
IMITATION BOOTSTRAPPED REINFORCEMENT
LEARNING

Hengyuan Hu
Stanford University

Suvir Mirchandani
Stanford University

Dorsa Sadigh
Stanford University

ABSTRACT

Despite the considerable potential of reinforcement learning (RL), robotics con-
trol tasks predominantly rely on imitation learning (IL) owing to its better sample
efficiency. However, given the high cost of collecting extensive demonstrations,
RL is still appealing if it can utilize limited imitation data for efficient autonomous
self-improvement. Existing RL methods that utilize demonstrations either initial-
ize the replay buffer with demonstrations and oversample them during RL training,
which does not benefit from the generalization potential of modern IL methods,
or pretrain the RL policy with IL on the demonstrations, which requires additional
mechanisms to prevent catastrophic forgetting during RL fine-tuning. We propose
imitation bootstrapped reinforcement learning (IBRL), a novel framework that
first trains an IL policy on a limited number of demonstrations and then uses it to
propose alternative actions for both online exploration and target value bootstrap-
ping. IBRL achieves SoTA performance and sample efficiency on 7 challenging
sparse reward continuous control tasks in simulation while learning directly from
pixels. As a highlight of our method, IBRL achieves 6.4× higher success rate
than RLPD, a strong method that combines the idea of oversampling demonstra-
tions with modern RL improvements, under the budget of 10 demos and 100K
interactions in the challenging PickPlaceCan task in the Robomimic benchmark.

1 INTRODUCTION

Despite achieving remarkable performance in many simulation domains (Silver et al., 2017; Vinyals
et al., 2019; Mirhoseini et al., 2021; FAIR et al., 2022), reinforcement learning (RL) has not been
widely used in solving robotics and low level continuous control problems. The main challenges of
applying RL to these continuous control problems are exploration and sample efficiency. In these
settings, reward signals are often sparse by nature, and unlike learning in games where the sparse
reward is often achievable within a maximum amount of steps, a randomly initialized neural policy
may never finish a task, resulting in no signals for learning. Even for tasks with hand-engineered
dense reward functions, RL may still need a large number of samples to converge, which hinders its
adoption in the real world where massive parallel simulation is not available.

As a result, most learning-based robotics systems largely rely on imitation learning (IL) (Brohan
et al., 2023) or offline RL (Kumar et al., 2022) with strong assumptions such as access to large spe-
cialized datasets. However, those methods come with their own challenges. Expert demonstrations
are often expensive to collect requiring access to expert operators and domain knowledge (Man-
dlekar et al., 2021). In addition, policies learned from static datasets suffer from distribution shifts
when deployed in slightly different environments. Given these challenges, online RL algorithms –
when carefully integrated with IL – can still play a valuable role in efficiently learning robot policies.

Prior RL methods primarily utilize human demonstrations in two ways. The most straightforward
one is to initialize the RL replay buffer with demonstrations and oversample those demonstrations
during training (Vecerı́k et al., 2017). While this idea can be effective, it does not benefit from the
potential generalization that IL policies may have gained beyond the limited demonstration data.
The second way is to pretrain the RL policy with human data and then fine-tune it with RL while
applying additional procedures to ensure that pretrained policy initialization does not get washed
out quickly by the randomly initialized critics. For example, Haldar et al. (2022) use an adaptive
regularization loss while Hansen et al. (2023a) also pretrain the critic and a world model on data

1

Demos
Env

μψ πθ

s

aIL aRL

QΦ

a* = argmaxa QΦ(s, a)
a {aIL, aRL}∈

Train

QΦ πθ

QΦ(st, at) rt + " maxa QΦ’ (st+1, a)
a {a , a }

←
∈

IL Policy Training Online Interaction RL Policy Training

IL
t+1

Demos

Replay Buffer

μψ
RL
t+1

Expert

Train

(Actor Proposal) (Bootstrap Proposal)

Figure 1: Overview. IBRL first trains an imitation learning policy and then uses it to propose additional actions
for RL during both online interaction (actor proposal) and training phases (bootstrap proposal). IBRL selects
the action with higher Q-values using the online and target Q-networks in the two phases respectively.

generated by the IL policy. The pretrained critic and the model-based approach are crucial to prevent
the policy from collapsing, but this is at the cost of increased computational complexity. Despite
efforts to prevent the policy from forgetting the knowledge extracted from the data, these methods
may not fully utilize the potential of the IL policy since the same policy needs to digest two datasets
of different distributions: the initial demonstrations and the data generated by RL. Additionally,
these prior methods implicitly require the IL policy to have the same architecture as the RL policy,
which limits the selection of the network architectures to use during pretraining.

Our goal is to design a sample efficient RL algorithm that can effectively utilize prior data and
autonomously self-improve. The goal is for this policy to achieve better performance than using
only IL on the prior data, and to mitigate deterioration caused by distribution shift. In this paper,
we propose Imitation Bootstrapped Reinforcement Learning (IBRL), a novel method to combine IL
and RL for sample efficient learning. IBRL first trains an imitation policy on the provided demon-
strations, and then explicitly uses this IL policy in two phases to bootstrap standard RL training.
First, both the IL policy and RL policy propose an action during the online interaction phase, and
the agent executes the action by either policy that has a higher Q-value. Second, during the training
phase of RL, the target for updating the Q-values bootstraps from the better action among the ones
proposed by either the RL or the IL policies. Additionally, similar to prior work, the replay buffer
for RL is pre-filled with the demonstrations to further accelerate learning. Fig. 1 illustrates the core
idea of IBRL, and how an IL policy is explicitly integrated in the interaction and training phase of
RL. By leveraging a standalone IL policy throughout training, IBRL benefits from the IL policy’s
generalization and consistent support for every stage as it gradually makes progress towards solv-
ing a task. Furthermore, the modular nature of IBRL allows for a flexible framework, where we
can use different architectures for each component, e.g., using different image encoders for the IL
vs. RL policy, which was not possible in prior work that usually use a single architecture for both
RL and IL. For instance, we show that the ResNet-18 image encoder (He et al., 2016) often yields
high performance when training IL, but can lead to disastrous performance in RL, while a shallower
ViT-based encoder (Dosovitskiy et al., 2020) that performs worse in IL performs much better in RL.

We evaluate IBRL on 7 sparse reward continuous control tasks: 3 increasingly difficult tasks from
Robomimic (Mandlekar et al., 2021) and 4 tasks from Meta-World (Yu et al., 2019). IBRL out-
performs two strong baselines, Reinforcement Learning from Prior Demonstrations (RLPD) (Ball
et al., 2023) and Model-based Reinforcement Learning from Demonstrations (MoDem) (Hansen
et al., 2023a). RLPD combines the idea of oversampling demonstrations with many modern sample
efficient model-free RL improvements. MoDem is a model-based approach that first pretrains the
policy, critic, and world model on demonstrations and data generated by the pretrained policy. Both
methods have previously outperformed a range of other methods, representing the state-of-the-art
among model-free and model-based methods respectively. IBRL achieves remarkable sample effi-
ciency compared to these methods on all 7 tasks. For example, when trained from raw pixel inputs,
it learns to lift a randomly positioned block with only 1 demonstration and 20K online interaction
steps. In the more complex Robomimic PickPlaceCan task, IBRL outperforms RLPD by 6.4× un-
der the budget of 10 demonstrations and 100K online interactions. Videos of sample rollouts by
IBRL are made available at https://sites.google.com/view/ibrl-anon.

2

https://sites.google.com/view/ibrl-anon

2 RELATED WORK

In this section, we provide an overview of approaches that attempt to improve the sample efficiency
of online reinforcement learning methods with and without access to prior demonstrations.

Sample-Efficient RL. A number of recent works have made significant progress in this regard from
a pure RL perspective. For instance, applying regularization to the Q-function makes it possible to
increase the update-to-data (UTD) ratio (i.e., the number of updates for every transition collected),
which leads to faster convergence and thus higher sample efficiency. RED-Q (Chen et al., 2021)
and Dropout-Q (Hiraoka et al., 2022) are two examples of methods that apply regularization to the
Q-function. These techniques use multiple Q-networks and dropout in Q-networks to reduce the
maximization bias in Q-function estimates (Thrun & Schwartz, 1993). However, using multiple
Q-networks has been primarily tested when learning from low-dimensional states due to the high
computation cost of optimizing multiple networks. When learning directly from pixel inputs, data
augmentation via random shifts (Yarats et al., 2022) can instead boost performance and sample
efficiency. We apply RED-Q and random shift data augmentation in IBRL to get a strong baseline,
and further demonstrate that IBRL can still provide significant improvements beyond these practical
strategies for improving RL sample efficiency. Additionally, in IBRL, we show that regularizing the
policy network, i.e., actor, with dropout (Srivastava et al., 2014) also accelerates convergence.

Model-Free RL with Prior Demonstrations. In addition to the techniques above, a promising
way to increase the sample efficiency of RL and help mitigate exploration challenges is to utilize
prior demonstrations. One approach that leverages demonstrations in off-policy RL is to include
the demonstrations in the replay buffer and oversample the demonstrations during training (Vecerı́k
et al., 2017; Hester et al., 2018). Several works also add regularization to keep the learned policy
similar to the prior demonstrations (Hester et al., 2018; Nair et al., 2018; Rajeswaran et al., 2018;
Rudner et al., 2021; Shah & Kumar, 2021; Haldar et al., 2022). Other methods include pre-training
visual representations on the demonstrations (Zhan et al., 2022) or pre-training the policy using of-
fline RL (Hester et al., 2018; Nair et al., 2020). Recently, Ball et al. (2023) provide a systematic
study of how off-policy algorithms can be modified to leverage demonstrations, and introduce Rein-
forcement Learning with Prior Data (RLPD), an effective approach which combines oversampling
of the demonstrations with other techniques for sample-efficiency (high UTD ratio, layer normal-
ization, Q-ensembling, and image augmentation). Given the strong performance of RLPD, we use
it as a model-free baseline in this work. Unlike prior works, we train a standalone imitation policy
based on the demonstrations and explicitly use it during training and inference.

Model-Based RL with Prior Demonstrations: Model-based RL settings typically learn a world
model (often over latent representations) simultaneously with learning the policy, and use imagined
rollouts from the world model to aid in policy improvement. Demonstrations can be incorporated
into model-based methods as well, but simply initializing the policy via behavior cloning is not
performant if the world model or critic is not also pre-trained. Therefore, Hansen et al. (2023a)
introduce MoDem, a model-based RL method that uses demonstrations to pre-train a policy via
behavior cloning and also pre-trains the world model and critic using demonstrations seeded from
BC policy. MoDem compares favorably to model-free and model-based methods which incorporate
demonstrations (Rajeswaran et al., 2018; Hafner et al., 2021; Seo et al., 2022; Zhan et al., 2022),
and so we use MoDem as a model-based baseline. Like MoDem, our method trains an IL policy
on a small budget of demonstrations, but the mechanism by which we use the IL policy differs in
two ways. First, we keep a standalone, fixed copy of the IL policy throughout training rather than
initializing the RL policy with it and fine-tuning it online. Second, our method uses the IL policy
to propose actions for computing the bootstrap target as well as during online interaction, unlike
MoDem which uses the IL policy to pre-train an intermediate world model. We find that our method
is more computationally efficient than MoDem while also achieving superior performance.

3 BACKGROUND

Reinforcement Learning. We consider a Markov decision process (MDP) consisting of state space
s ∈ S, continuous action spaceA = [−1, 1]d, deterministic state transition function T : S×A → S ,
sparse reward function R : S × A → {0, 1} that returns 1 when the task is completed and 0
otherwise, and discount factor γ. We experiment with both RL from pixels as well as from low-

3

Algorithm 1 Imitation Bootstrapped Reinforcement Learning (IBRL) with TD3 backbone. Major
modifications w.r.t. vanilla TD3 highlighted in blue.

1: Hyperparameters: num of critics E, num critic updates G, exploration std σ, noise clip c
2: Train imitation policy µψ on demonstrations D = {ξ1, . . . , ξn} with the selected IL algorithm.
3: Initialize policy πθ, target policy πθ′ , and critics Qϕi

, target critics Qϕ′
i

for i = 1, 2, . . . , E

4: Initialize replay buffer B with demonstrations {ξ1, . . . , ξn}
5: for t = 1, . . . , num rl steps do
6: Observe st from the environment
7: Compute IL action aIL

t ∼ µψ(st) and RL action aRL
t = πθ(st) + ϵ, ϵ ∼ N (0, σ2)

8: Sample a set K of 2 indices from {1, 2, . . . , E}
9: Take action with higher Q-value at = argmaxa∈{aRL,aIL}[mini∈KQϕi

(st, a)]

10: Store transition (st, at, rt, st+1) in B
11: for g = 1, . . . , G do
12: Sample a minibatch of N transitions (s(j)t , a

(j)
t , r

(j)
t , s

(j)
t+1) from B

13: (Optional) Augment the minibatch with M transitions from successful episodes
14: Sample a set K of 2 indices from {1, 2, . . . , E}
15: For each element j in the minibatch, compute target Q-value

y(j) = r
(j)
t + γ max

a′∈{aIL,aRL}

[︃
min
i∈K

Qϕ′
i
(st+1, a

′)

]︃
aIL ∼ µψ(st+1) and aRL = πθ′(st+1) + clip(ϵ,−c, c)

16: Update ϕi by minimizing loss: L(ϕi) = 1
N

∑︁
j [y

(j)−Qϕi
(s

(j)
t , a

(j)
t)]2 for i = 1, . . . , E

17: Update target critics ϕ′i ← ρϕ′i + (1− ρ)ϕi for i = 1, . . . , E
18: end for
19: Update θ with the last minibatch by maximizing 1

N

∑︁
j mini=1,...,E Qϕi(s

(j)
t , πθ(s

(j)
t))

20: Update target actor θ′ ← ρθ′ + (1− ρ)θ
21: end for

dimensional states. For simplicity, we use s to generally denote the input to the policy. We use
Twin-Delayed DDPG (TD3) (Fujimoto et al., 2018; Lillicrap et al., 2016) as our RL backbone.

Imitation Learning. We assume access to a datasetD of demonstrations collected by expert human
operators. Each trajectory ξ ∈ D consists of a series of transitions {(s0, a0, r0), . . . , (sT , aT , rT)}.
The reward rt is simply 0 or 1 denoting whether a task is completed. Since the demonstrations are
collected by expert humans, we can assume that at least rT = 1. The goal of IL is often to train a
policy µψ to minimize the negative log-likelihood of data, i.e., L(ψ) = −E(s,a)∼D[logµψ(a|s)]. In
this work, we use behavior cloning (BC) with unimodal Gaussian assumption for action distribution
as our IL method for its simplicity. In BC, the training objective for the policy becomes L(ψ) =
E(s,a)∼D[µψ(s) − a]2. We note that our IBRL framework can easily accommodate more powerful
IL methods such as BC-RNN with Gaussian mixture model (Mandlekar et al., 2021).

4 IMITATION BOOTSTRAPPED REINFORCEMENT LEARNING

In this section, we first describe the IBRL algorithm. Then, we discuss two architectural improve-
ments that can be applied independently of IBRL.

The core idea of IBRL is to first use expert demonstrations to train an IL policy and then leverage
this frozen IL policy in two phases: 1) to help exploration during the online interaction phase, and
2) to help with target value bootstrapping in the Q-network training phase (as shown in Fig. 1). We
focus our discussion on off-policy RL methods since they often have higher sample efficiency by
effectively reusing past experience. Most popular off-policy RL methods for continuous control,
such as SAC (Haarnoja et al., 2018) or TD3 (Fujimoto et al., 2018), involve training Q-networks to
evaluate the action quality and training a separate policy network to generate actions with high Q-
values. Samples from the policy network are used in the two phases in Fig. 1: for online interaction
as well as target Q-value bootstrapping in training.

4

Online Interaction: Actor Proposal. In sparse reward robotics tasks, such as picking up a block,
randomly initialized Q-networks and policy networks may hardly obtain any successes even after a
long period of interactions, resulting in no signal for learning. IBRL helps mitigate the exploration
challenge by using a standalone IL policy µψ trained on human demonstrationsD. IBRL uses the IL
policy to proposes an alternative action aIL ∼ µψ(s) in addition to the action aRL ∼ πθ(s) proposed
by the RL policy at each online interaction step. Then, IBRL queries the Q-network Qϕ and selects
the action with higher Q-value between the two candidates. That is, during online interaction, IBRL
takes an action that provides the higher Q-value between the one proposed by the imitation policy
µψ and the one proposed by the RL policy πθ that is being trained:

a∗ = argmax
a∈{aIL,aRL}

Qϕ(s, a). (1)

Here, ψ, θ, and ϕ refer to the parameters of the IL policy network µψ , RL policy network πθ, and
Q-network Qϕ respectively. We refer to this phase of IBRL as the actor proposal phase.

RL Policy Training: Bootstrap Proposal. Similarly, when training the Q-networks, we can again
query the IL policy µψ to propose alternative actions aIL for computing bootstrapping targets. The
only difference is that here we use the target Q-network Qϕ′ to evaluate the RL and IL actions. This
further accelerates convergence by improving the quality of the bootstrapping targets.

Qϕ(st, at)← rt + γ max
a′∈{aIL

t+1,a
RL
t+1}

Qϕ′(st+1, a
′) (2)

The aIL
t+1 is sampled from the policy while aRL

t+1 is sampled from the target actor πθ′ . ϕ′ refers to the
parameters of the target Q-network, which is an exponential moving average of ϕ. We refer to this
second phase of IBRL as the bootstrap proposal phase.

Optionally, similar to prior work (Vecerı́k et al., 2017), we can additionally oversample the demon-
strations and successful episodes in each minibatch. Oversampling can be particularly useful if the
selected IL method does not fit the data well. In this work, we use behavioral cloning (BC) as the
IL algorithm and TD3 as the RL algorithm. Additionally, we use an ensemble of critic networks for
the bootstrap update, following Chen et al. (2021). The detailed pseudocode of the complete IBRL
method is shown in Algorithm 1. Lines 2-4 do the necessary initialization for policy, critics and
replay buffer. Then lines 6-10 correspond to interacting with the environment and line 9 specifically
corresponds to the actor proposal of IBRL. Lines 12-17 are critic updates and line 15 is the boot-
strap proposal. Finally, lines 19-20 are policy updates, which is identical to vanilla TD3. The final
output of IBRL is the hybrid policy that acts following Eq. (1).

Benefits of IBRL. IBRL’s way of integrating IL with RL has three key advantages compared to
prior model-free methods such as pretraining the policy network with human demonstrations (Haldar
et al., 2022) or initializing the replay buffer with demonstrations and then oversampling them.

First, a pretrained policy network may quickly get washed out by randomly initialized critics while
the IL policy in IBRL serves as an anchor that the hybrid IL+RL agent can fall back to throughout the
entire training process, providing consistent support for exploration at every timestep until the RL
policy finds an action that reliably outperforms the IL action in terms of the Q-value. Second, even
with limited demonstrations, the IL policy may generalize surprisingly well beyond the training data
with techniques such as data augmentation (Young et al., 2021) and using wrist cameras (Hsu et al.,
2022). As we show later, a ResNet-18 trained on 1 demonstration using wrist camera and random
shift augmentation achieves 30% success rate in the Robomimic Lift environment. By explicitly
leveraging this IL policy in both the actor proposal and bootstrap proposal phases, IBRL can benefit
from these generalization capabilities. Third, the modular design of IBRL enables easily selecting
the “best of both worlds” from an IL and RL standpoint. For example, we can use different network
architectures that are most suited for the RL and IL tasks respectively. In Section 5.3, we show that
the widely used deep ResNet-18 encoder that achieves strong performance in IL performs poorly as
the visual backbone for RL, while a shallow ViT encoder that performs worse in IL works quite well
in RL. IBRL’s modular design also makes it straightforward to integrate some powerful IL methods
such as the ones based on diffusion models (Ajay et al., 2023; Reuss et al., 2023; Chi et al., 2023)
with RL, which is an exciting direction for future research.

5

Image Patches

ViT

Patch Embeddings

pa
tc

h

channel

T

patch action proprio

ch
an

ne
l

Append Action & Proprio

ch
an

ne
l

embed

Linear

Linear +
Softmax

Σ = 1

Σ over
channels

ch
an

ne
l

embed

embed

Project & Weight

Figure 2: ViT-based Q-network with action and proprioception data appended to each feature channel.

4.1 KEY DESIGN CHOICES

Apart from the main innovations of IBRL, we present two architectural improvements, dropout in
the actor network and a ViT-based Q-network, that further increase the performance in sparse reward
control tasks considered in this paper. These techniques could also be beneficial for other methods.

Dropout in Policy Network. We use dropout (Srivastava et al., 2014) in the policy network (actor).
Hiraoka et al. (2022) have previously applied dropout to the Q-network (critic) to reduce overfitting
on the value estimate. However, to the best of our knowledge, the application of dropout in the
actor has not been well-studied before. We find that adding dropout in the actor in TD3 significantly
improves sample efficiency, even when other regularization techniques such as image augmentation
(DrQ) (Yarats et al., 2022) or Q-ensembling (RED-Q) (Chen et al., 2021) are also present. Adding
actor dropout accelerates convergence even without increasing the update-to-data (UTD) ratio (the
hyperparameter G in Line 11 in Algorithm 1), and requires negligible extra compute.

ViT-Based Q-Network. We introduce a new design for the Q-network for learning from pixels. Our
network is illustrated in Fig. 2. We first use a small 3-layer ViT (Dosovitskiy et al., 2020) to convert
the image to non-overlapping patch embeddings. Then we transpose the feature matrix and append
actions and (optionally) proprioception data to each channel. A linear layer then projects the con-
catenated channels to larger dimensional vectors and meanwhile fuses information across patches.
A separate linear projection followed by a softmax produces normalized weights along the channel
dimension for the projected embeddings. The final embedding is the weighted sum of the embed-
dings over the channel axis, which is then fed into MLPs to compute Q(s, a). Strong baselines from
prior works (Yarats et al., 2022; Hansen et al., 2023b) often use a shallow ConvNet and compress its
flattened output to a low dimensional feature vector of size F using a linear projection. Then they
append the raw action to the vector before feeding it to the MLPs. This architecture usually uses
small values for F such as 50 or 64 so that it does not overwhelm the action as the joint input for
the subsequent MLPs. However, we observe that this narrow bottleneck limits the performance of
RL, especially in complicated tasks. In comparison, our approach fuses the action with the visual
observation by appending it to each channel of the visual feature early in the pipeline, eliminating
the bottleneck structure and achieving better performance.

In Section 5, we perform detailed ablation for the two components discussed above. We also enable
these improvements for the RLPD baseline that we compare against to emphasize the contributions
from IBRL’s main innovations.

5 EXPERIMENTS

In Section 5.1, we first discuss experimental setup and baselines, with further implementation details
in Appendix E. Additionally, we plan to open-source the code. In Section 5.2, we discuss the
performance of IBRL compared to baselines. Finally, in Section 5.3, we demonstrate the benefits
of the key design decisions via ablations. Furthermore, we experimentally demonstrate the benefit
of IBRL’s modular design which enables IL and RL to use different network architectures. We also
have additional ablations on the importance of the IL policy in Appendix D.

5.1 EXPERIMENTAL SETUP AND BASELINES

Experimental Setup. We evaluate IBRL on 3 tasks of increasing difficulty from the Robomimic
benchmark (Mandlekar et al., 2021) and 4 randomly chosen tasks from Meta-World (Yu et al.,

6

0 20 40 60 80 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Lift (Pixel)

0 50 100 150 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (Pixel)

0 200 400 600 800
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (Pixel)

0 20 40 60 80 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Lift (State)

IBRL w/ 1 demo
RLPD+ w/ 1 demo
RLPD+ w/ 2 demo

0 50 100 150 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (State)

IBRL w/ 10 demos
RLPD+ w/ 10 demos
RLPD+ w/ 20 demos

0 100 200 300 400
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (State)

IBRL w/ 50 demos
RLPD+ w/ 50 demos
RLPD+ w/ 100 demos

Figure 3: IBRL vs. RLPD+ using 1× and 2× expert demonstrations on Robomimic. We show results for
both pixel- and state-based RL using the same pixel-based BC policy for each environment. IBRL significantly
outperforms RLPD+ in all cases. It also outperforms RLPD+ when RLPD+ has twice as many demonstrations.
The gray dashed lines are the average performance of BC policy used in IBRL.

2019). All of the experiments use sparse reward functions that return 1 when the task is com-
pleted and 0 otherwise. We experiment with RL from both pixel observations and low-dimensional
states in Robomimic and from pixel observations in Meta-World. Both state- and pixel-based RL
in Robomimic use the same pixel-based BC policy for easy comparison. The 3 Robomimic tasks
are Lift, PickPlaceCan (Can) and NutAssemblySquare (Square). For the Robomimic experiments,
we set D to consist of subsets of the proficient teleoperator demonstration datasets collected by
Mandlekar et al. (2021), and use 1 demonstration for the simple Lift task, 10 demonstrations for
the intermediate Can task and 50 demonstrations for the challenging Square task. The Meta-World
environments are Assembly, Box Close, Coffee Push, and Stick Pull. For these environments, we
set D to consist of 3 demonstrations generated by the scripted expert policies from Yu et al. (2019).

Baselines. For Robomimic tasks, we compare against RLPD (Ball et al., 2023), which is a model-
free method that oversamples the demonstrations when training the Q-function. Additionally, we
compare against pretraining with BC and finetuning with BC-regularized RL in Appendix A and
SQIL (Reddy et al., 2020) in Appendix B. For RLPD, we use our own implementation denoted as
RLPD+, which uses the same TD3 backbone, actor dropout, and the ViT-based Q-network as IBRL
to ensure a strong baseline and fair comparison. Since D consists of a small number of demonstra-
tions in several of our experiments, we also dynamically expand the datasets with successful online
rollouts in the RLPD+ baseline to prevent overfitting. In Appendix C, we demonstrate that these
modifications make RLPD+ a significantly stronger baseline than the vanilla RLPD.

For Meta-World tasks, we additionally compare against MoDem (Hansen et al., 2023a) using the
open-sourced code from the authors without modification. MoDem is a model-based method con-
sisting of 3 phases. It first pretrains an encoder and a policy head with BC using demonstrations.
Then it pretrains a latent dynamics model, a reward prediction head, and a Q-function head with
the demonstrations as well as rollouts generated by the pretrained policy. Finally, it finetunes all
components jointly using data generated by planning algorithms named TD-MPC (Hansen et al.,
2022). We regenerate the demonstrations in two resolutions using the scripted expert policies from
Yu et al. (2019) since our networks operate on a different resolution than MoDem. We reduce the
number of demonstrations from 5 in original MoDem to 3 as we find that the demonstrations we
generate are easier for BC to learn from. Our rerun of MoDem performs similarly or better than the
original results reported in their paper despite using fewer demonstrations.

5.2 EXPERIMENTAL RESULTS

In this section, we detail how IBRL performs relative to the baseline methods on each environment.

Results on Robomimic: Fig. 3 shows the performance of IBRL compared to RLPD+ on the
Robomimic tasks. This comparison highlights the algorithmic benefits of IBRL by abstracting away

7

Environment Lift Can Square

Human 48.3 116.0 150.8
BC (Pixel) 78.0 134.6 155.8
IBRL (Pixel) 16.1 67.4 68.7

Speed up 3× 1.7× 2.2×IBRL vs Human

Table 1: Mean episode length of human demonstra-
tions and BC and IBRL rollouts trained from pixels.
On average, IBRL rollouts contain 2.3× fewer steps.

IBRL
54 Steps

Human
127 Steps

Figure 4: Samples of human demonstration and IBRL
rollout for Can.

0 50 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Assembly

0 50 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Box Close

0 50 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Coffee Push

0 50 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Stick Pull

IBRL IBRL Basic MoDem RLPD+

Figure 5: IBRL vs. MoDem vs RLPD+ on Meta-World. IBRL outperforms both MoDem and RLPD+ on all
4 tasks. Additionally, IBRL takes 3.2 hours to train while MoDem takes 16.7 hours on the same hardware,
making IBRL 5.2× faster in wall-clock time. The dashed lines are the average score of BC policies in IBRL.

our design choices as both methods share the same architecture and hyperparameters. In Robomimic
tasks, IBRL significantly outperforms RLPD+ in both pixel- and state-based experiments and it even
outperforms RLPD+ trained on twice as many demonstrations. In the Can task, IBRL learns to solve
the task with 100K samples, outperforming RLPD+ by 6.4× with the same dataset D and inter-
action budget. These results show that integrating an IL policy into RL using IBRL significantly
improves sample efficiency compared to simply adding and oversampling demonstrations from the
replay buffer. In Appendix A, we show that IBRL outperforms another common baseline that first
pretrains the policy with BC and then finetunes it with BC regularized RL. Most notably, IBRL per-
forms better without the need to tune any hyperparameter to balance BC and RL while the baseline’s
performance varies significantly under different regularization schedule.

Apart from the main takeaway that IBRL outperforms RLPD+, we also note a few interesting ob-
servations. In Lift and Can, pixel-based RL exhibits better sample efficiency for both methods.
This is likely due to the combination of random-shift data augmentation and the use of wrist cam-
era (Hsu et al., 2022), which jointly impose a strong inductive bias for pick-and-place style tasks. In
Square, however, it is significantly harder to learn from pixels. Square requires both pick-and-place
skills as well as precise control for aligning objects from close-up. Therefore, parts of the state are
sometimes occluded, and it may require a more holistic representation from multiple camera views.
Additionally, despite achieving better results than baselines, IBRL’s performance on Square is also
affected by the fact that BC with unimodal Gaussian does not perform well on this task (Mandlekar
et al., 2021). Lastly, we demonstrate the benefit of using RL as opposed to just imitating the demon-
strations, by comparing the length of trajectories rolled out from IBRL vs. human demonstrations.
In Table 1, we show that the converged RL policies complete the tasks using an average of 2.3×
fewer steps than the demonstrations, while the BC policy generally requires more steps than the
human. Fig. 4 qualitatively shows the difference between efficiency of trajectories from IBRL vs.
sample trajectories from a human demonstrator given the same environment initialization.

Results on Meta-World: Fig. 5 shows the results of IBRL, MoDem and RLPD+ on 4 Meta-World
tasks. We also include IBRL Basic, a variant of IBRL with neither actor dropout nor ViT-based
Q-network, for fair comparison with MoDem. IBRL Basic instead uses a shallow ConvNet encoder
widely used in prior works Yarats et al. (2021). Both IBRL and IBRL Basic outperform MoDem
as well as RLPD+ on all 4 tasks at 100K interaction steps. Remarkably, the two IBRL variants
solve all tasks with 100% success rate while MoDem cannot reliably solve 3 out of the 4 tasks. As

8

0 100 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (Pixel)

IBRL IBRL - actor proposal only IBRL w/o actor dropout IBRL w/ DrQ network

0 100 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (State)

0 250 500 750
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (Pixel)

0 200 400
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (State)

Figure 6: Ablations. IBRL - actor proposal only uses the IL policy only in the actor proposal phase, not in the
bootstrap proposal phase. IBRL w/o actor dropout sets the dropout rate in the actor to 0. IBRL w/ DrQ network
uses the architecture popularized by DrQ (Yarats et al., 2022), a strong method for pixel-based RL.

a model-free method without the overhead of planning and training a latent dynamics model, IBRL
achieves stronger performance at a considerably smaller computation cost. Specifically, IBRL takes
3.2 hours to train while MoDem takes 16.7 hours on our hardware, making IBRL 5.2× faster in
wall-clock time. The high computation cost of MoDem makes it unsuitable for complex tasks such
as Can or Square. For example, it would roughly take 150 hours to run MoDem on Square.

It is worth noting that IBRL Basic performs better than IBRL in Stick Pull, which is reasonable
considering that the Meta-World tasks are simpler and have less variations than the Can and Square
tasks from Robomimic so that more powerful networks and regularization are no longer necessary.
As we show later, the two design choices from Section 4.1 are more important in harder tasks.

5.3 ABLATIONS

Ablation of Key Components. We perform 3 ablations to show the importance of each component
in IBRL. First, we compare to a version of IBRL named IBRL - actor proposal only which only
uses the IL policy for action proposal during online interactions and does not use IL for computing
bootstrap target in training. Second, we evaluate the importance of actor dropout by comparing
IBRL to IBRL without actor dropout. Finally, we show the benefit of our ViT-based Q-network
illustrated in Fig. 2 by comparing to IBRL with DrQ network that uses the ConvNet-based network
in DrQ (Yarats et al., 2022). The results are shown in Fig. 6. We first observe that IBRL - actor
proposal only performs worse than IBRL, and that the gap is larger for the harder task. This shows
the importance of using the IL policy for both actor proposal and bootstrap proposal as the latter may
accelerate training by producing better bootstrapping targets early on in the training process. IBRL
w/o actor dropout performs significantly worse than IBRL, even when we use image augmentation
in pixel-based RL and large Q-ensembling of 5 Q-networks in state-based RL. It is also encourag-
ing that actor dropout improves performance without requiring more frequent gradient steps (i.e.,
without increasing UTD ratio), adding nearly zero computational overhead. IBRL w/ DrQ network
also performs significantly worse than the default IBRL, especially in harder tasks, which indicates
that our new ViT-based design is more scalable for complicated domains. In Appendix C, we show
that these two design choices also improves RLPD and the improvement is larger in harder tasks,
suggesting that they could be generally helpful for other methods.

0 50 100 150 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 RL Can (Pixel)

IBRL (ViT) w/ 10 demos
IBRL (ResNet) w/ 10 demos

0 20 40 60 80
Training steps (x1000)

0.0

0.2

0.4

0.6

0.8

1.0 BC Can (Pixel)

BC (ViT) w/ 200 demos
BC (ResNet) w/ 200 demos
BC (ViT) w/ 10 demos
BC (ResNet) w/ 10 demos

Figure 7: Performance of 3-layer ViT vs. ResNet-
18 in RL and BC on Can. For BC, we show success
when trained on 10 and 200 demonstrations. ResNet-
18 is better for BC but significantly worse for RL.

Benefit of Decoupled IL and RL in IBRL. In
IBRL, the IL and RL components are completely
decoupled, allowing each to take advantage of the
architectures that are most suitable for them re-
spectively. In our experiments, for example, we
always use ResNet-18 for IL and ViT for RL.
As shown in Fig. 7, the ResNet-18 that has been
widely used in IL completely fails in RL. Note
that we have replaced the BatchNorm (BN) in
ResNet with GroupNorm (Wu & He, 2018), as it
is a known issue that BN leads to instability in
RL (Kumar et al., 2022), especially with moving
average target networks. On the other hand, Fig. 7
also shows that the ViT backbone used in RL per-
forms worse than ResNet in BC in both limited data and sufficient data regime. This suggests that

9

RL and BC benefit from different inductive biases for the underlying networks. IBRL supports using
the most suitable architectures for IL and RL thanks to its modular design.

6 CONCLUSION AND FUTURE WORK

We present IBRL, a novel way to use human demonstrations for sample efficient RL by first training
an IL policy and using it in RL to propose actions in both online interaction and bootstrap target
computation. We show that IBRL outperforms prior SoTA methods by a large margin across 7 tasks,
including complex tasks such as Can and Square. While we instantiated IBRL with specific choices
of IL and RL algorithms, the framework is general and can in principle be used to combine any IL
method and off-policy RL method. It would be an exciting direction for future research to extend
IBRL to take advantage of recent IL advancements such as diffusion policies (Reuss et al., 2023;
Chi et al., 2023) or learning with hybrid actions (Belkhale et al., 2023) for even better performance.

7 ACKNOWLEDGMENT

This project was sponsored by JP Morgan Faculty Award, NSF Awards 2125511 and 1941722, the
Office of Naval Research (ONR) and the Toyota Research Institute.

10

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Philip J. Ball, Laura M. Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement
learning with offline data. In International Conference on Machine Learning (ICML), 2023.

Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Hydra: Hybrid robot actions for imitation learning.
In Conference on Robot Learning (CoRL), 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent
Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. RT-1: Robotics Transformer for Real-World Control at Scale. In Proceedings
of Robotics: Science and Systems (RSS), 2023.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-
learning: Learning fast without a model. In International Conference on Learning Representa-
tions (ICLR), 2021.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. In Proceedings of
Robotics: Science and Systems (RSS), 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations (ICLR), 2020.

FAIR, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried,
Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath,
Minae Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya Renduchin-
tala, Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David Wu, Hugh Zhang,
and Markus Zijlstra. Human-level play in the game of “diplomacy” by combining language mod-
els with strategic reasoning. Science, 378(6624):1067–1074, 2022.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning (ICML), 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), 2018.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations (ICLR), 2021.

Siddhant Haldar, Vaibhav Mathur, Denis Yarats, and Lerrel Pinto. Watch and match: Supercharging
imitation with regularized optimal transport. In Conference on Robot Learning (CoRL), 2022.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In International Conference on Machine Learning (ICML), 2022.

Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, and Aravind Rajeswaran.
MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations. In
International Conference on Learning Representations (ICLR), 2023a.

11

Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran, Hao Su, Huazhe
Xu, and Xiaolong Wang. On pre-training for visuo-motor control: Revisiting a learning-from-
scratch baseline. In International Conference on Machine Learning (ICML), 2023b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on Computer vision and Pattern Recognition (CVPR), 2016.

Todd Hester, Matej Vecerı́k, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou, Joel Z.
Leibo, and Audrunas Gruslys. Deep Q-learning from demonstrations. In AAAI Conference on
Artificial Intelligence, 2018.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout Q-functions for doubly efficient reinforcement learning. In International Conference on
Learning Representations (ICLR), 2022.

Kyle Hsu, Moo Jin Kim, Rafael Rafailov, Jiajun Wu, and Chelsea Finn. Vision-based manipulators
need to also see from their hands. In International Conference on Learning Representations
(ICLR), 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Aviral Kumar, Anika Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-Training for Robots: Offline RL Enables Learning New Tasks in a Handful
of Trials. Robotics: Science and Systems (RSS), 2022.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), International Conference on Learning Representations (ICLR),
2016.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In Conference on Robot Learning (CoRL), 2021.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srini-
vasa, William Hang, Emre Tuncer, Quoc V Le, James Laudon, Richard Ho, Roger Carpenter, and
Jeff Dean. A graph placement methodology for fast chip design. Nature, 594(7862):207–212,
2021.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In International Conference
on Robotics and Automation (ICRA), 2018.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv:2006.09359, 2020.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

Siddharth Reddy, Anca D. Dragan, and Sergey Levine. {SQIL}: Imitation learning via reinforce-
ment learning with sparse rewards. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=S1xKd24twB.

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal conditioned imitation
learning using score-based diffusion policies. In Robotics: Science and Systems, 2023.

Tim G. J. Rudner, Cong Lu, Michael A. Osborne, Yarin Gal, and Yee Whye Teh. On Pathologies
in KL-Regularized Reinforcement Learning from Expert Demonstrations. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

12

https://openreview.net/forum?id=S1xKd24twB

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning (CoRL),
2022.

Rutav M. Shah and Vikash Kumar. RRL: resnet as representation for reinforcement learning. In
Marina Meila and Tong Zhang (eds.), International Conference on Machine Learning (ICML),
2021.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Master-
ing the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research (JMLR), 15(1):1929–1958, 2014.

Sebastian Thrun and A. Schwartz. Issues in using function approximation for reinforcement learn-
ing. In M. Mozer, P. Smolensky, D. Touretzky, J. Elman, and A. Weigend (eds.), Proceedings of
4th Connectionist Models Summer School. Erlbaum Associates, June 1993.

Matej Vecerı́k, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin A. Riedmiller. Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse rewards. arXiv:1707.08817,
2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Sil-
ver. Grandmaster level in starcraft II using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International Conference on Learning Representa-
tions (ICLR), 2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. In International Conference on Learning
Representations (ICLR), 2022.

Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, and Lerrel Pinto.
Visual imitation made easy. In Conference on Robot Learning (CoRL), 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019.

Albert Zhan, Ruihan Zhao, Lerrel Pinto, Pieter Abbeel, and Michael Laskin. Learning visual robotic
control efficiently with contrastive pre-training and data augmentation. In International Confer-
ence on Intelligent Robots and Systems (IROS), 2022.

13

A COMPARISON WITH REGULARIZED RL FINE-TUNING ON ROBOMIMIC

0 25 50 75 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Lift (Pixel)

0 50 100 150 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (Pixel)

0 200 400 600 800
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Sqaure (Pixel)

IBRL
Pt-Ft (alpha=0.1, fixed lambda)

Pt-Ft (alpha=0.2, fixed lambda)
Pt-Ft (alpha=0.2, dynamic lambda)

Figure 8: IBRL vs Pretraining with BC and finetuning with BC-regularized RL (Pt-Ft) on pixel-based
Robomimic tasks. Here we show Pt-Ft with the best three configurations for the regularization weight α found
through hyper-parameter tuning. IBRL outperforms all of them on the more complex Can and Square tasks
without the need to tune any extra hyper-parameters.

A popular baseline in the IL+RL community is to first pretrain the policy with BC and then finetune
it with RL. We refer to this method as Pt-Ft (pretrain-finetune). During RL finetuning, an additional
BC term is added to the policy loss to prevent the catastrophic forgetting caused by bad initial
critics (Nair et al., 2018). Specifically, the actor loss becomes

π = argmax
π

E(s,a)∼Dr
Q(s, a)− αλ(π)E(s,a)∼Dd

||a− π(s)||2, (3)

where Dr is the RL replay buffer, Dd is the demonstration dataset, α is hyperparameter controlling
the weight of the regularization and λ(π) is an optional schedule for the weight. We sweep over
a range of αs and experiment both fixed λ = 1 and dynamic λ scheduling using soft-Q filtering
from Haldar et al. (2022) where the relative strength between the pretrained policy πBC and the
online RL policy πRL is used to adjust the regularization weight. Specifically, in the dynamic case

λ(π) = E(s,a)∼Dr
1[Q(s, πBC(s)) > Q(s, πRL(s))]. (4)

Fig. 8 shows the performance of Pt-Ft in comparison with IBRL. Pt-Ft uses the same ViT-based
network and actor dropout as IBRL for fair comparison. We experimented with a wide range of α
and show the top three best performing values. In the simplest Lift task, both methods solve it with
high sample efficiency. On the harder tasks, however, IBRL outperforms the best Pt-Ft configuration
in terms of both sample efficiency and final performance. IBRL has two main advantages over Pt-Ft.
First, it completely decouples IL from RL, allowing IL to use much powerful networks, such as the
deep ResNet-18 used in this paper. As shown in Fig. 7, BC with deep ResNet outperforms BC using
the ViT architecture from RL. Second, it does not require any extra tuning on the regularization,
the contribution from IL and RL polices are balanced automatically by the Q-function during both
online interaction and training.

B COMPARISON WITH SQIL ON ROBOMIMIC

SQIL (Reddy et al., 2020) is a reinforcement learning with human demonstration method consist-
ing of three parts. First, it pre-fills the replay buffer with demonstrations and label all frames with
+1 reward. Second, it interacts with the environment and label all new interactions with 0 reward.
Third, during RL training, it samples 50% of the data from the demonstrations and 50% from online
interactions. We implement SQIL as an additional baseline. Our implementation of SQIL uses the
exact same network architecture as IBRL and uses the same TD3 backbone. Results for SQIL in
comparison with IBRL and RLPD+ are shown in Fig. 9. Given the limited amount of demonstration
data, SQIL does not perform well. SQIL and RLPD share the similar strategy of adding demonstra-
tions to the replay buffer and oversampling them during training. However, SQIL performs worse
than RLPD because it does not utilize the success/failure signal from the environment.

14

0 25 50 75 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Lift (Pixel)

0 50 100 150 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (Pixel)

IBRL RLPD+ SQIL

Figure 9: Performance of IBRL, RLPD+ and SQIL on Lift and Can from Robomimic. With limited amount
demonstration data considered in this paper (1 for Lift and 10 for Can), SQIL fails to solve both tasks. All
methods use 1 demonstration for Lift and 10 demonstrations for Can.

C COMPARISON BETWEEN RLPD+ AND RLPD

0 20 40 60 80 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Lift (Pixel)

0 50 100 150 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (Pixel)

0 200 400 600 800
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (Pixel)

0 20 40 60 80 100
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Lift (State)

RLPD+ w/ 1 demo
RLPD w/ 1 demo

0 50 100 150 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (State)

RLPD+ w/ 10 demos
RLPD w/ 10 demos

0 100 200 300 400
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (State)

RLPD+ w/ 50 demos
RLPD w/ 50 demos

Figure 10: RLPD+ vs. RLPD on Robomimic. RLPD+ significantly outperforms RLPD in all scenarios except
for Can (Pixel), where two methods perform similarly.

As mentioned in Section 5.1, our implementation of RLPD, namely RLPD+, integrates the same
modifications used by IBRL. In both image- and state-based RL, RLPD+ uses actor dropout and
dynamically grows the oversampling dataset by adding successful online episodes to the dataset. In
image-based RL, RLPD+ uses the same ViT-based Q-network proposed in Section 4.1. We conduct
experiments to show that the baseline how these modifications affect the baseline. As shown in
Fig. 10, RLPD+ significantly outperforms RLPD in 5 out of the 6 scenarios evaluated and performs
equally well with RLPD on the remaining one. This experiment not only further strengthens the
advantages of IBRL since it outperforms a strong, properly tuned baseline, but also shows that the
design choices proposed in Section 4.1 can be generally beneficial for other methods beyond IBRL.

D IMPORTANCE OF IL POLICY IN IBRL AT CONVERGENCE

An interesting ablation is to understand if we still need the IL policy at evaluation time and how
many actions of IBRL come from the IL policy versus the RL policy. In Fig. 11, we evaluate the
performance of IBRL’s RL policy when used as a standalone policy. Note that both curves from each
plot are from the exact same training runs using the full IBRL algorithm. The only difference is in

15

evaluation where “IBRL RL policy only” unrolls the RL policy while “IBRL RL + IL policy” unrolls
both RL and IL policies and selects the better action from the ones proposed by them following the
original IBRL inference rule. From the plots we can see a noticeable gap between the performance
of the RL policy versus the IBRL hybrid policy that takes the better action among the ones proposed
by RL and IL. The IBRL hybrid policy always performs no worse than the underlying RL policy.
In Fig. 12, we show how often the IL action gets selected during evaluation as training progresses.
The percentage of actions from IL generally starts from a low value, likely because the initial Q-
networks are easy to exploit and so the RL policy can quickly find actions that have falsely high
Q-values. Then, IBRL quickly fixes those errors of the Q-networks and starts to select many more
actions from the IL policy. As the training progresses, the RL policy is able to either replicate the
good actions from IL or find even better actions, leading to a steady decrease of the usage of the IL
actions. From Fig. 11 and Fig. 12, it is interesting to know that the IL policy still plays an important
role in IBRL even after convergence.

0 100 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (Pixel)

IBRL - RL+IL policy IBRL - RL policy only

0 100 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (State)

0 500 1000
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (Pixel)

0 200 400
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (State)

Figure 11: Performance of the RL policy in comparison with the hybrid RL + IL policy in IBRL. Note that the
two curves in each plot are from the exact same training runs. The IBRL - RL policy only unrolls only the RL
policy during evaluation while the IBRL RL + IL policy unrolls both policies and select action following the
IBRL rule.

0 100 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (Pixel)

0 100 200
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Can (State)

0 500 1000
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (Pixel)

0 200 400
Interaction steps (×1000)

0.0

0.2

0.4

0.6

0.8

1.0 Square (State)

IBRL

Figure 12: The percentage of actions from IL policy during evaluation of IBRL. IBRL still selects decent
amount of actions (∼ 20%) from the IL policy at convergence.

E IMPLEMENTATION DETAILS AND HYPERPARAMETERS

In this section we cover the implementation details on BC and RL training in IBRL.

The BC policies use a ResNet-18 encoder followed by MLPs. The output of the ResNet encoder
is flattened and then fed into the MLPs. For all the ResNet encoders used in this paper, we replace
the BatchNorm layers in ResNet with GroupNorm (Wu & He, 2018; Kumar et al., 2022) and set the
number of groups equal to the number of input channels so that we can use the same network for
both RL and BC since BatchNorm does not work well in RL. We train the BC policies for 100K
steps with batch size of 256 using Adam optimizer (Kingma & Ba, 2015) with learning rate of 1e−4.
We use random-shift data augmentation to prevent overfitting. As shown in the right panel of Fig. 7,
the performance of BC policies is stable during training and we randomly pick a checkpoint among
the top-3 checkpoints measured by evaluation score. For the Lift, Can, we use only the wrist camera
image for simplicity. For the Square environment, we use the third-person camera view (agentview)
as well as proprioception data because the wrist camera may not capture the goal location in this task.

16

In all Meta-World environments, we use the same camera view as our baseline MoDem. However,
unlike MoDem, we do not use proprioception data for simplicity.

For RL, we experiment with both learning from pixel observations and learning from low-
dimensional state observations. However, both state- and pixel-based RL use the same pixel-based
BC policy for easy comparison. For image-based RL, we follow the setup of Yarats et al. (2022)
closely except that we use a target actor network, actor dropout, and the ViT-based encoder as shown
in Fig. 2. The ViT encoder is shared between actor and critics while only the gradient from critic
updates is used to update the encoder. We use E = 2 critic heads and set the critic update rate to
G = 1. The pixel-based RL takes the same camera view as the BC policy in each environment. For
state-based RL, we use Q-ensembling (RED-Q) with E = 5 and a higher UTD ratio G = 5 as we
find this combination achieves good sample efficiency.

We use actor dropout with p = 0.5 in all environments. We set batch size to be 256 and Adam
optimizer with learning rate 1e−4 in all experiments. For Lift, Can, and all Meta-World tasks, all 256
samples are drawn uniformly from the replay buffer. We find that oversampling no longer improves
sample efficiency under IBRL for these simple to intermediate tasks. However, for the difficult
Square task, we use oversampling in IBRL similar to prior methods where 128 samples are drawn
uniformly from the replay buffer while the remaining 128 samples are drawn from demonstrations
and successful online rollouts. We do not use action repeat for Robomimic tasks. In Meta-World,
we inherit the action repeat value from prior work for fair comparison. Please refer to Table 2 for a
comprehensive list of hyperparameters used in our experiments.

17

Parameter
Robomimic

Meta-World
Lift Can Square

Optimizer Adam

Learning Rate 1e−4
Batch Size 256

Discount (γ) 0.99

Exploration Std. (σ) 0.1

Noise Clip (c) 0.3

EMA Update Factor (ρ) 0.99

Q-Ensemble Size (E) 2 (pixel) / 5 (state)

Critic Update Rate (G) 1 (pixel) / 5 (state)

Actor Dropout Rate 0.5

Layer Norm Yes

Image Size [96, 96]

ViT Number of Layers 3

ViT Patch Size [8, 8]

ViT Number of Attn Heads 4

ViT Patch Embed Dim 128

ViT Q-network Projection Dim 1024

Critic/Actor Head Hidden Dim 1024

State-based RL only

Critic/Actor MLP Depth 3 N/A

Critic/Actor MLP Hidden Dim 512 512 1024 N/A

Number of Demonstrations 1 10 50 3

Oversample Success 0 0 0.5 0

Use Proprio No No Yes No

Action Repeat 1 2

Table 2: Hyperparameters for IBRL.

18

	Introduction
	Related Work
	Background
	Imitation Bootstrapped Reinforcement Learning
	Key Design Choices

	Experiments
	Experimental Setup and Baselines
	Experimental Results
	Ablations

	Conclusion and Future Work
	Acknowledgment
	Comparison with Regularized RL Fine-tuning on Robomimic
	Comparison with SQIL on Robomimic
	Comparison between RLPD+ and RLPD
	Importance of IL Policy in IBRL at Convergence
	Implementation Details and Hyperparameters

