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Disinfectant Control in Drinking Water Networks: Integrating

Advection-Dispersion-Reaction Models and Byproduct Constraints

Salma M. Elsherif†,¶, Ahmad F. Taha†,∗∗, and Ahmed A. Abokifa⋄

AbstractÐEffective disinfection is essential for maintaining
water quality standards in distribution networks. Chlorination,
as the most used technique, ensures safe water by maintaining
sufficient chlorine residuals but also leads to the formation of
disinfection byproducts (DBPs). These DBPs pose health risks,
highlighting the need for chlorine injection control (CIC) by
booster stations to balance safety and DBPs formation. Prior
studies have followed various approaches to address this research
problem. However, most of these studies overlook the changing
flow conditions and their influence on the evolution of the chlorine
and DBPs concentrations by integrating simplified transport-
reaction models into CIC. In contrast, this paper proposes a novel
CIC method that: (i) integrates multi-species dynamics, (ii) allows
for a more accurate representation of the reaction dynamics of
chlorine, other substances, and the resulting DBPs formation,
and (iii) optimizes for the regulation of chlorine concentrations
subject to EPA mandates thereby mitigating network-wide DBPs
formation. The novelty of this study lies in its incorporation of
time-dependent controllability analysis that captures the control
coverage of each booster station. The effectiveness of the pro-
posed CIC method is demonstrated through its application and
validation via numerical case studies on different water networks
with varying scales, initial conditions, and parameters.

Index TermsÐDisinfection Byproducts, Water Quality Con-
trol, Chlorine, Advection-Dispersion-Reaction, Booster Stations
Injections

I. INTRODUCTION

D
INFACTANTS play a pivotal role in water distribution

networks (WDNs) to ensure compliance with water

quality (WQ) safety standards. By maintaining the water

pathogen-free, the occurrence of multiple waterborne diseases

(e.g., cholera, typhoid) in the United States has significantly

decreased since the utilization of disinfection process at the

beginning of the 20th century [1]. Of the various disinfection

methods available, chlorination is the most commonly used

technique in WDNs [2]. While serving as a proxy for WQ

monitoring, the objective is to have a sufficient chlorine

residual all over the network to maintain safe water. How-

ever, chlorine actively reacts with various substances such

as bacteria, organic matter, and microbial chemicals, leading

to the formation of disinfection byproducts (DBPs) [3]±[5].

According to the Centers for Disease Control, exposure to

these DBPs may increase the risk of cancer, liver damage,

and decreased nervous system activity [6], [7]. Therefore, it’s

crucial that chlorine injections into the network by distributed
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booster stations are strategically controlled to achieve the

primary goal of maintaining sufficient residuals and limiting

the formation of DBPs.

Furthermore, accurate representation and detailed modeling

are essential for effectively controlling of chlorine concen-

trations in water distribution networks. The transport and

reaction dynamics of chlorine are modeled using advection-

dispersion-reaction partial differential equations (ADR-PDEs).

While some studies neglect the dispersion process, assuming

that advection dominates in zones with high velocities, this

overlooks the importance of dispersive transport in low-flow

velocity pipes, especially in networks with laminar flow con-

ditions and numerous dead-ends. This is because exclusively

advective transport models may either underestimate or over-

estimate actual concentrations within the low-velocity zones

[8]. Additionally, in contrast to the widely adopted single-

species chlorine decay model with a constant decay rate,

multi-species models offer a more accurate representation of

chlorine dynamics in WDNs [9], [10]. These models consider

scenarios where chlorine interacts with other substances at

rates different from the decay rate. Such scenarios include,

but not limited, to contamination intrusion and substances

derived from pipe materials. Furthermore, these multi-species

models can be utilized to reflect the formation of DBPs,

such as trihalomethanes (THMs), providing a comprehensive

understanding of the WQ dynamics in WDNs [11].

To that end, this paper introduces a chlorine control ap-

proach that incorporates multi-species dynamics to maintain

chlorine concentrations within EPA-specified limits [12] while

limiting the formation of DBPs. This control approach is

formulated based on a detailed transport model that accounts

for the dispersion effect in low-velocities zones of the network

providing precise simulations of chlorine and other substances.

Furthermore, the control approach strategically allocates injec-

tions between booster stations based on a prior controllability

analysis. This analysis implicitly prioritizes booster stations

with broader coverage and assigns lower weights to zones with

high existing DBPs concentrations. In the following section,

we survey the literature on this topic and identify gaps that

our study aims to address.

A. Literature Review

The literature on chlorine modeling and control is broad

and abundant, covering various reaction and decay dynamics,

modeling techniques, and control approaches. Each of these

aspects comes with its own set of underlying assumptions and

limitations, contributing to the complexity of the topic. Next,

we provide a brief summary of the literature on (i) modeling

the transport, decay, and reaction dynamics of chlorine and the

subsequent formation of the DBPs, and (ii) control techniques,

objectives, constraints, and the specific scenarios under which

they are applied.
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Chlorine Modeling and DBPs Formation

Accurate chlorine modeling is essential for the develop-

ment of effective WQ control frameworks. Chlorine evolution

in WDNs is covered by the transport, decay and reaction

dynamics. The governing ADR-PDE divides these dynamics

into three processes. The advection process accounts for the

transport of chlorine along with the flowing water through

the network, accounting for the movement propelled by the

velocity of the water flow. The dispersion process captures the

spreading of chlorine within the water flow caused by the ir-

regularities and turbulence in the flow pattern and the diffusion

of chlorine molecules across concentration gradients. Lastly,

the reaction process includes chlorine decay, the formation of

DBPs, and chlorine interaction with other substances in the

water.

In WDNs, flow conditions are dependent on the consumers

demand, connecting components, and pipes characteristics

(i.e., diameter, length, material). Consequently, certain net-

work zones exhibit turbulent flow conditions, while others

demonstrate laminar flow conditions, particularly in dead-end

sections. The transition between turbulent and laminar flow

in various zones fluctuates throughout the day in response to

changes in demand and the dynamics of storage components.

In turbulent flow conditions and high flow velocities, advection

has a greater influence than dispersion on the change of

chlorine concentrations. Hence, in several studies [2], [10],

[13] the dispersion process is neglected, with the focus placed

on advection and reaction dynamics under the assumption of

limited dead-end branches, higher velocities, and changing

demands leading to a turbulent flow states. On the other hand,

for WDNs with dead-ends comprising high percentage of the

network, studies have proven that neglecting the dispersion ef-

fect results in inaccurate chlorine concentrations [8], [14], [15].

Furthermore, authors in [15] have linked the input patterns

of chlorine injections to the dispersion effect, demonstrating

the importance of including the dispersion in laminar flow

zones when these injection patterns exhibit dramatic changes,

a scenario common in many chlorine control applications. To

that end, to build a generalized model for chlorine evolution

in WDNs, the model has to be adaptable to various flow

conditions and network characteristics, including layout and

topology. This adaptability allows for the accurate simulation

of the physically-representative dynamics. This generalized

model to be integrated into chlorine control framework is a

gap to be filled in this paper.

In addition, a plethora of studies have investigated the mod-

eling of the decay and reaction dynamics of chlorine in WDNs.

These distinguish between these model vary in their order

and the substances included [16]. The most commonly used

model in developing chlorine control frameworks is the first-

order single-species decay model. This model assumes that

chlorine is linearly decaying in time as a result of its reaction

with the bacteria and microbial organics in the water [9].

Nonetheless, this model fails to account for various scenarios

where chlorine is actively reacting with other substances (e.g.,

contamination intrusion, substance from pipe’s material), as

well as the formation of DBPs [17]. Conversely, the multi-

species reaction model is an advanced approach capable of

capturing these scenarios by introducing nonlinear reaction

expressions that enable modeling the evolution of other sub-

stance(s) reacting with chlorine and the resultant formation

of DBPs [10], [11], [18], [19]. In this paper, we develop

a chlorine control approach based on multi-species reaction

model. This model simulates chlorine decay and reaction with

a fictitious reactant, which can represent various substances or

chemicals in a generalized form, and the resultant formation

of DBPs.
Lastly, by defining the processes and reaction dynamics to

be modeled by the ADR-PDEs, the techniques used to solve

these equations differ. Due to the interplay between the dynam-

ics of different components and the complexity added by the

unique layout of each network, analytical solutions do not exist

for these equations. Therefore, spatio-temporal discretization

schemes are utilized to solve these equations and obtain the

concentrations of chemicals [20]. These schemes are catego-

rized based on how the spatio-temporal grid is constructed and

the interdependency between the calculations of grid points’

concentrations. They are classified as Eulerian, Lagrangian,

or hybrid Eulerian-Lagrangian based according to the grid

construction approach. Eulerian schemes divide the grid into

fixed-size meshes over space and time, while Lagrangian

schemes use variable-sized segments. Hybrid schemes com-

bine aspects of both, with fixed-size segments over time and

variable segments over space, or vice versa. Moreover, they are

classified based on which neighboring points’ concentrations

are considered in the calculation of a segment’s concentration

and whether these concentrations are from the previous time-

step or the current one [20], [21].
Several studies [22], [23] employ one or more of these

schemes in their studies of modeling the chlorine decay under

advection-dominant conditions. Study [10] surveys the appli-

cability of a range of Eulerian and Lagrangian based schemes

on the chlorine multi-species advection-reaction PDEs, vali-

dating their performance against EPANET and its extension

EPANET-MSX, which utilizes a Lagrangian-based scheme

[24]. Other studies [8], [14], [25], [26] apply different schemes

to simulate the chlorine decay and transport, while accounting

for the dispersion effect. However, none of these studies

investigate these scheme’s performance while considering the

multi-species dynamics and the alternation between advection-

and dispersion-dominant conditions.

Chlorine Control Approaches and Underlying Scenarios

The topic of chlorine control is addressed in many stud-

ies, each with different objective function(s), constraints, and

approaches to solving the problem, while falling within spe-

cific scenario frameworks [27], [28]. Several studies focus

on minimizing chlorine injections while maintaining specific

chlorine residual levels throughout the network, utilizing

various optimization techniques such as linear programming

[18], [29], nonlinear programming [30], and nonlinear genetic

algorithm [31]. Additionally, other studies couple the objective

of minimization of chlorine injections with the booster sta-

tions allocation as multi-objective programming problem [32]±

[34]. Moreover, several studies have incorporated the DBPs
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formation issue into their optimization frameworks [35]. A

straightforward approach involves implicitly minimizing chlo-

rine injections to reduce DBP formation [36]. Furthermore,

studies such as [37], [38] tackle multi-objective optimization

problems aiming to minimize both chlorine injections and

THM formation, a specific byproduct of chlorine reactions.

The authors in [39] investigate the optimal number and al-

location of booster stations and chlorine injections to control

DBPs formation under feasible operating scenarios. Moreover,

Maheshwari et al. [40] have addressed the issue in a multi-

objective genetic optimization in an integrated MATLAB-

EPANET-MSX platform, utilizing WQ model simulating chlo-

rine residuals and DBPs levels.

We note a prevalent limitation across most of the aforemen-

tioned studies: they lack explicit articulation or formulation of

WQ models that accurately represent the input/output relation-

ship between booster stations injections and the concentrations

at critical network components. Such WQ models facilitate

the integration of state-of-the-art control algorithms within

a control-theoretic framework. Efforts have been made to

address this limitation by developing input/output WQ models

and incorporating them into control frameworks [41]±[43].

Furthermore, Wang et al. [44] introduce a novel approach to

model WQ dynamics using a linear state-space representation,

enabling the modeling of system inputs, outputs, and chemical

concentration states as a closed-form control-theoretic model.

This study has combined this representation with a model

predictive control (MPC) algorithm to determine chlorine

injections into the system. However, this formulation is based

solely on first-order single-species chlorine decay and trans-

port dynamics. Additionally, this study neglects the dispersion

process and employs an Eulerian discretization scheme that

does not accurately represent advection-dominant processes.

The study in [45] has expanded upon this control framework

to address scenarios where substances interact with chlorine by

utilizing the control-oriented nonlinear multi-species reaction

model built on validated Eulerian discretization schemes [10]

and has applied model order reduction techniques to manage

the associated high dimensionality. However, this study does

not consider varying flow conditions in the system or their im-

pact on chemical transport dynamics. Furthermore, the control

approach in [45] focuses on setting chlorine residuals within

standardized limits, without considering DBPs formation or

how network characteristics and flow conditions influence this

formation and the control actions. Our paper aims to address

these gaps, as detailed in the next section on our paper’s

contributions.

B. Paper Contributions and Organization

This paper’s main objective is to develop a comprehensive

strategic WQ control approach that takes into account the

different flow conditions across various zones within the

network and their influence on the chemicals evolution, the

complex dynamics of chlorine reaction and decay involving

multiple species, and the formation of DBPs, which pose

potential health risks. The development of this approach relies

on a detailed analysis of system controllability under all

these aspects, strategically guiding the control algorithm by

weighting of input injections by booster stations to achieve

enhanced controllability tailored to the unique characteristics

of the network and hydraulics. Moreover, the approach seeks

to mitigate the excessive formation of DBPs, thereby ensur-

ing the maintenance of WQ standards and protecting public

health. The corresponding detailed paper’s contributions are

as follows.

• This paper extends and utilizes a multi-species reaction

model that simulates chlorine decay and reaction with

various substances, including the formation of DBPs.

Moreover, this model accounts for the different hydraulic

dynamics and flow conditions, capturing the advection-

and dispersion-dominated states across different zones

within the network. It dynamically switches between

these states in certain zones while maintaining a single

dominant mode throughout the simulation period in oth-

ers. Formulated as a control-oriented state-space repre-

sentation, this model integrates numerical discretization

schemes to solve the ADR-PDE. The educational and

theoretical significance of this work lies in its exploration

of these schemes when coupled with multi-species dy-

namics and their impact on simulation variables such as

time-step, discretization grid size, and numerical stability.

This approach facilitates the integration of the model

into control strategies while accommodating variations in

process dynamics.

• The paper introduces a controllability analysis technique,

providing valuable foresight into shaping the control

strategy and optimizing the allocation of chlorine injec-

tions among booster stations. By leveraging insights from

system controllability, the approach enhances the efficacy

of control algorithms, enabling proactive decision-making

and resource allocation to mitigate DBPs formation while

ensuring WQ standards are met.

• Development of a control approach that integrates de-

tailed modeling insights with real-world operational

considerations. This approach offers a generalized so-

lution applicable to diverse network configurations

and hydraulic settings, accommodating predetermined

booster station locations and evolving network dynamics.

Through thorough validation on different networks and

case studies, the proposed control approach demonstrates

its effectiveness in addressing the dynamic challenges of

WQ regulation.

The remainder of this paper is structured as follows: Section

II presents the multi-species disinfectant and byproducts dy-

namics model, detailing the governing equations governing the

evolution of chemicals across network components. Based on

this model, the formulation of the disinfectant control problem

is derived in Section III. In Section IV, we validate our

proposed approach through several case studies, encompassing

various scales, layouts, and scenarios. Finally, Section V

offers conclusions, discusses the limitations of the study, and

provides recommendations for future research directions.
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Notation. Italicized, boldface upper and lower case char-

acters represent matrices and column vectors: a is a scalar,

a is a vector, and A is a matrix. The notation R
n denotes

the sets of column vectors with n real numbers, while R
n×m

denotes the sets of matrices with n rows and m columns.

Variables with upper case characters ·

J, ·R, ·TK, ·P, ·M, and

·

V correspond to junctions, reservoirs, tanks, pipes, pumps,

and valves, respectively. Additionally, ·BTK and ·

BJ represent

variables associated with booster stations located at tanks

and junctions, while ·

DJ donates the demand variables at the

junctions.

II. MULTI-SPECIES DISINFECTANT AND BYPRODUCTS

DYNAMICS MODEL

We model the WDN by a directed graph G = (N ,L). The

set N defines the nodes and is partitioned as N = J ∪T ∪R
where sets J , T , and R are collections of junctions, tanks, and

reservoirs. Let L ⊆ N ×N be the set of links, and define the

partition L = P ∪M∪V , where sets P , M, and V represent

the collection of pipes, pumps, and valves. Total number of

states is nx = nL + nN , where nL and nN are numbers of

links and nodes. The number of reservoirs, junctions, tanks,

pumps, valves, and pipes are nR, nJ, nTK, nM, nV, and nP.

Each pipe i with length Li is spatially discretized and split into

sLi
segments. Hence, the number of links states is expressed

as nL = nM + nV +

nP
∑

i=1

sLi
while nN = nR + nJ + nTK

represents the number of nodes states.

We apply the principles of conservation of mass, transport,

decay, and reaction to model the evolution of chemicals and

substances throughout the different components of the WDNs.

This modeling assumes that the hydraulic variables and set-

tings are pre-determined and operate under non-transient con-

ditions for extended period simulations. This means that the

network operates on a steady-state basis for each time step,

assuming that the system reaches equilibrium within each

interval before moving to the next. In the following sections,

we provide the governing equations for the transport of any

chemical by denoting the concentration by c. Additionally, for

dynamics that depend on specific chemical properties, such as

chlorine decay and mutual reactions with other substances, we

specify which chemical’s concentration we are calculating by

adding a special notation to the symbol c.

A. Transport and Reaction in Pipes: Advection-Dispersion-

Reaction Model

In our paper, we simulate the transport and reaction in

pipes by the ADR-PDE, which for Pipe i is expressed as

∂tc
P
i = −vi(t)∂xc

P
i +Di(t)∂xxc

P
i +RP(cPi (x, t)), (1)

where cPi (x, t) is concentration in pipe at location x along its

length and time t; vi(t) is the mean flow velocity; Di(t) is the

effective longitudinal dispersion coefficient of the chemical;

and RP(cPi (x, t)) is the decay and reaction expression in pipes

(more explanation is given in Section II-C).

In Eq. (1), the term vi(t)∂xc
P
i describes the change in

concentration as an impact of the advection process. Advection

causes translation of the chemical by moving it with the flow

velocity. Whilst, the term Di(t)∂xxc
P
i represents the impact of

chemical dispersion, where the effective longitudinal disper-

sion coefficient Di(t) encompasses both molecular diffusion

and shear dispersion caused by the unevenness of the velocity

profile. The calculation of Di(t) for Pipe i is dependent

on the flow condition, which can be categorized as laminar,

transitional, or turbulent flow based on the unitless Reynolds

number Rei

Rei(t) =
ρLDi

µ
vi(t), (2)

where ρ represents the water density, which is typically 62.4

lb/ft3 (998.4 kg/m3), µ denotes the water dynamic viscosity,

typically 2.42× 10−5 lb·ft−1·s−1 (3.6× 10−5 kg·m−1·s−1) at

room temperature, and LDi
stands for the characteristic length,

which is the hydraulic diameter for water flowing pressurized

in a pipe, equal to the pipe diameter dPi
.

For laminar flow conditions (Re < 2300), Di(t) is calcu-

lated as an averaged value over the solute residence time [46]:

Di(t) =
d2Pi

v2i (t)

12dm

[

1−

[

1− exp(− 4dmtr(t)
d2
Pi

)

4dmtr(t)
d2
Pi

]]

, (3)

where tr is the pipe residence time, tr(t) =
Li

vi(t)
; and dm is

the molecular diffusion coefficientÐreferences [24], [46], [47]

provide values for this coefficient for chlorine and different

by-products.

For turbulent and transitional flow conditions (Re ≥ 2300),

Di(t) does not depend on the molecular diffusion coefficient,

rather on the flow condition through the pipe [21]:

Di(t) =
dPi

vτi(t)

2

[

10.1 + 577
(Rei(t)

100

)−2.2]

, (4)

where vτ ia the shear velocity taken as a percentage of the

mean flow velocity.

The influence of dispersion may be minimal in certain

sections or across the entire network when turbulent conditions

prevail. In such cases, the advection process is the dominant

process in the chemical transportation throughout these net-

work segments. However, it is crucial to account for dispersion

when the flow velocity is low and the flow approaches the

laminar state (e.g., dead-end segments). The significance of

dispersion can be assessed quantitatively using the Peclet

number. For Pipe i, the Peclet number Pei at a given time t
can be calculated using Eq. (5). The Peclet number serves as

a dimensionless indicator of the relative importance between

advection and dispersion, with a high value suggesting a flow

scenario primarily governed by advection, where dispersion

can be neglected. Certain simulation software establish a

threshold value for the Peclet number Peth beyond which

dispersion effect is neglected (e.g., EPANET sets this threshold

at 1000 [24]).

Pei(t) =
vi(t)Li

Di(t)
. (5)
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Following the explanation of all parameters and variables

in Eq. (1), the subsequent step is to discuss how it is actually

solved. Notably, there is no analytical solution for Eq. (1) in

many scenarios with complex dynamics and different compo-

nents models. That is, numerical discretization schemes are

employed. These schemes discretize the pipe over a spacio-

temporal grid, and accordingly concentrations are calculated

at each segment of this grid. A variety of schemes have

been developed and utilized in the literature [20]. The choice

of the scheme depends on the actual physics of the system

and the processes involved in the simulation of chemicals

evolution. For instance, if the dispersion influence is neglected,

a different method should be chosen compared to scenarios

where it is taken into consideration. To that end, we detail

herein numerical schemes to be employed for both scenarios

(i.e., ADR-PDE and AR-PDE). Afterwards, we explain how

to determine the grid size and simulation time-step, while

ensuring numerical stability. That is, for the first two sections

(II-A1 and II-A2), we use the notation of ∆t and ∆x for

the time-step and segment size for each pipe. Following, we

introduce how to determine these parameters in Section II-A3.

1) Advection-Dominant PDE Discretization Schemes: In

advection-dominant transport, the main two processes are the

advection where the concentration at a certain location and

time is affected by upstream concentrations, and reaction

where chemicals decay and/or mutually react. That being said,

Upwind discretization schemes are more descriptive to the

actual physical process considered among other schemes [48].

In this paper we consider both Explicit and Implicit Upwind

schemes to investigate their performance in the proposed con-

trol framework. The distinction between explicit and implicit

notations is clarified in Definition 1.

Definition 1. A discretization scheme is referred to as

explicit or implicit depending on whether the concentrations of

neighboring segments/nodes, on which the concentration of the

segment being calculated depends, are taken from the previous

time-step (and thus determined); Explicit, or from the current

time-step (and thus solved for simultaneously); Implicit.

For Pipe i divided into nsi segments, the concentrations at

t + ∆t of the first, last, and any in-between segment (i.e.,

cPi (1, t+∆t), cPi (s, t+∆t), cPi (sL, t+∆t)) is calculated as

listed in Tab. I for both schemes. In these calculations, λ̃i(t)
is the Courant number (CN) and expressed as

λ̃i(t) =
vi(t)∆t

∆xi

. (6)

2) Dispersion-Dominant PDE Discretization Schemes: By

considering the dispersion process in modeling the transport

of chemicals, both upstream and downstream concentrations

influence the concentration at a specific location. Thus, we

employ two central Eulerian discretization schemes to solve

the ADR-PDE: the explicit Lax-Wendroff (L-W) Scheme and

the implicit Backward Euler Scheme. Refer to Definition 1 for

differentiation between explicit and implicit schemes. Similar

to the previous schemes, Tab. I provides the formulations for

the concentrations at t + ∆t of the first, last, and any in-

between segment (i.e., cPi (1, t+∆t), cPi (s, t+∆t), cPi (sL, t+

Procedure 1: Time-step and grid size determination

and numerical stability assurance

Input: WDN topology, components’ characteristics,
hydraulics parameters, and Peth

Output: Time-step ∆t and number of segmenents and
segment size for each pipe; sLi

and ∆xi,
i = 1, . . . , nP

1 Initialize ∆ttemp ← 0
2 Initialize ∆t← 106 // Start with a large number
3 for i = 1 to nP do
4 Initialize Di ← ∅ and Pei ← ∅

5 for each hydraulic time-step do
6 Calculate Rei(t) via (2)
7 if Rei(t) < 2300 then
8 Calculate Di(t) via (3)
9 else

10 Calculate Di(t) via (4)

11 Calculate Pei(t) via (5)
12 Append Di(t)→Di and Pei(t)→ Pei

13 if Pei(t) ≤ Peth then

14 ∆ttemp = 2Di(t)/v
2
i (t) // To avoid spatial

oscillations
15 if ∆ttemp < ∆t then
16 ∆t← ∆ttemp

17 end if
18 end if

19 return ∆t // Final time-step
20 if Applying Explicit Discretization Methods then
21 for i = 1 to nP do
22 Initialize ∆xtemp1

← 0 and ∆xtemp2
← 0

23 Initialize ∆x← 0
24 for each hydraulic time-step do

25 if Pei(t) ≤ Peth then

26 ∆xtemp1
= (2Di(t)∆t)−

1
2 // von Neumann

condition
27 else
28 ∆xtemp2

= vi(t)∆t //
Courant-Friedrichs-Lewy condition

29 ∆xi ← max{∆xtemp1
,∆xtemp2

,∆xi}

30 sLi
= ⌊Li/∆xi⌋

31 ∆xi = Li/sLi

32 else if Applying Implicit Discretization Methods then
33 Set sLi

as fixed arbitrary integer for all i = 1, . . . , nP

34 ∆xi = Li/sLi
, ∀i = 1, . . . , nP

35 return sLi
and ∆xi, ∀i = 1, . . . , nP // Final number of

segments and segment size for each pipe

∆t)) of Pipe i by utilizing these schemes. The coefficients used

in these formulations are the dispersion number expressed as

αi(t) = Di(t)
∆t

∆x2
i

, (7)

while λi(t), λi(t), and λi(t) are the weighting coefficients

calculated as follows

λi(t) = 0.5λ̃i(t)
(

1 + λ̃i(t)
)

,

λi(t) = 1− λ̃2
i (t),

λi(t) = −0.5λ̃i(t)
(

1− λ̃i(t)
)

.

(8)
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Table I
EXPRESSIONS FOR FOUR DISCRETIZATION SCHEMES; TWO APPLIED FOR THE AR-PDE: EXPLICIT UPWIND (EU) AND IMPLICIT UPWIND (IU), AND THE

OTHER TWO ARE FOR SOLVING THE ADR-PDE: LAX-WENDROFF (L-W) AND BACKWARD EULER (BE). THE HEADER ROW OF THE TABLE INCLUDES

VARIABLES REPRESENTING THE CONCENTRATIONS AT THE UPSTREAM JUNCTION j , FIRST, INTERMEDIARY, LAST SEGMENTS OF PIPE i, AND THE

DOWNSTREAM JUNCTION k AT TIMES t AND t+∆t. FOR EACH SCHEME, THREE EXPRESSION CAN BE FORMULATED FROM THIS TABLE DEPENDING ON

THE VARIABLES IN THE HEADER ROW: THESE EXPRESSIONS ARE FOR THE FIRST, ANY INTERMEDIARY, AND LAST SEGMENTS OF THE PIPE. TO

FORMULATE THESE EXPRESSIONS, TREAT EACH ROW INDEPENDENTLY. MULTIPLY THE VALUES IN EACH CELL BY THE CORRESPONDING HEADER

VARIABLE OF THE SAME COLUMN. THEN, SUM THESE RESULTANT TERMS ON EACH SIDE OF THE EQUAL SIGN TO COMPLETE THE EXPRESSION. IN THE

COLUMN LABELED RP
MS(·)∆t, THE CELLS SPECIFY THE VARIABLE UPON WHICH THIS FUNCTION IS CALCULATED FOR. NOTE THAT, FOR SIMPLICITY

AND A MORE COMPACT TABLE, WE ELIMINATE WRITING THE TIME FACTOR FOR ALL THE PARAMETERS α, λ̃, λ, λ, AND λ OF EQ. (6), (7), AND (8),
KNOWING THAT ALL OF THEM ARE TAKEN AT TIME (t).

cJj (t+∆t) cPi (1, t+∆t) cPi (s, t+∆t) cPi (sL, t+∆t) cJk(t+∆t) cJj (t) cPi (1, t) cPi (s, t) cPi (sL, t) cJk(t) RP
MS(·)∆t Eq.

Explicit

Upwind

1 = λ̃i 1− λ̃i (cPi (1, t)) (9)

1 = λ̃i 1− λ̃i (cPi (s, t)) (10)

1 = λ̃i 1− λ̃i (cPi (sL, t)) (11)

Implicit

Upwind

−λ̃i 1 + λ̃i = 1 (cPi (1, t)) (12)

−λ̃i 1 + λ̃i = 1 (cPi (s, t)) (13)

−λ̃i 1 + λ̃i = 1 (cPi (sL, t)) (14)

Lax-

Wendroff

1 = λi + αi λi − 2αi λi + αi (cPi (1, t)) (15)

1 = λi + αi λi − 2αi λi + αi (cPi (s, t)) (16)

1 = λi + αi λi − 2αi λi + αi (cPi (sL, t)) (17)

Backward

Euler

−0.5λ̃i − αi 1 + 2αi 0.5λ̃i − αi = 1 (cPi (1, t)) (18)

−0.5λ̃i − αi 1 + 2αi 0.5λ̃i − αi = 1 (cPi (s, t)) (19)

−0.5λ̃i − αi 1 + 2αi 0.5λ̃i − αi = 1 (cPi (sL, t)) (20)

3) Pre-Simulation Preparations: Time-Step, Grid Size, and

Numerical Stability Assurance: Applying explicit discretiza-

tion methods requires satisfying numerical stability conditions.

For the Explicit Upwind Scheme applied on AR-PDE, the

Courant-Friedrichs-Lewy condition states that the CN number

is to be maintained in the range of 0 < λ̃i(t) ≤ 1 for Pipe i.
Additionally, to solve the ADR-PDE using L-W scheme for

Pipe i and ensure its numerical stability, the von Neumann

condition states that 0 < λ̃2
i (t) ≤ 2αi(t) ≤ 1. In addition,

for any central scheme applied for ADR-PDE, the ratio

λ̃i(t)/α̃i(t) is set to be less or equal to 2 to achieve high

accuracy and avoid spatial oscillations [49].

That being said, different conditions need to be satisfied,

according to which the time-step and grid size are determined.

In Procedure 1, we list the steps needed to compute these

parameters while following a numerically stable approach.

4) Dynamic Modeling of the Transport and Reaction Dy-

namic in Pipes: As explained in the previous sections, our

approach facilitates dynamic switching between discretization

methods based on the prevailing processes in transport and

reaction dynamics. As a starter, Procedure 1 ensures consis-

tency in system dimensions (specifically, the WQ time-step

and number of segments for each pipe) while maintaining nu-

merical stability throughout the simulation period, regardless

of whether dispersion effects are considered. To that end, the

switch between the discretization methods is solely about the

considered elements and the calculations of the dependency

between the segments and nodes from a time-step to the next

(see Tab. I). With each hydraulic time-step for updating system

matrices, an additional condition is introduced to assess the

current Peclet number (Eq. (5)) against the threshold Peth,

determining whether dispersion effects should be neglected.

Accordingly, parameters and elements outlined in Tab. I are

computed.

B. Conservation of Mass

For nodes and links other than pipes, the conservation of

mass principle is applied to formulate the governing equa-

tions for concentration calculations within water distribution

networks.
1) Mass Balance at Reservoirs: For any Reservoir i, con-

centration of a chemical is assumed to remain constant over

time, such that cRi (t+∆t) = cRi (t).
2) Mass Balance at Pumps and Valves: In our WQ model,

we deal with pumps and valves as transmission links with

negligible length. Accordingly, chemicals concentrations at

these elements are taken equal to the concentration of the

upstream node. That being said, for Pump i or Valve j installed

after Reservoir/Tank/Junction k, concentrations are expressed

as cMi (t+∆t) = c·k(t+∆t), and cVj (t+∆t) = c·k(t+∆t).
3) Mass Balance at Junctions: Water from all inflows into

a junction is assumed to have complete and instantaneous

mixing. That is, while assuming that there is no storage time

at junctions, at a Junction i, all outflows have the same

concentration for a specific chemical. This concentration is

expressed as

cJi (t) =

∑

j∈Lin
qjin(t)c

j
in(t) + qBJ

i (t)cBJ

i (t)

qDJ

i (t) +
∑

k∈Lout
qkout(t)

, (21)

where j and k represent the counters for the elements of the

set Lin of links flowing into the junction and a set Lout of

links withdrawing flow from the junction, respectively; qjin(t)
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Table II
CHLORINE MULTI-SPECIES REACTION AND DECAY DYNAMICS AND DBPS FORMATION MODELS. IN THESE MODELS, CONCENTRATIONS FOR CHLORINE,

FICTITIOUS REACTANT, AND THMS ARE DONATED BY c, c̃, AND ĉ, RESPECTIVELY.

Segment s of Pipe i Tank j

RMS(c(t)) −kPi c
P
i (s, t)− krc

P
i (s, t)c̃

P
i (s, t) −kTK

j cTK
j (t)− krc

TK
j (t)c̃TK

j (t)

RMS(c̃(t)) −YFRkrc
P
i (s, t)c̃

P
i (s, t) −YFRkrc

TK
j (t)c̃TK

j (t)

RMS(ĉ(t)) YTHMskrc
P
i (s, t)c̃

P
i (s, t) YTHMskrc

TK
j (t)c̃TK

j (t)

and qkout(t) are the corresponding inflows and outflows from

these links; cjin(t) is the chemical concentration in each of

the inflows; qBJ

i (t) is the flow injected into the junction with

chemical concentration cBJ

i (t) by a booster station, if located;

and qDJ

i (t) represents the consumer’s demand.

4) Mass Balance at Tanks: In our model, we assume

complete and instantaneous mixing of all inflows, outflows,

and stored water in a tank, following the continuously stirred

tank reactor (CSTR) model. Consequently,

V TK
i (t+∆t)cTK

i (t+∆t) = V TK
i (t)cTK

i (t)+
∑

j∈Lin

qjin(t)c
j
in(t)∆t+ V BTK

i (t+∆t)cBTK

i (t+∆t)−

∑

k∈Lout

qkout(t)c
TK
i (t)∆t+RTK

MS(c
TK
i (t))V TK

i (t)∆t,

(22)

where V TK
i (t) is the tank volume and V BTK

i (t + ∆t) is the

chemical solute volume injected to the tank by a booster

station, if located, with a concentration cBTK

i (t+∆t). Note that

the effect of booster station injections is considered immediate

according to the CSTR model. Therefore, their volume and

concentration are accounted for at t+∆t to calculate the tank

volume concentration at the same time instant. RTK
MS(c

TK
i (t))

is the multi-species dynamics in tanks expression (refer to

Section II-C).

C. Chlorine Multi-Species Reaction and Decay Dynamics and

DBPs Formation Models

In this paper, we utilize a first-order decay dynamics

model for chlorine. Additionally, we model the mutual reaction

between chlorine and a fictitious reactant using a second-order

formulation, which also considers the formation of DBPs.

Specifically, our focus is on the formation of one of the

most common types of DBPs: trihalomethanes (THMs) [6].

The chlorine decay reaction rates for Pipe i and Tank j are

kPi = kb +
2kwkf

rPi
(kw + kf )

, kTK
j = kb, where kb is the bulk

reaction rate constant; kw is the wall reaction rate constant;

kf is the mass transfer coefficient between the bulk flow and

the pipe wall; rPi
is the pipe radius. Both decay rates are in

1/sec.

By donating the chlorine concentration to be c, c̃ for

fictitious reactant concentrations, and ĉ for THMs, the multi-

species dynamics models [11] in pipes and tanks are expressed

as in Tab. II. In this table, kr (L·mg−1·sec−1) denotes the

mutual reaction coefficient, while YFR and YTHMs represent

the unitless ratios between the stoichiometric coefficients of

the fictitious reactant and THMs, respectively, to that of

chlorine.

D. Chlorine and Byproducts Multi-Species Dynamics in a

Form of State-Space Representation

The state-space representation of the WQ multi-species

dynamics of chlorine and byproducts (WQMS-CLBP) is ex-

pressed in Eq. (23) as nonlinear difference equations (NLDE).

WQMS-CLBP NLDE

E(t)x(t+∆t) = A(t)x(t) +B(t)u(t) + f(x(t)), (23a)

y(t) = C(t)x(t), (23b)

where x(t) represents the state vector, which concatenates

the concentrations of chlorine, fictitious reactant, and the

byproducts at the various components within the network. The

control input vector, u(t), encompasses chlorine injections and

can also accommodate unplanned and planned injections of

contamination associated with the fictitious reactant. The non-

linear vector, f(x(t)), encapsulates the expressions for mutual

reactions and byproduct formation. Vector y(t) contains sensor

measurements of the chemicals. Matrices E(t),A(t),B(t),
and C(t) are time-varying and depend on factors such as net-

work topology, hydraulic parameters, decay rates, coefficients

for mutual reactions between chemicals, and the locations of

booster stations and sensors.
Note that, matrix E(t) equals identity under the condition

of applying explicit discretization schemes. However, for the

implementation of implicit discretization schemes, its con-

struction depends on the system’s hydraulics (refer to Tab.

I). The system’s hydraulics are updated every hydraulic time-

step, which is typically longer than the WQ one. Therefore,

it is customary to donate the time instant when this matrix is

taken as t.
As explained, the one source of nonlinearity in our model

is the mutual reaction dynamics between the chemicals. To

overcome the complexity associated with this nonlinearity, we

employ a linearization technique, specifically utilizing Taylor

series approximation as detailed in [45]. Herein, we showcase

the linearization process for the mutual reaction expression,

which applies uniformly across all such expressions listed in

Tab. II. The linearization is performed around operating points

represented by co for chlorine and c̃o for the fictitious reactant.

RMS(c̃(t)) = −YFRkrc(t)c̃(t)

⇒ −YFRkr

(

coc̃(t) + c̃oc(t)− coc̃o

)

.
(24)
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For both chlorine and the fictitious reactant, the linearized

mutual reaction breakdown consists of terms dependent on

their respective concentrations, terms dependent on the con-

centrations of the other chemical, and constant terms. While

THMs concentrations depend on the other two chemicals

concentrations and a constant term. Consequently, while the

general state-space representation in Eq. (23) features a block-

diagonal matrix of A matrices with no interdependency be-

tween the chemicals apart from within the f function, the

application of linearization alters the state-space representation

to linear difference equations (LDEs) with interdependencies

among these chemical compounds. This transformation can be

expressed as:

WQMS-CLBP LDE

E(t)x(t+∆t) = Ã(t)x(t) +B(t)u(t) +Φ, (25a)

y(t) = C(t)x(t), (25b)

where Ã(t) is the updated matrix to account for the interde-

pendencies among the chemicals after linearization, while Φ

is the vector gathering the constant terms.

The operating points around which the system is linearized

are dynamically updated throughout the simulation period,

typically every other time-step. The updating process is guided

by the frequency with which the system dynamics evolve.

In practice, the operating points are updated on a time scale

wider than the WQ time-step. This approach ensures that the

linearization captures the evolving behavior of the system

adequately, allowing for accurate modeling of the system

dynamics over time.

III. DISINFECTANT CONTROL PROBLEM FORMULATION

The primary objective of this study is to regulate disinfectant

levels within WDNs to comply with standard thresholds,

while simultaneously addressing the formation of DBPs. Our

proposed approach involves the implementation of a MPC

algorithm, which is constructed based on the WQ multi-species

model outlined in (25), and constrained by specified chlorine

limits and DBPs cutoffs. As a preliminary step, we conduct a

controllability analysis of the system to identify critical states

(e.g., dead-ends) and determine control inputs from booster

stations. Utilizing controllability metrics obtained from this

analysis, we assign higher weights to control inputs that exhibit

greater effectiveness in influencing critical states or achieving

desired objectives.

First, we explain the formulation of the disinfectant control

problem. The control problem is formulated over the simula-

tion period [0, Ts], with the objective of minimizing the cost

of chlorine injections. The problem is constrained by multiple

constraints, including maintaining the chlorine concentrations

within the standard levels of 0.2 mg/L and 4 mg/L, and THMs

levels lower than 0.08 mg/L. Additionally, the problem can

be utilized to constrain the fictitious reactant concentrations

to a specific level within the simulation period. The control

inputs for chlorine are constrained to be non-negative and

limited by the availability of chlorine and the capacity of

booster stations. All these constraints must be satisfied while

complying with the actual governing equations of the WQ

dynamics. Combining all this information, the water quality

multi-species control problem (WQMS-CP) is formulated as

shown in (26).

WQMS-CP

minimize
x(t),û(t)

J (û(t)) = ϵ

Ns
∑

t=1

qB(t)⊤û(t)

subject to WQMS-CLBP (25),

xmin ≤ x(t) ≤ xmax,

ûmin ≤ û(t) ≤ ûmax,

(26)

where problem variables x(t) and ũ(t) are chemicals concen-

trations network-wide and chlorine injections through booster

stations, qB(t) is the flow rates at the nodes corresponding

to the locations of the booster stations, ϵ is the unit cost of

chlorine in $/mg, and WQMS-CLBP is the WQ model we

are simulating and controlling following the representation in

(25). Finally, Ns is the number of time-step in the simulation

period, Ns =
Ts

∆t
.

The control problem described in (26) is formulated as a

linear program (LP) due to its linear objective function and

constraints. The subsequent step involves reformulating this

problem into a quadratic program (QP) with a quadratic ob-

jective function in a MPC framework. This reformulation aims

to minimize chlorine injections while ensuring the smoothness

of control inputs while ensuring falling within the states

boundaries. The study [44] has provided the comprehensive

derivation of this problem for single-species WQ dynamics

based on AR models. Despite focusing on a different system,

the derivation is applicable to our study since both systems are

linear, and the form of the objective functions and constraints

remains consistent. The one distinction lies in the constant

terms concatenated in Φ of (25a). However, these terms solely

depend on the operating point around which the system is

linearized. In accordance with the approach outlined in [44],

the full derivation and formulation of the control problem are

provided therein. For brevity, we direct readers to this study

for a detailed understanding of the derivation and the final

formulation of the control problem.

In this final formulation of the control problem as presented

in [44, Eq. (34)], two weight matrices are introduced: Q = Q⊤

and R = R⊤. These matrices specify the relative importance

of measurement deviations and the smoothness of control

inputs, respectively. In addition, we are building these matrices

to reflect on prioritizing each of control input according to

the controllability analysis we preform beforehand. Detailed

information on the controllability analysis and the construction

of these matrices is provided in the next section.

A. Preliminary Controllability Analysis

In this section, we present the procedure for conducting the

prior controllability analysis and deriving the corresponding

weight matrices of the MPC algorithm. To do so, we start by
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introducing the notion of controllability for dynamic systems,

focusing specifically on the WQ dynamic system in our study.

We then introduce metrics aimed at quantifying the influence

of each booster station within the control framework. We note

that the controllability notion introduced in this section is

based on the linearized form of the WQMS-CLBP model as

a simplified approximation, yet, enough to provide the needed

insights for the analysis.

From a control-theoretic perspective, controllability refers

to the capability of guiding a system from its initial states

xo := xt(0) to a desired state xp := xTp
by some input u(t)

over a specific time window of Tp [50]. In the context of WQ

control, we want to measure the ability to regulate chlorine

concentrations by adjusting chlorine injections from booster

stations, ensuring chlorine levels remain within predefined

bounds.

The dynamic linear system (25), where Ã ∈ R
nx×nx

and B ∈ R
nx×nu , is said to be controllable if only if the

controllability matrix for Np =
Tp

∆t
time-steps given as

CNp
:= {B, ÃB, Ã2B, . . . , ÃNp−1B} ∈ R

nx×Npnu ,
(27)

is full row rank, i.e, rank(CNp
) = nx, without loss of

generality as we assume that Npnu > nx. This is known as

Kalman’s rank condition [50].

For our analysis objective, simply assessing the rank prop-

erty is not sufficient to evaluate the impact of each booster

station’s injections within the control framework. The concept

of control energy is important as well. In the WQ control

context, control energy relates to the amount of chlorine

injections to reach the desired chlorine levels at the networks’

components. Metrics concerning the control energy are derived

from the controllability Gramian Wc(Ã,B, Np) := Wc ∈
R

nx , defined for Np pairs of matrices Ã and B as

Wc :=

Np−1
∑

τ=0

ÃτBB⊤(Ã⊤)τ = CNp
C⊤
Np

, (28)

where the controllability Gramian Wc, that is a positive

semidefinite matrix. In this study, we employ the trace(Wc)
metric, which inversely correlates with the average controlla-

bility energy across all state-space directions. In the context of

WQ control, a higher controllability energy indicated a greater

potential for chlorine injections to impact various system states

within the specified time interval. In addition, rather than

utilizing the rank metric for the controllability matrix in higher

dimensions, we apply it for the controllability Gramian±a

symmetric matrix with lower dimensions.

However, there are two aspects demand attention during

our controllability analysis: (i) not all the states of the system

dynamics (25) are critical or controllable by booster stations,

and (ii) calculating the trace for an uncontrollable subspace

can be misleading due to the averaging of energy across

uncontrollable directions. The first is addressed by adopting

the concept of target controllability [51]. Target controllability

enables us to specify the desired target nodes, thereby mitigat-

ing the challenge of high dimensionality associated with the

WQ representation. In this scenario, the metrics are applied

to the targeted controllability Gramian WT = CT WcC
⊤
T ,

where the output matrix CT identifies the set of target nodes

T of size nt. The notions of controllability and control energy

apply to the subspace of the target nodes. Regarding the second

aspect, to quantify the control energy for the controllable

subspace within the space under considerationÐwhere the

rank of the controllability Gramian is k < n, with n denoting

the number of states in the original spaceÐa decomposition

approach is utilized [52]. This approach begins by defining a

nonsingular matrix T ∈ R
n×n such that

Ā = TÃT−1 =





Ā11 Ā12

0 Ā22



 , B̄ = TB =





B̄1

0



 , (29)

where Ā11, Ā12 and Ā22 have dimensions of k×k, k×(n−
k) and (n− k)× (n− k), and B̄1 has k rows. Matrices Ā11

and B̄1 define a controllable subspace.

The key question to address now is: over which time interval

should the WQ controllability metrics be evaluated, and cor-

respondingly, how often should the MPC weight matrices be

updated? To answer this question, we emphasize that this time

interval should coincide with the frequency at which booster

station injections’ effectiveness varies. This effectiveness is

dependent on the changes in system dynamics, particularly

system’s hydraulics. Hence, the time interval is taken to align

with the hydraulic time-step, during which the WQ time-step

is updated due to their different scales.

After establishing the controllability metrics to be utilized,

herein, we outline the analysis conducted to determine the

weights for the MPC matrices. Initially, for each hydraulic

time-step, the matrix B is constructed for each booster station

individually as the sole station in the system, followed by the

computation of the corresponding controllability matrix and

Gramian. Subsequently, for each critical set of target nodes

T and each booster station, the rank and trace metrics of

the Gramians are calculated, leveraging the proposed method-

ologies addressing target controllability and uncontrollable

subspace decomposition. Next, based on the importance index

assigned to each critical set, each booster station is allocated

a score relative to others according to its WQ controllability

metrics. These scores are then aggregated for each booster

station and weighted together relatively. Thus, the weights to

construct the matrix R(t) are computed for each hydraulic

time-step.

On the other hand, matrix Q is constructed relative to matrix

R. Essentially, if prioritizing the smoothness of control inputs

and the distinction between booster station injections is of

utmost importance, the weights in R are proportionally higher.

Conversely, if achieving desired chemical levels promptly is

more important, the weights in Q are elevated. Such decisions

are guided by the deviation of current concentrations from

the desired setpoints and the how effective are the booster

stations injections to cover the network. Typically, tuning these

matrices is performed individually for each network to achieve

suitable settings.

All these steps are summarized in Procedure 2. Note that,

this approach is flexible, allowing for consideration of either

one metric or both in the assessment and weighting procedure,
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Procedure 2: Offline prior controllability analysis and

MPC weight matrices determination

Input: WDN topology, components’ characteristics,
hydraulics parameters, the linearized WQMS-CLBP
system matrix Ã, and WQ initial conditions

Output: MPC weight matrices R(t) and Q(t) at each
hydraulic time-step

1 Initialization
2 Define critical nT sets of target nodes Ti, i = 1, . . . , nT

3 Assign index ηi, i = 1, . . . , nT to each target set based
on their criticality/importance

4 Obtain ∆t, sLi
and ∆xi, ∀ i = 1, . . . , nP via following

Procedure 1

5 for each hydraulic time-step do
6 for j = 1 to nû do
7 Initialize wj ← 0
8 Construct Bj asumming only booster station j is

allocated // nû is booster stations count
9 Construct CNp via (27)

10 Construct Wc via (28)
11 for k = 1 to nT do

12 Calculate WTk
= CTk

WcC
⊤
Tk

13 Calculate rank(WTk
)j

14 if rank(WTk
)j = ntk then

15 Calculate Tr = trace(WTk
)j

16 Update wj ← wj + ηk · ntk · Tr

17 else
18 r = rank(WTk

)j
19 Apply subspace decompositon as in (29)

20 Update C̃Tk
to the first r of TCTk

T
−1

21 W̃Tkj
← C̃Tk

WcC̃
⊤
Tk

22 Calculate Tr = trace(W̃Tkj
)

23 Update wj ← wj + ηk · r · Tr

24 Calculate diagonal elements ajj , j = 1, . . . , nû of R(t),

ajj = wj/

nû∑

j=1

wj

25 Assign diagonal weights to Q(t) // According to critical
states and importance in comparison to R(t)

albeit with different weights. Additionally, the critical sets

of target nodes are categorized to be one of the following:

dead-ends, zones with low initial chlorine conditions compared

to the rest of the network, zones with high contaminant

concentrations, or zones with pre-existing elevated levels of

byproducts. For the latter scenario, the assigned index to this

set is the lowest.

IV. CASE STUDIES

In this section, we validate the proposed chlorine con-

trol approach through numerical case studies. These studies

include several networks characterized by different scales, lay-

outs, hydraulic settings and scenarios, and initial WQ condi-

tions. The hydraulic settings are obtained by running different

scenarios using the EPANET toolkit on MATLAB [24]. We

apply our approach on four benchmark networks, each has a

different number of components and layouts, including looped

networks and those with a relatively higher number of dead-

ends. These networks are: a modified version of the Blacksburg

network (BLA-M), Anytown, Fossolo network (FOS), and

Net3 [24], [53]. Fig. 1 illustrates these networks layouts while

Tab. III lists the count for each component.

Table III
COMPONENTS COUNT FOR EACH OF THE TEST NETWORKS.

Network Junctions Reservoirs Tanks Pipes Pumps

BLA-M 30 1 0 30 0

Anytown 22 1 2 43 3

FOS 36 1 0 58 0

Net3 90 2 3 114 2

First, we demonstrate the effect of considering dispersion

in the simulation of the chemicals transport and evolution. We

simulate the three chemical compounds with and without the

inclusion of dispersion on the BLA-M and Anytown networks

for comparison. For both networks, the simulation period is 24

hours with a hydraulic time-step of 1 hour. In addition, fixed

sources of chemicals are maintained at Reservoirs R1 and R2,

with concentrations of 2 mg/L for chlorine, 0.3 mg/L for the

fictitious reactant, and 0.01 mg/L for the THMs. For the BLA-

M network, Fig. 2 shows the results for chlorine concentrations

at Junctions J1 and J2 with and without dispersion. As shown

in the figure, the inclusion of dispersion has a greater impact

on Junction J1 than J2. Neglecting dispersion leads to an

underestimation of chlorine concentrations, particularly at J1,

with an underestimation of around 8%, while for J2, it is 3%.

This is due to the lower velocity in the pipe leading to Junction

J1 compared to J2, resulting in a more dispersion-dominant

process.

For the Anytown network, Fig. 3 illustrates chlorine and

THMs concentrations at Tank TK1 with and without disper-

sion. The reason for showing these results is to highlight

that although the underestimation of chlorine concentrations

at Tank TK1 may seem negligible, the difference in THMs

concentrations can be substantial, potentially leading to over-

looking reaching its higher bound, thus compromising water

safety. This situation arises from how mutual reactions are

handled in our model. These reactions are expressed as second-

order nonlinear formulations. Consequently, the dispersion

effect on chlorine and the fictitious reactant implicitly affects

THMs formation while explicitly impacting its evolution in the

transport expression. This effect becomes more noticeable with

higher concentrations of chlorine and the fictitious reactant, as

well as with slower velocities.

It is worth mentioning that the results in Fig. 2 are obtained

by applying the explicit discretization schemes listed in Tab.

I, while the results in Fig. 3 are obtained using the implicit

discretization schemes. Additionally, Procedure 1 is employed

to determine the WQ time-step and system dimensions for both

networks under different scenarios to test its applicability and

numerical stability. Although the discretization procedure has

proven its applicability, in some scenarios, the resulting WQ

time-step is restrictively small to satisfy the condition listed

in step 14 of Procedure 1. Subsequently, applying explicit

discretization schemes leads to a high number of segments re-

quired for each pipe, resulting in high system dimensions. This

high system dimensionality demands significant computational
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Figure 1. Networks under study and their layouts: (a) BLA-M, (b) Anytown, (c) FOS, and (d) Net3 networks.

time for the simulation of chemical evolution, considering

that we simulate for three chemicals. Thus, for each network

component and pipe segment, we have three states. Conversely,

using an implicit discretization scheme for either the AR-PDE

or ADR-PDE avoids this issue but requires performing matrix

inversion. This problem can be mitigated by constructing

these matrices as sparse matrices and utilizing fast inversion

commands according to the coding language used. To that end,

the results obtained in the remainder of this section are based

on models developed using implicit discretization schemes.
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Figure 2. Chlorine concentrations at Junctions (a) J1 and (b) J2 of BLA-M
network without (AR) and with (ADR) the consideration of the dispersion
process effect.

Next, we present results from quantifying the controlla-

bility of each booster station located on the FOS network

individually, aimed at steering chlorine concentration to a

critical target node: Junction J12. This junction could represent

a high-demand area or an area with initially low chlorine

concentrations. We calculate the rank metric for each booster

station and present the results in Fig. 4 for two hydraulic

settings of the system over a 24-hour simulation period with

a hydraulic time-step of 1 hour. The WQ time-step is updated

within the hydraulic time-step on a scale of 1 minute. These

metrics are measured on a system linearized around operating

points of 0.5 mg/L for chlorine, 0.1 mg/L for the fictitious

reactant, and 0.01 mg/L for THMs concentrationsÐthe initial

WQ concentrations of the system.
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Figure 3. (a) Chlorine and (b) THMs concentrations at Tank TK1 of the
Anytown network without (AR) and with (ADR) the consideration of the
dispersion process effect.

In Fig. 4, achieving full rank is highlighted by the colored

blocks within the specific hydraulic 1-hour time-step, demon-

strating the achieved target controllability for Junction J12.

As shown, Junction J12 is not always controllable by booster

stations due to changes in flow directions and actual flow

rates, which can make it difficult to reach the junction within

the specified time interval. For the first hydraulics scenario

(Hyd. #1), Junction J12 can be influenced by different booster

stations at various time-steps, with varying control energy

depending on the flow paths between them. Conversely, for the

second hydraulics scenario (Hyd. #2), higher demands exist on

the opposite side of the network, causing flow directions to be

opposite to those leading to J12, with low flow rates to J12

except during the controllable windows shown in Fig. 4b. This

suggests that the other side of the network might also represent

critical target nodes that demand higher priority indices.
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Figure 4. Controllability of chlorine injections by each booster stations
allocated over the FOS network if worked solely to steer the concentrations at
the target junction J12, for two hydraulic settings: (a) Hyd. #1 and (b) Hyd.
#2. Colored tiles indicate full rank metric.

By applying the proposed MPC control approach based on

the results from the controllability analysis and constrained

by THMs formation (Case #2), the results for the BLA-M

network are demonstrated in Fig. 5. Additionally, this figure

shows results for Case #1, where the MPC control algorithm is

applied without prior controllability analysis and without con-

straining the problem with maximum THMs concentrations. It

is important to note that the results for Case #2 are obtained

by tuning the matrices R and Q to balance control input

smoothness, achieve the desired concentrations, and weight

the inputs appropriately. As illustrated in Fig. 5a, the combined

control actions from R1 and J3 are lower for the second case,

while maintaining chlorine concentrations between the lower

and upper bounds across the networkÐsee Fig. 5b and Fig. 5c

for examples. Two significant factors explain these results. The

first factor is the values and scaling of R and Q compared to

the cost of chlorine injections, allowing the latter to dominate

the objective functions with higher trade-offs for the first two.

The second factor is the constraint on chlorine injections

to prevent THMs formation from exceeding its maximum

bound of 0.08 mg/L. Furthermore, in Case #1, the control

actions are primarily assigned to the booster station at R1,

while in Case #2, they are distributed between the stations

at R1 and J3. This distribution is due to the higher indices

assigned to the dead-ends downstream of J3, where initial

chlorine concentrations are zero and the fictitious reactant has

relatively high initial concentrations of 0.5 mg/L, representing

a contamination intrusion event in this zone. Additionally,

fluctuations in chlorine concentrations at J2 shown in Fig.

5c are due to the need to recover chlorine levels after their

consumption by the fictitious reactant and withdrawn the water

with high demands.

0 6 12 18 24

Time (hrs)

0

4000

8000

12000

C
on

tr
ol

A
ct

io
n

(m
g/

m
in

)

0

4000

8000

12000

(a)

0 6 12 18 24

Time (hrs)

0

0.5

1

1.5

2

cJ 1
(t

)
(m

g/
L
)

0

0.5

1

1.5

2

Case #1
Case #2

(b)

0 6 12 18 24

Time (hrs)

0

1

2

3

4

cJ 2
(t

)
(m

g/
L
)

0

1

2

3

4

(c)

Figure 5. (a) Summation of MPC control actions at Reservoir R1 and Junction
J3 of the BLA-M network, and the corresponding chlorine concentrations at
(b) Junction J1 and (c) Junction J2 for two cases: Case #1, applying MPC
without prior controllability analysis and without DBPs constraints; and Case
#2, applying MPC with prior controllability analysis and DBPs constraints.

For the Net3 case study, we focus on the zone framed in

Fig. 1. In this network, Tank TK3 faces periods of filling

and periods of serving parts of the network throughout the

simulation period. Thus, it is considered a critical target

node during the filling windows to ensure the stored water

has sufficient chlorine concentrations for safe distribution. As

shown in Fig. 1, the nearest booster stations to this tank are

located at Junctions J13 and J15. Notably, water reaching

J15 must first pass through J13, which serves more dead-

ends than J15. To accommodate these scenarios, a higher

priority index is assigned to the target set leading to the tank

during its filling windows. When the tank is emptying, it is

considered uncontrollable, and its weight is set to zero in

Procedure 2. This approach demonstrates the scalability and

flexibility of the proposed control strategy, allowing it to be

easily customized for each network and each unique scenario

or special consideration that arises.

By applying the proposed MPC approach based on the

aforementioned scenarios for Net3, Fig. 6 illustrates chlorine

concentrations at the dead-ends downstream Junctions J14 and

J15. Results show how the water coming from Junction J13

with the same chlorine concentration but due to the different

weights and interactive dynamics, the chlorine injections by

booster stations at J14 and J15 are different. We also want to

highlight that although Net3 is a relatively large scale network,

the switching between the two discretization schemes for the
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Figure 6. Chlorine concentrations at the dead-ends downstream (D.S.)
Junctions J14 and J15 after applying the MPC algorithm for Net3.

cases of with and without dispersion has been smooth and

the computational time for a simulation period of 24 hours

has only increased by 3% to run through the if condition that

decide on the scheme used.

V. CONCLUSION, PAPER’S LIMITATIONS, AND

RECOMMENDATIONS FOR FUTURE WORK

This study introduces a novel disinfectant control approach

that ensures the WQ safety through chlorine injections while

mitigating the hazardous formation of its DPBs. This ap-

proach integrates an advanced multi-species WQ model that

is based on the ADR dynamics, dynamically switching be-

tween discretization schemes to accurately simulate chemi-

cal transport according to the dominant process. Accounting

for the dispersion process in chemical evolution simulation

can significantly impact results, particularly in low-velocity

zones such as branched networks with dead-ends and stagnant

water. Additionally, this study demonstrates the utilization of

prior controllability analysis, enabling the storage of offline

weight matrices that are updated every hydraulic time-step,

reflecting the subsequent changes in the WQ controllability

metrics. These matrices inform the MPC algorithm for the

chlorine control problem, strategically prioritizing booster

stations based on their influence on critical states and desired

objectives. Consequently, optimal chlorine injections are al-

located among booster stations based on the insights from

the controllability analysis. The proposed control approach

is validated on different numerical case studies with various

scales, layouts, and hydraulic conditions.

In our study, we exclusively focus on chlorine as the

disinfectant and accordingly refer to its dynamics as the WQ

dynamics, given that chlorine is one of the most widely used

disinfectants. However, there are other disinfection methods

that differ in their composition, effectiveness, dynamics in

WDNs, byproducts, and usage limitations. For a detailed

comparison of these disinfection methods and their broader

impacts, we refer readers to the study in [54]. Furthermore,

our study acknowledges several limitations within its struc-

ture, including the high dimensionality associated with the

developed approach, potentially leading to demanding com-

putational times. However, model order reduction approaches

are available to be utilized and integrated into the control

framework as presented in [45]. Other limitations are the pre-

determined locations of booster stations and the prerequisite

of detailed hydraulic settings before WQ control approach

implementation. To address these limitations, future research

direction for our group is to explore incorporating uncertainty

in the hydraulic settings, modeling transient conditions to

better reflect real-world scenarios, and adopting an integrated

approach that considers optimizing both hydraulic and WQ dy-

namics. Additionally, it is worth noting that our controllability

analysis is performed for the linearized system, representing

an approximation of the actual system dynamics.
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