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Abstract. Machine learning is commonly used to estimate the heterogeneous treatment 
effects (HTEs) in randomized experiments. Using large-scale randomized experiments on 
the Facebook and Criteo platforms, we observe substantial discrepancies between machine 
learning-based treatment effect estimates and difference-in-means estimates directly from 
the randomized experiment. This paper provides a two-step framework for practitioners 
and researchers to diagnose and rectify this discrepancy. We first introduce a diagnostic 
tool to assess whether bias exists in the model-based estimates from machine learning. If 
bias exists, we then offer a model-agnostic method to calibrate any HTE estimates to 
known, unbiased, subgroup difference-in-means estimates, ensuring that the sign and 
magnitude of the subgroup estimates approximate the model-free benchmarks. This cali-
bration method requires no additional data and can be scaled for large data sets. To high-
light potential sources of bias, we theoretically show that this bias can result from 
regularization and further use synthetic simulation to show biases result from misspecifica-
tion and high-dimensional features. We demonstrate the efficacy of our calibration method 
using extensive synthetic simulations and two real-world randomized experiments. We 
further demonstrate the practical value of this calibration in three typical policy-making 
settings: a prescriptive, budget-constrained optimization framework; a setting seeking to 
maximize multiple performance indicators; and a multitreatment uplift modeling setting.
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1. Introduction
Randomized experiments have become essential tools 
in various domains, including academia, economics, 
and the medical field, as well as the technology indus-
try where A/B testing is widely used by companies 
like Facebook, Uber, and Spotify for decision making 
and product optimization (Markov et al. 2021, Wu et al. 
2022). A distinguishing characteristic of social phe-
nomena is the inherent variability and heterogeneity 
among individuals (Xie 2007). Consequently, individual 
responses to policies, treatments, and stimuli also exhibit 
differences (Xie et al. 2012). Estimating heterogeneity in 
treatment effects (HTEs) has emerged as a pervasive 
research and practical problem across diverse fields in 
the social sciences and healthcare (Imai and Strauss 
2011, Wager and Athey 2018). In recent years, the field of 
causal inference has embraced flexible estimation tools 
derived from machine learning to tackle the challenges 

associated with estimating HTEs (Hill 2011; Imai and 
Ratkovic 2013; Athey and Imbens 2015, 2016; Künzel 
et al. 2019; Chernozhukov et al. 2023; Kennedy 2023).

Our paper introduces a diagnostic tool for assessing 
whether these HTE estimates are “well calibrated.” 
Additionally, we develop a model-agnostic1 calibra-
tion approach, which is a process that reduces depen-
dence between true HTEs and errors in HTE estimates 
using model-free subgroup estimates from a random-
ized experiment. Accurate HTE estimation is crucial 
for achieving four key goals: (1) investigating hetero-
geneity in the treatment as part of the basic scientific 
understanding of the experiment’s mechanism (Athey 
and Imbens 2015); (2) assessing whether the experi-
ment can be generalized to a different population 
(Athey and Imbens 2015); (3) selecting the best inter-
vention for targeted individuals (Prosperi et al. 2020); 
and (4) designing policies that maximize utilities for 
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the policy maker (McFowland et al. 2021). These goals 
are prevalent in various fields.

Example 1 (IS, Marketing, and Public Policy). Decision 
makers face the challenge of constrained optimization 
when allocating individuals to different treatment options 
to maximize utility, considering the ex ante unknown 
and heterogeneous benefits and costs of these options 
(McFowland et al. 2021). For instance, a marketer may 
incentivize past consumers to generate referrals, where 
the costs and benefits are not known beforehand (Jung 
et al. 2020). A similar application can be found in stimu-
lating blood donations in public policy (Sun et al. 2019). 
In this context, decision makers aim to achieve goals (1) 
and (4).

Example 2 (Healthcare). Precision medicine, a tailored 
healthcare initiative promoted by the White House2

(Prosperi et al. 2020), aims to choose a personalized 
procedure among multiple options that maximize the 
probability of a favorable outcome for patients. For 
example, doctors may need to decide between admin-
istering amoxicillin or cephalosporin for an upper 
respiratory tract infection, considering factors like min-
imizing harm and maximizing efficacy. In this applica-
tion, achieving goals (1), (2), and (3) are critical for the 
doctor.

Given the critical role of accurate HTE estimation in 
diverse fields, a variety of methodologies have been 
explored. Machine learning methods, in particular, have 
garnered substantial interest. Yet, despite the promise 
and interest, the application of machine learning to 
HTEs is not without challenges. The fundamental 
problem associated with counterfactual prediction— 
that only one potential outcome is observed for each 
individual—makes HTE estimation inherently difficult 
(Holland 1986). This inherent constraint makes the trans-
lation of HTE estimation into a traditional supervised 
learning problem impossible. Absent the individual treat-
ment effects (ITEs), the task must be approximated.

Recent work in causal inference has used flexible 
estimation tools from machine learning to better esti-
mate conditional causal effects (Hill 2011, Wager and 
Athey 2018, Künzel et al. 2019, Nie and Wager 2021, 
Kennedy 2023). Common approaches tend to focus on 
plugging in machine-learned response (i.e., outcome) 
surfaces directly. However, these surfaces are not the 
actual quantities of interest; the causal effects are. 
The mismatch between analyzing causal effects (the 
task of interest) and the task for which machine learn-
ing methods are particularly appropriate—response 
surface modeling—may lead to poor bias/variance 
tradeoffs in practice. Meanwhile, regularization of the 
response surface models may not be ideal for causal 
effect estimation (Hahn et al. 2018), even though tradi-
tional machine learning methods navigate that tradeoff 

well in the supervised setting. In particular, regulari-
zation, which is typically one of the great benefits of 
machine learning, can have negative implications for 
estimating HTEs and may lead to bias (Hahn et al. 
2018).

This paper uncovers the miscalibration issue in HTE 
models by using two real-world randomized control 
trials (RCTs) and synthetic scenarios. Miscalibration 
occurs when the model-based conditional average treat-
ment effects (CATEs) do not align with the model-free 
difference-in-means (DM). We introduce a diagnostic 
approach to detect miscalibration using a quantile- 
quantile (Q-Q) plot. This diagnostic plot is based on 
model-free difference-in-means (DM) conditional average 
treatment effects (CATEs) and model-based CATEs aggre-
gated from a machine learning model. These model-free 
DM estimates are nonparametrically identified (owing 
to the RCT) using a DM estimator, which is often seen 
as the gold standard in RCTs. We fit a regression on the 
estimated HTEs to “calibrate” them, using additive and 
multiplicative scaling to align them with model-free 
CATEs. The calibration process can be viewed as regres-
sing the model-free CATE on the estimates implied by 
the HTE model. The intercept and the slope of this 
regression define the additive and multiplicative scaling 
necessary to align the model-based CATE with the 
model-free CATE. The flexibility and model-agnostic 
nature of this approach makes it well suited for digital 
RCTs at scale. This paper offers three key contributions: 

1. We highlight the issue of miscalibrated causal 
effects using RCTs by Facebook and Criteo AI Labora-
tory. We demonstrate that the model-based CATEs 
from many machine learning models may provide a 
poor estimator of and differ substantially from the 
model-free CATEs. This observation suggests a poten-
tial bias in many machine learning methods. We explore 
three mechanisms—regularization and misspecification 
in the response model, along with the application of 
causal forest in high-dimensional contexts—to elucidate 
why standard HTE models may yield biased estimates. 
Moreover, Proposition 2 reveals that a high degree of reg-
ularization directly translates into miscalibration when a 
T-learner, accompanied by ridge regression as the base 
learner, is used. This bias can be effectively mitigated 
through calibration.

2. We propose a two-step procedure to investigate 
this calibration issue. The first step is a diagnostic test, 
a Q-Q plot of the model-free CATE and model-based 
CATE, to investigate whether the standard HTE mod-
els align well with the model-free subgroup estimates. 
We recommend practitioners and researchers to imple-
ment this diagnostic test after they run an HTE model 
to determine whether the estimates are calibrated.

3. Our framework’s second step is a model-agnostic 
calibration method for calibrating any HTE models. We 
prove that this calibration method provides the best 
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linear predictor (BLP) of the model-free subgroup effects 
from randomized experiments (Proposition 1). With both 
synthetic simulations and real-world randomized experi-
ments, we show that calibration can improve the ITEs 
for a broad class of meta-algorithms and tree-based HTE 
methods. Furthermore, we conduct comprehensive pol-
icy simulations, solidifying the practical value of cali-
brated HTE estimation.

2. Related Work
We review related literature in this section. We first 
review the literature streams on two main methods for 
HTE estimation: meta-algorithms and sample splitting. 
We conclude this section with a discussion of the 
importance of HTE estimations for data-driven deci-
sion making.

2.1. Meta-Algorithms for HTE Estimation
Meta-algorithms, or meta-learners, offer a flexible frame-
work that combines supervised learning models to esti-
mate HTEs. These methods allow for base learners, the 
machine learning models used for response predictions 
or treatment assignments, to adopt any form. The 
S-learner is a simple HTE model that applies a single 
machine learning model to predict responses y based 
on treatment w and covariates x (Hill 2011, Green and 
Kern 2012): µ(x, w) à E[y |X à x, W à w]: The CATE esti-
mate is computed as τ̂(x) à µ̂(x, 1)� µ̂(x, 0).

Within this framework, Imai and Ratkovic (2013) 
provide a model that applies regularization separately 
to baseline covariates and covariate-treatment interac-
tions. Grimmer et al. (2017) propose to estimate the 
response surface through an ensemble of models 
selected using SuperLearner (Van der Laan et al. 2007). 
It should be noted, however, that this ensemble opti-
mizes performance on the response surface and not 
necessarily on the treatment effect.

The most widely applicable method for predicting 
HTEs is the T-learner due to its simplicity (Athey and 
Imbens 2015, Künzel et al. 2019, Jacob 2020). It uses two 
models for the responses of the treatment µ1(x) and 
control group µ0(x) given covariates x:

µ1(x) à E[y |X à x, W à 1] and
µ0(x) à E[y |X à x, W à 0]: (1) 

The CATE is then computed as τ̂(x) à µ̂1(x)� µ̂0(x).
Another widely adopted method is the causal forest, 

which is closely related to the two approaches described 
previously, which fits a single random forest (e.g., S- 
learner). A crucial difference is that the causal forest 
enforces splits on treatment just before the terminal nodes 
and integrates this into its splitting criteria elsewhere in 
the tree (Wager and Athey 2018). It also uses sample split-
ting (“honesty”) to provide guarantees on unbiasedness 
of some subgroup effects.

More recent meta-algorithms extend the model-
ing capabilities beyond just response functions to in-
clude treatment probabilities as well. For example, the 
X-learner, designed to manage imbalances between 
control and treatment groups, uses control group infor-
mation to enhance treatment group estimates (Künzel 
et al. 2019). This approach is achieved by modeling the 
difference between observed outcomes and imputed 
counterfactuals and applies this in a vice versa fashion. 
Similarly, the R-learner seeks to mitigate selection bias 
that could arise from observed covariates using orthogo-
nalization techniques (Nie and Wager 2021). This algo-
rithm initially estimates the two nuisance functions, the 
conditional outcome mean and the propensity score, 
and then targets a loss function that separates the causal 
effects of interest from these nuisance components. A 
more recent development is the doubly-robust CATE 
estimator known as the DR-learner. This algorithm 
extends the T-learner and incorporates a version of 
inverse probability weighting on the residual of the 
response function models for both the control and treat-
ment groups (Kennedy 2023). Details of these learners 
can be found in Online Appendix A.

A common trait of these meta-learners is that the 
supervised learning models they are built upon navi-
gate a different bias/variance tradeoff than the one 
that would be optimal for the causal estimation task. 
Schuler et al. (2018) make this distinction clear in their 
comparison of a number of estimators of risk in the 
causal setting. Typically, individual models of the 
outcome (and of the propensity score in observational 
settings) are estimated by independently minimizing 
their loss functions (referred to as µ-risk by Schuler 
et al. (2018)). However, minimizing the loss function 
does not imply minimization of causal error—the gap 
between estimated and true effects. Indeed, these two 
do not typically align. As an illustration, Kennedy 
(2023) demonstrates that a transformed outcome meta- 
regression can, in theory, asymptotically match an 
optimal causal error, but this property does not neces-
sarily hold for finite samples. In a simplified case of 
local polynomial regression in Theorem 3 of Kennedy 
(2023), undersmoothing the estimation of the propensity 
score is necessary to optimally reduce causal error: 
Bias must be reduced faster than in the case of a stan-
dard supervised learning problem. Schuler et al. (2018) 
provide a number of heuristics for model selection, 
but these heuristics entail additional assumptions and 
do not equate to causal error (which cannot be directly 
measured). Even methods with desirable asymptotic 
properties may not retain these properties in finite sam-
ples. The discrepancy between causal error and estima-
tors can result in inappropriate bias/variance tradeoffs 
and consequently finite sample bias. We develop meth-
ods that help practitioners and applied researchers to 
determine whether the estimators they use on the data 
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they have in front of them has bias—not whether their 
approach would hold bias if they continue to collect 
more data.

We make several contributions to this literature. We 
first raise the awareness of the calibration issue using 
two real-world RCTs. We introduce a Q-Q diagnostic 
plot to assess whether bias exists in HTE estimates from 
a certain machine learning model on a given data set. 
Furthermore, we contribute a model-agnostic approach 
that is broadly applicable to any of the HTE methods in 
this literature. Our method requires no additional data 
beyond what is necessary for estimating HTEs. It can 
be scaled to arbitrarily large datasets. It also can be easily 
plugged into the experimentation infrastructure of tech 
firms and added to the analysis pipeline of applied 
researchers.

2.2. Sample Splitting for HTE Estimation
The second stream of literature uses sample splitting 
to estimate and infer the HTEs, using linear, semipara-
metric regression or tree-based methods to character-
ize HTEs. Athey and Imbens (2016) use a Horvitz- 
Thompson transformation on the outcome variable 
to estimate heterogeneity, most importantly showing 
that “honesty”—estimating splits and predicting on dif-
ferent subsets of the data—provides valid inference in 
this setting. Crucially, the approach of honesty provides 
unbiased estimates of leaf-specific average effects (in 
finite samples) when the covariates are low-dimensional 
relative to the sample size and are uniformly distributed 
within leaves. This does not, however, follow for all 
possible subgroup effects. Subject to regularity condi-
tions, honesty implies asymptotically unbiased estimates 
of all HTEs as in section 3.2 of Wager and Athey (2018) 
so long as the size of individual leaves becomes increas-
ingly small.3 Other research also provide noteworthy 
methodologies for HTE estimation. Chernozhukov et al. 
(2018) estimate the sorted effect, which is a collection 
of estimated partial effects, ranked in increasing order 
and indexed by percentiles, that represent the heteroge-
neous effects. Zhao et al. (2017a) combine semipara-
metric regression and postselection inference for high- 
dimension regression. This method uses semiparametric 
regression to remove confounding bias and to increase 
the power of discovering effect variation. It then uses 
postselection inferential tools to examine whether a cer-
tain covariate interacts with the treatment, thus ascertain-
ing the existence of effect modification. Chernozhukov 
et al. (2023) provide a generic method for estimating and 
performing inference; they use arbitrary HTE models 
that involve sample splitting, an approach that aligns 
closely with ours. Unlike existing works, we focus speci-
fically on ensuring that aggregate subgroup effects align 
with benchmarks supplied by an RCT. In contrast to 
Chernozhukov et al. (2023), we begin from a perspective 
of diagnostics for a given model of HTEs through a Q-Q 

plot that we recommend. This is motivated by an empiri-
cal application in which extant methods provided poor 
characterizations of experimental heterogeneity. Rather 
than rely on the individual-level data as in Chernozhu-
kov et al. (2023), we provide an approach to resolve these 
diagnosed problems using aggregated data, which can 
then be implemented and deployed simply through the 
use of the linear rescaling procedure defined in Section 4.

Dwivedi et al. (2020) consider a diagnostic approach 
similar to what we present here, but our work is dis-
tinctive from theirs in two primary ways. First, Dwi-
vedi et al. (2020) focus on identifying subgroups that 
have larger than “average” treatment effects, whereas 
we focus on a different problem: improving the calibra-
tion of HTEs. This differentiation allows our method to 
be applied in policy-making settings, enabling the bal-
ancing of within-treatment and between-treatment het-
erogeneity (discussed in greater detail in Section 6). 
Such functionality is not offered by the subgroup dis-
covery approach in Dwivedi et al. (2020). Furthermore, 
our contribution extends beyond diagnostic insights. 
We provide practical solutions to the identified issues 
and provide guidance on analytical choices that practi-
tioners face, such as choosing bin sizes in this setting.

2.3. Causal Decision Making and HTE Estimation 
for Data-Driven Decision Making

Causal decision making (CDM), which entails decid-
ing on the application of a specific intervention to a 
given individual, is a common reason for undertaking 
causal effect estimations (CEE). However, as astutely 
observed by Fernández-Lorı́a and Provost (2022b), 
CDM and CEE may not be synonymous in certain con-
texts. More intriguingly, they put forth a novel propo-
sition that certain CDM problems may not necessitate 
precise causal statistical modeling. In such situations, 
the decision-making process could potentially be sub-
stantially streamlined for policy makers (Fernández- 
Lorı́a and Provost 2022a, Fernández-Lorı́a et al. 2023).

Yet, in a variety of scenarios, obtaining treatment 
effect estimates remains essential. For instance, McFow-
land et al. (2021) devise a prescriptive framework for 
investigating a generalized budget-constrained optimi-
zation issue, with benefits and costs being unknown ex 
ante. Moreover, organizations and digital platforms gen-
erally endeavor to optimize multiple performance indi-
cators, necessitating the simultaneous optimization of 
various metrics (Diemert et al. 2018). This presence of 
tradeoffs exemplifies the majority of practical decision- 
making problems encountered in the industry (Deng 
and Shi 2016, Letham et al. 2019). When more than one 
treatment effect needs to be estimated from one or 
more experiments, decision makers must be cognizant 
of, and reconcile, various forms of heterogeneity 
within and between these experiments. Such applica-
tions are prevalent in practical budget-constrained 
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optimizations, where achieving calibrated HTEs is a pre-
requisite. In reality, decision makers need to account for 
the context of decision-making when selecting data- 
driven decision-making methodologies (Fernández-Lorı́a 
and Provost 2022c). Calibrated treatment effects and 
CDM nicely complement one another because of their 
distinct and specialized use cases. Moreover, decision 
makers can opt for their preferred methodology based on 
their preferences for the decision-making process.4

3. Problem Setup
In this section, we describe the problem setup. Data are 
collected from an RCT, where N units are assigned to a 
binary treatment, w, using a fair coinflip. Let N1 be the 
number of units in the treatment group, with wi à 1 
and N0, analogously. We rely on the stable unit treat-
ment value assumption (SUTVA) throughout (Imbens 
and Rubin 2015) and often suppress indexing by units. 
In addition, we collect data on outcomes,

y à w y(1) + (1�w) y(0), (2) 

where y(1) and y(0) correspond to the potential out-
comes for the treatment group and the control group, 
respectively. The outcome is a realization of the potential 
outcome associated with the assigned treatment status. 
We collect pretreatment covariates, X, which exist in 
the domain X . We denote S as a subset of this domain, 
S ✓ X . Let N(S) indicate the number of units having a 
covariate value in the set S (using analogous notation 
for the treatment and control groups). The goal is to 
understand the conditional expectation function of the 
treatment effect. In particular, we propose that one 
desirable property of an HTE model (in addition to 
high accuracy in predicting effects) is calibration.

What is calibration? Think of a scatter plot between 
the estimated treatment effects and the error in each 
unit’s treatment effect estimate. If these are uncorre-
lated, then we can call our effect estimates calibrated. 
We never directly observe the error for each unit’s esti-
mate. Intuitively, calibration means that positive errors 
tend to be balanced by negative ones at every level of 
estimated effect. The size of those errors might be large, 
indicating low accuracy, but if they are balanced, then 
calibration is achieved. This relationship closely ac-
cords with the definition of calibration in classification 
and regression problems (Kuleshov et al. 2018), with 
the added challenge resulting from the fundamental 
problem of causal inference: Labels (i.e., ITEs) are never 
observed (Holland 1986). Many options are available 
for estimating the conditional expectation function of a 
treatment effect (Athey and Imbens 2016, Künzel et al. 
2019, Nie and Wager 2021, Kennedy 2023); we remain 
agnostic about which of these procedures should be 
used. Our method requires only a black box model to 
estimate the conditional expectation function of a treat-
ment effect for every value of x: τ̂(x).5

We consider two ways by which subgroup average 
conditional effects can be estimated; each is defined on 
a subset S of the domain of X , where S ✓ X . The 
model-free CATE estimation just takes the difference in 
means within the subgroup:

τ̂DM(S) à 1
N1(S)

X

i:Xi2S
yiwi�

1
N0(S)

X

i:Xi2S
yi(1�wi): (3) 

This estimator is annotated with “DM” to indicate that 
it comes from the difference in means. The typical stan-
dard error of this quantity using the Neyman estimator 
is defined analogously as ŝDM.

The model-based CATE estimation (τ̂UNCAL(S)) from 
a given HTE model is

τ̂UNCAL(S) à 1
N(S)

X

i:Xi2S
τ̂UNCAL(Xi): (4) 

The first method (Equation (3)) is simply the difference 
in observed outcomes within the subgroup. It makes 
no modeling assumptions when, as we have assumed, 
treatment is completely randomized (Aronow et al. 
2021). This model-free estimator may not always be 
interesting (e.g., if the pretreatment covariates are not 
informative about heterogeneity). However, it is at least 
always unbiased for CATE within the subgroup S. This 
estimator may be replaced by an augmented inverse 
propensity weighted estimator (AIPWE) for covariate 
adjustment, as long as it retains a lack of bias in finite 
samples (Zhang et al. 2008). The second method (Equa-
tion (4)) consists of marginalization over the estimated 
ITEs from some black box estimator of HTEs.

These two estimators differ because of the response 
surface models typically used in the latter. Suppose the 
response surface model is linear (in a T-learner6). In this 
case, the latter model is essentially just the covariate- 
adjusted estimator analyzed in Lin (2013). We analyze 
the misspecification of a linear response surface using 
quasi-Poisson generalized linear model in our simula-
tion study in Section 5.1.3. In this linear case, the two 
models may provide different results in finite samples, 
but they both offer a consistent way to estimate sub-
group effects (and the latter is more efficient). However, 
for more complicated models of τ̂(·), the differences 
can be stark because typical machine learning models 
may not approximate the conditional treatment effect 
well. For example, consider a tree-based S-learner 
HTE model, which tends to over-regularize estimated 
treatment effects to zero (Künzel et al. 2019). This 
model might provide effect estimates with high rank- 
correlation to the truth—but with severely misleading 
estimates of the central tendency and magnitude. We 
explore the effects of regularization on calibration in 
Sections 4.2 and 5.1.1. We now formally define the 
concept of linear calibration.
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Definition 1 (Linear Calibration). For a given HTE model, 
τ̂, and an equally sized partitioning of X called P,

0 à 1
|P |

X

S2P
τ̂(S)(τ(S)� τ̂(S)), (5) 

where τ(·) and τ̂(·) are the ground-truth and the esti-
mated conditional average treatment effects.

Calibration in Definition 1 implies that errors in sub-
group effect estimates are zero, on average, and that 
they are uncorrelated with the estimated subgroup 
effects. From another perspective, we might say that 
linear calibration would obtain if we could run a linear 
regression of the true (unobservable) ITEs on some set 
of covariates. The residuals of this regression would be 
independent from the predictors, based on the stan-
dard properties of ordinary least squares (OLS) meth-
ods and the linearity of expectations. Of course, directly 
running this simple regression is not possible, as it is 
impossible to directly observe the true ITEs (Holland 
1986). Although some HTE methods do exhibit this 
property of linear calibration (e.g., applying unregular-
ized linear models in a T-learner when the true re-
sponse functions are also linear), many do not. This 
especially holds true for methods that employ regular-
ized nonlinear response functions based on machine 
learning. These sophisticated techniques often prioritize 
model simplicity and predictive accuracy on the re-
sponse surfaces, which may lead to a potential bias- 
variance tradeoff, thereby compromising calibration. In 
the subsequent sections, we delve deeper into this issue 

and propose a solution to mitigate it. To demonstrate 
the practical implications of the aforementioned theo-
retical principles, Example 3 illustrates the calibration 
challenge in a real-world context, using a randomized 
experiment conducted on Facebook.
Example 3 (Randomized Experiment on Facebook). 
Figure 1 illustrates the problem of calibration on a real 
RCT run on Facebook. In this experiment, a T-learner 
model was estimated, with a random forest as the base 
learner (Breiman 2001). In this case, the uncalibrated 
HTEs (Equation (4)) are noticeably smaller in magnitude 
than the model-free estimators (Equation (3)). The aggre-
gated effects estimated through the HTE model appear 
to preserve rank order, but they substantially understate 
the true magnitude of effects. Moreover, the two estima-
tors are not consistent with one another—the differences 
between them are far larger than would be expected 
from different unbiased estimates of subgroup effects, 
implying that the subgroup effects from the HTE model 
are strongly biased. If Facebook took the biased estimates 
at face-value, its resulting decisions could be quite poor.

4. Method
Making effective decisions based on treatment esti-
mates, especially when the decision makers have to 
prioritize multiple objectives (McFowland et al. 2021), 
requires knowing that these estimates are calibrated. 
Calibration is a property that errors between the true 
subgroup effect and the average HTE in that subgroup 

Figure 1. (Color online) HTE Models Can Have Poorly Calibrated Aggregate Effects 

Distribution of HTE

Mean HTE

Difference-in-means

-6 -4 -2 0 2 4 6
Treatment Effect

HTE Quintile 1 2 3 4 5

Notes. At the top is a histogram of the estimated HTEs, colored to indicate quintiles. The middle is the average HTE within each quintile. At the 
bottom are the model-free estimates within each quintile of the HTE.
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will be zero on average over subgroups. Slightly more 
formally, if errors in subgroup effect estimates are zero 
on average and independent of the estimated sub-
group effects, then they are calibrated. Calibration is 
distinct from risk minimization in machine learning: It 
implies that positive errors in HTE estimates are bal-
anced by negative ones at every level of the predicted 
HTE. In supervised learning, this property is obtained 
by linear regression, but not necessarily by all learning 
methods (Greenfeld and Shalit 2020). We next formally 
introduce our calibration method.

4.1. HTE Calibration Method
Although we cannot directly observe the relationship 
between the ground-truth ITEs and estimated HTEs, we 
can observe the relationship between aggregated and 
noisy DM estimates and the estimated HTEs. We pro-
pose that researchers begin by examining this relation-
ship (as we do for the Facebook experiment in Online 
Appendix D4). This empirical relationship forms the 
foundation of our method. The first step of this proce-
dure is to partition the feature space X based on quan-
tiles of the estimated HTEs. We estimate τ̂DM (along 
with the associated standard error) in each group. By 
comparing these completely agnostic estimates to the 
model-based estimates for those subgroups (the aver-
age of HTE estimates within each group), practitioners 
can uncover potential issues with their HTE estimates. 
When problems are uncovered, the practitioner can try 
to improve the the uncalibrated HTE estimates τ̂UNCAL 

through a linear transformation:

τ̂CAL
α,β (S) à α+ βτ̂UNCAL(S): (6) 

We define τ̂CAL
α,β (X) comparably. We estimate (α,β) by 

maximizing the likelihood of τ̂CAL under τ̂DM. In the 
subsequent discussions, we simplify the notation of 
τ̂CAL
α,β (·) to τ̂CAL(·) for clarity, provided the context 

remains unambiguous.
This estimation procedure allows us to find the addi-

tive and multiplicative factors of the estimated HTEs, 
providing the best approximation of the model-free 
estimates of the aggregated subgroup effects. In con-
trast to standard Platt scaling (Platt 1999), we focus on 
calibrating to aggregated effects due to the absence of 
true labels for the ITEs. This procedure does not modify 
the rank order of effects, which is a desirable property. 
In practice, our goal typically is not just to understand 
order statistics on a single dimension, but to trade off 
competing objectives on multiple dimensions. Thus, it 
is crucial to accurately measure the cardinal values of 
effects, not just their rank order as in the work of Cher-
nozhukov et al. (2018). We show that when the HTE 
model (along with partitioning of the data based on the 
estimated HTEs) and the calibration procedure occur 
on separate subsets of the initial data, our procedure 

provides the best linear predictor (BLP) of the unbiased 
subgroup effects, as alternatively considered by Cher-
nozhukov et al. (2023).

The pseudo-code for our calibration method is shown 
in Algorithm 1. Specifically, we segment the data into K 
subgroups, with an equal number of units in each group. 
Because we need to estimate two parameters and do not 
know the labels (i.e., ITEs) for any individual unit, we 
must aggregate the data into subgroups to determine cal-
ibration. We construct these subgroups by ordering units 
according to their ITEs (from the uncalibrated model) 
and then assigning the first 1

K of the units to the first sub-
group, the subsequent 1

K of the units to the second, and so 
on. We need to choose an appropriate K (using parameter 
tuning) to estimate α�and β�and to avoid overfitting. Typi-
cally, a small K corresponds to poor performance in the 
training set, whereas a large K may lead to overfitting as 
a result of the bias-variance tradeoff.

We compute the model-free mean and standard errors 
of the subgroup treatment effect of S, which are τ̂DM 

and ŝDM, respectively. The model-free estimates are 
directly derived from DM estimator, which is known to 
be unbiased and asymptotically normal under weak 
conditions (Aronow et al. 2021). Because these estimates 
are normally distributed according to the central limit 
theorem, we maximize the normal log-likelihood func-
tion to find the linear parameter α�and multiplicative 
parameter β�that maximize the log-likelihood function 
over the parameter space,

ℓ(α,β)à
X

i:Xi2S,S2P
log f (τ̂CAL

α,β (Xi)), (7) 

where f is the probability density function of the nor-
mal distribution: N (τ̂DM(S), ŝDM(S)). Regarding our 
use of a likelihood-based approach to estimation, if we 
only need effects to attain linear calibration, we could 
simply estimate calibration through OLS and discard 
information about the variability of effects within each 
bin. Different subgroups may have very different stan-
dard errors.7 The reason is that the conditional variance 
may vary substantially in different parts of the space, 
leading to wider standard errors in those regions. In essence, 
our likelihood-based estimation approach implies and re-
cognizes that when the CATE is highly variable, small 
errors are less important than when the CATE is highly 
uncertain. This may be seen as the difference between esti-
mation with OLS and weighted least squares (WLS).

Algorithm 1 (HTE Calibration) 
1: Input: y, w, K, τ̂UNCAL,
2: Partition individuals into K bins, P, based on the 

estimated ITEs τ̂UNCAL.
3: for S 2 P do
4: Compute τ̂DM(S) and its standard error, ŝDM(S).
5: Compute subgroup estimates, τ̂UNCAL(S), by 

any method.
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6: end
7: Optimize: (α̂, β̂) à arg maxα,βℓ(α,β)
8: Compute the calibrated ITE: τ̂CAL(Xi) à α̂ +
β̂τ̂UNCAL (Xi), ∀i 2 {1, : : : , N}:

9: return α,β, τ̂CAL

Turning to our primary theoretical result, we first 
make the following two assumptions.
Assumption 1 (Honesty). Calibration is performed on a 
set of data that is independent from the HTE model.

Assumption 2 (Normality). Each of the aggregated sub-
group conditional average treatment effects (τ̂DM(S)) is 
normally distributed.

The first assumption can be ensured through sample 
splitting; the second holds asymptotically because of 
the central limit theorem.
Proposition 1. Algorithm 1 provides the best linear pre-
dictor (BLP) of the subgroup effects.

Proof [Proof Sketch]. Following Theorem 2.1 of Cher-
nozhukov et al. (2023), honesty (Assumption 1) implies 
that τ̂UNCAL(S) can be taken to be an exogenous regres-
sor. Normality of τ̂DM(S) implies all necessary regularity 
conditions for standard OLS results to apply. The impli-
cation of these two assumptions is that the calibrated 
effects are the best linear approximation (in the sense of 
likelihood) to the subgroup average treatment effect. w

The full proof is provided in Online Appendix F1. 
With stronger assumptions, a similar result holds that 
the calibrated model is the BLP of individual-level effects, 
the proof of this is provided in Online Appendix F2.

Our method can be viewed as a simplified and aggre-
gated form of the second-stage regression proposed by 
Chernozhukov et al. (2023) through the use of grouped 
regression (Prais and Aitchison 1954). This proposition 
shows that estimates passed through Algorithm 1 have 
linear calibration. More precisely, they undergo the max-
imal likelihood linear transformation of the estimated 
subgroup effects. The HTE estimates benefit most from 
calibration when the precalibrated estimates are linearly 
correlated with (but not equal to) the true subgroup 
effects. However, if the HTE model is very poor (e.g., 
Figures 4(c) and 7(c)), our calibration approach may be 
of little help because no linear transformation of the esti-
mated subgroup effects can replicate the actual sub-
group effects. For example, a result like Figure 4(c)
might be seen if the covariates used in the underlying 
model poorly predict the treatment effect or if there is 
excessive noise in the model-free estimates. Results like 
Figure 7(c) might be seen as if the HTE model over- 
regularizes the covariates, leading to a lack of hetero-
geneity in the initial HTEs. Our calibration method 
operates directly on the scale of the treatment effects them-
selves, as in the second-stage models of X-learner (Künzel 

et al. 2019), but it provides a guarantee of the best linear 
prediction in the vein of Chernozhukov et al. (2023).

Our approach can be extended to the Bayesian frame-
work by incorporating a prior over the estimated para-
meters. This prior reflects a prior belief that the HTE 
model of interest is well calibrated. The inclusion of this 
prior involves an addition to the log-likelihood defined 
in Equation (7):

XN

ià1
log g(τ̂CAL

α, β (Xi)): (8) 

where g is the probability density function of the nor-
mal distribution: N (τ̂UNCAL(Xi),λ) and λ�is the stan-
dard deviation of the prior. It is clear that this prior is 
equivalent to a prior on the parameters (α,β) as being 
close to (0,1). It is essentially a ridge prior, due to the 
duality of ridge regression and the Normal-Normal 
conjugate Bayesian model. In our simulations, we adopt 
this regularized model, tuning λ�(which determines the 
precision of our prior) using cross-validation. We 
describe this cross-validation procedure in Algorithm 2. 
Our cross-validation procedure partitions the data into 
V folds, wherein V�1 are used as training (và0), and 1 
is used as the holdout for validation (và1). This process 
then is repeated so that each fold is held out once. The 
held-out log likelihood is averaged over all folds, and 
this result is used for model selection and for tuning 
both the number of bins and the amount of regulariza-
tion (if used) in the calibration procedure. The computa-
tional cost of cross-validation in this setting is relatively 
low, as the calibration procedure does not require refit-
ting of individual-level models.
Algorithm 2 (Out-of-Sample Validation) 

1: Input: y, w, K, τ̂UNCAL, v,
2: Subset y, w, τ̂UNCAL to the training set where v à 0.
3: (α̂, β̂, τ̂CAL, và0)àHTE Calibration(yvà0, wvà0, K, 
τ̂UNCAL, và0)

4: Compute the calibrated ITE in the holdout: τ̂CAL, và1 

(xi) à α̂ + β̂τ̂UNCAL, và1(Xi), ∀i 2 {j 2 {1, : : : , N} : vj à 1}
5: return The log likelihood calculated in the hold-

out: ℓvà1(α̂, β̂)
Our method uses a likelihood-based approach, with 

the uncalibrated HTE model nested within this model 
(corresponding to αà 0, βà 1). Consequently, we apply 
a simple likelihood-ratio-based specification test to eval-
uate if the initial HTE model necessitates calibration. 
This test essentially checks for the presence of bias in the 
subgroup effects. This likelihood-ratio test statistic is 
given by �2(ℓ⇤ � ℓ0), where ℓ⇤ is the log likelihood under 
the optimized α�and β, whereas ℓ0 is the log likelihood 
under the linear restriction that αà0 and βà1. This sta-
tistic is an asymptotically distributed χ2 random vari-
able, with two degrees of freedom (Casella and Berger 
2002). However, given our parametric setup, this 
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specification test detects only linear miscalibration of the 
original HTE model.

This calibration method can also accommodate “stack-
ing,” a popular machine-learning technique for increas-
ing generalization performance by combining multiple 
models (Wolpert 1992); the stacking can be done directly 
on the estimated treatment effects to improve the general-
ization performance. We provide more information about 
how it works in Online Appendix B.

4.2. Bias Under a T-learner with 
Ridge Regression

Regularization techniques are commonly used to miti-
gate overfitting in these models. However, these techni-
ques can inadvertently introduce bias when used for 
HTE estimation. We will specifically explore a bias 
mechanism attributable to regularization and establish 
the bias within the T-learner framework. The occur-
rence of regularization-induced bias within HTE mod-
els has been recognized previously (Hahn et al. 2018). 
This issue arises because models are estimated on indi-
vidual response surfaces, and the optimal regulariza-
tion for each response surface may not correspond to 
what would be best for estimating the difference (i.e., 
the ITEs) between them. For instance, this could occur 
if the treatment effect function is smoother than the 
individual response functions. We derive our theoreti-
cal result using ridge regression as the base-learner.
Proposition 2. Suppose X is an orthonormal basis, and 
the BLP of Y for the control and treatment potential out-
come surface is β0 and β1, respectively. The BLP of the 
CATE function is β1� β0 ⌘ βτ. Suppose the CATE is esti-
mated using a T-learner with ridge regression for base lear-
ners with regularization parameter λ, then 

• Bias of ATE: E[τ(X)� τ̂(X)] à� λ
1+λβτ E[X]

• Bias of CATE: E[τ(X)� τ̂(X) |X] à� λ
1+λβτX

• After calibration, the ATE is unbiased, E[τ(X)� τ̂(X)] à 0
• After calibration, the CATE is unbiased, E[τ(X)�
τ̂(X) |X] à 0

The proof is deferred to Online Appendix F3. In par-
ticular, this result shows that we can express precisely 
what the calibration coefficient on a ridge regression 
T-learner will be in expectation: 1 +λ. That is, a large 
amount of regularization directly translates into misca-
libration in this simple setting, but can be removed 
with our calibration procedure.

5. Simulated and Real-World Experiments
In this section, we investigate the impact of HTE meth-
ods on bias and assess the effectiveness of calibration in 
mitigating this bias. We begin by running a series of 
simulations to demonstrate three types of bias and 
show how calibration can help reduce this bias. We 
then test the calibration method on both simulated and 

real-world RCTs. In all experiments in this section, we 
divide our data into training, validation, and test sets. 
The evaluation process is as follows: 

1. We infer the HTEs using a machine learning 
model trained on the training data.

2. We use out-of-sample validation (Algorithm 2) to 
obtain the number of bins K and the amount of regulari-
zation λ�on the validation set. We perform the proposed 
HTE calibration approach to learn α�and β�(Algorithm 1) 
using the tune K and λ�on the validation set.

3. We evaluate the performance of the estimated 
ITEs on the test set.

We measure the performance using the mean absolute 
error (MAE) by computing the difference between the 
truth ITEs (known in simulations) and the estimated 
HTEs for each unit. Specifically, this quantity is defined as

MAE(τ̂) à 1
L
XL

là1

1
N
XN

i
| τ̂(Xi)� τ(Xi) |

 !

, (9) 

where τ̂(Xi) is the estimated HTE for individual i, char-
acterized by feature Xi, and τ(Xi) is the ground-truth 
ITE for individual i. The mean is taken over L simula-
tions and we average the absolute errors in the HTEs 
for N individuals in the specific simulation.

5.1. Potential Mechanisms of Bias
5.1.1. Regularization-Induced Bias. We first assess how 
our method rectifies the bias introduced by regulariza-
tion, as indicated in Proposition 2. We use a linear data 
generation process (DGP), adapted from Künzel et al. 
(2019), to illustrate this bias, with treatments assigned 
randomly, as in randomized experiments. The DGP is 
defined as follows:

y(0) à X!0 + ✏0,
y(1) à X!0 + 1 + 20X1 + ✏1, (10) 

where X ~ Uniform([0, 1]N⇥D), Nà3,000, Dà50; treat-
ment is randomly assigned w ~ Bernoulli(0:5); X1 is the 
first dimension of X; ✏0 and ✏1 follow a normal distribu-
tion with parameters N (0, 0:1). Each coefficient in !0 fol-
lows uniform distribution, and !0 ~ Uniform([�5, 5]D).

Ridge regression is used as the base learner to dem-
onstrate the regularization-induced bias, and serves as 
the input to a T-learner model.8 To best estimate the 
heterogeneity in HTE, the covariate X1 should be under-
smoothed in the underlying response surface models 
relative to the covariate if the task was the standard 
supervised learning task on y(0)/y(1). In short, HTE 
models falsely conflate performance on the response 
surfaces with performance on the effect estimate. Only 
the latter typically is of interest in causal inference.

As illustrated in Figure 2(a), as regularization (λ) 
increases, the benefits of our method increase, result-
ing in a greater reduction of the MAE. We explain 
this decline by examining the marginal effect of X1 in 
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Figure 2(b), which shows that calibration ensures that 
the marginal effect on X1 is not regularized away. Spe-
cifically, the bias in the coefficients of X1 increases as 
regularization (λ) increases. In fact, we can characterize 
the bias in expectation in the slope of the heterogeneous 
effect on X1 as 20 1� 1

1+λ
� ⇥

(see Section 5.1.1 and Online 
Appendix F3 for details). This bias in the marginal 
effect is nonzero whenever regularization is applied to 
the response surfaces. Calibration on ridge regression 
effectively de-biases the marginal effects of the treat-
ment effect by aligning the pink curve closer to the 
true effect. With very low regularization, ridge re-
gression works well for estimating the marginal effect 
of the treatment effect with respect to X1. However, 
as regularization increases, the slope is increasingly 
underestimated. Despite this, calibration ensures that 
the marginal effect is closer to the true effect than it 
would be under uncalibrated HTE methods, at all 
levels of regularization. Furthermore, the regulariza-
tion of covariates orthogonal to the treatment effect will 
be left unchanged by calibration. As such, calibration 
accomplishes a similar aim as the one in Imai and Rat-
kovic (2013) by allowing different amounts of regulari-
zation to be applied to the underlying response surface 
and to the determinants of treatment efficacy.

5.1.2. Causal Forest in High-Dimensional Settings. The 
causal forest is a popular machine learning method to 
estimate HTE in causal inference (Wager and Athey 
2018). It adapts the splitting criteria of random forests 
to focus on CATE estimation, partitioning bootstrap 
samples based on covariate values to explain HTEs. 
Wager and Athey (2018) proved unbiased inference 

for CATE when covariates both low-dimensional and 
uniformly distributed. (For more detailed discussions, 
please refer to Section 2.2). To delve deeper into the 
influence of calibration on the performance of causal for-
ests in high-dimensional scenarios, we build on DGPs 
originally introduced by Wager and Athey (2018). We 
have adapted these DGPs to high-dimensional contexts 
to more thoroughly examine the efficacy of calibration 
in such settings. The first DGP, following equation (28) 
of Wager and Athey (2018), is as follows:

y(0) ~ N (0, 0:1),

τ(X) à 1
2 &(X1)&(X2), where &(x) à 1

1 + e�20(x� 1=3) ,

y(1) à y(0) + τ(X), (11) 

where X ~ Uniform([0, 1]N⇥D), Nà3,000, and we vary 
the dimension D as multipliers of log(N); X1 and X2 are 
the first and second dimensions of X; the treatments are 
randomly assigned with w ~ Bernoulli(0:5).

In this second case, the ITE function, following equa-
tion (29) of Wager and Athey (2018), has a sharper spike 
when X1 and X2 approximate one. This DGP can demon-
strate one known weakness of random forest–based meth-
ods. This method can fill in the valleys and flatten the 
peaks of the true ITE functions, especially near the edge of 
the feature space. The distribution of the true ITE is pre-
sented in Figure C1 in Online Appendix C. The DGP is 
similar to Equation (11), whereas the ITE function is

τ(X) à 1
2&(X1)&(X2), where &(x) à 1

1 + e�12(x� 1=2) :

(12) 

Figure 2. (Color online) Benefits of Calibration Grow with Increased Regularization 
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Notes. The x axis corresponds to the regularization parameter λ�in ridge regression. In (a), the y axis shows the percentage change in the error of 
the HTE, which is computed as MAE(τ̂CAL)�MAE(τ̂UNCAL)
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marginal effect of X1 on the treatment effect.
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Figure 3 shows the benefits of calibration in this set-
ting. As shown in Figure 3, (a) and (c), as the dimen-
sionality of the data increases, the performance of the 
calibration method improves, reducing the MAE signif-
icantly when dimensionality reaches D à log2(N), and 
this benefit continues to grow with further increase in 
dimensionality. Furthermore, the diagnostic plots in 
Figure 3, (b) and (d), shed light on why the proposed 
calibration improves the performance of causal forest. 
In both DGPs, causal forests tend to overestimate smal-
ler ITEs and underestimate higher ITEs, but the calibra-
tion can reduce these inaccuracies, improving the MAE 
on ITE significantly.

Specifically, in the DGP delineated by Equation (11), 
causal forests show a systematic tendency to overesti-
mate smaller ITEs and underestimate larger ITEs (Figure 
3(b)). This pattern is remedied by splitting the data into 
five bins and introducing calibration, yielding para-
meters of α à�0:67 and β à 1:49. These parameters sug-
gest that calibration repositions the uncalibrated curve 
(displayed in pink) downward by 0.67 units while simul-
taneously increasing the scale of the curve by 0.49. As a 
result of the calibration procedure, there is a significant 
decrease in the MAE of the ITE by 32.47%. In the DGP 
specified by Equation (12), we observe a similar pattern 

of causal forests overestimating smaller ITEs and under-
estimating larger ITEs (Figure 3(d)). Additionally, we 
observe that causal forests particularly struggles with the 
subgroup exhibiting the largest CATE. This observation 
aligns with the argument in Wager and Athey (2018) 
that causal forests encounter difficulties when handling 
data with spikes, especially at the boundaries of covari-
ate regions. By applying the calibration procedure and 
partitioning the data into nine bins, we obtain calibration 
parameters of α à�0:28 and β à 1:58. The calibration 
approach effectively shifts the initial estimated curve (in 
pink) downward by 0.28 units and amplifies its magni-
tude by 0.58. Consequently, the calibrated estimate curve 
(in green) displays a noticeable improvement in accuracy, 
reducing the MAE in ITE by 35.94%. Our results demon-
strate that calibration can effectively improve the esti-
mation of ITEs and CATEs, particularly in challenging 
scenarios where causal forests yield poor performance.

5.1.3. Misspecification-Induced Bias. Misspecification 
of response functions can introduce bias because the 
estimation of HTE relies on the predictions of the base 
learners. This misalignment is prevalent because cap-
turing complex functional forms of the responses is 
challenging when the ground-truth response surface is 

Figure 3. (Color online) Benefits of Calibration on Causal Forest Increase as the Covariate Dimension (D) Increases 

(a) (b)

(c) (d)

Notes. (a) Equation (11) and equation (28) in Wager and Athey (2018). (b) Q-Q plot (Equation (11)). (c) Equation (12) and equation (29) in Wager 
and Athey (2018). (d) Q-Q plot (Equation (12)).
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unknown. In this section, we investigate a DGP where 
the ITE is a linear function of two-dimensional covariates:

y(0) à 1 + ✏0,
y(1) à 1 + 10X1 + 5X2 + ✏1, (13) 

where X ~ Uniform([0, 1]N⇥2), N à 3,000, and X1 and X2 
are the first and second dimensions of the covariates X; 
✏0 and ✏1 follow a normal distribution with parameters 
N (0, 0:1), and w ~ Bernoulli(0:5).

In this DGP, the functions for the potential outcomes 
are entirely linear and well behaved. However, an analyst 
may mistakenly model the conditional expectations of 
the outcome using a nonlinear function of the covari-
ates. We explore two distinct types of such misspecifi-
cations in the base learner. The first type frequently 
occurs when analysts run a regression with a log-trans-
formed outcome, inaccurately assuming that the out-
come is an exponential function of the covariates. This 
model and analysis approach is commonly adopted in 
social science, especially when dealing with dispersed 
outcomes and to achieve interpretability of the coeffi-
cients (e.g., the coefficient directly signify the treatment 
effect measured as a semi-elasticity). The second type 
of misspecification involves the use of a quasi-Poisson 
generalized linear model (GLM) (Wooldridge 1999) to 
model the treatment and the outcome conditional ex-
pectation. The “quasi” feature of this model adapts 
Poisson regression to accommodate continuous out-
comes or data exhibiting overdisperson. This model is 
frequently employed in fields of management and eco-
nomics (Galasso and Simcoe 2011, Oettl 2012, Chatterji 
and Fabrizio 2014, Kuppuswamy and Bayus 2017, 
Kuusela et al. 2017). Although both models could be 
considered good modeling choices if the conditional 
expectations were correctly specified (Wooldridge 

1999), their performance suffers significantly in the 
case of these misspecifications. These incorrect modeling 
assumptions result in substantial misspecification, lead-
ing to poor modeling of the potential outcome surfaces.

We present the results in Figure 4. The percentage 
decrease in MAE of ITEs, aggregated across 100 simula-
tions, is demonstrated in Figure 4(a). Collectively, these 
figures attest to the considerable reduction in MAE 
achieved through our calibration process compared with 
uncalibrated model-based ITEs. The average decreases of 
15.40% and 97.75% are observed for the two distinct mis-
specification errors, respectively. Further insights into the 
efficiency of our proposed calibration methodology can 
be gained from Figure 4, (b) and (c), which display the 
Q-Q diagnostic plot from a single simulation. In the case 
where an log-transformed outcome is used, the uncali-
brated estimates succeed in bringing all but the subgroup 
with the smallest CATE closer to the model-free CATEs. 
In the case where quasi-Poisson is used, the uncalibrated 
estimates substantially underestimate the true effects, 
owing to the misspecification in the response functions. 
Fortunately, our calibration method corrects this issue, 
aligning the uncalibrated CATE (shown as the pink line) 
precisely along the diagonal reference line (representing 
the gold standard, model-free CATE). In general, the fact 
that incorrect modeling choices lead to inappropriate sta-
tistical tradeoffs should be unsurprising.

5.2. Performance Comparisons in 
Synthetic Settings

In this section, we evaluate the performance of calibra-
tion on eleven CATE estimators using two DGPs. Our 
analysis looks at the following HTE methods: S-learner 
(Hill 2011), T-learner (Künzel et al. 2019), X-learner 
(Künzel et al. 2019), R-learner (Nie and Wager 2021), 

Figure 4. (Color online) Performance of Calibration in Misspecification-Induced Bias 

(a) (b) (c)

Notes. In (b) and (c), the dashed blue line indicates “perfect” calibration (the bars denote the 95% confidence intervals of τ̂DM). The closer the esti-
mated effects are to the blue line, the smaller the error in the estimated CATE. (a) Performance. (b) Regression with log-transformed outcome: 
Q-Q plot. (c) Quasi-Poisson: Q-Q plot.
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DR-learner (Kennedy 2023), and causal forest (Wager 
and Athey 2018). More detailed descriptions of these 
meta-algorithms and the causal forest are provided in 
Online Appendix A. We evaluate our method on two 
DGPs with different properties: complex linear and com-
plex nonlinear. In both DGPs, treatments are randomly 
assigned (w ~ Bernoulli(0:5)). To capture the complexity 
of the CATE functions, we follow two DGPs used in 
Künzel et al. (2019), where the treatment effect is as com-
plex as the response functions. These CATE functions do 
not satisfy regularity conditions such as sparsity or linear-
ity, making them challenging to model accurately.

For both cases, we use X 2 RN⇥D, where N à 5,000, 
D à log2(N) and (·) is the ceiling operator. We use 
X ~ N (0,Σ), where Σ�is a random correlation matrix (fol-
lowing the vine method in Lewandowski et al. 2009). We 
follow the complex linear DGP used in Künzel et al. (2019):

y(0) à XT!0 + ✏0, with !0 ~ Uniform([�5, 5]D),

y(1) à XT!1 + ✏1, with !1 ~ Uniform([�5, 5]D), (14) 

where ✏0 and ✏1 follow a normal distribution with para-
meters’ N (0, 0:1). For each of the five meta-learners, we 
separately apply both linear lasso regression and non-
linear gradient-boosted trees (GBT) as the base learner.

We also consider the following complex nonlinear 
DGP outlined in Künzel et al. (2019):

y(0) à � 1
2 &(X1)&(X2) + ✏0,

y(1) à 1
2 &(X1)&(X2) + ✏1, (15) 

where &(x) à 1
1+e�12(x�1=2); X1 and X2 are the first and sec-

ond dimensions of the high-dimensional covariates X; 

✏0 and ✏1 follows a normal distribution with parameters 
N (0, 0:1). To account for the nonlinearity of the true 
outcome functions, we use two nonlinear models, 
namely random forest and GBT, as the base learners in 
our meta-learners.

Figure 5 showcases performance comparisons between 
calibrated and uncalibrated HTE methods across 200 
simulations of the aforementioned DGPs. We observe 
that no single HTE model consistently outperforms others 
in all scenarios. However, implementing the proposed 
calibration method often leads to improved performance 
of existing HTE methods. Considering the complex linear 
DGP case, S-learner, T-learner, and X-learner using GBT 
and causal forest exhibit enhanced performance with 
calibration. This improvement can be attributed to the 
regularization-induced bias and misspecification-induced 
bias inherent in the base learners. On the other hand, 
lasso regression, which aligns well with the true DGP 
(Equation (14)), performs accurately in capturing the 
response functions and individual treatment effects. As 
a result, calibration has minimal impact on the perfor-
mance of lasso regression-based models, with α ⇡ 0 and 
β ⇡ 1. In the scenario of the complex nonlinear DGP, cali-
bration proves beneficial for all HTE methods. Compar-
atively, GBTs generally perform better than random 
forests, with calibration leading to stronger improve-
ments in the latter. The performance improvements are 
particularly pronounced for the causal forest in both 
DGPs due to the high-dimensional setting.

Although our analysis demonstrates the effectiveness 
of our calibration approach, it also highlights that our 
methodology may not be required in every scenario. For 
instance, when the underlying DGP is linear and a cor-
rectly specified base learner, such as lasso regression, is 
used, the calibration property is already inherent in the 

Figure 5. (Color online) Performance Evaluations of Calibration on Two DGPs Using S-Learner, T-Learner, X-Learner, 
R-Learner, DR-Learner, and Causal Forest 

Notes. RF, random forest. The y axis shows the percentage change in the MAE, which is computed as MAE(τ̂CAL)�MAE(τ̂UNCAL)
MAE(τ̂UNCAL) %, where τ̂CAL and 

τ̂UNCAL are used as inputs to Equation (9). A negative value suggests that calibration reduces the MAE of the uncalibrated HTE estimates.
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original HTE method. However, given that no method 
performs consistently well across all scenarios, our two- 
stage framework provides practitioners with diagnostic 
tools to uncover potential calibration issues within any 
HTE model. If a miscalibration issue is identified, our 
calibration method can be used to ameliorate such bias.

5.3. Real-World Randomized Experiments
Given that ground-truth ITEs in randomized experi-
ments are unobserved, we use the subgroup CATE as a 
surrogate measure to assess accuracy of the model- 
based HTE estimates. We calculate the MAE in the sub-
group effects as

MAECATE(τ̂(P)) à 1
|P |

X

S2P
| τ̂(S)� τ̂DM(S) | : (16) 

Recall that τ̂DM(S) is the model-free DM estimates on 
the CATEs for subgroup S (treated as the gold standard 
estimator in RCTs); τ̂(S) is the model-based CATE, 
aggregated from the ITEs within subgroup S.

We evaluate calibration on the publicly available 
advertising campaign data shared by Criteo AI Labora-
tory (Diemert et al. 2018).9 This data set is constructed 
by assembling data from several randomized experi-
ments involving advertising campaigns. It consists of 
25M observations, each representing a user with 12 fea-
tures, a treatment indicator, and two binary outcome 
labels (i.e., visited/converted or not). A positive label 
means the user visited or was converted on the adverti-
ser’s website during the two-week test period. The fea-
ture names have been anonymized for privacy reasons. 
We train different HTE methods on the training set, 
perform calibration on the validation set, and then eval-
uate the MAE on the subgroup CATEs on the test set, 
comparing it with the model-free estimator. Because of 
the high computation complexity for the GBTs in our 
evaluation, we randomly sampled 10% of the data; 
from this sample, 48% was used for training 11 HTE 

models, 32% was used for calibration, and 20% was 
used for testing.

In Figure 6, we showcase the percentage reduction 
in the MAE of the subgroup CATE (Equation (16)). 
As illustrated in Figure 6, most HTE methods show a 
reduction in MAE through calibration. We observe nota-
ble improvements in methods such as the T-learner, 
R-learner, and doubly robust (DR)-learner using GBT as 
the base learner, and the X-learner and R-learner using 
lasso regression as the base learner. To better understand 
the effect of calibration, we examine the Q-Q plot using 
visits as the outcome in Figure D1 in Online Appendix D 
and present selected representative Q-Q plots in Figure 7. 
Broadly speaking, calibration (green curve) brings many 
of the uncalibrated HTEs (pink curve) closer to the model- 
free CATEs (dashed black line). For instance, in Figure 
7(a), calibration markedly aligns larger CATEs closer to 
the model-free CATEs using DM estimators by mitigating 
both underestimations and overestimations.

This pattern is also observed in the X-learner with lasso 
regression as the base learner, as well as the R-learner 
and DR-learner with GBT base learners (Figure D1 in 
Online Appendix D). Figure 7(b) demonstrates how cali-
bration can reduce underestimations for the subgroup 
with the largest CATEs for causal forest, bringing them 
closer to the model-free CATEs. Similar trends can be 
seen in S-learner with both base learners (Figure D1). We 
also observe in Figure 6 that the T-learner with a lasso 
regression base learner predicts homogeneous ITEs for 
all individuals. Similarly, the R-learner and DR-learner 
with lasso regression base learners show no heteroge-
neity in the predicted ITEs, as depicted in Figure D1. 
This suggests that these methods do not capture any 
treatment heterogeneity based on the observed covari-
ates due to the sparsity imposed by the base learner. 
Because these initial HTE methods lack informative sig-
nals, calibration offers minimal benefit beyond aligning 
the average treatment effect (ATE) with the model-free 

Figure 6. (Color online) Performance Evaluation on the RCT by Criteo AI Laboratory 

Notes. The test set is bootstrapped with replacements to obtain the confidence intervals. Negative values signify that calibration is able to bring 
the HTE estimates closer to the model-free CATEs, which is treated as the gold standard estimator for RCTs.
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estimator. This analysis, based on a real-world RCT, 
further emphasizes the broad applicability of our pro-
posed calibration method, showcasing its effectiveness 
across a range of HTE methods. The impact of calibra-
tion on reducing HTE estimate errors or leaving them 
unchanged depends on various factors, including the 
underlying CATE function, response surfaces, and the 
quality of HTEs derived from the machine learning 
models.

5.4. Discussion: When to Calibrate and When Not 
to Calibrate

The previous sections provide examples of circum-
stances where calibration may be useful. In particular, 
there are a few circumstances that are worth highlight-
ing. Clearly, when regularization is used in a model, as 
discussed in Section 5.1.1, it can lead to miscalibration, 
even when the true model is linear and easily express-
ible by the function class of the regression models. 
However, this is not necessarily an argument against 
regularization. In situations with high-dimensional 
covariates, strong regularization may be necessary 
to obtain a reasonable model of individual response 
surfaces. However, this regularization can affect the 
calibration of treatment effects. When the underlying 
model does not do a good job of fitting the data, as in 
Sections 5.1.2 or 5.1.3, it can also result in miscali-
bration. In summary, when a model very effectively 
approximates relevant features of the data, then cali-
bration will (typically) be achieved. However, if the 
model fails to capture relevant features of the data, the 
calibration property of the method will tend to suffer. 
When calibration suffers and miscalibration occurs, re-
calibrating the resulting model with Algorithm 1 can 
be helpful in improving the overall effectiveness of 
the HTE model. Conversely, there are cases where 
the HTE model performs well without requiring the 

calibration approach. For instance, if treatment effects 
are constant, many HTE methods may (trivially) pro-
vide fairly calibrated estimates of HTEs. Similarly, if 
treatment effects are approximately linear, a T-learner 
using linear base learners can perform effectively with-
out the need for calibration.

How should an analyst know whether to ensure cali-
bration by using Algorithm 1? The easiest approach is to 
simply start with the diagnostic Q-Q plot we suggest. This 
diagnostic provides an effective way to determine whether 
there might be a serious problem with an estimated HTE 
model. Although difference-in-means (DM) estimates of 
subgroup effects are noisy, they are unbiased. If clear and 
systematic discrepancies emerge between the CATEs 
derived from DM estimates for subgroups and those 
obtained from the HTE model, it is reasonable to suspect 
that the culprit is the HTE model. The examples in the pre-
vious section illustrate how this Q-Q plot effectively iden-
tifies a poorly fitting HTE model. Figure D3 in Online 
Appendix D, for example, clearly shows that, under the 
uncalibrated model, large effects were being systemati-
cally underestimated, whereas small effects were being 
systematically overestimated. In this case, it is clear that a 
linear rescaling would be very effective in improving the 
model. In other cases, this might not be true. In Figure 
7(c), for example, the model-based HTE estimates are con-
stant across subgroups. Linear calibration would have 
minimal effect on improving such a model, except for 
aligning it with the ATE. Instead, the solution is to con-
sider alternative base models (perhaps the true model is 
nonlinear) or to find more informative covariates to enrich 
the HTE model’s predictive power. Calibration is not the 
end of the story for improving HTE models, but it is a use-
ful lens through which to examine and diagnose a model. 
It is recommended that practitioners consistently review 
the Q-Q diagnostic plot before relying on the outcomes of 
HTE models.

Figure 7. (Color online) Q-Q Plot Comparing Model-Free and Model-Based CATEs for the Visit Outcome on a Large-Scale Ran-
domized Experiment Using Data from Criteo AI Laboratory 

(a) (b) (c)

Notes. The dashed black line represents a perfect estimate. The black vertical bar is the confidence interval. (a) T-learner (GBT). (b) Causal forest. 
(c) R-learner (Lasso).
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6. Practical Value of Calibration in 
Policy Design

This section demonstrates the practical value of the pro-
posed calibration procedure in enhancing policy makers’ 
utility through individual interventions in three repre-
sentative policy-making scenarios. These applications 
require navigating and reconciling heterogeneity within 
and between experiments to achieve optimal policy 
designs.

6.1. Prescriptive Framework for Budget- 
Constrained Optimal Policy Deployment

We first investigate the application of calibration in a 
general budget-constrained environment where multiple 
policy levers can optimize an organizational objective. 
This situation involves ex ante unknown individual costs 
and benefits. This broad framework, originally proposed 
by McFowland et al. (2021), finds applications in several 
public or private scenarios where decision makers aim to 
maximize utility while adhering to budget constraints. It 
encompasses two notable applications related to referral 
marketing and public policy, depicted in Example 1. This 
prescriptive analytics framework involves three steps: 
conducting multiple RCTs, using machine learning for 
HTE estimation, and applying constrained optimization. 
Our calibration method reduces bias in HTE estimates 
and enables optimization within budget constraints.

The framework operates on a sample N 1, containing 
independently and identically distributed (i.i.d.) units 
from the population of interest. For each individual i, 
we observe a D-dimensional vector of covariates Xi 2 X . 
The decision maker has a collection of J treatments and 

must determine the assignment of each binary indicator 
Wij 2 {0, 1}, where Wijà1 assigns unit i to treatment j. A 
sample N 2 of i.i.d. units from the population of interest 
P is observed. The sample observed differs from the 
samples that are used for estimating HTE (N 1 \N 2 
à ;). For each individual i, there exist unknown benefits 
(Bi(j)), costs (Ci(j)), and utilities (the difference between 
the benefit and cost: Ui(j) à Bi(j) � Ci(j)) that would be 
realized if individual i is assigned to treatment j. The 
optimization can be formulated as follows, assuming a 
decision maker’s budget of M10:

maximize : Expected utility à
XN

ià1

XJ

jà1
Ui(j)Wij,

subject to :
XN

ià1

XJ

jà1
Ci(j)Wij  M,

XJ

jà1
Wij  1, ∀i: and Wij 2 {0, 1}, ∀i, j:

(17) 

We evaluate our method using the complex linear DGP 
(Equation (14) in Section 5.2) to simulate individual cost 
and benefit from the RCT, generated independently. 
The models are trained on 50% of the population, with 
calibration performed on 25% of the population. Using 
the remaining 25% hold-out test set, we optimize policy 
assignment based on the estimated HTEs (Equation 
(17)). The realized utility is then computed using the 
ground-truth ITEs per the predicted policy. Figure 811

shows the performance comparisons based on the real-
ized utility, following the procedure of McFowland et al. 

Figure 8. (Color online) Comparison of the Realized Utility from the Prescriptive Framework in a Budget-Constrained Optimi-
zation Using Calibrated HTEs vs. Uncalibrated HTEs 

Notes. A positive value suggests that calibration can improve the realized utility for the policy makers. For all meta-learners, GBT is the base 
leaner.
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(2021). The budget constraints are set by ranking indivi-
duals based on computed utilities and assigning total 
costs corresponding to the top 0.5%–5% (with 0.5% 
increments) selected individuals as the budget. Calibra-
tion results in noticeable utility improvements across 
all meta-algorithms and causal forest, particularly for 
those using GBTs as the base learner. Notably, the causal 
forest sees the most significant utility enhancement, 
whereas the R-learner and DR-learner models sees the 
least. This correlation between the reduction in MAE 
of ITEs and the increase in policy value underscores 
calibration’s effectiveness and practical significance in 
budget-constrained optimization. Although the perfor-
mance of meta-learners using lasso regressions remains 
unchanged by calibration, our results demonstrate that 
calibration enhances the realized utility across all other 
HTE models considered.12

6.2. Multi-KPI Optimization with 
Budget Constraint

Organizations often focus on multiple key performance 
indicators (KPIs) simultaneously (Diemert et al. 2018). 
Practical decision-making problems in these domains 
involve tradeoffs (Deng and Shi 2016, Letham et al. 2019). 
For instance, evaluating the effectiveness of an advertise-
ment on Facebook or an email marketing campaign 
requires considering metrics such as reach, fan growth, 
click-through rates, and conversion rates. These KPIs 
may not always exhibit strong correlations (Morgan and 
Rego 2006). To address this, decision makers aim to 
develop optimal intervention strategies that integrate 
multiple KPIs into an overall evaluation criterion (OEC) 
framework (Kohavi et al. 2007), where the relative impor-
tance of each KPI is predefined by the policy-maker.

We adapt the framework proposed by McFowland 
et al. (2021) to this specific application. We estimate the 

treatment effects on population N 1 and implement the 
optimal policy on a different population N 2, where 
N 1 \N 2 à ;. Assuming the decision maker cares about 
a collection of Q KPIs. The platform’s utility from indi-
vidual i’s receiving treatment can be seen as an aggrega-
tion of all the KPIs: Ui à

PQ
qà1 νqbq

i wi, where wi 2 {0, 1}
denotes the treatment assignment; νq is the importance 
of KPI indexed by q, determined by the platform. Accu-
rate estimation of the ITEs for each KPI, denoted as 
{bq

i }
Q
qà1, becomes crucial in calculating the overall utility 

Ui. Additionally, the optimization problem is subject 
to a constraint C that limits the number of treated indi-
viduals. We formulate the optimization problem as 
follows:

maximize : Expected utility à
XN

ià1

XQ

qà1
νqbq

i wi

subject to :
XN

ià1
wi  C, where wi 2 {0, 1}, ∀i: (18) 

In this scenario, we use the real-world data set pro-
vided by Criteo AI Laboratory (refer to Section 5.3). We 
explore different levels of relative importance for the 
two KPIs, with values ranging from 1  νconversion

νvisit
 10. 

We ensure that the conversion is never less important 
than visit, as conversion is the more lucrative ad cam-
paign metric. These values are plugged into Equation 
(18) to optimize estimated HTEs on the test set, with C 
ranging from 1% to 5% of the test set population over 
150 iterations. We then use rejection sampling and off- 
policy evaluation (OPE)13 to calculate the realized util-
ity (Dudı́k et al. 2014), providing an unbiased estimate 
of the policy value (Equation (18)).

Figure 9 shows calibration’s impact on utility im-
provement across different νconversion

νvisit 
ratios for models 

Figure 9. (Color online) Comparison of Realized Utility from Multi-KPI Optimization Using Calibrated HTEs vs. Uncalibrated 
HTEs with Respect to Ratio νconversion

νvisit 

Notes. The darker blue color of the bars indicates higher importance of conversion in the decision-making process. The y axis represents the 
improvement in realized utility resulting from calibration, with positive values indicating an enhancement in utility for policy makers.
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like T-learner, X-learner, R-learner, and DR-learner 
using GBT base learners, with X-learner showing the 
strongest improvement. Yet, subpar performing initial 
HTE models or those generating homogeneous ITEs, 
as seen with R-learner and DR-learner models using 
lasso regression, may not benefit significantly from 
our calibration method. In examining the X-learner, we 
found significant variations in utility change based on 
the base learner used. Although GBT as a base learner 
led to a significant policy value rise (89.4%), lasso 
regression led to a small dip (less than 0.3%) compared 
with the uncalibrated model. Even though calibration 
improved the estimation of CATEs through X-learner 
with lasso regression base learners, it did a poor job 
with a subgroup of high CATE units crucial for optimi-
zation, which resulted in slightly decreased utility.

In our analysis, we considered 10 different νconversion
νvisit 

values. We observed a decrease in percentage utility 
improvement as the relative importance of visits de-
clined for T-learner, R-learner, and DR-learner, align-
ing multi-KPI optimization closer to single-KPI 
optimization. As focus shifts toward a single KPI, rank-
ing within one KPI gains importance over the accuracy 
of ITE magnitudes, adding to the academic dialogue of 
Fernández-Lorı́a and Provost (2022b) that precise HTEs 
may not be needed in all policy-making situations.

6.3. Multitreatment Uplift Modeling
Our final application pertains to multitreatment uplift 
modeling (MTUM) (Olaya et al. 2020). The objective 
of MTUM is to identify the most effective treatment 
among multiple options in order to achieve the most 
favorable outcomes. It estimates the conditional proba-
bilities of a positive outcome for each individual under 
each treatment and then identifies the treatment with 
the highest ITEs. MTUM is useful in scenarios where 
decision makers need to choose from multiple treatment 
options to maximize performance. For example, this 
could involve a marketer selecting the best personalized 
promotional message or a doctor choosing among sev-
eral alternative treatments for a patient. In line with 
the MTUM framework presented in Olaya et al. (2020), 
we consider a set of T mutually exclusive treatments, 
covariates X, and a binary outcome variable Y 2 {0, 1}. 
The objective is to identify the treatment with the great-
est effect. The optimal treatment for individual i is the 
treatment with the highest uplift. Uplift is computed 
by estimating the differences in positive response prob-
abilities between each treatment and control group 
for each individual. We use the DGP in the causalml 
Python package to generate a data set of Nà3,000 sam-
ples with Dà100 features, out of which 10 features are 
informative, whereas the remaining 90 are redundant. 
We use four metrics: Qini metric and expected response 
each at 10% and 100% of the population respectively, as 
outlined in Olaya et al. (2020). 

• Qini Metric: We calculate the Qini metric by con-
structing the uplift curve based on the ranking of indi-
viduals and measuring the cumulative difference in the 
response rate to a certain percentage of the population 
in the test set, relative to the control group (Rzepa-
kowski and Jaroszewicz 2012). The Qini metric quanti-
fies the area between the uplift curve and the curve of a 
random model. It is adapted for multiple treatments by 
considering the maximal uplift across all potential 
treatments (Olaya et al. 2020). A larger Qini index indi-
cates a more significant incremental effect from the pre-
dicted optimal treatment.

• Expected Response: Designed specifically for 
MTUM (Zhao et al. 2017b), this metric calculates the 
expected response z using the observed treatment in 
the test set, the predicted optimal treatment by the 
uplift model, the prior probability of treatment k as 
pTàk, and the observe outcome Y. Given an uplift model 
h, the individual expected response is defined as zi àPK

kà1
Yi

pTàk
I{h(xi) à k)I{T à k}, where I(·) is the 0/1 indi-

cator function. The expected response is computed as 
z à 1

N0
PN0

ià1 zi, where N0 is chosen as 10% and 100% of 
the population.

We consider all MTUM approaches outlined in Olaya 
et al. (2020).14 We provide a brief overview of these 
approaches later and additional details are in Online 
Appendix E. (1) Dummy and interactions approach (DIA) 
constructs a single predictive model using an extended 
input generated from added treatment dummy vari-
ables and interaction between the dummy and pretreat-
ment variables. Random forest and linear regression 
models with feature selection are used (Olaya et al. 
2020). (2) Separate model approach (SMA) computes the 
HTEs for each treatment and uses these estimates to 
compute the uplift of each treatment. Treatment alloca-
tion is based on uplift scores and variability. We use 
two variations, including random forest and linear 
regression models with feature selection, following 
Olaya et al. (2020). (3) Causal K-nearest neighbor (CKNN) 
identifies the optimal treatment for an individual by 
finding the K most similar individuals (Guelman et al. 
2015). (4) Contextual treatment selection (CTS) alters the 
splitting criterion in the decision tree to directly maxi-
mize the expected response—an unbiased metric in 
MTUM (Zhao et al. 2017b). We implement both uplift 
tree and uplift forest variations of CTS. (5) Naive uplift 
approach (NUA) creates separate binary uplift models 
to estimate the uplift between treatment and control 
groups (Olaya et al. 2020). We explore two variants of 
NUA methods: (i) uplift random forest, which com-
pares the probability distributions of treatment groups 
using measures such as KL divergence, chi-square, or 
squared Euclidean distance; and (ii) uplift causal condi-
tional inference forest. This leads to four variations. (6) 
Multitreatment modified outcome approach (MMOA) is 
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essentially a multiclass classification (Olaya et al. 2020). 
We use random forests and multinomial regression as 
the machine learning models for MMOA.

The data are evenly divided into training, validation, 
and test sets. All methods are trained using the training 
set. Feature selection and model selection are per-
formed on the validation set for all methods. Calibra-
tion is applied to the validation set for methods using 
uncalibrated estimated ITEs. For the uncalibrated and 
calibrated HTE models (as similar to all MTUM bench-
marks), top-performing models are selected based on 
validation set performance. The evaluation metrics 
are subsequently compared on the hold-out test set. 
Figure 10 demonstrates the varying performance of 
these methods in the MTUM application. Our results 
indicate that the calibrated HTE method performs 
the best in terms of the expected response at both 
10% and 100% of the population and in the Qini index 
at 10%. Meanwhile, the NUA method performs the 
best in the Qini index at 100%, followed by the cali-
brated HTE and the DIA approaches. It is worth not-
ing that expected response is an improved metric 
over Qini index for MTUM (Zhao et al. 2017b). This 
analysis demonstrates our method’s potential to 
outperform the methods specifically developed for 
MTUM applications.

In conclusion, we conduct a thorough analysis on 
three policy applications, showcasing the practical bene-
fits of calibration when dealing with multiple treatment 
effects. We highlight its usefulness in reconciling hetero-
geneity within and between experiments. To validate 
the versatility and reliability of our method, we use both 
continuous and binary outcomes, and we test it in a 
controlled synthetic environment and in real-world 
RCTs. Importantly, we show that calibration performs 
competitvely when compared with application-specific 
machine learning techniques developed for MTUM ap-
plications. However, it should be noted that we do not 

claim calibrated effects-based decisions are universally 
superior to application-specific benchmarks. Rather, we 
believe that an interesting area for future research is 
investigating the distinct circumstances under which 
using calibrated HTEs in downstream applications out-
performs or faces challenges when compared with CDM 
(Fernández-Lorı́a and Provost 2022b).

7. Discussion and Conclusion
Understanding HTEs provides a foundation for gain-
ing scientific insights and designing optimal policies 
in fields like IS, public policy, economics, and health-
care. Machine learning methods, often used for this 
purpose, promise potential advancements. However, 
despite their proficiency with supervised learning, 
machine learning has been less effective in estimating 
HTEs. This limitation stems from a mismatch between 
the task of interest (i.e., predicting ITEs) and the task 
for which machine learning methods excel—response 
surface modeling.

This paper shows that many existing HTE models do 
not necessarily yield calibrated causal effects in synthetic 
scenarios and in two real-world RCTs conducted by 
Facebook and Criteo AI Laboratory. This result sug-
gests a potential threat that machine learning-based 
HTE estimates pose both to interpreting experiment 
findings and to downstream applications. Undoubt-
edly, policy designs based on these biased estimates 
are not ideal. We proposed a Q-Q diagnostic plot to 
help assess whether the CATEs are calibrated. We rec-
ommend that practitioners and researchers use this 
plot to determine whether the HTE estimates are 
biased before optimizing or deploying any individual-
ized policy in practice.

To rectify the miscalibration issue of HTE models, 
we develop a simple, scalable, and effective method for 
calibrating estimates of causal effects to noisy ground- 
truth benchmarks. Our algorithm is able to provide the 

Figure 10. (Color online) Performance Evaluations Using MTUM Methods 

Notes. The larger the value, the better the performance. We conduct a two-tailed pairwise t test between a calibrated HTE model and each bench-
mark method. The alternative hypothesis of this test is that the mean of a metric computed from the calibrated HTE model is different from that 
of a benchmark. We denote the significance level of this test using asterisks ⇤, with {⇤ , ⇤⇤ , ⇤⇤⇤} corresponding to p à {0:05, 0:01,0:001}, respectively.
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BLP of the model-free subgroup effects. Our method is 
model-agnostic, easy to implement, and can substan-
tially improve the credibility of effect estimates from 
any HTE models. Owing to the simplicity and efficiency 
of our maximum likelihood estimation process, our 
method can be easily implemented in production envir-
onments. We deploy extensive simulations to elaborate 
on the underlying mechanisms of biases induced by 
the combination of response function estimates for ITE 
estimates. Beyond simulations, we illustrate how our 
method helps analyze heterogeneity in a large-scale 
experiment run on Facebook and in advertisement 
campaigns conducted by Criteo AI Laboratory. We 
demonstrate the effectiveness and broad applicability 
of our method in three applications, in relation to vari-
ous HTE methods.

Despite the promise our study holds, it also faces 
certain limitations, prompting potential directions for 
future research. First, using our method hinges on pre-
serving the rank-order of the machine learning-based 
ITE methods. Fortunately, the diagnostic Q-Q plot can 
reveal the poor performance of the HTE model in this 
regard. However, significant differences in the rank 
order of predicted and ground-truth binned subgroup 
effects would require researchers and practitioners to 
resort to alternative models or collect additional pre-
treatment covariates. In other words, our method re-
quires the initial model to be “good enough” to signal 
the underlying effect heterogeneity. If the initial model 
fails to signal underlying effect heterogeneity, our 
method will not, in general, recover signals from the 
noise. One potential approach could involve exploring 
whether stacking multiple underperforming HTE esti-
mators can deliver calibrated causal effects. Second, our 
calibration method is agnostic to the underlying HTE 
model. However, evaluating and comparing the perfor-
mance of different HTE methods across various DGPs 
and CATE functions falls outside the scope of our cur-
rent paper. It presents an intriguing avenue for future 
research to investigate and characterize the perfor-
mance of different HTE methods under varying DGPs 
and CATE functions. Third, our calibration method is 
applicable only to RCTs. An important avenue for future 
research is to explore the calibration of HTEs in obser-
vational studies when unobserved confounders exist. 
These areas represent promising avenues for future 
investigation.
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Endnotes
1 Model-agnostic here means that our approach can be applied to 
any HTE model.
2 See https://obamawhitehouse.archives.gov/precision-medicine.

3 The size of individual leaves refers to a leaf’s diameter, which is 
the length of the longest segment inside the leaf.
4 Preference over the methods can depend on various factors such as 
convenience (Fernández-Lorı́a and Provost 2022b), transparency and 
fairness (McFowland 2022), or reanalysis of existing RCTs (Eckles 
2022). CDM is ideal for convenience, whereas CEE suits the other pre-
ferences. With rapidly evolving literature on both CDM and CEE, a 
definitive comparison is beyond our paper’s scope. We refer readers 
to ongoing discussions on these methods’ merits for data-driven 
decision-making (Eckles 2022, Fernández-Lorı́a and Provost 2022c, 
McFowland 2022, Shalit 2022).
5 We overload the notation of τ̂(·). Its meaning depends on the type 
of input it receives. When τ̂(·) is a function of a set, it defines an esti-
mate of a subgroup effect. However, when τ̂(·) is a function of a 
vector, it defines an estimator of the conditional treatment effect at 
a specific value of covariates.
6 A T-learner involves training separate models for the treatment 
and control groups and calculating the treatment effect as the differ-
ence between their predictions (Künzel et al. 2019).
7 The Q-Q diagnostic plot helps to discern potential biases within 
HTE estimates based on our subgrouping method (Algorithm 1). In 
practice, practitioners can diagnose their chosen subgrouping with 
our Q-Q plot. It is important, however, to underscore that an unpro-
blematic Q-Q plot does not guarantee the absence of miscalibration 
in alternative subgroupings.
8 We adopt the T-learner to elucidate bias mechanisms for several 
reasons: First, because of its simplicity and interpretability, the 
T-learner allows a more transparent display of the mechanism. Sec-
ondly, recent meta-algorithms enhance the T-learner procedure by 
incorporating nuisance functions related to treatment assignments. 
Methods such as the X-learner (Künzel et al. 2019) and DR-learners 
(Kennedy 2023) use plug-in estimators for the treatment effect, 
which are based on a T-learner. Many methods employ plugin esti-
mation of the response functions; therefore, the bias mechanisms we 
discuss for the T-learners are also relevant for these meta-learners 
and tree-based methods. Lastly, T-learners are frequently integrated 
into the experimentation infrastructure of numerous industry firms 
due to their scalability, interpretability, and convenience (Markov 
et al. 2021).
9 We retrieved the unbiased version of the Criteo data set via https:// 
ailab.criteo.com/criteo-uplift-prediction-dataset/.
10 We can formalize Facebook’s decision in Example 3 on whether to 
implement the policy for each user as a special case of this optimization 
problem. There are two simplifications. First, in this particular applica-
tion, the cost of implementing the policy for each user on Facebook can 
be considered negligible, denoted as Cià 0 for all users i. Second, Face-
book is only evaluating one treatment option. As a result, the objective 
function can be adapted as 

PN
ià1 Biwi where Bi is the treatment effect 

estimated from RCTs for i. The constraint remains to be the same.
11 In most of our figures, we used relative terms to report the results, 
with this figure as an exception. The reason for reporting utility in 
absolute term is that the utility for the uncalibrated model may be 
negative, which renders it insensible to compute a relative change.
12 We did not compare our results with uplift models and contex-
tual bandit approaches as McFowland et al. (2021) demonstrated 
their prescriptive framework using causal forest outperforms these 
benchmarks.
13 OPE involves excluding units for which the observed treatment does 
not align with the proposed treatment under a given policy, and then 
calculating the policy value based on the remaining units. Thus, OPE 
provides an unbiased estimate of the policy value in Equation (18).
14 The repository can be accessed through https://github.com/vub- 
dl/MTUM.
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