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Abstract. Published research highlights the presence of demographic
bias in automated facial attribute classification algorithms, particularly
impacting women and individuals with darker skin tones. Existing bias
mitigation techniques typically require demographic annotations and of-
ten obtain a trade-off between fairness and accuracy, i.e., Pareto inef-
ficiency. Facial attributes, whether common ones like gender or others
such as "chubby" or "high cheekbones", exhibit high interclass similar-
ity and intraclass variation across demographics leading to unequal ac-
curacy. This requires the use of local and subtle cues using fine-grained
analysis for differentiation. This paper proposes a novel approach to fair
facial attribute classification by framing it as a fine-grained classification
problem. Our approach effectively integrates both low-level local features
(like edges and color) and high-level semantic features (like shapes and
structures) through cross-layer mutual attention learning. Here, shallow
to deep CNN layers function as experts, offering category predictions
and attention regions. An exhaustive evaluation on facial attribute an-
notated datasets demonstrates that our FineFACE model improves ac-
curacy by 1.32% to 1.74% and fairness by 67% to 83.6%, over the SOTA
bias mitigation techniques. Importantly, our approach obtains a Pareto-
efficient balance between accuracy and fairness between demographic
groups. In addition, our approach does not require demographic anno-
tations and is applicable to diverse downstream classification tasks. To
facilitate reproducibility, the code and dataset information is available
at https://github.com/VCBSL-Fairness/FineFACE.

Keywords: Fairness in AI · Facial Attribute Classification · Fine-grained
Features.

1 Introduction

Automated facial analysis algorithms encompass face detection, face recogni-
tion, and facial attribute classification (such as gender, race, high cheekbones,
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Fig. 1. Visualization of the attention map obtained by our proposed FineFACE over
baseline (both using ResNet50 backbone) for facial attribute classification. The highly
activated region is shown by the red zone on the map, followed by yellow, green, and
blue zones. Top: "High Cheekbones" classifier. Bottom: "Smiling" classifier.

and attractiveness) [8,31,17]. These algorithms are deeply integrated into vari-
ous sectors, such as surveillance and border control, retail and entertainment,
healthcare, and education.
Numerous existing studies [1,12,26] investigating the fairness of facial attribute
classification algorithms confirm the presence of performance disparities between
demographic groups, such as gender and race. Thus, bias in these algorithms
emerges as a significant societal issue that warrants immediate redress, par-
ticularly for the large-scale deployment of fair and trustworthy systems across
demographics. In this direction, the vision community has proposed several bias
mitigation techniques to address the performance disparities of facial attribute
classifiers. Established bias mitigation techniques utilize regularization [13], at-
tention mechanism [21], adversarial debiasing [33,3], GAN-based over-sampling
[36,25], multi-task classification [5], and network pruning [15].

These existing bias mitigation techniques often require demographically an-
notated training sets and are limited in their generalizability. Importantly, these
techniques often sacrifice overall classification accuracy in pursuit of improved
fairness, making them Pareto inefficient [36,33]. It was demonstrated in [36] that
fairness violations in vision models are largely driven by the variance component
of bias-variance decomposition. Consequently, one effective way to improve fair-
ness is by decreasing the variance within each demographic subgroup by focusing
on local and subtle cues. This can be obtained through learning enhanced fea-
ture representation for each demographic subgroup, also supported by [4,12].

Following this line of thought, enhancing feature representation for each de-
mographic subgroup is crucial in improving fairness without compromising over-
all performance. Traditional facial attribute classifiers [2,12,23,3] rely predom-
inantly on high-level discriminative and semantically meaningful information
often obtained from the final layers of the deep convolutional neural network
(CNN). However, the lower layers of the deep learning model capture (low-level)
essential features and patterns in faces vital for attribute classification, such
as (a) facial contours and edges, including the outline of the face, jawline and
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cheekbones, (b) texture of facial regions, such as skin and hair, (c) position and
shape information, and (d) lighting condition and its effect on the appearance
of facial features. Integrating low-level details from the lower layers of the model
will capture local and detailed cues in the learned feature representation.

In our quest to identify these subtle and local cues for learning enhanced fea-
ture representation, we aim to leverage fine-grained analysis, integrating both
high- and low-level features, toward fair facial attribute classification, FineFACE.
This is facilitated through a cross-layer mutual attention learning technique that
learns fine-grained features by considering the layers of a deep learning model
from shallow to deep as independent ’experts’ knowledgeable about low-level de-
tailed to high-level semantic information, respectively. These experts are trained
in leveraging mutual data augmentation to incorporate attention regions pro-
posed by other experts. An ordinary deep learning model can be considered to
use only the deepest expert (using high-level semantic information) for classifica-
tion. In contrast, our method consolidates the prediction of the categorical label
and the attention region of each expert for the final facial attribute classification
task.

Fig. 1 shows the final CAM visualization obtained by our proposed FineFACE
model based on the ResNet50 backbone, for facial attribute classification with
"high cheekbone" and "smiling" as target variable using the CelebA dataset [17].
The highly activated region is shown by the red zone on the map, followed by
yellow, green, and blue zones in the attention map. For cross-comparison, the
visualization of the baseline ResNet50 is also shown for the same classification
task. As illustrated in the maps, our FineFace model captures additional infor-
mation, such as the contours of facial regions derived from the lower layers of
the model, leading to enhanced feature representation and, hence, accurate and
fair facial attribute classification.
Contributions. In summary, the contributions of our work are as follows: (i)
We approach fair facial attribute classification from a novel perspective by refor-
mulating it as a fine-grained classification task, (ii) We propose a novel approach
based on cross-layer mutual attention learning where the prediction is consol-
idated from shallow (using low-level details) to deep layers (using high-level
semantic details) regarded as an independent experts, (iii) Extensive evalua-
tion on facial attribute annotated datasets namely, FairFace [11], UTKFace [34],
LFWA+ [17], and CelebA [18], and (iv) Cross-comparison with the existing
bias mitigation techniques, demonstrating the efficacy of our approach in terms
of significant improvement in fairness as well as classification accuracy. Thus,
obtaining state-of-the-art Pareto-efficient performance.

2 Related Work

In this section, we review the related academic literature.

Bias Mitigation of Facial Attribute Classification. Many studies have
highlighted the systematic limitations of facial attribute classification (such as
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gender, race, and age) between gender-racial groups [2,12,23]. Studies in [3,27]
reported bias of facial attribute classification for attractive, smiling, and wavy
hair as the target attributes across genders. Following this study, [36] reported
bias of gender-independent target attributes, such as black hair, smiling, slightly
open mouth, and eyeglasses, between genders. Consequently, numerous strate-
gies have been proposed to mitigate bias [22]. [5] explored the joint classification
of gender, age, and race by proposing a multi-task network. [33] included a vari-
able for the group of interest and simultaneously learned a predictor and an
adversary via adversarial debiasing. [13] leveraged the power of semantic pre-
serving augmentations at the image level in a self-consistency setting for fair
gender classification tasks. [24] introduced a framework that integrates fairness
constraints directly into the loss function using Lagrangian multipliers for fair
classification. [3] proposed "fair mixup," a data augmentation technique by in-
terpolating data points that improve the generalization of the classifiers trained
under group fairness constraints. [25] adopted structured learning techniques us-
ing deep-views of the training samples generated using GAN-based latent code
editing to improve the fairness of the gender classifier. GAN-based SMOTE
"g-SMOTE" was proposed by [36] to strategically enhance the training set for
underrepresented subgroups to mitigate bias.

Fine-grained Visual Classification. Fine-grained classification is a challeng-
ing research task in computer vision, which captures the local discriminative
features using attention learning [35,6] to distinguish different fine-grained cat-
egories. In addition to methods based on attention mechanisms, second-order
pooling methods utilize the second-order statistics of deep features to compose
powerful representations such as combined feature maps [14] and covariance
among deep features [28] for fine-grained classification. Studies have also been
proposed to use features or information learned from different layers within a
CNN backbone for fine-grained classification. [32] proposed a multi-layered De-
convnet for gaining insight into the functions of intermediate feature layers. They
discovered that shallow layers capture low-level details, whereas deep layers cap-
ture high-level information. [10] proposed the LayerCAM, which indicates the
discriminative regions used by the different layers of a CNN to predict a specific
category. Inspired by these two works, [16] proposed the CMAL-Net, which fo-
cuses on using attention regions predicted by layers of different depths to mark
the cues they learned, letting layers of varying depths to learn from each other’s
knowledge to improve overall performance.

3 Proposed Methodology

In this section, we elaborate on our proposed FineFACE model based on learning
features from different layers of the CNN using the attention mechanism and
mutual learning, following the foundational works in [32,10,16].
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Fig. 2. FineFACE network structure. This figure illustrates this method by introducing
three experts e1, e2, e3, on a 5-stage backbone CNN (e.g., ResNet50). The working of
each expert and the concatenation of experts are depicted in different colors. Each
expert receives feature maps from a specific layer as input and generates a categorical
prediction along with an attention region, which is used for data augmentation by other
experts. This architecture is trained in multiple steps within each iteration. We start
by training the deepest expert (e3), followed by the shallower experts. Finally, in the
last step, we train the concatenation of experts to enhance overall performance.

3.1 Expert Construction: Using Shallow to Deep Layers

In this subsection, the construction of experts from shallow to deep layers. Any
state-of-the-art CNNs, such as ResNet50, Res2NeXt50, etc. can be used as the
backbone CNN denoted by β. β has M layers, and {l1, l2, ..., lm, ..., lM} denote
the layers of β from shallow to deep (except the fully connected layers). {e1, e2,
..., en, ..., eN} are N experts based on these M layers. Each expert encompasses
layers from the first layer up to a certain layer such that - en consists of the
layers from l1 to lmn , and 1 ≤ mn ≤ M. The experts {e1, e2, ..., en, ..., eN}
progressively cover deeper layers of the backbone CNN, and eN , the deepest
expert, covers all layers from l1 to lM .

Let {x1, x2, ..., xn, ..., xN} denote the intermediate feature maps produced
by β for the experts {e1, e2, ..., en, ..., eN}, respectively. xn ∈ RHn×Wn×Cn and
Hn, Wn and Cn denote the height, width, and number of channels, respectively.
A set of functions {F1(.), F2(.), ..., Fn(.), ..., FN (.)} are used to respectively
compress {x1, x2,..., xn, ..., xN} into 1D vectorial descriptors {v1, v2, ..., vn, ...,
vN}, and vn ∈ RCv . Cv denotes the length of the 1D vectorial descriptors, and
these descriptors given by various experts are of the same length. The Fn(.) for
processing xn is defined as:

vn = Fn(xn) = fGMP (x
′′

n), (1)

x
′′

n = fElu(f bn(f conv
3×3×Cv/2×Cv

(x
′

n))), (2)
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x
′

n = fElu(f bn(f conv
1×1×Cn×Cv/2

(xn))), (3)

where fGMP (.) denotes the Global Max Pooling. f conv(.) depicts the 2D
convolution operation by its kernel size. f bn(.) and fElu(.) denote batch normal-
ization and Elu operations respectively. x

′

n and x
′′

n are intermediate feature maps
produced by en. Thereafter, x

′′

n ∈ RHn×Wn×Cn is used to generate the attention
region of en as described in subsection 3.2. {p1, p2, ..., pn, ..., pN} denote the
prediction scores given by different experts, obtained as pn = f clf

n (vn), where
f clf
n (.) denotes a fully connected layer-based classifier.

Apart from the prediction scores obtained by the various experts, an overall
prediction score is also generated by combining the information from different
experts. Specifically, {v1, v2, ..., vn, ..., vN} are first concatenated for an overall
descriptor voval as: voval = fconcat(v1, v2, ..., vn, ..., vN ), where fconcat(.) denotes
concatenation operation. Then voval is processed into an overall prediction score
poval by a fully connected layer-based classifier as poval = f clf

oval(voval)

3.2 Attention Region Prediction

As mentioned above, x
′′

n denotes an intermediate feature map generated by the
expert en. We move with an assumption that the classification problem is K-
class, and kn ∈ 1, 2, ..., K is the category predicted by expert en and x

′′

n ∈
RHn×Wn×Cn . The generation of the attention region proposed by en is initialized
by producing the class activation map (CAM), which specifies the discriminative
image region, for the category kn based on x

′′

n specified. The CAM Ωn (Ωn ∈

RHn×Wn) produced by the expert en is defined as: Ωn(α, β) =
cv∑
c=1

pcnx
′′c
n (α, β),

where the coordinates (α, β) denote the spatial location of x
′′

n and Ωn.pn denotes
the parameters of f clf

n (.) corresponding to the predicted category kn. Then, after
obtaining Ω, an attention map Ω̃n ∈ RHin×Win (Hin, Win are the height and
width of the input image, respectively) is generated by upsampling Ωn using a
bilinear sampling kernel. Thereafter, Ω̃n is applied with min-max normalization,
and each spatial element of the normalized attention map Ω̃norm

n is obtained by
Ω̃norm

n (α, β) = Ω̃n(α, β) - min(Ω̃n)/max(Ω̃n) - min(Ω̃n). (4)

The regions that the expert en considers discriminative can be found and cropped
by generating a mask Ω̃mask

n by setting the elements in Ω̃norm
n to 1 for values

greater than a threshold t (t ∈ [0, 1]) and 0 for the others. Then, a box that covers
all the positive regions of Ω̃mask

n is located and cropped from the input image.
The cropped region is upsampled to the input image’s size and the upsampled
attention region An is considered as the attention region predicted by en and also
as data augmentation for remaining experts. Apart from the attention regions
proposed by various experts, an overall attention region Aoval is generated by
summing up the attention information learned by different experts.
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3.3 Multi-step Mutual Learning

The experts are trained using progressive multi-step strategy with cross-entropy
loss. In the early steps, these experts are trained one by one, which allows them
to “focus on” learning the clues of their own expertise without being diverted by
other experts. In the last two steps, the experts get together to learn impactful
information from the attention regions and the raw image, respectively. Specifi-
cally, every iteration of the training takes place in N + 2 steps, and in the first
N steps, each expert is gradually trained from deep to shallow. In the first step,
the deepest expert eN is trained. Since the training of N involves the experts
shallower than eN , the attention regions proposed by all the experts and the
overall attention region {A1, A2, ..., An, ..., AN , Aoval} are also generated at
this step. These attention regions showcase the "specialized knowledge" of the
experts by highlighting the basis on which each expert made its classification.

From step 2 to N , there is a progression to shallower experts by randomly
selecting one input from a pool of images comprising of the raw input and the
attention regions proposed by the other experts. The shallow experts rely on the
attention regions proposed by deeper experts to learn semantic visual clues (e.g.,
eyes, nose, and mouth), while the deep experts take the help of shallow experts
by learning low-level visual cues (e.g., facial contours like jawline, cheekbones,
etc.) from their proposed attention regions. In step N + 1, all the experts and
their concatenation are trained with the overall attention region Aoval in one
pass. This step enforces all experts to work together and study the attention
information they have combinedly gained for learning more fine-grained features.
At step N +2, the concatenation of all the experts is trained with the raw input
to make sure the parameters of f clf

oval(.) fit the resolution of the original input.
The algorithm for the multi-step mutual learning strategy is included in Section
2 of the supplementary material.
Inference Phase: Fig. 2 illustrates the inference stage of the proposed Fine-
FACE model with N + 1 classifiers. For an input image during the inference,
N + 1 prediction scores are produced by the proposed architecture. For each
test image, the raw input and overall attention region are successively fed to the
model obtaining 2 × (N + 1) number of prediction scores. The final prediction
score for the inference is the average of the 2 × (N + 1) scores. This inference
strategy maximizes the classification accuracy as well as fairness of the trained
model due to obtaining two kinds of complementary information: (a) informa-
tion from the prediction scores from various experts and the overall prediction
score, and (b) the information from the raw input and overall attention region.

4 Experimental Details

We conducted two sets of experiments (1) a face-based gender classifier with
gender as the target attribute and race and gender as the protected attributes
following studies in [13,25].(2) 13 gender-independent facial attribute classifiers
following studies in [36,27,3] with “bags under eyes”, “bangs”, “black hair”, “blond
hair”, “brown hair”, “chubby”, “eyeglasses”, “gray hair”, “high cheekbones”, “mouth
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slightly open”, “narrow eyes”, “smiling”, and “wearing hat” as the 13 gender in-
dependent target attributes and gender as the protected attribute. We used the
mean scores of these 13 attribute classifiers, following studies in [36,27,3].

4.1 Datasets and Training Protocol

We used standard benchmark datasets widely adopted for evaluating fairness
of facial attribute classifiers [13,36,27], namely, FairFace [11], UTKFace [34],
LFWA+ [17], and CelebA [18]. In line with existing studies [13,25], a face-based
gender classifier was trained on FairFace and evaluated on FairFace, UTKFace,
LFWA+, and CelebA (40 attributes). Unlike UTKFace and LFWA+, CelebA
does not have race annotations. Hence, we used only the gender attribute for
CelebA. For the 13 gender-independent facial attribute classifiers, we used the
CelebA (40 attributes) dataset for training and validation. For the fair com-
parison with the existing studies on fairness [36,27,3], we used only 13 gender-
independent attributes from CelebA. Note that protected attribute annotation
information is not used during the model training stage, but solely for the pur-
pose of fairness evaluation of the facial attribute classifiers. Additional details
on these datasets are given in Table 1

Dataset Images Demographic groups

FairFace 108K White, Black, Indian, Asian,
Southeast Asian, Middle Eastern, Latino Hispanic

UTKFace 20K White, Black, Indian, Asian, Others
LFWA+ 13K White, Black, Indian, Asian, Undefined
CelebA 202K Not Available (only gender information available)

Table 1. Dataset details including the number of images and demographic groups

4.2 Implementations Details

For a fair comparison with studies in [36,12,25], we utilized ResNet50 [9] as our
method’s backbone CNN architecture. The layers of ResNet50, excluding the
fully connected layers, are grouped into 5 stages where each stage is a group of
layers operating on feature maps of the same spatial size. We use these stages as
building blocks for our experts: e1 encompasses layers from stage 1 to stage 3,
e2 encompasses layers from stage 1 to stage 4, and e3 encompasses layers from
stage 1 to stage 5. In general, the number of stages in a model can be determined
by grouping layers operating on the feature maps of the same spatial size, and
accordingly, experts can be formed.

We trained all the models used in this study using Stochastic Gradient De-
scent (SGD) with the number of epochs determined using an early stopping
mechanism, the momentum of 0.9, weight decay of 5 × 10−4, and a mini-batch
size of 16 determined using empirical evidence. The learning rate was set as 0.002
with cosine annealing [19]. We fixed the input image size as 448× 448, following
the common settings in existing fairness studies [7,20]. The threshold t, which is
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used to generate a mask for the attention region, was set to 0.5 (see Section 3.2).
We also conducted an ablation study of the related design choices (a) different
pooling methods for building experts, and (b) the contribution of fusing the pre-
diction scores. See ablation studies in Section 3 of the supplementary material
for more details.

4.3 Evaluation Metrics

For the gender classifier, the standard evaluation metrics, namely, classification
accuracy, Max-Min ratio (the ratio of the best and worst performing subgroups),
and Degree of Bias (DoB) (standard deviation of accuracy) are used for fair
comparison with the existing studies [13,25,33,5] on bias evaluation of gender
classifier. As a fair model is supposed to have consistent accuracies across all
subgroups, this implies that a fair model would have a max-min accuracy ratio
closer to 1 and a DoB closer to 0.

For gender-independent facial attribute classifiers, following the studies in
[36,27,3], we used classification accuracy, True Positive Rate (TPR), Difference
of Equal Opportunity (DEO) and Difference in Equalized Odds (DEOdds) where
Equal Opportunity (EO) requires a classifier to have equal TPRs on each sub-
group and a violation of this equal opportunity is measured by the DEO. DE-
Odds measures the absolute difference in the probability of correctly predicting
the positive class between the subgroups for each actual outcome, summed over
all possible outcomes [36,3,27]. Furthermore, we also analyzed the maximum
group accuracy and the minimum group accuracy associated with the best and
worst performing demographic subgroups, respectively. A model that can main-
tain or improve accuracy and TPR while reducing DEO and DEOdds would be
an ideal classifier in terms of enhancing accuracy as well as fairness.

5 Results

5.1 Face-based Gender Classification

In this section, we will discuss the performance and fairness of the face-based
gender classifier across gender-racial groups.

Intra-Dataset Evaluation: Table 2 shows the performance of the baseline
ResNet50 model and our proposed FineFACE model in gender classification
when trained and tested on the FairFace dataset. As can be seen, our proposed
FineFACE model reduced the Degree of Bias (DoB) and the Max-Min accuracy
ratio by approximately 86% and 13%, respectively, over the baseline. At the
same time, the overall classification accuracy improved by about 3% over the
baseline ResNet50 model. Note, we also evaluated and compared performance
of the baseline DenseNet architecture over FineFACE using DenseNet backbone
for gender classification. The experimental results demonstrated the efficacy of
FineFace in improving accuracy and fairness over the baseline DenseNet archi-
tecture. Thus, highlighting the importance of systematic construction of experts
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from shallow to deep layers followed by attention region prediction and multi-
stage learning by FineFACE over feature reuse between shallow to deep layers
by the baseline DenseNet. More details on the experimental results are given in
Section 1.1 of the supplementary material.

Fig. 3. Visualization Results of Gender Classifier. Left through right in each set of
images are the input image from FairFace dataset, visualization results based on our
FineFACE method’s 3 experts (Ω̃norm

1 , Ω̃norm
2 , Ω̃norm

3 ), and our method’s final visu-
alization (Ω̃norm

oval ), versus a basic ResNet50 architecture’s final visualization (Ω̃norm
ori ).

Our FineFACE captures a more comprehensive feature representation of the image,
thereby enhancing fairness as well as accuracy.

Cross-Dataset Evaluation: Table 3 shows the results of the baseline ResNet50
and our proposed FineFACE, based on ResNet50 backbone when trained on Fair-
Face and evaluated on UTKFace and LFWA+ datasets. Our model significantly
reduced the bias of the gender classifier by reducing DOB by approximately
55% and 77%, and Max-Min ratio by 18% and 17% over the baseline even on
the cross-dataset evaluation, respectively. Overall, performance degradation of
the classifiers is minimal on cross-dataset evaluation except for the UTKFace
dataset due to poor quality samples majorly showing age progression. Table 4
shows the results on the CelebA test set. Our model reduced DOB by approx-
imately 41% and Max-Min ratio by 2%. These results demonstrate the efficacy
of our model in significantly reducing bias as well as improving accuracy even
on the cross-dataset evaluation.

Fig. 3 shows the visualization of the attention map learned by the ResNet50-
based FineFACE and the baseline ResNet50-based gender classifier. For proposed
FineFACE, we generate 4 heatmaps for each image, i.e., Ω̃norm

1 from expert 1,
Ω̃norm

2 from expert 2, Ω̃norm
3 from expert 3 and Ω̃norm

oval which is the aggregation
of the three experts’ heatmaps and is used for the final prediction (refer to
Section 3.2). The maps generated by Expert 1 show a focus on low-level features
such as edges, evident from the scattered attention across the face, capturing
details such as the outline of the face, eyes, nose, and mouth. The maps generated
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by Expert 3 have more concentrated attention on key facial regions that are
critical for gender classification, such as the central face area. Thus, there is
a clear progression in the focus of attention from Expert 1 to Expert 3 and
all the varying levels of attention are captured in the final concatenated map
(Final Map). As the original ResNet50 has only a 1 classifier for prediction, we
generated 1 heatmap Ω̃norm

ori using the feature maps from the last convolutional
layer. Note, Ω̃norm

3 and Ω̃norm
ori are both generated based on the feature maps

of the last convolutional layer of the ResNet50 backbone, but Ω̃norm
3 captures

much more comprehensive and accurate information than Ω̃norm
ori . Further, the

overall feature map from the proposed FineFACE model illustrates the efficacy of
the fine-grained framework in capturing comprehensive and discriminant regions
vital for gender classification over the baseline.

Race White Black East Asian SE Asian Latino Indian Middle E

Gender M F M F M F M F M F M F M F Max/
Min↓ Overall↑ DoB↓

Baseline 96.5 89.9 94.4 82.4 97.2 88.9 94.4 91.5 95.6 92.2 98.1 93.3 97.8 92.4 1.18 93.2 4.2
FineFACE 97.1 97 97.2 96.2 97 96.2 96.2 97 96 96.3 96.6 95.9 96.1 95.1 1.02 96.4 0.6

Table 2. Gender Classification Accuracy (%) on FairFace testset across different de-
mographics using baseline ResNet50 and our proposed FineFACE. M stands for male
and F stands for female. The top performance results are highlighted in bold.

Race White Black Asian Indian Others/
Undefined

Dataset Gender M F M F M F M F M F Max/Min↓ Overall↑ DoB↓

UTKFace Baseline 90.2 72.2 94.6 67.6 88.2 65.7 95.1 74.9 89.1 78.8 1.45 81.9 11.1
FineFACE 91 86.5 93.9 79.7 91.1 81.1 95.1 86.3 90 88.3 1.19 88.5 5

LFWA+ Baseline 96.9 89.1 98.7 78.8 96.5 78.3 97.9 95 96.8 91.1 1.26 95.3 7.7
FineFACE 99.1 98 98.9 95.3 98.6 94.8 100 100 98.4 96.2 1.05 98.6 1.9

Table 3. Cross-dataset evaluation - Gender Classification Accuracy (%) on UTKFace
and LFWA+ test sets across different demographics for baseline ResNet50 and our
proposed FineFACE.

Gender M F Max/Min↓ Overall↑ DoB↓
Baseline 90.6 94.9 1.05 93.2 2.2

FineFACE 96.4 99 1.03 98 1.3
Table 4. Cross-dataset evaluation - Gender Classification Accuracy (%) on CelebA
testset across gender for baseline Resnet50 and our proposed FineFACE.

Comparison with Published Work: Table 5 shows the performance of our
proposed FineFACE method over published bias mitigation techniques based
on multi-tasking [5], adversarial debiasing [33], deep generative views [25], and
consistency regularization [13]. All these studies are reported for the ResNet50
based gender classifier trained and tested on the FairFace dataset.
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As can be seen, our proposed FineFACE obtained the lowest DoB of 0.26
and the Max-Min accuracy ratio of 1.008 over all the existing published studies.
Moreover, the overall accuracy was not only maintained but also increased by
1.74% compared to the second-best model (indicated as D in the Table) based
on Deep generative views [25]. Therefore, our proposed method obtains state-of-
the-art performance.

Further, existing bias mitigation techniques based on adversarial debias-
ing [33] and multitasking [5] need demographically annotated data during train-
ing. The generative techniques based on deep generative views [25] and consis-
tency regularization [13] are computationally very expensive and obtain low
generalizability. Compared to the existing methods, the proposed FineFACE
offers significant advantages: it mitigates bias in the absence of protected at-
tributes, offers high generalizability, and is application-agnostic. Importantly,
our method significantly improves fairness along with overall classification accu-
racy, emphasizing the importance of fine-grained classification.

Method Accuracy DoB↓ Max/Min↓

Black East
Asian Indian Latino

Hispanic
Middle
Eastern

Southeast
Asian White Overall↑

A 91.26 94.45 95.05 95.19 97.35 94.2 94.96 94.64 1.81 1.067
B 87.66 91.93 93.67 93.8 95.96 91.81 93.96 92.69 2.62 1.095
C 90.83 93.6 94.48 94.7 95.94 93.64 94.57 94 1.59 1.056
D 91.64 95.29 95.38 95.32 97.11 93.5 94.92 94.72 1.72 1.06

FineFACE 96.21 96.84 96.37 96.61 96.53 96.04 96.55 96.46 0.26 1.008
Table 5. Comparative Analysis with FineFACE. A: Multi-Tasking [5] , B: Adversarial
debiasing [33], C: Consistency Regularization [13] D: Deep Generative Views based
[25]. The top performance results are highlighted in bold.

5.2 Gender-independent Facial Attribute Classification

In this section, we will discuss the performance of our 13 gender-independent
facial attribute classifiers. We report mean scores over the 13 labels [27] called
gender-independent target attribute (refer to Section 4 for more details on the
13 target attributes) with gender as the protected attribute.

Table 6 shows the performance of the gender-independent facial attribute
classifier using our proposed FineFACE over the baseline ResNet50 model. Fine-
FACE improves overall accuracy, minimum group accuracy, and TPR, while
significantly reducing bias by approximately 91% (DEO) and 92% (DEODD).
There is a marginal reduction in maximum group accuracy by only 1.52%. Worth
mentioning, facial attributes like "bags under eyes”, “chubby”, “high cheekbones”,
“narrow eyes”, and “smiling” are more subtle in nature. Thus more detailed fea-
tures from lower layers help in understanding the subtle cues differentiating a
normal cheekbone from a high cheekbone, a narrow eye from a normal eye, and
a natural curvature of lips versus a smile across gender. Thus, obtaining per-
formance enhancement as well as bias reduction for these gender-independent
facial attributes.
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Method Accuracy↑ Max. grp.
Acc.

Min. grp.
Acc. TPR↑ Max. grp.

TPR
Min. grp.

TPR DEO↓ DEODD↓

Baseline 92.47 94.46 90.14 67.9 73.88 61.34 12.54 16.54
FineFACE 92.85 92.94 92.76 76.48 76.97 75.79 1.18 1.38
Table 6. Facial Attribute Classification Accuracy (%) on the CelebA dataset for base-
line and our proposed FineFACE - mean scores over the 13 attributes [27] called gender-
independent are reported. The top performance results are highlighted in bold.

Comparison with Published Work: In this section, we compare the per-
formance of our proposed FineFACE over bias mitigation techniques namely,
domain-independent models [29] (Domain Indep.), regularization [24,30] (Regu-
larized), FairMixup [3], GAN-based offline dataset debiasing [27] (GAN Debi-
asing), and adaptive sampling [36] (g-SMOTE + Adaptive Sampling), reported
for the 13 gender-independent facial attribute classifiers.

We summarized the results in the Table 7. The proposed FineFACE has
achieved improved performance in both overall accuracy and accuracy of the
worst-performing group compared to the baseline classifier. Although there is
a slight reduction in the accuracy of the best-performing group (by 1.52%),
the performance of this group remains comparable to the overall and worst-
performing groups which improve by approximately 0.4% and 2.5% respectively.
Worth mentioning, among 6 existing bias mitigation techniques in Table 7, only
g-SMOTE [27] and g-SMOTE adaptive sampling [36] are able to improve per-
formance of the worst performing group, with respect to the baseline, along with
our proposed FineFACE, thus obtaining pareto-efficiency. Furthermore, our
method obtains the highest improvement in the TPR of the worst-performing
groups, along with the second-best results for overall TPR and the TPR for the
best-performing groups. The key highlight of our method is the substantial
reduction in both DEO and DEOdds, 3× lower than the next best method i.e.,
Fair Mixup [3]. Comparison of the various fairness methods is visually repre-
sented in Fig. 1, Section 1.2 of the supplementary material

Method Weight
-ing*

Domain
Indep.*

Baseline
single task

GAN
Debiasing

Regular
-ized

g-SMOTE +
Adap. Sampl.

g-
SMOTE

Baseline
FairMixup

Fair
Mixup

FineFACE
[ours]

Accuracy↑ 91.45 91.24 92.47 92.12 91.05 92.56 92.64 92.74 88.46 92.85
Max. grp. Acc. 93.35 93.04 94.46 94.03 94.42 94.44 94.59 93.85 90.42 92.94
Min. grp. Acc 89.06 88.93 88.93 89.85 87.86 90.36 90.35 91.44 86.36 92.76
TPR↑ 64.02 70.74 67.90 66.13 54.2 67.11 66.14 79.13 46.67 76.48
Max. grp. TPR 67.41 75.61 73.88 70.36 56.11 74.06 73.43 80.89 47.85 76.97
Min. grp. TPR 59.74 66.05 61.34 61.25 52.34 59.78 58.32 72.92 44.27 75.79
DEO↓ 7.67 9.56 12.54 9.11 3.77 14.28 15.11 7.97 3.58 1.18
DEODD↓ 9 13.29 16.54 12.04 5.06 19.3 19.32 10.06 4.29 1.38
Table 7. Fairness methods on the CelebA dataset - mean scores over the 13 labels [27]
called gender independent.The top performance results are highlighted in bold.

We also reported the minimum group accuracy of the baseline ResNet50 model
and our FineFACE for each of the 13 gender-independent attributes individually
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in Table 8. Our model outperformed the baseline for all except 1 attributes
("Narrow Eyes" by the baseline is more accurate by approximately 4%). For
the other 12 attributes, our model outperformed at least by 0.5% and at most
by 7.9%. Thus, we also demonstrate the efficacy of our FineFACE in improving
the minimum group accuracy for the majority (12 out of 13 attributes) of facial
attributes on an individual basis.

Attribute Name Baseline FineFACE
Bags Under Eyes 73.24 80.73
Bangs 94.67 95.9
Black Hair 86.4 90.51
Blond Hair 91.96 94.41
Brown Hair 81.26 89.14
Chubby 89.29 95.64
Eyeglasses 99.23 99.73
Gray Hair 95.28 98.35
High Cheekbones 85.53 87.83
Mouth Slightly Open 93.46 94.23
Narrow Eyes 91.97 87.99
Smiling 91.64 93.17
WearingHat 98.21 99.08

Table 8. Minimum Group Accuracy for the 13 gender-independent individual at-
tributes.

6 Conclusion

The task of facial attribute classification presents inherent complexities due to
high inter-class similarity, significant intra-class variation, and demographic di-
versity, which often result in performance disparities across protected attributes.

To effectively tackle these challenges, it is essential to incorporate local and
subtle cues into the classification process. In our research, we propose a novel
fine-grained feature framework designed for demographically fair facial attribute
classification. This framework integrates detailed low-level and semantic high-
level information across shallow to deep layers of the model. Through extensive
evaluation on widely used facial attribute datasets, our approach demonstrates
significant effectiveness in learning fair representation, achieving up to a three-
fold reduction in bias compared to state-of-the-art bias mitigation techniques.
Importantly, our method achieves a Pareto-efficient balance between accuracy
and fairness without requiring the presence of protected attribute labels during
classifier training—a critical advantage given privacy concerns and regulatory
constraints that often prohibit the collection of such sensitive data. Further-
more, our study marks the first benchmark evaluation of the fairness of facial
attribute classifiers using fine-grained features compared to existing supervised
bias mitigation techniques.
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While the multi-step training strategy extends the training duration com-
pared to the original backbone networks, the training is an offline process and
the more significant concern in real-world applications is the inference cost which
is affordable for our method. As part of future work, we will also explore other
backbone architectures such as Transformer. In addition, we will further analyze
biases across intersectional groups, such as gender + target attribute, following
insights from recent studies [36,3].
Acknowledgements This work is supported by National Science Foundation
(NSF) award no. 2129173.
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