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Abstract

Ecosystem conservation is fundamental to guarantee the survival of endangered species and to preserve other ecological functions
important for human systems (e.g., water). Planning land conservation increasingly requires a landscape approach to mitigate the
negative impacts of spatial threats such as urbanization, agricultural development, and climate change. In this context, landscape
connectivity and compactness are vital characteristics for the effective functionality of conservation areas. Connectivity allows
species to travel across landscapes, facilitating the flow of genes across populations from different protected areas. Compactness
measures the spatial dispersion of protected sites, which can be used to mitigate risk factors associated with species leaving and re-
entering the reserve. This research describes an optimization model for the design of conservation areas, while inducing connectivity
and compactness. We use the Reock’s index, a metric of compactness that maximizes the ratio of area of the selected patches to the
area of their smallest circumscribing circle. Our model includes budget and minimum protected area constraints to reflect realistic
financial and ecological requirements. The initial nonlinear model is reformulated into a mixed-integer linear program, which is
solved using an adaptation of the Newton’s method for problems with integer variables. We characterize an optimal solution and
derive cuts to improve the model performance. We illustrate our results using real life landscapes with irregular patches.
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1. Introduction
Conservation planning aims to preserve the ecological and socio-economic value of the targeted ecosystems and their
species. It requires a landscape approach, integrating cross-site information to recommend government and non-
government organizations the best sites to protect, restore, or manage. This approach is essential when accounting for
rapid changes in the environment due to urbanization, agricultural development, and climate change. Spatial charac-
teristics of urban landscapes such as connectivity, habitat quality, patch size, compactness, and corridor size [1–4] help
in comparing different conservation plans. Spatial requirements make landscape decisions challenging, for instance
inducing connectivity and compactness in the selected areas. Connectivity allows species to travel across selected ar-
eas whereas compactness measures how close the selected sites are to each other. Compactness quantifies the spread of
the conserved areas and allows decision makers to identify landscape configurations that, although connected, are un-
desirable. For instance, low-diameter (bulky) circular areas are preferred over long and thin areas, because the selected
reserve will be closely packed and not spread over a wide area. Multiple models based on mathematical programming
and spatial algorithms have been proposed in the literature to induce connectivity in conservation planning problems
[5, 6]. The models in the literature are mainly developed for grid landscapes, and very few studies focus on landscapes
consisting of irregularly shaped areas. Even though some of the models in the literature claim to be extensible to
irregular landscapes, the simultaneous use of compactness and connectivity is new for such landscapes. Depending on
the landscape discretization, as stated in [7], a circle or a square are considered to be the most compact structures. This
paper provides a spatial optimization model and solution algorithm that supports connected and compact landscape
conservation designs for irregular landscapes using a relatively unexplored compactness metric known as the Reock’s
index [8].
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2. Related Work
The literature on spatial optimization models for conservation planning that include landscape connectivity and com-
pactness features is relatively recent. Connectivity can be defined as the existence of a path from every patch to every
other patch in the selected landscape. Connectivity ensures the safe movement of animals from one patch to another
within the reserve, facilitating the migration of species due to changes in weather, seasons, and other ecological pro-
cesses. Connectivity and compactness have been implemented using various techniques for a single connected reserve.
Önal and Briers [5] discuss a graph-based method of modeling conservation decisions that minimizes the distance be-
tween selected patches. Önal et al. [9] model connectivity using constraints that enforce the selection of patches to
form a path between selected patches. Carvajal et al. [6] discuss the importance of connectivity (contiguity) in land-
scapes and how integer programming can be used to achieve it using a set of (ring) constraints. These constraints
enforce the connectivity in a reserve design by expanding the area of the disconnected reserves until they meet a min-
imum area requirement. Nalle et al. [10] imposes connectivity and compactness by minimizing a weighted objective
function of the distances between all the selected patches, subtracting the parcel adjacencies (number of parcels with at
least one neighbor selected). Jafari and Hearne [11] propose a method based on network flows to impose connectivity
in multiple reserves.

The efficient design of a reserve not only depends on how well it is connected, but also on other spatial attributes.
Young [7] discuss that there is no universal consensus on the definition of compactness as it can be integrated in
multiple ways. Using visual inspection, any landscape that is close to a regular shape (e.g., circle, square) is more
compact compared to irregular shapes. Young [7]’s 8 metrics of compactness, include visual inspection, Schwartzberg
test, length-width test, Taylor’s test, moment of inertia test, perimeter test, Boyce-Clark test, and Reock’s test. Önal
and Briers [12] explore the reserve boundary as a metric of compactness. The smaller the value of the boundary, the
more compact is the landscape. Jafari and Hearne [11] and Lin et al. [13] define compactness as the perimeter of the
reserve. They calculate the perimeter by adding the perimeter of the selected patches and subtracting the length of
the shared edges between selected patches. The objective is to minimize the perimeter to produce a compact reserve.
Cabeza et al. [3] define the ratio of the boundary length of the selected reserve to the area of the selected reserve as a
metric of compactness. Clemens et al. [14] induce compactness using the concept of core and buffer patches, where
a core patch can only be selected if all its surrounding (8 neighbors for a grid landscape) buffer patches are selected.
McDonnell et al. [15] define compactness as the sum of the boundary length and the area of the selected reserve. Wang
and Önal [16] define a metric of compactness based on the total sum of the distances between the selected patches
and the center of the reserve. The center patch is also decided by the model and is the patch with the smallest sum of
distances to all the other patches in the reserve. In the studied grid landscape, the distance between two patches is the
minimum number of patches used to connect them, which makes the structural distance between two adjacent patches
to be equal to zero. Weerasena et al. [17] induce compactness by minimizing the boundary length of the reserves and
also minimize the total pairwise patch distances within a reserve. Billionnet [18] uses three metrics of compactness, the
diameter of the reserve, the ratio of the perimeter and the area of the reserve, and the total pairwise distances between
patches in the reserve. Compactness is enforced using an at-most constraint, where the pairwise patch distances are
forced to be less than a given value. Ravishankar [19] defines a metric of compactness that minimizes the total number
of patches having only one of their neighbors in the reserve, i.e., leaves, which is applicable to landscapes with grid
parcels but computationally expensive to extend to landscapes with irregular patches.

3. Model Formulation
We develop a nonlinear formulation to solve a connected and compact reserve design problem using the Reock’s
metric of compactness. The model uses general irregular candidate patches and a circle as a benchmark shape (i.e.,
most compact shape). The proposed parametric method in Section 3.4 generalizes this assumption to any regular
benchmark shape. The objective of the model is to find a reserve whose shape is close to that of its circumscribing
circle, while satisfying budget, operational, ecological and spatial constraints. We use the Reock’s metric, because it
can induce compact landscapes [7] while balancing the reserve size and shape. We conjecture that this metric has been
overlooked in the spatial optimization literature given the complexity (non-convexity) of the resulting mathematical
models and their relaxations.

3.1 Nonlinear Model
We define P as the set of all patches available and n as the total number of patches in the landscape (i.e., n = |P|). Set
Ni contains the neighboring patches of patch i, i.e., all patches that share at least one edge with i. For each patch i, Vi is
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the set of vertices, ai is the area, and ci is the purchase or restoration cost. Parameter α is the minimum area required
to be selected and b is the available budget. The xy-coordinates of vertex v of patch i are assumed to be known and
given by xv

i ∈R2. The decision variables include vector x, which denotes the (continuous) xy-coordinates of the center
of the circle enclosing the selected patches. Variable r is the radius of the circumscribing circle and z is an auxiliary
variable used in the proposed linear approximation of the circle’s area. For each patch i, the binary variable ti denotes
whether patch i is selected. The nonlinear formulation for the landscape conservation problem is presented in (1) - (7).

max
∑i∈P aiti

πr2 (1)

s.t. ||x−xv
i || ≤ r+M(1− ti), ∀i ∈ P,v ∈Vi, (2)

∑
i∈P

citi ≤ b, (3)

∑
i∈P

aiti ≥ α, (4)

ti ∈ {0,1},∀i ∈ P, (5)

x ∈ R2, (6)
r ≥ 0 (7)

The objective function in (1) maximizes the ratio of the total area of the selected patches to the area of the circumscrib-
ing circle, i.e., the Reock’s metric of compactness. Constraints (2) ensure that the circle circumscribes the selected
patches (i.e., i ∈ P : ti = 1), where || · || refers to the Euclidean norm. Note that these constraints are relaxed for the
vertices of the non-selected patches because of the big-M value, which in this case is equal to the radius of the smallest
circle enclosing the entire landscape. Constraint (3) imposes a budget limit, which ensures that the total cost of the
selected patches is no more than the budget allotted. Constraint (4) ensures that the sum of areas of the selected patches
meets the minimum required area. Constraints (5), (6), and (7) are variable type constraints.

3.2 Linearized model
The nonlinear model (1)-(7) is expensive to solve, and cannot be efficiently solved using commercial nonlinear solvers
for realistic landscapes. To overcome this challenge, we construct a linearized model to approximate model (1)-(7).
We define R0 as a finite set of radius samples. This set is used to avoid the nonlinearity in the denominator of the
objective function. To linearize the Euclidean distance in Constraints (2), we use the method suggested in [20]. We
define k unit vectors to discretize the unit circle and whose angles with respect to the horizontal line range in the
continuous domain [0,2π]. We define U = {1, ...,k}, k ≥ 3 as the set of these unit vectors. The xy-coordinates of unit
vector vl , l ∈U , are given by

vl =

 cos
(

2(l −1)π
k

)
sin

(
2(l −1)π

k

)
 ∈ R2. (8)

Given the definition in (8), we have that ||vl || = 1,∀l ∈ U . Constraints (9) are the (approximated) linear version of
Constraints (2) using a set of unit vectors. Note that (9) provides a relaxation because (x0 − xv

i )
T vl ≤ ||x0 − xv

i || by
Cauchy-Schwarz and the fact that ||vl || = 1,∀l. The quality of the approximation in (9) also improves as k increases.
Constraint (10) is the first order Taylor approximation of the circle’s area, which ensures that the auxiliary variable z
is a lower bound of the circumscribing circle’s area, but close enough for a large sample of radii R0.

(x0 −xv
i )

T vl ≤ r+M(1− ti), ∀l ∈U, i ∈ P,v ∈Vi (9)

z ≥ 2πr0r−πr2
0, ∀r0 ∈ R0 (10)

Using Constraints (9)-(10) the objective function can be reformulated as

max
∑i∈P aiti

z
. (11)
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3.3 Additional constraints and Strengthening
Consider a feasible solution to the model in Section 3.2 given by (r∗, t∗,x∗) and let S∗ = {i ∈ P : t∗i = 1} be the
corresponding feasible set of selected patches. Let W be a set of all connected components in the graph induced by S∗,
where each node is a patch and an arc exists only between adjacent patches. If |W | > 1, then the solution obtained is
infeasible because the reserve is not connected. To prevent disconnected components, we impose Constraint (12), an
extension of the ring inequalities proposed by Carvajal et al. [6] forces the the model to pick at least one patch from
N(S∗), the neighbors of S∗, if the patches in S∗ are selected. We impose (12) as a cut during the Branch and Bound
exploration whenever an integer solution with a set of connected components W : |W |> 1 is obtained.

∑
i∈S∗

ti ≤ ∑
j∈N(S∗)

t j + |S∗|−1 (12)

Consider ρ∗ to be an incumbent objective value. Also define the maximum protected area as α̃, which is the optimal
solution of a knapsack problem with the objective of maximizing the total area subject to a budget b. Then, R̃ =

√
α̃

πρ∗

is a valid upper bound on r. Constraints (13) are added as a cut in the Branch and Bound exploration every time an
incumbent ρ∗ is obtained.

r ≤ R̃ (13)

Additionally, Constraints (14) enforce that no two patches whose distance is greater than twice the maximum radius
(R̃) can be selected together. These constraints are added as cuts in the Branch and Bound exploration whenever a new
incumbent is obtained.

ti + t j ≤ 1, ∀i, j ∈ P : i ̸= j, di j > 2R̃ (14)

Constraints (13) and (14) together are used to strengthen the linear relaxation of the model, whereas Constraints (12)
are needed for feasibility.

3.4 Parameterized Algorithm
To convert the objective function in (11) to the form in (15), we use the parametric algorithm proposed by Dinkelbach
[21]. Consider a feasible solution xm to the problem in (1) - (7), with Constraints (2) replaced by (9), along with
Constraints (10), the objective in (1) replaced with objective in (15), and the additional and strengthening Constraints
(12)-(14) (added on the go in a Branch-and-cut fashion). Define Ym = (rm, tm,xm,zm) as the optimal solutions of this
model in iteration m. The algorithm sequentially solves parametric models for m = 0,1, . . . , by updating parameter
qm+1 =

N(Ym)
D(Ym)

, where N(Ym) = ∑i∈P aiti and D(Ym) = z. The algorithm is initialized using Y0 from solving parametric
model for qm = 0,m = 0 and stops for an iteration when max{N(Ym)− qmD(Ym)} = 0 with optimal compactness,
q∗ = qm.

max ∑
i∈P

aiti −qmz (15)

4. Results
We implemented the proposed solution approach in a computer with Intel Xeon E5-2680 v4 CPU running at 2.4 GHz,
16 GB of RAM and CPLEX 22.1.0.0 (E1). Because of license availability we solve the nonlinear model using a
computer with Intel i7 CPU running at 2.6 GHz, 16 GB RAM, Windows 11 and Gurobi 10.0.1 (E2). We solve the
formulations on one landscape (FLG9A) obtained from the Forest Management Optimization Site (FMOS) repository
[6]. The area of the patch polygons range between 1-30 square units. We generate the cost of each patch using the
distribution ci ∼ 20ai +N (0,100), where N is a Gaussian noise with mean zero and standard deviation 10. This
strategy induces a cost that is proportional to the area but with some variability. We compare our model with a
nonlinear version of the model that is solved using the Algorithm in 3.4 but uses constraints (2) instead of (9).

Table 1 shows the solution times for the different instances of FLG9A. The first column denotes the total number of
patches in the landscape. The area (α) is represented as the percentage of the total area of the landscape. The budget
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Table 1: Solution times for the default, enhanced and nonlinear models
E1 E2

# Patches α (%) b (%) Td (sec) Te (sec) Cl Tl (sec) Tnl (sec) Cnl

57

8 10 6.43 4.02 0.6366 4.94 23.23 0.6366
8 20 54.67 126.44 0.7132 11.61 182.23 0.7132
8 30 239.82 65.15 0.7539 9.68 260.41 0.7539

30 35 51.31 27.75 0.7539 10.09 148.84 0.7539
30 45 64.95 72.61 0.7548 16.33 354.44 0.7548
30 60 36.46 49.92 0.7765 13.04 TL 0.7765

113

8 10 94.33 60.91 0.6262 25.5 134.05 0.6262
8 20 738.93 548.61 0.7699 235.69 TL 0.7648
8 30 1640.08 495.03 0.7901 565.43 TL 0.7901

30 35 657.73 514.41 0.7901 243.88 2254.05 0.7901
30 45 1412.83 687.03 0.7979 360.73 TL 0.7816
30 60 739.66 626.42 0.8127 562.67 TL 0.7801

(a) Compactness of 75.48% (b) Compactness of 79.79%

Figure 1: Solutions for FLG9A instances

(b) is represented as the percentage of the total cost of selecting all the patches in the landscape. Column Td depicts the
time taken by the default model (i.e., without the strengthening constraints) to optimality, whereas column Te depicts
the time taken by the enhanced model (i.e., with Constraints (13) and (14)) to achieve optimality. Cl depicts the optimal
Reock’s index of the linearized model. Column Tl depicts the time taken by the linearized model in experiments (E2)
to achieve optimality. Column Tnl is the time taken by the nonlinear model in experiments (E2). We use "TL" to denote
that the solution time reaches its limit of 7200s. Column Cnl depicts the optimal Reock’s index (or best value within
7200 secs) to the nonlinear model in experiments (E2). From Table 1, we observe that the linearized approach with
enhancements outperforms the default models. We also observe that the linearized models significantly outperform
the nonlinear formulation. Figure 1 depicts optimal solutions for instances with a minimum area requirement of 30%
and a maximum budget of 45%. Figure 1a depicts the solution for an instance with 57 patches and Figure 1b depicts
the solution on a landscape with 113 patches.

5. Conclusion
In this paper, we propose a mixed-integer linear model to reformulate the nonlinear mixed integer program maximizing
the Reock’s metric of compactness. The landscape conservation problem includes realistic spatial and operational
constraints. The proposed formulation and logical and structural constraints to strengthen the reformulations’s linear
relaxation, reduce the solution times of the nonlinear model by at least one order of magnitude in most instances.
We demonstrate the model performance on a real instance with irregular patches. Future work can be focused on
developing more cuts, heuristics and a warm-start procedure, among other strengthening strategies for the solution of
larger instances.
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