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Abstract

First-order optimization methods tend to inherently favor certain solutions over
others when minimizing a given training objective with multiple local optima. This
phenomenon, known as implicit bias, plays a critical role in understanding the
generalization capabilities of optimization algorithms. Recent research has revealed
that gradient-descent-based methods exhibit an implicit bias for the £3-maximal
margin classifier in the context of separable binary classification. In contrast,
generic optimization methods, such as mirror descent and steepest descent, have
been shown to converge to maximal margin classifiers defined by alternative
geometries. However, while gradient-descent-based algorithms demonstrate fast
implicit bias rates, the implicit bias rates of generic optimization methods have been
relatively slow. To address this limitation, in this paper, we present a series of state-
of-the-art implicit bias rates for mirror descent and steepest descent algorithms.
Our primary technique involves transforming a generic optimization algorithm into
an online learning dynamic that solves a regularized bilinear game, providing a
unified framework for analyzing the implicit bias of various optimization methods.
The accelerated rates are derived leveraging the regret bounds of online learning
algorithms within this game framework.

1 Introduction

The training objective in the optimization of modern over-parametrized ML models typically presents
various local optima with low training error. Despite this, empirical studies have demonstrated that
first-order optimization methods generally converge to the solution with strong generalization, even
without any explicit regularization (Neyshabur et al.| 2014} [Zhang et al., [2021). This observation
has spurred interest in the study of the implicit bias of the algorithm. In other words, among all
potential parameter choices with low training error, which ones are inherently favored by optimization
methods?

For the classical linear classification problem with separable data, the pioneering works (Soudry
et al., 2018 J1 & Telgarskyl 2018) reveal that minimizing the (unregularized) empirical risk with
exponential loss by the classical gradient descent (GD) automatically maximizes the || - ||2-margin,
meaning its margin converges to that of the best classifier within an /5-norm ball (referred to as the
|| - ||]2-maximal margin classifier). This finding implies that GD exhibits an implicit bias towards the
|| - ||2-maximal margin classifier, which helps account for its favorable generalization performance.

However, these works show that GD only maximizes the || - ||2-margin at a slow O (}gg;) rate,

where T’ is the time horizon, and n is the cardinality of the data set. Since then, several faster margin
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maximization rates have been reported. Nacson et al.|(2019)) revealed that for the exponential loss,
log n+log T

VT
logn

result was later improved to O ( = ) by Ji & Telgarsky| (2021), via an elegant primal-dual analysis.
Recent work (Ji et al} 2021} [Wang et al., [2022b) further proved that momentum-based GD and

Nesterov-accelerated GD can maximize the || - ||o-margin at an O (1‘;52") rate.

GD with an aggressive step size attains an O ( ) || - |2-margin maximization rate. This

As the implicit bias of gradient-descent-based methods becomes better understood, it is natural to
explore similar characterizations for other optimization methods. Note that, since gradient-descent-
based methods are biased towards the || - ||2-maximal margin classifier, they might generalize poorly
when the data does not adhere to the />-geometry, as shown in |Gentile| (2000); |Chen et al.| (2001)).
This limitation suggests that it is essential to study the implicit bias of alternative optimization
methods that could potentially be biased in different directions. Two such methods include steepest
descent with respect to different norms and mirror descent with different potentials. For instance,
Gunasekar et al.| (2018a)) demonstrate that for the exponential loss, the steepest descent algorithm
with respect to a general norm || - || asymptotically converges to the corresponding || - ||-maximal
margin classifier. This result implies that the steepest descent algorithm can adapt to different data
geometries by changing the norm used in the algorithm. On the other hand, |Sun et al.| (2022) show
that the mirror descent algorithm with the potential || - |2 for ¢ > 1 can maximize the || - ||,-margin at
arate of O (W)

While the asymptotic directional convergence of these generic optimization methods is well-
understood, a natural question remains: can generic optimization methods (e.g., mirror descent
and steepest descent) achieve faster margin maximization rates? Several papers have contributed
partial answers to this question. |Li et al.| (2021 show that mirror descent with an aggressive step size

logn
T1/4

is both strongly-convex and smooth with respect to some norm, and thus is mainly limited to the
l5-geometry. For steepest descent with respect to a general norm || - ||,[Nacson et al.[{(2019) prove that

maximizes the margin in an O ( ) rate. However, their analysis assumes the potential function

an O (%) || - ||-margin maximization rate can be achieved with an appropriately chosen step

size, but it is unclear whether it can be further improved. In this paper, we provide the fastest known
rates for margin maximization for generic optimization methods, through the following contributions:

* First, we study a weighted-average version of mirror descent with the squared ¢,-norm
31l - |2 as the potential for ¢ € (1,2]. This potential function is strongly convex but not
smooth. We show that, with an appropriately chosen step size, the algorithm achieves a faster

lognlogT

|| - |lq-margin maximization rate on the order of O < =

) . We also further improve

the rate to O (T( qlfl) + Lot "leogT> with a more aggressive step size. When ¢ = 2, the
algorithm reduces to average GD, and our rate O (% + log’}#) is a log n-factor tighter
than the O (10%) rate of the last-iterate GD (Ji & Telgarsky), [2021).

* Next, for the steepest descent algorithm with respect to the ¢,-norm for ¢ € (1, 2], we show

the margin maximization rate can be improved from O <%) to O (Tl(‘; g_"l) ) .

* Finally, we demonstrate that a even faster O (%) || - ||;-margin maximization rate

can be achieved in two ways: a) mirror descent with Nesterov acceleration, or b) steepest
descent with extra gradient and momentum.

The essential premise for our approach is that minimizing empirical risk (ERM) with generic optimiza-
tion methods can be equivalently viewed as solving a regularized bilinear game with online learning
dynamics. Within this framework, we design new pairs of online learning methods whose outputs
(and, by extension, the outputs of the corresponding generic optimization methods) automatically
maximize the margin. The convergence rates are determined by the time-averaged regret bounds of
these online learning algorithms when played against each other, which turn out to be much faster

than the worst-case O(1/+/T) rate.



Wang et al.| (2022b)) were the first to draw parallels between Nesterov-accelerated GD for ERM and
solving the bilinear game through an online dynamic. However, it was still open that whether this
kind of analysis suits other GD-based methods. Moreover, the non-linearity of the mirror map in
generic optimization methods makes analysis particularly challenging. In this paper, we reveal that
the game framework can in fact encompass implicit bias analysis for a range of generic optimization
methods, and offer a more streamlined and unified analysis. Within this game framework, we derive
several other results beyond those mentioned above:

* By selecting suitable online learning algorithms, we obtain a momentum-based data-

dependent MD algorithm with an O(TQE}QT_I) + log ”TIQOgT) || - ||;-margin maximization

rate, where Vp = Zthz |pt — pt—1]|3 is the path-length of a series of distributions on the
training data p;. In the worst case, this reduces to the margin maximization rate of MD, but
this can be much tighter if V7 is sublinear in 7.

* Apart from margin maximization rates, we also demonstrate the corresponding directional
error, i.e., the bound on the /,-distance between the maximal margin classifier and the
normalized output of the generic methods, which are also controlled by the regret bounds
of two-players against each other. This kind of convergence rates are new for most of the
generic methods. In general, we prove that the directional errors are typically a square-root
factor worse than the margin maximization rates.

» For our steepest descent, by setting the norm to the general norm || - || and the ¢5-norm
respectively, we can recover the algorithms and theoretical guarantees in Nacson et al.
(2019); J1 & Telgarsky| (2021) under the game framework. This implies that these algorithms
can also be viewed as solving a regularized bilinear game using online learning algorithms,
offering a deeper understanding of the role of implicit bias in optimization methods.

Additional related work The strategy of solving a zero-sum game using online learning algorithms
playing against each other has been extensively studied, primarily through the lens of independent
learning agents (e.g., Rakhlin & Sridharan, [2013; Daskalakis et al.| 2018}, [Wang & Abernethy, 2018},
Daskalakis & Panageas| 2019; Zhang et al.|[2022). In contrast, our central motivation and challenge
lies in identifying the exact equivalent forms of generic optimization algorithms under the regularized
bilinear game dynamic. Our framework is also motivated by the line of research that employs the
Fenchel-game to elucidate commonly used convex optimization methods (Abernethy et al., 2018
Wang & Abernethyl 2018} [Wang et al, 2021b). However, our framework diverges significantly
from these approaches. These works focus on the convergence of the optimization problem itself,
while our framework emphasizes that the choice of optimization algorithm, which solely targets
the minimization of empirical risk, has a significant impact on maximizing the margin, which we
might view as an “algorithmic externality.” Max-margin guarantees can not arise from convergence
of the ERM objective alone, as there are typically multiple global minima in ERM minimization. Our
analysis also considers an entirely different min-max problem than that of the Fenchel game (Wang
et al.,[2021b). Consequently, the correspondences we establish between optimization algorithms and
online dynamics also differ. Finally, we note that previous work has also analyzed the implicit bias
through direct primal optimization analysis (e.g.,[Nacson et al., 2019} Sun et al.| 2022)) or using a dual
perspective (e.g.,J1 & Telgarsky, 20215 Ji et al.,[2021). For the former analysis, it is unclear whether
and how faster rates can be obtained. For the latter, it remains an open question how to extend the
framework beyond ¢2-geometry, which in some sense was the motivation for the present work. For
more related work, we refer the reader to Appendix [A]

2 Preliminaries
In this section, we present our basic setting along with some standard assumptions and definitions.

Notation We use lower case bold face letters x, y to denote vectors, lower case letters a, b to denote
scalars, and upper case bold face letters A, B to denote matrices. For a vector x € R?, we use x;
to denote the i-th component of x. For a matrix A € R"*?, let A, be its i-th row, A, ;) the
j-th column, and A ; ;) the i-th element of the j-th column. Vx € R%, we use | - || to denote a
general norm in R%, || - ||, its dual norm, ||x||, the g-norm of x, defined as ||x||, = (3¢, |a:]9)Y/4,

and ¢ € (1,2]. We use || - ||, to denote the dual norm of g-norm, where p € [2, c0), % + % = 1.



Solving the regularized bilinear game with online learning:

max min p' Aw — ®&(w)
weERd peAn

Identify equivalent forms Plug in regret bounds
Empirical risk minimization Margin maximization rate: v — O (Cr)
with generic optimization methods directional error: O (\/CT)

Figure 1: Illustration of the game framework for implicit bias analysis. In Section[3] we show that
solving a regularized bilinear game with online learning algorithms (top box) can directly maximize
the margin, and the convergence rate is on the same order of the averaged regret C'r (right box); In
Sections[d] we prove that minimizing the empirical risk with a series of generic optimization methods
(left box) is equivalent to using online learning algorithms to solve the regularized bilinear game.
Thus, the implicit bias rates can be directly obtained by plugging in the regret bounds.

We denote By | the || - [|-ball, defined as Bj.| = {x € RY|||x|| < 1}. Vx,x’ € R?, we define the
Bregman divergence between x and x’ with respect to a strictly convex potential function ®(x) as
Dg(x,x") = ®(x) — ®(x') — VO (x') T (x — x’). For a positive integer n, we denote {1,...,n} as
[n], and the (n — 1)-dimensional simplex as A™. Let E : A™ — R be the negative entropy function,
defined as E(p) = >, pilogp;, Vp € A™.

Basic setting Consider a set of n data points S = {(x(", (")}, where x() € R is the feature
vector for the i-th example, and (¥ € {—1, 41} the corresponding binary label. We are interested
the optimization trajectory of first-order methods for minimizing the following unbounded and
unregularized empirical risk:

1< NG
in L == Tx(@). 4, (@) 1
Inin L(w) = — ;:1 riw xsyt), (M
where w € R? is a linear classifier, 7 : R x {£1} + R is the loss function. Following previous work,

we focus on the exponential loss, given by 7(w ' x; ) = exp(—yx ' w). We introduce the following
standard assumption and definitions.

Definition 1 (|| - |-margin). For a linear classifier w € R? and a norm || - ||, we define its || - ||-margin
as
min y@w'x®  min pTAw
a(w) _ 1€[n] _ peEA™
[[wll [wi
where A = [...;yOxWT: ] € R"*? is the matrix that contains all data.

Assumption 1. Assume S is linearly separable and bounded with respect to some norm | - |.
More specifically, we assume EIW\T-H € By, s.t., WT\-H = argmax||y||<1 Mile[p] yDxODTw, whose

margin 7(Wr“.”) =7 > 0. We refer to wi  as the | - [|-maximal margin classifier. Note that, for any
w € RY, if y(w) = ~, w and WH.H are at the same direction. Finally, we also assume S is bounded
N e, Vi € [n], [|xP). < 1.

Definition 2 (|| - ||-Margin maximization rate and || - ||-directional error). Suppose Assumption
is satisfied. We consider a sequence of solutions w1, ..., Wy, ..., and state that Wy converges to
wi if either limy_, oo 7(Wi) — 7, or lim;—, o || HX—EH — wﬁ,H || = 0. We define the upper bound on

wrt some dual norm |

|[v — Y (wy)| the || - ||-margin maximization rate, and ”Hxiz\l -wi || the || - ||-directional error.

3 A Game Framework for Maximizing the Margin

In this section, we present a general game framework and demonstrate that solving this game with
online learning algorithms can directly maximize the margin and minimize the directional error.



Protocol 1 No-regret dynamics with weighted OCO for solving g(p, w)

1: Initialization: OL"™, OLP. // The online algorithms for choosing w and p.

2: fort=1,...,T do

3: W < OLW,

4: OLP «+ oy, 4:(); /l Define £,(-) = g(wy, )

S: Pt < OLP,

6:  OLY < ay, he(:); // Define hy(-) = —g(-, pt)
7: end for

8: Output: wp = Zthl Wy,

Then, in Sectiond] we show that many generic optimization methods can be considered as solving
this game with different online dynamics. As a result, the margin maximization rate (and also the
directional error) of these optimization methods are exactly characterized by the regret bounds of
the corresponding online learning algorithms. We illustrate this procedure in Figure|l} The game
objective is defined as follows:

: T
max min ,W)=p Aw — d(w), 2
max min g(p,w) =p (w) @
where ®(w) = 3 ||w/||? is a regularizer and ||- || denotes some general norm in R%. Following previous

work (Wang et al., [2021b} [2022b), we apply a weighted no-regret dynamic protocol (summarized in
Protocol [I)) to solve the game. We first give a brief introduction of Protocol [I] and then present the
theorem about the margin of its output.

Description of Protocol[T] In Protocol[T] the players of the zero-sum game try to find the equilibrium
by applying online learning algorithms. In each round ¢, the p-player first picks a decision p;, and
passes a weighted loss function to the w-player, defined as

athy(w) = —ay(p] Aw — &(w)) = —ayg(pe, w).
Then, the w-player observes the loss, picks a decision w;, and passes a weighted loss function

aly(p) = v (p T Awy — ©(wy)) = aug(p, Wy),

to the p-player. Note that the order of the two players can also be reversed. After 7' iterations, the
algorithm outputs the weighted sum of the w-player’s decisions: wr = Zthl aywy. Under this
framework, we define the weighted regret upper bound of both players respectively as

T T T T
tz_; oztét (pt) — pneliAn" tz_; Oztft (p) < Reg!}, and Z Oétht (Wt) — min Z Oétht (W) < Reg‘}’

d
t=1 weRT i

Denote the upper bound on the average weighted regret by Cr = (Reg}. + RegYy)/ ZtT: 1 0. We
have the following conclusion on the margin and directional error of wr. The proof of this theorem
can be found in Appendix B}

Theorem 1. Suppose Assumptionholds with respect to some general norm || - ||. Consider solving
the two-player zero-sum game defined in @) by applying Protocol[l| Then wr will have a positive
2 2

margin on round T if Cr < I-. Moreover, as long as Ct < -, we have

min p' Awr

n ire;
[[we|l gl
If ©(w) is A-strongly convex with wrt || - ||, we have
w1 8V2
H [erf 'H 2

Theorem [I|shows that the output of Protocol |1} denoted as w, achieves a positive margin when the
2
average regret Cr < “-. In the following sections, we demonstrate that with appropriately chosen



online learning algorithms Cp always decreases with respect to 7'; in fact Cp — 0 as T — oo.

Therefore, once the condition Cr < 7{ is met for a particular value Ty, it will also be met for all
T > T,. Thereafter, wr continues to increase the || - ||-margin and converges to the maximum
|| - ||-margin classifier, and the rate is directly characterized by Cr. Since Cr is the average regret of
the online learning algorithms, better bounds on C'r lead to a less stringent condition on large enough
T'. Finally, we note that the condition on sufficiently large 7" is also (explicitly or implicitly) required
in all previous work on the non-asymptotic margin maximization rates of generic methods (Nacson
et al.Ll 2019;|Li et al.| 2021} Sun et al.,|2022). We refer to Appendix E] for more details.

4 Implicit Bias of Generic Methods

In this section, we show that average mirror descent and steepest descent can find their equivalent
online learning forms under Protocol [I} Thus, their margin maximization rates can be directly
characterized by the corresponding average regret C'r. For clarity, we use v, to denote the classifier
updates in the original methods, and w; the update under the game framework. Note that Theorem
[] clearly implies that the convergence rate of the directional error is always a square-root worse
than that of the margin maximization rate. Due to space limitations, we only present the margin
maximization rates, while the corresponding rates on directional error are presented in the appendix.

4.1 Mirror-Descent-Type of Methods
First, we consider minimizing (T)) by applying the following mirror descent algorithm:

vy = argminn, (VL(vi—1),V) + Do (v, vi_1), @)
veRE

where Do (v, v;_1) is the Bregman divergence between v and v;_1, and ®(v) is a strongly convex
potential function that defines the mirror map. Note that since the feasible domain in (@) is unbounded,
we can rewrite the algorithm in the following form:

V(I)(Vt) = V(I)(Vt_l) - T}tVL(Vt_l).

In this paper, we consider weighted-average mirror descent with the squared ¢-norm, i.e., ®(w) =
1 2 . P . .

5|lw/||;, where ¢ € (1,2], and demonstrate that this optimization algorithm can enable faster | - ||-
margin maximization rates. The detailed update rule is summarized in the left box of Algorithm ] It
is worth noting that this type of regularizer is (¢ — 1)-strongly convex with respect to || - ||4, and can
be updated efficiently in closed form as belovﬂ for each coordinate ¢ € [d], we have

Or,i = sign(ve—1,)|ve—1,6| " [veor ]2 — 0 [VL(ve-1)];,
PP

)

vg,i = sign(Vy,i) |V,

We make a few final observations about this algorithm: 1) Instead of using the weighted sum v, we

could output the weighted average <~— without altering the margin or directional convergence

s=1%s

rate. This is attributed to the scale-invariance of the margin, i.e., Ve > 0,w € R%, 5(w) = J(cw).
The same argument applies to the directional error. 2) The use of the weighted average is standard
in the analysis of mirror descent (e.g., Section 4.2 of |Bubeck et al.|(2015)). This paper shows that
using non-uniform weights is advantageous for achieving rapid margin maximization rates; 3) The
per-round computational complexity of (3) is O(d), which is similar to that of p-mirror-descent of
Sun et al.| (2022). However, we note that the p-MD algorithm of [Sun et al.| (2022) does not need
to compute the norm of the decision at each round, which could be more efficient in real-world
applications where parallel or distributed computation is desired.

For Algorithm|[I] we have the following theorem. We present its proof in Appendix [C} along with a
more general theorem that allows a general configuration of the parameters 7, a; and ;.

Theorem 2. Suppose Assumption|I|holds wrt || - ||q-norm for q € (1,2]. For the left box of Algorithm
let ; = ﬁ For the right box, let oy = 1, and 5, = 1, B = ﬁ Then the methods in the
two boxes of Algorithm|l|are identical, in the sense that Vi = Wr. Moreover, we have the average

'This expression appears in (Section 6.7, Orabona} 2019) and we reproduce it for completeness.



Algorithm 1 Mirror Descent [Recall ¢;(p) = g(p, w¢), and hy(w) = —g(p¢, W)]

I: fort=1,...,T do p-player: p; = argmin ayl;_1(p) + i Dxo (P L)
. — _ pEA”
2 VO(vi) = VO(via) =mVL(vi1) w-player: w; = argmin Z;Zl a;hi(w)
3: end for wERd
~ T
4: Output: vy =3, %Vt Output: w = Z;‘;l Wy
2
regret upper bound Cr = (Z1+2 log;)(log r+2) . Therefore, the algorithm achieves a positive margin
2 4 9logn)(log
when T is sufficiently large such that T > At Oif )tog T+2). We have the convergence rate
. T ~ 2
prglAnnp Avry N 4(ﬁ+2logn> (logT+2) (]()gnlogT) ©)
= Z = =7 a0
[vrll, 3T (¢ — 12T

and

The first part of Theorem [2]indicates that the mirror descent algorithm can be described as two players
using certain cleverly designed online learning algorithms to solve the regularized bilinear game in
(2). More specifically, for the p-player, we propose a new and unusual online learning algorithm,
which we call regularized greedy.

vr .
=5 — W
[Frlly ~ " e

< 83 (qf—ﬁ—?logn) (IOgT+2)_O<\/W)
o V-1 g R

) 1
p: = argmin ayly_1(p) + B DxL <P7 n) .

PEA™

Essentially, in round ¢, the p-player minimizes the previous round’s loss function, ¢;_1, plus a
regularizer at round ¢, and the two terms are balanced by the parameters «; and 5;. On the other
hand, we select the follow-the-leader™ algorithm for the w-player:

t
w; = argmin Z ajh;(w),

weR? 5T
which returns the solution that minimize the cumulative loss so far. The + sign in the name is because
the algorithm can pick the decision wy after seeing its loss function. This is an interesting and unusual
design because the regularized greedy algorithm will clearly suffer a worst-case linear regret for the
p-player. Fortunately, for our specific case we are able to prove a sharper data-dependent regret
bound for the p-player as below:

T
t—1)(g—1
Regh = O (Z #Hwt — w2+ lognlogT> ,

t=2

Therefore, the dominating term (i.e., the first term above) of the p-player’s regret bound can be
canceled by the w-player’s regret bound, given by:

Reg¥ = O (- > %nwt - wt_1||2> :

t=2

Note that the w-player’s regret bound is negative as the corresponding algorithm used is clairvoyant,
i.e. can see the current loss ¢; before making a decision at round ¢. This ensures that sublinear (and
more generally fast) rates are possible. Note that 5, and «; will influence both the regret bound and
the algorithm equivalence analysis, so finding the right parameter configuration that works for both is

a non-trivial task. We make the choice 5, = Zt‘fiﬁa which ensures both algorithmic equivalence
i=1 %
and sublinear regret bounds.



Algorithm 2 Momentum-based MD [Recall /;(p) = g(p, w;), and hy(w) = —g(ps, w)]

1: fort=1,...,Tdo w-player: ) 1

2: VO(vy) =VO(vi_y) = VL(vi_q) || Wt = argmingcpd Y oicq ihi(wW) + ahy—1(w)
= (VL(Vi1) = m-1VL(vi-2)) p-player:

3: end for - Pt = argmingcan ail(p) + Bt DxL(P, Po)

4: Output: vp = >, %vt Output: wr = ZL QW

The second part of Theorem [2] shows that the average regret Cr of Algorithm [I]is on the order

of O (%). Therefore, by plugging in Theorem |1} we observe that the margin shrinks on

_ lognlogT : ECP e . lognlog T
the order of v — O (772(Q*1)T)’ and the implicit bias convergence rate is O (772((1_1)\/:7) . Next,

we show an improved rate with a more aggressive step size on the order of O (ﬁ) instead of

0 <ﬁ) . The proof of this result is given in Appendix

v

Theorem 3. Suppose Assumption[I|holds wrt || - ||g-norm for q € (1,2]. For the left box of Algorithm

letn, = L(vi,l)’ and let the final output be Vv = ZZ;I t_%lvt. For the right box, let ay = t, and
61=1, 6= tEI' Then the two algorithms are identical, in the sense that v = wrp. Moreover,
AT ogn lo ogn
when T > \/8[q1+41 & }ngT+1+21 £ ], we have
. T ~
oenn P Avr - 32 8(4lognlogT + 1+ 2logn) o
~ Z Y= - ’
[vrll, v*1'(q—1) VT2
and
’ Vo . - 8v/2 8 +410gnlogT+210gn+1
— — W|. < .
Vol e, = v2va=T1\ (¢ - DT T°

Observe that the margin maximization rate in Theoremis 0] (m) + O (logﬁ#) Com-

pared to (6), it has a better dependence on logn and log 7.

Finally, we focus on a momentum-based mirror descent algorithm, which is given in Algorithm 2]
For this algorithm, we have the following guarantee.

Theorem 4. Suppose Assumption|l|holds wrt || - ||g-norm for q € (1,2]. For the left box of Algorithm
let my = ﬁ and 1y = L(tv%il) For the second box, let oy = Eand é’t = t% Then the
methods in the two boxes of Algorithmare identical, in the sense that v = wr. Moreover, when

\/8(410gn10g T+%)

T > 5 , we have
min p' Avy T )
pear o v 21 Pt —pe-afli 32lognlogT ®)
Ivrll, — — Y2 (q—1)T1? ~2T2
and
’ i W < 82 Zthl lp: — pe—1l? 3210gnlogT.
”VTHq I-lla q % (¢g—1) (g —1)T? T2

The above theorem shows that, for sufficiently large 7', the margin maximization rate can be data-
dependent. Note that Z;‘F:l lp: — pe—1]|? < 2T, so in the worst case, the bound reduces to the
results in Theorem , but it can become significantly better when Zthl llps — Pe_1]|? is small. We
expect that when T is very large, pr will change very slowly as we already know that the direction of
v will converge — however, turning this into a precise faster rate dependent on the original training
data geometry, i.e. A, is an intriguing open question.



Algorithm 3 Steepest Descent [Recall 4,(p) = g(p, w;), and hy(w) = —g(p¢, W)]

1: fort=1,...,T do w-player: w; = argmijn (0—100 1 Vhy_1(Wi—1), W)
2:  s;_; =argmins' VL(v,_; wWERS

' lsll<1 (ve-s) D g2 (W, W)
i en:i/tfo:r Vi1 + 71811 p-player: p; = ag%glin Siy aili(p) + Dxe (p, 1)
5: Output: vr Output: W = Zthl Wy,

4.2 Steepest Descent

Next, we consider the steepest descent method under a given general norm || - ||. For a succinct
description of this algorithm see (Boyd & Vandenberghel [2004). For completeness, we have also
described this algorithm in the left box of Algorithm[3| In each iteration ¢, the algorithm first identifies
the steepest direction with respect to the norm || - || (Step 2). It then adjusts the decision towards
this direction using a specific step size 7, (Step 3). After T iterations, the algorithm yields the final

iteration vp. In the following, we show that an O (M;lgg,”) || - ||[-margin maximization rate can be

|7

achieved when the squared-norm, i.e. 1|| is A-strongly convex (e.g., 1|| - |2 is (¢ — 1)-strongly
convex wrt || - ||4). The proof of this result provided in Appendix@ Moreover, we recover the slower
0] (%) of [Nacson et al.| (2019) rate as a special case for norms that are not necessarily

strongly convex.

Theorem 5. Suppose Assumptionholds wrt a general norm || - ||, 1| - |12 is A-strongly convex

wrt || - ||. Let n: = W and 6;_1 = ay_1. Then the methods in the two boxes of Algorithm
. . ~ A log
are are equivalent, in the sense that vp = wWp. Moreover, let oy = % Then Cr = 4+T?\gn.

Therefore, when T > M we have

min p' Avy

pEAn >77)\+410gn
[vel — TN
and
v . 42 )\+410gn
e il = o/

The first part of Theorem [5]elucidates the equivalent online dynamic of the steepest descent algorithm,
which is also depicted in the right box of Algorithm 3] The w-player employs the standard online
mirror descent (OMD) algorithm (Hazan, 2016), while the p-player utilizes FTRL™, i.e., p; is
selected by minimizing the cumulative loss observed so far, coupled with a regularization term. The
crux of our algorithm equivalence analysis lies in evaluating the output of the w-player. For this,
we initially prove that given §; = a%, the OMD algorithm condenses to best-response (BR), that is,

W, = argming, cpa o hy—1(w). We then prove that BR’s output coincides with the steepest descent
direction. The second part of Theorem [5]shows that the average regret of this online learning dynamic

is O (At};%p") which leads to the corresponding fast margin maximization/small direction error. We

note that the favorable average regret is made possible by allowing the two players to play against
each other, rather than plugging in worst-case regret bounds.

4.3 Even Faster Rates with Accelerated Generic Methods

In the preceding subsections, we showed that, with suitable step sizes, steepest descent and average

lognlog T
T

mirror descent can achieve an O ( ) margin maximization rate. We now aim to derive even

faster rates using two approaches, as illustrated in the top two boxes of Algorithm[d] The left box
introduces a Nesterov-acceleration-based mirror descent (Nesterov 1988} [Tseng), 2008): In each
iteration ¢, the algorithm initially performs an extra update to yield v; (Step 2), then executes a mirror
descent step with the gradient at v, (Step 3), and finally calculates a moving average (Step 4). On the
other hand, the right box depicts a momentum-based steepest descent algorithm: In each iteration,



Algorithm 4 Accelerated Methods [Recall ¢;(p) = g(p, w¢), and hy(w) = —g(p¢, w)]

I: fort=1,...,T do I: fort=1,...,T do

2 vy =BiavVie1 + Bz 20 gt = Pr38-118 sV L(Bravi—1+5; 48t-1)
3 V&(z;) = V&(z4—1) — i VL(ve) 3 S = argmin g <; s’ g,

4 Vvi=Pravia + 527227: 4 v =Vi_ + St

5: end for 5: end for

6: Output: v 6: Output: vy

p-player: p; = argmingcan i) a;li(p) + arle—1(P) + 2 Dyr(p, Po)
w-player: w; = argmingcpa > r_; a;hi(w)
Output: w = Zle Wy

the method maintains a momentum term g; with an additional gradient (Step 2), then identifies the
steepest direction with respect to g; (Step 3), and applies this direction to update the decision (Step
4). At first glance, these two algorithms appear markedly different. However, we show that with
appropriately chosen parameters, they are actually equivalent, in the sense that they both correspond
to the online dynamic in the bottom box of Algorithm[4 More specifically, we provide the following
theoretical guarantee. The proof is given in Appendix [E]

Theorem 6. Suppose Assumptionholds wrt a general norm || - ||, and || - ||? is A-strongly convex
wrt || - ||. For the left box, let 5,1 = %, Bl = 72(;\71), Bio=1 Bi,= t%, and n, = L(it)_ For
; _ =1 — A — Atllge-alls — 2

the right box, let ;3 = = Bra = 2, 52’4 — 21 - 5273 = LG ) and
¢ = t||g¢||+. For the bottom box, let ¢ = 3, oy = t. Then all three methods in Algorithmare
identical, in the sense that Vo = vp = Wp. Moreover, when T > 4V\2[l\c;g", we have

Mminpean p' AWy 32logn

R
and
vr 32+/logn

Remark Theorem[f]reveals that the two strategies implemented in Algorithm []yield an optimal
O(logn/[y*T?)) rate. It is worth noting that a similar online dynamic to the one detailed in the
bottom box of Algorithm ] was also considered by (Algorithm 5, Wang et al., [2022b). Nonetheless,
there are some crucial distinctions: 1) Their work only demonstrated that this dynamic could achieve
a positive margin, leaving open questions regarding whether the margin can be maximized (i.e.,
converge to ), and if so, what the margin maximization rate would be; 2) They only presented the
online dynamic, without its equivalent optimization form. Finally, we note that, Theorem [6| requires
the norm to be strongly convex, which is satisfied for, e.g. the g-norm when ¢ € (1, 2].

vl ‘W"'H =TT

5 Conclusion and Future Work

This paper examines the implicit bias of generic optimization methods, delivering accelerated margin
maximization and directional errors for average mirror descent and steepest descent. Our approach
translates generic optimization methods for ERM into online learning dynamics for a regularized
bilinear game, offering a simpler analysis and a fresh perspective on implicit bias. Despite the
effectiveness of the game framework in handling generic methods and accelerated techniques, it
presently holds some limitations: 1) the framework is currently operational only for exponential loss,
making its extension to handle more general losses a vital area for future research; 2) identifying
algorithmic equivalence is nuanced and non-trivial, and it is as yet unresolved whether this framework
can elucidate other methods, such as the last-iterate of MD; 3) Finally, it remains to be seen whether
more advanced online learning algorithms are beneficial under our framework, such as parameter-free
online learning (Orabona & Pal, 2016} |Cutkosky & Orabona, [2018)) or adaptive online learning
methods (van Erven & Koolen, 2016; Wang et al.,|2019; Zhang et al.,|2019; |Wang et al., 2021a)).
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A Additional Related Work

As discussed in the introduction, the implicit bias of GD-based methods on linear spreadable data
with exponentially-tailed loss has been extensively studied (Soudry et al., 2018} Ji & Telgarskyl,
2018 |[Nacson et al, 2019} Ji & Telgarsky} 2021} Ji et al., 20215 Wang et al., 2022b). For ¢;-norm,
Telgarsky| (2013) provides an O(ﬁ) margin maximization rate, and an O() convergence rate to a

sub-optimal margin. The idea of using the regularized game framework for analyzing the implicit
bias of Nesterov-accelerated GD is firstly considered in|Wang et al.|(2022b). This idea is motivated
by the smooth perceptron analysis of Soheili & Penal(2012)), and the the Fenchel game framework
by Wang et al.|(2021b)). The idea also inspired by the primal-dual analysis of |Ji & Telgarsky|(2021),
who discovered the relationship between the normalized gradient descent for the exponential loss
and a smooth update of a distribution over data. Apart from the setting above, the implicit bias of
GD-based optimization methods have also been studied in other cases, such as minimizing more
general loss functions (J1 et al., 2020; |J1 & Telgarsky, [2021;|Lai & Muthukumar, [2023), and deep
neural networks (Gunasekar et al.,[2018bj Ji & Telgarsky} 2020alb} [Lyu & Li, 2020; |Vardi, [2022).

Compared with GD-based methods, the implicit bias of generic optimization methods for linear
classification is less understood. Apart from the work summarized in the introduction (Gunasekar
et al.,|2018a; Nacson et al.,[2019; |Li et al.l 2021} |Sun et al.}[2022), the implicit bias of mirror descent
is also studied in regression problems (Gunasekar et al.| [2018a;/Azizan & Hassibi,2019). We note
that, as indicated in /Gunasekar et al.| (2018a) and |Sun et al.|(2022), the analysis of implicit bias for
classification and regression are “fundamentally different”. Apart from steepest and mirror descent,
the implicit bias of other generic methods, such as Adagrad and Adam are also studied (Gunasekar
et al.,[2018a; Wang et al., [2022al)

Discussion on large enough 7" Our Theorem(I]indicates that to ensure the margin can be maximized,

the number of iterations 7" has to be large enough such that Cp < %. We note that, similar conditions
are also required (explicitly or implicitly) in other work for analyzing the margin maximization rates
for generic optimization methods. For example, in the proof of Theorem 8 of Nacson et al.|(2019),
in order to combine the upper bound in (53) and lower bound in (54), one need to make sure
the LHS of (53), i.e., the margin, is non-negative, which essentially hinge on the condition that

VT =Q (I%Z#), similar to what is required in our Corollary In|Sun et al.{(2022), page 21, to

make sure the term 1 + 1‘;%” be a constant, 7" has to be large enough such that m,, the margin, goes

to co. In|Li et al|(2021), the requirements for a large enough 7' is stated in the main theorem (e.g.,
Theorem 4.2).

Comparison with Wang et al.|(2022b) As discussed in the introduction, our work is motivated
by |Wang et al.|(2022b). Compared with Wang et al|(2022b), we note that: 1) Wang et al.|(2022b)
draws the connection between Nesterov-accelerated GD for ERM and solving the bilinear game
through an online dynamic. However, it was unclear whether this kind of analysis suits other gradient-
descent-based methods, and generic optimization methods such as mirror descent/steepest descent
was not addressed at all. We observe in this work that the non-linearity of the mirror map in generic
optimization methods, such as mirror descent and steepest descent, makes the analysis particularly
challenging. In this paper, we reveal that the game framework can in fact encompass implicit bias
analysis for a range of generic optimization methods, and offer a more streamlined and unified analysis.
2) Wang et al.| (2022b) also proposed an accelerated p-norm perceptron problem. However, they
only demonstrated that the algorithm could achieve a non-negative margin, leaving open questions
regarding whether the margin can be maximized, and if so, what the margin maximization rate would
be; 2) They only presented the online dynamic, without its equivalent optimization form under ERM.

B Proof of Theorem /1l

. — T ~ .
Define m(w) = minpean g(p, W), Wr = =7— > ;_; Wi = =r——Wr, and we introduce
Diog ot Db ot

following lemma, which shows that using online learning for solving the game defined in )
maximizes m(w).
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Lemma 1 (Abernethy et al.| (2018). Consider solving the game defined in @) with the online learning
dynamic defiend in Protocol|ll We have that Vw € R4,

RegP. + Reg¥
m(w) — m(Wr) < Regr + Regr

= T
Di—1 O
Based on Lemma I]and the definition of m(-), we have
_ wr . T wr wr
mWr)=m|———|= minp A - =
<ZtT_1 at) peAn Zthl ap 2 Zthl O
wr y Reg? + Reg¥
= m <HT W|-|> B — ©)
D1 O D1 O
2
\ s 1 \ s Reg? + Reg}
=V || 3|7 — )
Dm0 Dm0 D1
which implies that
mlAIl pTAVA‘}T Reg® + Reg%W
pENi >y - M (10)
[[wll Wl

The above proof follows the main idea in |Wang et al. (2022b). Next, we turn to lower bound
|[wr]||. Note that since wr (and also wr) does not have a simple explicit form, the the technique
for lower bounding the norm in (Wang et al.,[2022b)) fails and we need to find a new approach. Let
(x,y) € {(x,y)}7_, be a data point. We have

192l 2 llyxll[[Wrll = yx' Wr > min p" AWz, (11

where the first inequality is due to assumption that ||x||. < 1, the second inequality is derived from
the Cauchy-Schwarz inequality. To proceed, we need a lower bound on the unormalized margin of
wr. We have

2

m (Wr) =m wr min p' A wr ! wr
T = — = _ =
ZtT=1 O peAT ZtT=1 o 2 ZtT=1 Q
. Regh + Reg¥
>m (VWH u) - —ar
D1 N (12)
. . 1 . Regr + Reg}
= min p' AW — o ywiy P - —Fr——
PEA Zt:l o
_ 7* _ Regj +Regy
=L - —L_ =T
2 D1 O
where for the first inequality we apply Lemma|l{and compare m(w) with that of Ywj.» and the
last equality is derived based on Assumption || (the margin of wj  is v, and ||w || = 1). . (12)

suggests that
2 ~ T 2 T
s~ Tg Z a; — (Regh + Regl) > ) ; ar — (Regh + Regy) .

13)
Note that, to plug in the lower bound of W, we need to ensure the RHS of (I3) is positive. Notice

that when 772 23:1 a¢ > 2 (Regh + Reg¥),

2 T
%7 > 5 D" ai—(Regh +Regh) = - D"t [ 1= 3" ap — (Regh + Regit) | > 1D .
t=1 t=1 t=1 t=1



Combining (T0), (TI)), and (T3), we have

min p' Aw w
pean P T o 4 (Regh + Reg¥) _ 40 (14)
D Nt

Note that to apply (13)), we need l; S, ar — 2 (RegP + Reg¥) > 0.

Finally, we focus on the distance between Hg—iu and W\T- I for the case where ®(w) is strongly convex

wrt || - ||. This part of the proof is motivated by Theorem 4 of [Ramdas & Pena| (2016)), who show
that a variant of the perceptron algorithm can converge to the /5-maximum margin classifier in an
O(1/+/t) convergence rate. We have

H H H H I%r = [Wrlw, |
[wrll i 2 Vi [wr||

- [Wr — 'YWT‘.H +7Wﬁ.” - ”WTHWT\.””
Wl
I = iyl + b~ Il s
- [wr
% —Awiy |+ wi ) = Il
B Izl
2[[wr — ’YWIT.H |
[we|
where the first inequality is based on the Minkowski inequality and the fact that ”Wﬁ-\l || = 1. Next,
note that m(w) is A-strongly concave with respect to || - ||, and YW| | maximize m(w). This is

because it is easy to see that the optimal solution of m(w) always lies in the direction of wr‘ ”, and

we only need to decide the norm. Let ¢ > 0 be some constant, we have m (cwH H) =cy— c . The

function is maximized when ¢ = =, which implies that the optimal solution is ’YWH.” Combmmg
these facts with Lemmal[T} we have

Reg? + RegT
Zt 1%

Finally, combining the lower bound of Wr proved in (TI), we have when 772 Zthl ap —
2 (Regh + Regy) > 0,

S 1% = wi I < mywi) = m(wr) < (16)

1 ~? L

[Well = —— oz = [ Zat] -
D=1 Zt por [ 4T

so, combining the equation above with and (T6), we get

Wk 8+/2(Regh + RegY)
Wi < : (17)
||WTH ~2 /Athzlat

C Omitted Proof in Section 4.1

In this section, we provide the omitted proof of Section .1} Here, we present a more general
algorithm framework (given in Algorithm[5)) which allows different step sizes. In the following, we
first state a general theorem for this algorithm, and Theorems [2]and[3]is then given as Corollaries 2]
and[3l
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Algorithm 5 Mirror Descent (General Version)

fort=1,...,Tdo p-player: p; = argmin a1 (p) + 8 Dxr (P, &)

pEAN
Ve(vi) = VO(vi—1) =0 VL(Vi-1) w-player: w; = argmin Zj 1 oihi(w)
end for weRd?

: Output: vy = Zt 1 E

Rl

T aL Output: WT = Zt:l QWi

Theorem 7. Suppose Assumption[I| holds wrt || - || g-norm for q € (1,2]. For the left box of Algorithm
let ny = ﬁ For the right box, let 3, be Eifor t > 1, f1 = ay. Then the methods in
i=1

the two boxes of Algorzthm@are identical, in the sense that Vi = Wy, and v; = Wy - 22:1 ;.
Moreover, the regret upper bound

L ag(e - 1) r
=14
Regy Z t 1 ( 1)+ij||wt_Wt71||3+210gn25t+0417
=2 g 1¢ t=2 t=1
~ (-1 e
Regy = _Z (2515> [[we —Wt—1H3-
t=2

Thus, vV achieves a positive margin (no smaller than ~* /4) for sufficiently large T such that

9 T T
%Zatz (2 —+210gnz >+a1(1—|—210gn). (18)
t= 22 ila—1) = i= 1 '

After is satisfied, the margin of vV is lower bounded by

2
pIgEzp TAvVy . {<2Zt 2m+2lognzt 22 >+a1(1+2logn)}

vzl V23

and the directional error is

|, i
ol M,

3 8 {(ZZt 2%"‘210@121& 22,}“ >+a1(1+210gn)]
V-1 (q_1>2t:1at

Next, we show that different step sizes (decided by o) lead to different implicit bias convergence rates.
. . . . _ 1 . ~ 1

1ljlrstl(;/, we consider setting the step size as 7, = NGTCnL which leads to a slow 0(7'72 T 1))
ound.

Corollary 1. Let a; = Then the margin is lower bounded by

1
f
TAV 2 4
néur}mp T 4((q T +logn) logT + 4logn + 7 1)

~ 1
e, 207 2T =7-9 (Wﬂq— 1>> ’

and
H o B 82 (%—Hogn)logT—kMogn—kﬁ —5( 1 >
ol 0, = e VT (4~ 17277
2 ogn O, ogn _4_ ~
when T is sufficiently large such that /T > (g +oe )17g2T+41 gnttr) = (W)

Next, we show that a faster rate can be obtained with a constant o, which implies Theorem
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Corollary 2 (Theorem[2). Let oy = 1. Then the margin is lower bounded by

préqu?p AVT>7_4((121+210gn>(10gT+2):7—~<1)
| = 2T (¢ —1)y*T

vrl,

and

e, i
el i

83 (%—f—ﬂogn) (logT+2)_5 1
q =D T : <W>

4((1—31 +2 log;z) (log T+2)
=~ .

when T' is sufficiently large such that T >

Remark Note that, by setting a; = 1, according to Theorem we getn, = ﬁ, £ =1, and

By = Et% = i which recovers the parameter configuration in Theorem

J=1%
Corollarylshows that, with a step size of order O (7)) Algorlthmlenjoys afaster O(W)

margin maximization rate when t = ) (%). Next, we also considered using a even larger step

size, ny = ﬁ, and recover Theorem
Corollary 3 (Theorem . Let oy = t. Then Vp = Zthl t%vt. When T >
AT ogn 1o, ogn
\/8[q1+41 £ 172gT+1+21 g ], we have we have
min p' Avy
pEAN - 32 8(4lognlogT + 1 +210gn) (19)
Nrll, =T TG-1) 72T
and
’ vr 8v/2 8 +4lognlogT—|—2logn+1
= — Wj. .
Fll, Vi, = v\ -7 7

Note that, when a; = t, we have 1, = ﬁ, which recovers Theorem [3| Finally, we note that, if

T is fixed and known before, we can set a; as T and get rid of the log T" term.

C.1 Proof of Theorem

We first focus on the algorithm equivalence, and start from the online learning framework. For
w-player, we have

W, = argmin E ajh;

weRd j=1
Zt 19
= argmmz —a;p, Aw + anui (20)
weRd j=1
o [ Y aaTh ).
Z] 19 j=1
which implies that
T ZE i % T
Vo (w,) = Za iA'p; = V(I)(Wt,ﬂ + tiA Pi¢-

Zj 19 55 ZJ 195 Zj:l Qj
To proceed, note that
sign(w;)|w; |71
[[wlla—2

[Vo(w)]; =
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Thus, Ve > 0, cV®(w) = V®(cw). Then, multiplying ¢ = Z;Zl «a; on both sides, we get

t t—1
Vo thaj =Vo wt,lzaj + AT py.

j=1

On the other hand, for the p-player, we have

. 1
p: = argmin ayf;_1(p) + B Dk <P7 ) = argmin *p TAw, 1 + sz log 1 .
pEA™ n peAr Pt

Based on a standard argument on the relationship between OMD with the negative entropy regularizer
on the simplex (see, e.g., Section 6.6 of Orabona, 2019), it is easy to verify that Vi € [n],t € [T,

exp(—%y(i)x(iﬁwt 1)
Pra = S L exp(— 5ty Dx Tw, )’

where p; ; is the i-th element of p,. Moreover, based on the definition of L(w), for any w € R4,

. . T
VL(w) AT exp(—yDxTw)
L(w) TN exp(—yWxG)Tw) |
which implies that
VL(‘“wt )
ATp =— °

Combining the above equations and the definition of 5; = Zf’il we get
=1
: = VL (w1 S ay)
Vo WtZaj =Vo wt,lzaj — .

j= j=1 (Wt 1Z] 1%)

Substituting v; = wy - 23:1 o, we get
VL(Vt_l)
Vo =Vo(vi 1) —ay———7,
(Vi) (Vie1) — o L(vi1)

and W = Zt LWy = Zt 1 Z' Ve The proof is finished by replacing 77— with 7.
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Next, we focus on bounding the regret of the two players. For the p-player, let p*‘ =

mlAn Zt 1 0¢P T Aw, be the best decision in hindsight for the online leanring problem. We have
pEAn

T T
Reg? = Z Oétp;rAWt — Z Oétp*’é’TAWt

t=1 t=1

T
= Z (OétPt Aw_1 + B Dxr (Pt, )) Za p~tT Aw, +Zatpt —Wy1)

t=1

1
- ;5tDE (Pm n)

(@) & 1
< (Oétp*’l’TAWt1 + 6Dy ( * g >) Za p" b TAWt + Zatpt — Wyi_1)
t=1
T
1
-3 5 (b 1)
n
t=1

T T T
< Z Oétp*’e’TA(Wt—l —wy) + Z atptTA(wt —wy_1) +2logn Z Bi
t=1 t=1

t=1

() T T T
< D alp iAW = Wi)lloo + D arlpelil| A(We = wio1)l|oo +2logn Y By
t=1 t=1 t=1

@ X T
< QZatHA(Wt,l —Wi)|loo + 210gn25t

t=1 t=1
T
=9 Zat argmax ‘y(z)x( T (Wie1 — W) | + 210gn2ﬁt
=1 i€[n] =1
© T T
S 2Zat\|wt_1 *Wt”q +21ognz,3f
t=1 t=1
T T
=2 ayflwig —willg +2logn Y B+ an|[willg
t=2 t=1
Yol (g —1) ) d
22 a<q_1 +2ZTuwt—wt_1||q+2logn26t+a1||wluq
j 10y t=2 t=1
T thl O['( 1 T
—1ai(g—1)
QZ ( - +Z%Hwt7wt_1|\3+210gn25t+a1HW1||q.
P 1 t=2 t=1

2D
Here, inequality (a) is based on the optimality of p;, inequality (b) is due to the fact that the negative
entropy regularizer is upper bounded, inequality (c¢) is because of the Holder’s inequality, inequality

(d) is derived from p;, p € A", inequality (e) is based on the Holder’s inequality and || x|, < 1
for all ¢ € [n], and inequality (f) is based on Young’s inequality:

T T t-1

2i—1(g—1)
ZatHWt—l—Wth Z ‘( iy +Z ’ 5.9 [we — we1ll7,
t=2 t=2

. Zlai(g—1 . . . .
where we pick M as the constant of Young’s inequality. Finally, note that w; =

[V®] ™' (AT py), so based on the property of p-norm, we have

arl[willy = a1 [Ve] T (ATp1)lg = | ATpall, < ar.
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For the w-player, note that h,(w) is (¢ — 1)-strongly convex wrt the || - ||,-norm. Thus, based on
Lemma[3] we have

T t—1
(q—1)> i as 2
Reg¥ < — S= w; — wy_1]|°. 22
egr < ;—1( 2 [[we t—1ll; (22)

C.2 Proof of Corollary/l]

2

2 2
Note that C’T < - is equivalent to 2~ Zle a; > (Regh + Reg}). We have - ZZ;I oap =

2 T

T 1\[— 4\/Tand
T

(22 S YT ( By +2logn Z tl >+a1(1+210gn)
=05 .

=19 -1

Reg? + Reg}’

T 1/t T
=2 + 2logn ————— +1+2logn
;(q—l)zJ V17 Z \/3
T
1 (23)
<2 + logn +14+2logn
;(q—l)t\/ Z\/i\/t—l
2
< (10gT+1)—|—logn(logT+1)+1+210gn
2 4
< ——i—logn logT +4logn + ——.
1 q—1
Therefore, Cp < % when
4<<%+logn>logT+4logn+%)
VT > 71 . LAy
Y
and in this case
pngglnp TAvVy >7_4<(qfl+logn) logT+4logn+ﬁ) 24)
Ivell, — — 2T
C.3 Proof of Corollary2]
We have%fthzl atzﬁT, and
T o2 T
Reg? + Reg} = (2 ———— +2logn tl >+a1(1+2logn)
t=2 Z;’:laj(q_l) z; i=1 i
d 1 |
=2 —— +21 — 4+ 1421
Z(t—l)(q—1)+ ognztil-i- + 2logn
t=2 t=2 (25)

2 —1
14+ 2logn + (1 +210gn) Z n
= t=1

2
<1 +210gn) (log T+ 2).
q—

IN

2
Therefore, C < - when

4(?21 +21ogn) (logT + 2)
T>

)

72
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and in this case

. TA~ 2
R p Avr y 4 (ﬁ + 2log n) (logT +2) 26)
—_— =7 — 5 .
vl T
and in this case
C.4 Proof of Corollary[3|
We have 77‘2 Zthl = % T(:';H) > ";T{ and
T o2 T o
QZ — 4 210gnz t_t1> + (1 +2logn)
< =2 Zj:l aj(g—1) =2 Dim1 Qi
T T
2t2 2t Q27)
=2 — + 21 —+ 1421
Zt(t—l)(q— ) + Ognzt(t—l) +1+2logn
t=2 t=2
8
< 1 +4lognlogT + 1+ 2logn.
q—
Therefore, Cr < % when
8|5 + 4lognlogT +1+ 2logn}
T Z 2 )
Y
and in this case
. T ~
prggh p Avr S 32 ~ 8(4lognlogT + 1+ 2logn) (28)
[vrll, = *T@—1) VT2
C.5 Proof of Theorem [4
We first focus on the algorithm equivalence. We have
t—1 ¢
w; = argmin — Z @p; AW — ayp, Aw + Z a; P (w)
weR? Gy i=1 (29)
1 t—1
= [V‘I’}_l ( T ( ;AT p; +04tATPt—1>> )
Ei:l @ ;
So we have
1 t—1
V@(wt) = Z aiATpZ- —+ OétATpt_l
>im1 @i \i=]
1 t:1 (0%] =2
== (Zij (Z @ ATpi+a; 1 ATpro | +atATpr 1 + a1 AT (Pro1 — Pro2)
Dim1 @i \ 2ot @i \i—
1 t—1
=— Zai Vo(w;_1) + APy + Oét—lAT(pt—l —Pi-2) |-
>im1 @i \ [im
(30)

Therefore, we have

t t—1
Vo (Wt Z 0%) =Vo (th Z Olz') + O‘tATptfl + Oét71AT(pt71 — Pt—2)- €1y
i=1

i=1
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On the other hand, for the p-player, we have
. 1
p: = argmin ol (p) + B DxL (p, ) .
peEA™ n

Based on the relationship between OMD with the negative entropy regularizer on the simplex (Hazan
2016), it is easy to verify that Vi € [n],t € [T],

exp(— 2y x0T w,)
bri = iy exp(—=GryWx Twy)”

which implies that
VL (ﬂwt)
ATpy=—— 2L
L (5w)
Combining the equations above and replace Z}i:l ap Wi with v, we get

Ty, (T Thn)
vy '\ Zrvie)  Lvies) )

VO(vi) =VP(vio1) —

The proof is finished by setting oy = t.

Next, we focus on the regret. For the w-player, Note that h;(w) is (¢ — 1)-strongly convex wrt the

| - ||-norm. Let w; = argmin Zf;i a;h;(w). Then, based on Lemma4] we have
weRd

T
Reg¥ < Zat (ht(Wt) - ht(V/‘\/t+1) - htfl(wt) + htfl(v/c’t+1))

t=1

Q4 ~
—ZZ S Ak VIR

T t . _
(Pt — Pr—1) AWy — W) — Z M

[we — VAVt+1||§

T
T

Yy ailg—1) _
Zqu(pf—pf 1)TA||p||Wt Werillg — ZI—ZHWt*WtHH?I
T

<
a =1 2 (32)
a? S ailg—1)
S —fATp—p_ 2 ca=l M Ty, — W 2
23 anlg )|| (Pt —pe-1)ll; ) [we — Wil
T ¢
; ilg—1 N
I
9 q
=1
1 T a n 2
_ t (pei — Ny (D)5 (3)
pt,z ptfl,z)y X
D) 2 T | p
T
1 042 2
< L |lpt — pe-1ll7 s
TIPS :

where the first inequality is based on Holder’s inequality, the second inequality is based on Young’s
inequality, i.e.,

T
Z al|(pe — pt—l)TA”p”Wt —Witillg
t=1 (33)

2 22:1 ai(g—1)
Z mnmpt —pylp 4 Z= =)

[we — VAVt+1H3
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For the p-player, we have

T
E atpwat — min atpTAwt
peAn

T
Z (up; Aw; + B Dk <pt> ) - pfglAfL Zatp Aw, — ZBtDE <pt» ) (34)

t=

Finally, we focus on the margin and implicit bias. Since iy = ¢, for the w-player’s regret, we have

T

LS 9 <
2(q_ 1) Zt ] Pt Pt—1ll1 = (

t=1 2ui=1 %

- ptle%v

and for the p-player, we have

T
o
Zilogn < 4logT logn.
Zt

Following Theorem|[I] we have the margin and implicit bounds when

T

T(T+1 T2 4 2T
Zat:QZ— — (4lognlogT + ——
— 2 2~ (¢—1)
(35)
4 1 < )
> — [4lognlogT + Pt — Pi— ,
= 1y 2 e Pl

since the RHS is exactly %(Regg + Reg¥).

D Omitted Proof in Section 4.2]

In this section, we provide the proof related to the steepest descent algorithm. We first restate
Algorithm [3] which is presented in Algorithm[6] Here, we provide two online dynamic under the
game framework. They both are equivalent to the steepest descent algorithm in the left box, in the
sense that v = wr. The left one is good for recovering the results inNacson et al.| (2019), while
the bottom one is more suitable for analysing our accelerated rates.

‘We first recover the results of Nacson et al.|(2019) in Theorem B], and then proof our Theorem E}

Algorithm 6 Steepest Descent [Recall 4,(p) = g(p, w;), and hy(w) = —g(p¢, W)]

I: fort=1,...,Tdo
20 spq = argmingg<; s"VL(vi_1) || p-player: p; = argmm ZZ L ili(p)+Dke (P, 2)

PEA
3 Vi =Vt 1S w-player: wy = argming, cga c¢hy (W)
4: end for ~ T
5: Output: v Output: wp =3, a;wy
w-player: w; = argmin (§; 11 Vhi_1(Wi_1), W) + D%”,HQ(w,wt,l)
weR?
p-player: p; = argmin 2521 aili(p) + Dk (pv %)

pEA™
~ T
Output: W =), | oy Wy.
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o[ VL(We—1) |-
L(Wtfl) . °
Then, the methods in the top two boxes of Algorithm|6|are equivalent, in the sense that v = Wr.

Moreover, let ay = % Then Cp = 282182 1p0pofore, when T is sufficiently large such that

VT
VT > 4(logn+2log T+2) n+5210g T+2), we have

. T ~
pnélgln p Awr ~ 4(2+logn +2logT)

= > }
[w|l V2T

The first part of Theorem [§]shows that the steepest descent algorithm can be seen as an online learning
dynamic where the in each round p-player performs the standard follow-the-regularized-leader
algorithm (Hazanl 2016), while the w-player uses best-response™ (Wang et al.l 2021b), meaning
it picks the decision by directly minimizing the loss of the round. The second part of the theorem

Theorem 8. Suppose Assumption |l| holds wrt a general norm || - ||. Let n; =

(36)

shows that the margin convergence rate, which recovers the v — O %

) rate of [Nacson et al.

(2019)), while the convergence in terms of distance is new. Note that the strongly convex condition
is not required for the margin maximization analysis, but is needed for the distance convergence
analysis. Next, we restate Theorem 5] where an improved margin maximization rate when the strong
convexity condition is met.

Theorem 9 (Restate of Theorem . Suppose Assumption holds wrt a general norm || - ||, and

%H - || is A-strongly convex wrt || - ||. Let ny = w. Then the methods in the first and third

boxes of Algorithm@are are equivalent, in the sense that v = wWr. Moreover, let oy = % Then

2 tlogn ogn
Cr =42 ?Ag . Therefore, when T' > %, we have
< 8 [A+ 2logn
T V2 TN

We first focus on the algorithm equivalence between the top two boxes. Based on the relationship
between FTRL and EWA (Orabona, [2019), one can verify that

exp(—yxT (377} axwy))
Sy exp(—yDx DT (T4 axwy))
Combining with the definition of L and wy, it implies that
VL(¥:1)

min p' Avy 2

pEAn >Fy7)\+4logn
vl — YV2TA

. and VT fwﬁ,“
[[vrll

D.1 Proof of Theorem[§|

Pti =

~ = _ATp )
L(Wi_1) !
That is, VL(W;_1) = —L(W;_1)ATp;. Lets, = argmin g <; s’ VLL(‘(’TIVN‘:’S) Note that, on one
hand, we have
- VIL(w;_ -
S; = argmin STM = argmin STVL(Wt_l), (37)
isi<t L(wi1) Isl<1

where the second equality is because because the argmin does not change if we scale the objective
functions. On the other hand, we have

- T VL(Wyy) ( VL(Wi1)
S; = aﬁsgﬂngulns m = aTEHH;?XS <_L(V~Vt—1)> . (38)
To proceed, we introduce the following lemma.
Lemma 2. Let | - || be any norm in R%. Let a € R?, and
S = argmax s Ta. 39)
lIs'I<1
Then
|al|s = argmin —a' x + %”X”Q (40)

xERd
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Proof. We first focus on (@0). Note that the objective has two terms. For the first term, based on
Holder’s inequality, we have
-
—a x> —all.[x].
Let ||x|| = ¢, where ¢ > 0 is a constant, then the equality is achieved (and thus the first term of the
objective function is minimized) when

X = argmin —x Ta= argmax x Ta. 41
lIx’[I<e lIx’[|<c
In this case, for the objective function of (@0), we have —a'x + 1[|x||> = —clla||. 4+ c?. It’s easy

to see that the objective function is minimized when ¢ = ||a||.. The proof is finished by combining

(39) and @T). O

This lemma shows that the best response direction (under our game) is the steepest direction. Thus,
we have

VL(Wy_ 1
w, = argmin —p,; Aw + = ||w||2 = argmmwTM + —||w]?
weRd weRd L(Wt—l) 2

VL(wg_
= argmin —w ' (—M) + *HWHQ
weRd L(Wt—l)
VL(VVH)) _ VL) [
= = = t-
L(Wt_l) L(Wt_l)
where the first equality is based on the updete rule of w; at the right box of Algorithm[6] the final
inequality is based on Lemma[2]and (38)). Note that, for the first equality, we dropped «; as it is a
scaling parameter and does not have a influence on argmin. Thus, combining with (37), we have
IVL(We )l VLW« N S
= = St = = argmins ' VL(w;_1).
L(wi-1) (L(Wi-1))  si<1

(42)

= argmaxw ' (—
llsll<1

Finally, we have

[VL(W: 1)«  Tor(e

7argmms VL(wi_1).
L(wi1)  sf< (1)

[VL(We—1)]l«
(We—1)

VT/t :{’\vftfl + Wy :%t + oy

We can finish the first part of the proof by replacing w; with v, with 7, and noticing

. T ~ .
argmingg <1 8’ VL(W—1)iss¢—1.

Next, we study the regret bound. Note that the p-player plays the FTRL algorithm on the simplex
with a 1-strongly convex regularizer Dy, (p, <) (wrt £1-norm). Therefore, based on Lemma the
regret can be upper bounded by

T
logn +2> afl|ATw, |2

T T
D ali(pr) = > aily(pT) <
t=1 t=1 t=1
= logn—l—QZ (maxy(l @7 Wt> (max|y(i)x(iﬁwt>
1€ en
1
< logn—i—QZ%HthQ
t=1
1
= logn+2zg||ATpt||z <logn+2logT +2,
t=1
(43)
where the equality is because
VL(Wt) ~ VL(Wt) T
il = ||| 51| = | | =1aTeul

On the other hand, the w-player uses the best response ™ algorithm and one can easily observe that
the regret is upper bounded by 0. Finally, we have 23:1 ap = Zt v = VT.
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D.2 Proof of Theorem[9]

We first focus on the bottom box. For the w-player, we show that, if we set ;1 = ﬁ, then this
OMD algorithm is equivalent to the best response algorithm.

Specifically, note that ®(w) = 1| /w]|? is now A-strongly convex. Thus the corresponding mirror

map is well-defined and unique, and the function V®(-) is invertible. Therefore, the solution for best
response is

W, = argmin a,_1hy_1 (W) = argmin hy_ (w) = VO (A Tp,_1). (44)

w

On the other hand, since the w-player uses OMD, and the decision set is unbounded, we have

VO (wi) = VO(We_1) — 6—10¢—1 Vhe—1(Wi—1) = VO(wy_1) + ATpig — VO(wWi—1) = AT pe_y.
(45)

Note that §;_1;—1 = 1. Combining and (@3)), we can draw the conclusion that w; and wy are
identical, which shows OMD (with §;_; = ﬁ) and BR (at round ¢ — 1) here are the same. We use

the BR form the algorithm equivalence analysis, and OMD form for the regret analysis.

Next, we prove the algorithm equivalence of the left and bottom boxes in Algorithm[6] The arguments
are similar to that in Appendix The difference is that the order of the w-player and the p-player
is switched. Firstly, For the p-player, based on the connection between FTRL and EWA, we have

¢
pri o< exp [ —y@x®T Z AW, = exp (fy(i)xm—r?vt) .
j=1

Combining with the definition of L, it implies that

VL(w:)

—— =-AT
L(Wt) Pt
That is, VL(W;) = —L(W;)A " p;. Let
~ V L(w -
S¢ = argmax —sTﬂ = argmins' VL(W;), (46)
Isli<1 L(wy) Isli<1

Combining the first equality in (46) and Lemma 2] we have

VLW« - o TVL(wy) 1o T Liwl
(%) St a‘r’vgerﬂré(linw L(w0) + 5 lw]] a‘l:vger;in p; Aw + 5 W] = wiy1
Thus,
L(Wi—1)]|«~ L(wi_1)]l« ~
W, = ws = IV L) argmins' VL(Wy_1).

L(Wtfl) =t m |Is|I<1

Finally, we have

~ - - VL(wWi—1)||« ) ~

Wi = Wy_1 + oWy = Wy + aﬂ&*ﬂ|| argmin STVL(Wt,l).
LWi1)  si<1

VEL(Wi—1)|+

L(w¢_1)

We can finish the first part of the proof by replacing w; with vy, ay I with 7.1, and

argmin g <; 8" VL(W;_1) with s;.

Next, we focus on regret. For the w-player, it uses the OMD algorithm, and we set the initial point

wo = 0. Note that we fixed a; = 2 for all ¢, and thus step size §;_1 = L — 4 g also fixed.
4 -1 A
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Therefore, Lemmacan be applied. Define u = argmin Zthl athy(w), we have
weRd

T T T T
h — mi h = h — h
;Oét t(Wt) vflrélﬂgd;at t(W) tz:;at t(Wt) ;Oét t(ll)

T
< @ 30208 on ()|
t=1
P(u)
= T+Z ||—14—r t+V<I>(wt)H
t=1
T
= @ + |—ATp:+ ATp,|
=t (47)
=ar®(u Z H*ATPt +ATp, 1“

2

= aT(I’ + Z a ZZ/ pt i pt—l,i)

*

2
o
<ar®(u +Z . <Z|ptz_ Di— 11,|>
T
<ar®(u Z Ipe — pe-allf

where the second-to-last inequality is derived using trlangle inequality and the assumption that
x|, is upper bounded by 1. Next, for u, note that

T T
argmin Z athi(w) = argmin — Z apy TAw + Zt:l A [|w||?
weRd ;T4 weRd =1 2
(48)
= argmin —————— Y a;p; Aw + waH
weR? Z =19t =1
Based on Lemma 2] we have
= T tPt )
D1 O 1 X
where
1 T
T T
s = —argmaxs [ A Pt .
Isli<t ( (Zt 10 ;1 ))
Therefore,
1 1 1 <« f
O(u) = Sfulf’ =5 |AT | —— D _am: ||| <5,
2 2 Zthl Q=1 X 2

where the inequality is based on the triangle-inequality and the assumption that the dual norm of data
is upper bounded by 1. Finally, for the p-player, since it uses FTRL™, based on Lemma@ we have
T T
14 4 (p*) <1 — = —pe1|f
;Oét t(pt) Z t ogn ;2”% pi-1ll

To summarize, and let oy = %, we have

Reg} + Reg) 2 +logn

23:1 Qy TA
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E Proof of Theorem

We first focus on the equivalence between the left and bottom boxes of Algorithm[4] For the w-player,
similar to the proof of Theorem [/ we have

t t .
wy = argmmZaJ (w) = argmmz —a;p; Aw + LHWHQ

weRd = weRd 17 2
(49)
= [vo] " ZajA p; |,
Z aj 5
which implies that
Zt‘: Q; o
VO(w;) = =9——V&(wi_1) + ———Apy,
Zj:l Qj Zj:l aj
and thus
t t—1
Vo Wtzaj =Vo Wi_1 Zaj —|—O¢tATpt.
— =

On the other hand, for the p-player, since it performs Optimistic FTRL on a simplex with the negative
entropy regularizer, we have

-
t—1
Pt X €Xp | —¢ (Z oW, + OétWt_1> X(i)y(i)

=1 (50)
= exp (—C(‘f’thfl + OétWtfl)T X(i)y(i)) )
which implies that
VL((th_l + COétWt_l) _ —ATpt,
L(eWy—q + caywi_q)
Let z, = wy 22:1 «;, then we have
~ L(ewi—q + =2—12-1)
VL(cWi—1 + caywy_q) \ t—1 Z —T g, 21
Vo (z,) =VP(z2i_1)—« — =V (zi_1)—a ‘—1’ .
(22) (2e-1)=cu L(eWi—1 + caywi_q) (2e-1)=cu L(ewi—q + Z RS 1)
Finally, notice that w, = W;_1 + qywy; = Wy_1 + S = o Bt The proof is finished by replacing w;,
with v, w; with tzita_, CWi_1 + caywy_1 with vy, conﬁgurmg Bi1=c= 4, Biq= % =
i=1 X ’ Dy

A _ ! gy 2 _ t
2(t—1)° 62,t - 17 ﬂQ,t - ng:l(’ — iF1° N = L(vy))®

‘t

Next, we focus on the equivalence between the right and bottom boxes. Note that for the w-player,
we also have
t t
> j=1%j

W = argmlnz ajhj(w) argmlnz OéjpTAW + 7||W||2
weRd? weRd? 2

a o 51)
: 1 T 2
= argmln—iza]p Aw + — ||W||
weRd Z] 1 O j=1 J
Let
s; = —argmaxs ZaJATpJ

lIsli<1 Ej 195 5

Based on Lemma[2] we have

ZajA pj|| st =
Z] 1

]jl
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1 t T
Next, let g, = YT > j=1 ;A" pj, we know

Zt—l ‘

g === Yy (—tatATpt> :
Zj:l Qj Zj:l a;

For the p-player, it is clear that due to the optimistic term, we have

VL(eWi—1 4 carwi_q)

—Ap, = - )
P L(ewi—1 + caywy_1)

To summarize, and let oy = ¢, we can conclude the proof by the following algorithm:

. t—1 n 2 VL(CV’(’tfl + CtWtfl) t— 1 2 VL(C{{’t,1 + CtHgt,1||*St,1)
B 1T T Llewiy tetwiy)  t 410 T 1 Llewit + ctlgellsSio1)
Sy = = —argmax —s ' g; = argmins' g,

Isl<1 Isl<1

Wi = Wi + t||gt][«st,

-1 A Atllge—1]l« 2
and let Bt73 = ;71, ﬁt74 = 1> B]’EA = M’ 6273 = (tJrl)L(BtAth1+5£’4st71)7 e = t”gt”*
Finally, we focus on the regret bound. For the w-player, note that ®(w) is A-strongly convex with

respect to || - ||. Thus, based on Lemma 3] we have
T T T
AMt—1
Zatht(wt z;atht ;(4)|Wt —Wt,1H2. (52)
On the other hand note that ¢ = % so based on Lemma we have

T
4logn A
S el = 3 auti(p) < g 2 A — A

41 2
= ogn th <max|y( )x(@T (wtwt_1)|) (53)

1€[n]

4logn =~ A 9 9
S— T3 Zt [wWe —wea|”
t=1
It is easy to verify that % < @ for ¢ > 2. So to summarize we get
8logn
T2
The proof can be finished by plugging in Theorem I}

Cp =

F Regret Bounds for OCO Algorithms

In this section, we provide standard regret bounds for Follow-The-Leadert (FTLT), Opti-
mistic Follow-The-Leader (OptimisticFTL), Follow-The-Regularized-Leader (FTRL), Follow-The-
Regularized-Leader™ (FTRL™), and Optimistic Follow-The-Regularized-Leader (Optimistic FTRL).
Lemmas [3] 4} [5]and [6] are based on Lemma of 3 of[Wang et al.|(2021b), and Lemmas [7]and [§| comes
from Theorems 6.8 and 7.35 of |(Orabonal (2019).

Lemma 3. Consider a weighted online learning problem with a series of A-strongly functions
f1,- .-, fr, and a series of corresponding parameters o1, ...,ar. The FTLY algorithm, given by

Z; = argmin g a;fi(z

zeR4 i=1

achieves the following regret bound:

T T AT g
vz € R Y aifi(m) = Y aifi(m) < =) < = s) [Ere
t=1 t=1

t=1
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Lemma 4. Consider a weighted online learning problem with a series of A-strongly
functions f1,...,fr, and a series of corresponding parameters ai,...,ar. Let Z; =

argmin, cpa Ef;i a;h;i(z). Then, the Optimistic FTL algorithm, given by
t—1

0 = argmin Y @i fi(s) + afo1(s),

d
zeR =1

achieves the following regret Vz € R%:
T T
Z o fi(ze) — Z a fi(z)
t=1 t=1
T

T t
< Zat (ft(Zt)—ft(EtJrl) fi- 1(Zt)+ft 1 Zt+1 ZA )Hzt_thrlu
t=1

t=1

Lemma 5. Consider a weighted online learning problem with a series of convex functions f1, ..., fr,
and a series of corresponding parameters oy, . . . ,ar. Let R(z) be a 1-strongly convex regularizer
wrt || - ||. The FTRL algorithm, given by

t—1

Z; = argmin Z a;fi(z) + R(z),

z€R4 =1

achieves the following regret bound:

T T T
Vz € Rda Zatft(zt) - Zatft(z) < R(z) + 2Za?||vft(zt)Hi-
t=1 t=1 t=1

Lemma 6. Consider a weighted online learning problem with a series of convex functions f1, ..., fr,
and a series of corresponding parameters 1, . .., ar. Let R(z) be a 1-strongly convex regularizer
wrt || - ||. The FTRLY algorithm, given by

zER4

z, = argminy Z a;fi(z) + R(z),
i=1

achieves the following regret bound:

L d R(z) T
2
Vz € Z, Zatft(zt) - Zatft<z) < - Z %Hzt —z1 % (54)
t=1 t=1 t=1
Lemma 7. Consider a weighted online learning problem with a series of convex functions f1, ..., fr,
and a series of corresponding parameters oy, . . ., ap. Let ®(z) be a [3-strongly convex regularizer

wrt || - ||. Let zg € RY be the initial point. The OMD algorithm, given by
V&(z) = VO(zt—1) — now—1V fr_1(z1-1),

achieves the following regret bound:

T
Do (z;20)
vz € RY, Zatft(zt Z o fi(z " ﬁ 2770% IV fi(ze) |12
t=1
Lemma 8. Consider a weighted online learning problem with a series of convex functions f1, ..., fr,
and a series of corresponding parameters 1, . .., ap. Let R(z) be a 1-strongly convex regularizer

wrt || - I, (z) be the optimism term in round t. The Optimistic FTRL algorithm, given by

1
z; = argmin Z ;i fi(z) + agthe(z) + ;R(Z),

d
zeR i=1

achieves the following regret bound:

+ i [ |V fi(ze) — Vi (z¢) |2 ) (55)

T T
Vz € Z, Y afilz) =Y aifi(z) <2 2/n

t=1 t=1 t=1
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