimate errors or leaving them
unchanged depends on various factors, including the
underlying CATE function, response surfaces, and the
quality of HTEs derived from the machine learning
models.

5.4. Discussion: When to Calibrate and When Not
to Calibrate
The previous sections provide examples of circum-
stances where calibration may be useful. In particular,
there are a few circumstances that are worth highlight-
ing. Clearly, when regularization is used in a model, as
discussed in Section 5.1.1, it can lead to miscalibration,
even when the true model is linear and easily express-
ible by the function class of the regression models.
However, this is not necessarily an argument against
regularization. In situations with high-dimensional
covariates, strong regularization may be necessary
to obtain a reasonable model of individual response
surfaces. However, this regularization can affect the
calibration of treatment effects. When the underlying
model does not do a good job of fitting the data, as in
Sections 5.1.2 or 5.1.3, it can also result in miscali-
bration. In summary, when a model very effectively
approximates relevant features of the data, then cali-
bration will (typically) be achieved. However, if the
model fails to capture relevant features of the data, the
calibration property of the method will tend to suffer.
When calibration suffers and miscalibration occurs, re-
calibrating the resulting model with Algorithm 1 can
be helpful in improving the overall effectiveness of
the HTE model. Conversely, there are cases where
the HTE model performs well without requiring the

calibration approach. For instance, if treatment effects
are constant, many HTE methods may (trivially) pro-
vide fairly calibrated estimates of HTEs. Similarly, if
treatment effects are approximately linear, a T-learner
using linear base learners can perform effectively with-
out the need for calibration.

How should an analyst know whether to ensure cali-
bration by using Algorithm 1? The easiest approach is to
simply start with the diagnostic Q-Q plot we suggest. This
diagnostic provides an effective way to determine whether
there might be a serious problem with an estimated HTE
model. Although difference-in-means (DM) estimates of
subgroup effects are noisy, they are unbiased. If clear and
systematic discrepancies emerge between the CATEs
derived from DM estimates for subgroups and those
obtained from the HTE model, it is reasonable to suspect
that the culprit is the HTE model. The examples in the pre-
vious section illustrate how this Q-Q plot effectively iden-
tifies a poorly fitting HTE model. Figure D3 in Online
Appendix D, for example, clearly shows that, under the
uncalibrated model, large effects were being systemati-
cally underestimated, whereas small effects were being
systematically overestimated. In this case, it is clear that a
linear rescaling would be very effective in improving the
model. In other cases, this might not be true. In Figure
7(c), for example, the model-based HTE estimates are con-
stant across subgroups. Linear calibration would have
minimal effect on improving such a model, except for
aligning it with the ATE. Instead, the solution is to con-
sider alternative base models (perhaps the true model is
nonlinear) or to find more informative covariates to enrich
the HTE model’s predictive power. Calibration is not the
end of the story for improving HTE models, but it is a use-
ful lens through which to examine and diagnose a model.
It is recommended that practitioners consistently review
the Q-Q diagnostic plot before relying on the outcomes of
HTE models.
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6. Practical Value of Calibration in
Policy Design

This section demonstrates the practical value of the pro-
posed calibration procedure in enhancing policy makers’
utility through individual interventions in three repre-
sentative policy-making scenarios. These applications
require navigating and reconciling heterogeneity within
and between experiments to achieve optimal policy

designs.

6.1. Prescriptive Framework for Budget-
Constrained Optimal Policy Deployment
We first investigate the application of calibration in a
general budget-constrained environment where multiple
policy levers can optimize an organizational objective.
This situation involves ex ante unknown individual costs
and benefits. This broad framework, originally proposed
by McFowland et al. (2021), finds applications in several
public or private scenarios where decision makers aim to
maximize utility while adhering to budget constraints. It
encompasses two notable applications related to referral
marketing and public policy, depicted in Example 1. This
prescriptive analytics framework involves three steps:
conducting multiple RCTs, using machine learning for
HTE estimation, and applying constrained optimization.
Our calibration method reduces bias in HTE estimates
and enables optimization within budget constraints.

The framework operates on a sample N, containing
independently and identically distributed (i.i.d.) units
from the population of interest. For each individual i,
we observe a D-dimensional vector of covariates X; € X.
The decision maker has a collection of | treatments and

must determine the assignment of each binary indicator
Wi; € {0,1}, where W;;=1 assigns unit i to treatment j. A
sample A of i.i.d. units from the population of interest
P is observed. The sample observed differs from the
samples that are used for estimating HTE (V1 NN
= (). For each individual i, there exist unknown benefits
(Bi()), costs (Ci(f)), and utilities (the difference between
the benefit and cost: U;(j) = Bi(j) — Ci(j)) that would be
realized if individual 7 is assigned to treatment j. The
optimization can be formulated as follows, assuming a
decision maker’s budget of M"":

N ]
maximize : Expected utility = ZZ Ui () Wy,
i=1 j=1
N ]
subject to : ZZQ(}')W,-]- <M,

i=1 j=1

J
> Wy <1, Viand Wye{0,1}, Vij.
j=1

17)

We evaluate our method using the complex linear DGP
(Equation (14) in Section 5.2) to simulate individual cost
and benefit from the RCT, generated independently.
The models are trained on 50% of the population, with
calibration performed on 25% of the population. Using
the remaining 25% hold-out test set, we optimize policy
assignment based on the estimated HTEs (Equation
(17)). The realized utility is then computed using the
ground-truth ITEs per the predicted policy. Figure 8"
shows the performance comparisons based on the real-
ized utility, following the procedure of McFowland et al.

Figure 8. (Color online) Comparison of the Realized Utility from the Prescriptive Framework in a Budget-Constrained Optimi-

zation Using Calibrated HTEs vs. Uncalibrated HTEs
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Notes. A positive value suggests that calibration can improve the realized utility for the policy makers. For all meta-learners, GBT is the base

leaner.
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(2021). The budget constraints are set by ranking indivi-
duals based on computed utilities and assigning total
costs corresponding to the top 0.5%-5% (with 0.5%
increments) selected individuals as the budget. Calibra-
tion results in noticeable utility improvements across
all meta-algorithms and causal forest, particularly for
those using GBTs as the base learner. Notably, the causal
forest sees the most significant utility enhancement,
whereas the R-learner and DR-learner models sees the
least. This correlation between the reduction in MAE
of ITEs and the increase in policy value underscores
calibration’s effectiveness and practical significance in
budget-constrained optimization. Although the perfor-
mance of meta-learners using lasso regressions remains
unchanged by calibration, our results demonstrate that
calibration enhances the realized utility across all other
HTE models considered.'*

6.2. Multi-KPI Optimization with
Budget Constraint

Organizations often focus on multiple key performance
indicators (KPIs) simultaneously (Diemert et al. 2018).
Practical decision-making problems in these domains
involve tradeoffs (Deng and Shi 2016, Letham et al. 2019).
For instance, evaluating the effectiveness of an advertise-
ment on Facebook or an email marketing campaign
requires considering metrics such as reach, fan growth,
click-through rates, and conversion rates. These KPIs
may not always exhibit strong correlations (Morgan and
Rego 2006). To address this, decision makers aim to
develop optimal intervention strategies that integrate
multiple KPIs into an overall evaluation criterion (OEC)
framework (Kohavi et al. 2007), where the relative impor-
tance of each KPI is predefined by the policy-maker.

We adapt the framework proposed by McFowland
et al. (2021) to this specific application. We estimate the

treatment effects on population /1 and implement the
optimal policy on a different population N, where
N1 N N7 =0. Assuming the decision maker cares about
a collection of Q KPIs. The platform’s utility from indi-
vidual i’s receiving treatment can be seen as an aggrega-
tion of all the KPIs: U; = 222:1 vqb?w,«, where w; € {0,1}
denotes the treatment assignment; v, is the importance
of KPl indexed by g, determined by the platform. Accu-
rate estimation of the ITEs for each KPI, denoted as
{b?}qQ:l, becomes crucial in calculating the overall utility
U;. Additionally, the optimization problem is subject
to a constraint C that limits the number of treated indi-
viduals. We formulate the optimization problem as
follows:

N Q
maximize : Expected utility = Zqub?wi
i=1 g=1

N
subject to : Zwi < C,where w; € {0,1}, Vi. (18)
i=1

In this scenario, we use the real-world data set pro-
vided by Criteo Al Laboratory (refer to Section 5.3). We
explore different levels of relative importance for the
two KPIs, with values ranging from 1 < e <10,
We ensure that the conversion is never less important
than visit, as conversion is the more lucrative ad cam-
paign metric. These values are plugged into Equation
(18) to optimize estimated HTEs on the test set, with C
ranging from 1% to 5% of the test set population over
150 iterations. We then use rejection sampling and off-
policy evaluation (OPE)" to calculate the realized util-
ity (Dudik et al. 2014), providing an unbiased estimate
of the policy value (Equation (18)).

Figure 9 shows calibration’s impact on utility im-
provement across different “ese ratios for models

Figure 9. (Color online) Comparison of Realized Utility from Multi-KPI Optimization Using Calibrated HTEs vs. Uncalibrated
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Notes. The darker blue color of the bars indicates higher importance of conversion in the decision-making process. The y axis represents the
improvement in realized utility resulting from calibration, with positive values indicating an enhancement in utility for policy makers.
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like T-learner, X-learner, R-learner, and DR-learner
using GBT base learners, with X-learner showing the
strongest improvement. Yet, subpar performing initial
HTE models or those generating homogeneous ITEs,
as seen with R-learner and DR-learner models using
lasso regression, may not benefit significantly from
our calibration method. In examining the X-learner, we
found significant variations in utility change based on
the base learner used. Although GBT as a base learner
led to a significant policy value rise (89.4%), lasso
regression led to a small dip (less than 0.3%) compared
with the uncalibrated model. Even though calibration
improved the estimation of CATEs through X-learner
with lasso regression base learners, it did a poor job
with a subgroup of high CATE units crucial for optimi-
zation, which resulted in slightly decreased utility.

In our analysis, we considered 10 different “epwasen
values. We observed a decrease in percentage utility
improvement as the relative importance of visits de-
clined for T-learner, R-learner, and DR-learner, align-
ing multi-KPI optimization closer to single-KPI
optimization. As focus shifts toward a single KPI, rank-
ing within one KPI gains importance over the accuracy
of ITE magnitudes, adding to the academic dialogue of
Fernandez-Loria and Provost (2022b) that precise HTEs
may not be needed in all policy-making situations.

6.3. Multitreatment Uplift Modeling

Our final application pertains to multitreatment uplift
modeling (MTUM) (Olaya et al. 2020). The objective
of MTUM is to identify the most effective treatment
among multiple options in order to achieve the most
favorable outcomes. It estimates the conditional proba-
bilities of a positive outcome for each individual under
each treatment and then identifies the treatment with
the highest ITEs. MTUM is useful in scenarios where
decision makers need to choose from multiple treatment
options to maximize performance. For example, this
could involve a marketer selecting the best personalized
promotional message or a doctor choosing among sev-
eral alternative treatments for a patient. In line with
the MTUM framework presented in Olaya et al. (2020),
we consider a set of T mutually exclusive treatments,
covariates X, and a binary outcome variable Y € {0, 1}.
The objective is to identify the treatment with the great-
est effect. The optimal treatment for individual i is the
treatment with the highest uplift. Uplift is computed
by estimating the differences in positive response prob-
abilities between each treatment and control group
for each individual. We use the DGP in the causalml
Python package to generate a data set of N=3,000 sam-
ples with D =100 features, out of which 10 features are
informative, whereas the remaining 90 are redundant.
We use four metrics: Qini metric and expected response
each at 10% and 100% of the population respectively, as
outlined in Olaya et al. (2020).

e Qini Metric: We calculate the Qini metric by con-
structing the uplift curve based on the ranking of indi-
viduals and measuring the cumulative difference in the
response rate to a certain percentage of the population
in the test set, relative to the control group (Rzepa-
kowski and Jaroszewicz 2012). The Qini metric quanti-
fies the area between the uplift curve and the curve of a
random model. It is adapted for multiple treatments by
considering the maximal uplift across all potential
treatments (Olaya et al. 2020). A larger Qini index indi-
cates a more significant incremental effect from the pre-
dicted optimal treatment.

o Expected Response: Designed specifically for
MTUM (Zhao et al. 2017b), this metric calculates the
expected response z using the observed treatment in
the test set, the predicted optimal treatment by the
uplift model, the prior probability of treatment k as
pr=k, and the observe outcome Y. Given an uplift model
h, the individual expected response is defined as z; =
S SET{h(x;) = I{T = k}, where I() is the 0/1 indi-
cator function. The expected response is computed as
z =33, 2/, where N’ is chosen as 10% and 100% of
the population.

We consider all MTUM approaches outlined in Olaya
et al. (2020)."* We provide a brief overview of these
approaches later and additional details are in Online
Appendix E. (1) Dummy and interactions approach (DIA)
constructs a single predictive model using an extended
input generated from added treatment dummy vari-
ables and interaction between the dummy and pretreat-
ment variables. Random forest and linear regression
models with feature selection are used (Olaya et al.
2020). (2) Separate model approach (SMA) computes the
HTEs for each treatment and uses these estimates to
compute the uplift of each treatment. Treatment alloca-
tion is based on uplift scores and variability. We use
two variations, including random forest and linear
regression models with feature selection, following
Olaya et al. (2020). (3) Causal K-nearest neighbor (CKNN)
identifies the optimal treatment for an individual by
finding the K most similar individuals (Guelman et al.
2015). (4) Contextual treatment selection (CTS) alters the
splitting criterion in the decision tree to directly maxi-
mize the expected response—an unbiased metric in
MTUM (Zhao et al. 2017b). We implement both uplift
tree and uplift forest variations of CTS. (5) Naive uplift
approach (NUA) creates separate binary uplift models
to estimate the uplift between treatment and control
groups (Olaya et al. 2020). We explore two variants of
NUA methods: (i) uplift random forest, which com-
pares the probability distributions of treatment groups
using measures such as KL divergence, chi-square, or
squared Euclidean distance; and (ii) uplift causal condi-
tional inference forest. This leads to four variations. (6)
Multitreatment modified outcome approach (MMOA) is
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essentially a multiclass classification (Olaya et al. 2020).
We use random forests and multinomial regression as
the machine learning models for MMOA.

The data are evenly divided into training, validation,
and test sets. All methods are trained using the training
set. Feature selection and model selection are per-
formed on the validation set for all methods. Calibra-
tion is applied to the validation set for methods using
uncalibrated estimated ITEs. For the uncalibrated and
calibrated HTE models (as similar to all MTUM bench-
marks), top-performing models are selected based on
validation set performance. The evaluation metrics
are subsequently compared on the hold-out test set.
Figure 10 demonstrates the varying performance of
these methods in the MTUM application. Our results
indicate that the calibrated HTE method performs
the best in terms of the expected response at both
10% and 100% of the population and in the Qini index
at 10%. Meanwhile, the NUA method performs the
best in the Qini index at 100%, followed by the cali-
brated HTE and the DIA approaches. It is worth not-
ing that expected response is an improved metric
over Qini index for MTUM (Zhao et al. 2017b). This
analysis demonstrates our method’s potential to
outperform the methods specifically developed for
MTUM applications.

In conclusion, we conduct a thorough analysis on
three policy applications, showcasing the practical bene-
fits of calibration when dealing with multiple treatment
effects. We highlight its usefulness in reconciling hetero-
geneity within and between experiments. To validate
the versatility and reliability of our method, we use both
continuous and binary outcomes, and we test it in a
controlled synthetic environment and in real-world
RCTs. Importantly, we show that calibration performs
competitvely when compared with application-specific
machine learning techniques developed for MTUM ap-
plications. However, it should be noted that we do not

claim calibrated effects-based decisions are universally
superior to application-specific benchmarks. Rather, we
believe that an interesting area for future research is
investigating the distinct circumstances under which
using calibrated HTEs in downstream applications out-
performs or faces challenges when compared with CDM
(Fernandez-Loria and Provost 2022b).

7. Discussion and Conclusion
Understanding HTEs provides a foundation for gain-
ing scientific insights and designing optimal policies
in fields like IS, public policy, economics, and health-
care. Machine learning methods, often used for this
purpose, promise potential advancements. However,
despite their proficiency with supervised learning,
machine learning has been less effective in estimating
HTEs. This limitation stems from a mismatch between
the task of interest (i.e., predicting ITEs) and the task
for which machine learning methods excel—response
surface modeling.

This paper shows that many existing HTE models do
not necessarily yield calibrated causal effects in synthetic
scenarios and in two real-world RCTs conducted by
Facebook and Criteo Al Laboratory. This result sug-
gests a potential threat that machine learning-based
HTE estimates pose both to interpreting experiment
findings and to downstream applications. Undoubt-
edly, policy designs based on these biased estimates
are not ideal. We proposed a Q-Q diagnostic plot to
help assess whether the CATEs are calibrated. We rec-
ommend that practitioners and researchers use this
plot to determine whether the HTE estimates are
biased before optimizing or deploying any individual-
ized policy in practice.

To rectify the miscalibration issue of HTE models,
we develop a simple, scalable, and effective method for
calibrating estimates of causal effects to noisy ground-
truth benchmarks. Our algorithm is able to provide the

Figure 10. (Color online) Performance Evaluations Using MTUM Methods
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BLP of the model-free subgroup effects. Our method is
model-agnostic, easy to implement, and can substan-
tially improve the credibility of effect estimates from
any HTE models. Owing to the simplicity and efficiency
of our maximum likelihood estimation process, our
method can be easily implemented in production envir-
onments. We deploy extensive simulations to elaborate
on the underlying mechanisms of biases induced by
the combination of response function estimates for ITE
estimates. Beyond simulations, we illustrate how our
method helps analyze heterogeneity in a large-scale
experiment run on Facebook and in advertisement
campaigns conducted by Criteo Al Laboratory. We
demonstrate the effectiveness and broad applicability
of our method in three applications, in relation to vari-
ous HTE methods.

Despite the promise our study holds, it also faces
certain limitations, prompting potential directions for
future research. First, using our method hinges on pre-
serving the rank-order of the machine learning-based
ITE methods. Fortunately, the diagnostic Q-Q plot can
reveal the poor performance of the HTE model in this
regard. However, significant differences in the rank
order of predicted and ground-truth binned subgroup
effects would require researchers and practitioners to
resort to alternative models or collect additional pre-
treatment covariates. In other words, our method re-
quires the initial model to be “good enough” to signal
the underlying effect heterogeneity. If the initial model
fails to signal underlying effect heterogeneity, our
method will not, in general, recover signals from the
noise. One potential approach could involve exploring
whether stacking multiple underperforming HTE esti-
mators can deliver calibrated causal effects. Second, our
calibration method is agnostic to the underlying HTE
model. However, evaluating and comparing the perfor-
mance of different HTE methods across various DGPs
and CATE functions falls outside the scope of our cur-
rent paper. It presents an intriguing avenue for future
research to investigate and characterize the perfor-
mance of different HTE methods under varying DGPs
and CATE functions. Third, our calibration method is
applicable only to RCTs. An important avenue for future
research is to explore the calibration of HTEs in obser-
vational studies when unobserved confounders exist.
These areas represent promising avenues for future
investigation.
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Endnotes

" Model-agnostic here means that our approach can be applied to
any HTE model.

2 See https: // obamawhitehouse.archives.gov /precision-medicine.

3 The size of individual leaves refers to a leaf’s diameter, which is
the length of the longest segment inside the leaf.

4 Preference over the methods can depend on various factors such as
convenience (Fernandez-Loria and Provost 2022b), transparency and
fairness (McFowland 2022), or reanalysis of existing RCTs (Eckles
2022). CDM is ideal for convenience, whereas CEE suits the other pre-
ferences. With rapidly evolving literature on both CDM and CEE, a
definitive comparison is beyond our paper’s scope. We refer readers
to ongoing discussions on these methods’ merits for data-driven
decision-making (Eckles 2022, Fernandez-Loria and Provost 2022c,
McFowland 2022, Shalit 2022).

® We overload the notation of 7(-). Its meaning depends on the type
of input it receives. When 7(*) is a function of a set, it defines an esti-
mate of a subgroup effect. However, when 7(:) is a function of a
vector, it defines an estimator of the conditional treatment effect at
a specific value of covariates.

8 A T-learner involves training separate models for the treatment
and control groups and calculating the treatment effect as the differ-
ence between their predictions (Kiinzel et al. 2019).

7 The Q-Q diagnostic plot helps to discern potential biases within
HTE estimates based on our subgrouping method (Algorithm 1). In
practice, practitioners can diagnose their chosen subgrouping with
our Q-Q plot. It is important, however, to underscore that an unpro-
blematic Q-Q plot does not guarantee the absence of miscalibration
in alternative subgroupings.

8 We adopt the T-learner to elucidate bias mechanisms for several
reasons: First, because of its simplicity and interpretability, the
T-learner allows a more transparent display of the mechanism. Sec-
ondly, recent meta-algorithms enhance the T-learner procedure by
incorporating nuisance functions related to treatment assignments.
Methods such as the X-learner (Kiinzel et al. 2019) and DR-learners
(Kennedy 2023) use plug-in estimators for the treatment effect,
which are based on a T-learner. Many methods employ plugin esti-
mation of the response functions; therefore, the bias mechanisms we
discuss for the T-learners are also relevant for these meta-learners
and tree-based methods. Lastly, T-learners are frequently integrated
into the experimentation infrastructure of numerous industry firms
due to their scalability, interpretability, and convenience (Markov
etal. 2021).

9 We retrieved the unbiased version of the Criteo data set via https://
ailab.criteo.com/ criteo-uplift-prediction-dataset/.

% We can formalize Facebook’s decision in Example 3 on whether to
implement the policy for each user as a special case of this optimization
problem. There are two simplifications. First, in this particular applica-
tion, the cost of implementing the policy for each user on Facebook can
be considered negligible, denoted as C; =0 for all users i. Second, Face-
book is only evaluating one treatment option. As a result, the objective
function can be adapted as Z,’i] B;w; where B; is the treatment effect
estimated from RCTs for i. The constraint remains to be the same.

" Tn most of our figures, we used relative terms to report the results,
with this figure as an exception. The reason for reporting utility in
absolute term is that the utility for the uncalibrated model may be
negative, which renders it insensible to compute a relative change.

2 We did not compare our results with uplift models and contex-
tual bandit approaches as McFowland et al. (2021) demonstrated
their prescriptive framework using causal forest outperforms these
benchmarks.

13 OPE involves excluding units for which the observed treatment does
not align with the proposed treatment under a given policy, and then
calculating the policy value based on the remaining units. Thus, OPE
provides an unbiased estimate of the policy value in Equation (18).

' The repository can be accessed through https:// github.com/vub-
dl/MTUM.
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