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Quality-Aware Hydraulic Control in Drinking Water
Networks via Controllability Proxies

Salma M. Elsherif†,¶, Mohamad H. Kazma†, and Ahmad F. Taha†,∗∗

Abstract—The operation of water distribution networks is a
complex procedure aimed at efficiently delivering consumers with
adequate water quantity (WQ) while ensuring its safe quality.
An added challenge is the dependency of the WQ dynamics on
the system’s hydraulics, which influences the performance of the
WQ controller. Prior research has addressed either solving the
optimum operational hydraulic setting problem or regulating
the WQ dynamics as separate problems. Additionally, there
have been efforts to couple these two problems and solve one
compact problem resulting in trade-offs between the contradic-
tory objectives. In contrast, this paper takes a novel approach
by examining the WQ dependency on the hydraulics from a
control-theoretic standpoint. More specifically, we explore the
influence of accountability for WQ controllability improvement
when addressing the pump scheduling problem. We examine
its effects on the cumulative cost of the interconnected systems
as well as the subsequent performance of the WQ controller.
To achieve this, we develop a framework that incorporates
different controllability metrics within the operational hydraulic
optimization problem; its aim is attaining an adequate level of
WQ control across the system. We assess the aforementioned
aspects’ performance on various scaled networks with a wide
range of numerical scenarios.

Index Terms—Optimal pump schedule, hydraulics and water
quality regulation and control, controllability metrics, model
predictive control.

I. INTRODUCTION AND LITERATURE REVIEW

T
HE real-time management and operation of water dis-

tribution networks (WDNs) have been one of the most

researched topics in the field of water systems. The objective

is to fulfill consumers’ and end-users’ needs and deliver

clean water in a cost-effective manner while meeting water

quality (WQ) mandates. Taking into account network-wide

operational flows, pressures, and WQ, achieving the afore-

mentioned objective involves addressing multiple conflicting

objectives. These objectives include minimizing the costs

associated with pumping and disinfectant usage, meeting water

demand, maintaining adequate pressure levels, and satisfying

quality requirements.

For decision-makers (i.e., water utilities), these conflict-

ing objectives formulate challenges to be addressed utilizing

control algorithms that are built and applied in WDNs. The

regulation and control of WDNs primarily revolve around

two aspects: quantity and quality. For the quantity aspect,
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the energy required to operate pumps constitutes the main

component of the operational cost to be minimized while

achieving the target head levels and flows [1]. As for the WQ

aspect, the objective of the control problem is to maintain

desired disinfectant levels all over the WDN with minimum

injections at treatment plants and booster stations [2]. It is

noteworthy that the operation of WDNs requires the consider-

ation of variety of quality parameters (e.g., turbidity, pH levels,

and disinfectant residuals). However, among these parameters,

disinfectant residuals stand out as a crucial indicator of the

actual state of the WQ, while also posing a mathematical

challenge when optimizing its concentrations and injections.

That being said, our paper focuses on disinfectant modeling

and control. Henceforward, when we refer to WQ dynamics in

the remainder of the paper, we specifically address disinfectant

dynamics.

The vintage approach to study WQ dynamics starts with

first running hydraulic simulations that generate schedules

of pumps with their resulting heads and flows through a

WDN. This is then followed by investigating the quality via

booster station control. This is due to the fact that hydraulic

control has a slower time-constant. This paper pursues a new

approach: jointly investigating quality-quantity control via a

unified approach based on systems science and controllability

metrics of quality dynamics.

Controllability, in this context, refers to the ability to effec-

tively steer, regulate, and maintain disinfectant levels within

the network to consistently meet the established water health

standards. In short, the paper attempts to answer this research

questions: Can quality-aware pump control significantly im-

prove water quality dynamics in WDN? What are the quality

controllability metrics that can be appended to a hydraulic

control problem? When is it meaningful to integrate the time-

scales of quality and quantity?

To the best of our knowledge, this is the first attempt to

explore this particular topic from a system and control theo-

retic perspectives. The next section surveys the corresponding

literature.

A. Literature Review

The literature on the regulation and control of WDNs

to deliver clean water to the end-users is rich and briefly

summarized next. The literature on this topic is divided into

(i) studies focusing on determining the optimal operational

settings for pumps and/or control valves to attain the desired

water flows and levels specified by network topology and

characteristics, and consumers demands; (ii) studies that cover

the regulation of WQ dynamics to ensure meeting the standard

disinfectant (i.e., chlorine) residuals throughout the network

while minimizing the source and booster stations’ injections;
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and (iii) studies that propose integrating/coupling controlling

water quantity and quality, therefore considering the interde-

pendencies between them. In this section, we survey these

areas and afterward, we end this section by highlighting the

research gaps that drive the contributions of this work.

Hydraulic Control. The operational control of WDNs de-

pends on several factors including network topology, demand

cycle, tank dynamics, head loss model, pumps type, valves

type, etc. In addition, the resulting control problem is in-

herently nonlinear and nonconvex in nature. Many studies

have covered some or many of the aforementioned factors

and handled the nonlinearity and nonconvexity under different

frameworks. Studies [1], [3] perform system linearization and

apply linear programming to obtain optimal pump scheduling.

Study [4] determines the optimal scheduling by the means

of relaxation and linear programming branch and bound.

Similarly, study [5] relaxes the hydraulic constraints to second-

order cone constraints with penalty terms. On the other hand,

studies [6]–[8] solve nonlinear nonconvex problem using vari-

ations of methods including genetic algorithm and mixed-

integer nonlinear programming. Lastly, study [9] applies ge-

ometric programming-based model predictive control (MPC)

algorithms which turn the problem into a convex continuous

optimization problem. Many of these studies have compared

their results with built-in tools in hydraulics solvers (e.g.,

EPANET’s built-in rule-based control [10])—refer to [11], [12]

for detailed review and analysis of the literature on this topic.

Quality Control. A plethora of optimization-based ap-

proaches have been used to solve the WQ control problem

including: linear programming with the objective of minimiz-

ing chlorine injections [13], mixed-integer linear program-

ming with the allocation of booster stations as a decision

variable [14], and genetic algorithm with a constraint on

the formulation of disinfectant by-products [15]. Conversely

to these studies, study [16] proposes applying MPC to an

explicit representation of the single-species WQ model that

guarantees network-wide control. More on that approach,

study [17] utilizes different techniques to implement real-time

MPC to nonlinear multi-species WQ dynamics—a framework

that covers controlling chlorine levels in WDNs under ab-

normal conditions including contamination events. It is worth

noting that these studies rely on the assumption that systems’

hydraulics are pre-computed.

Joint Quality-Quantity Control. Several studies have inves-

tigated integrating both the quantity and quality control prob-

lems by implicitly and/or explicitly incorporating one or more

quality control aspects within the quantity control framework,

or by turning them into one augmented formulation. In [18],

the authors use nonlinear programming to solve the pump

operation problem that accounts for disinfectant’s residuals

in the constraints. On the other hand, study [19] formulates

a dual quality-quantity optimization problem with a single

augmented objective that concatenates minimizing the energy

cost and maximizing system’s protection by maximizing the

injected chlorine dose. This study utilizes a genetic algorithm

to solve the optimal problem that is based on the two con-

flicting objectives. The posed problem is optimally solved

while conveying the existence of trade-offs within the solution.

Similarly, authors in [20] propose applying a genetic MPC

algorithm to the coupled control problem and compare the

results with real data records of a specific network, which

shows cost reduction. The authors in [21] utilize a nonlinear

MPC integrated optimizer. The control procedure proposed is

divided into two levels: an upper-level controller responsible

for determining optimized pump schedules while satisfying

constraints on chlorine residuals, and a lower-level controller

that computes optimized chlorine injections. More recently,

study [22] solves a two-objectives pump scheduling problem

by means of goal programming. The first objective focuses

on implicitly achieving the required chlorine residuals by

minimizing the active dynamics in storage components, while

the other objective aims towards minimizing the energy cost.

Many of the studies cited earlier on this topic solve a fully

coupled quantity and quality control problem by concatenating

the objectives of each problem into a single-objective or

multi-objective formulation. This approach results in trade-offs

between conflicting objectives, highlighting the necessity for

thorough analysis of these trade-offs. On the other hand, incor-

porating a constraint on WQ, whether implicitly or explicitly,

into the system’s operational scheduling control problem does

not necessarily guarantee the achievement of a certain level of

controllability by booster stations or reachability of the desired

final states. In other words, the notion of optimizing a pumping

schedule while attaining a certain level of WQ controllability,

based on closed-form formulation of the system’s hydraulics

and quality, has not been attempted or investigated—a gap that

is addressed in this paper.

B. Paper Contributions

This paper’s main objective is to investigate the feasibility

and applicability of maintaining a certain level of controllabil-

ity for the WQ model while computing the optimal hydraulic

setting. This implies solving an augmented water networks

operational control problem that accounts for enhancing WQ

from a control-theoretic perspective. In this context, we refer

to the control problem that focuses solely on hydraulics as the

decoupled problem, while the joint quality-quantity problem as

the coupled problem. The corresponding paper contributions

are as follows.

• Water quality systems are inherently complex and mostly

not fully controllable. That is, we investigate the effect

of changing hydraulics on the WQ controllability. This

is measured by employing different quantitative metrics

which allows us to judge the WQ system controllability

from different energy-related perspectives. Eventually, we

judge the applicability and validity of these metrics on the

case-oriented application under our focus.

• We formulate an augmented operational pump scheduling

control problem—the coupled problem—in a way that

conserves a certain level of WQ controllability. This level

is pre-determined depending on the investigation results

performed as outlined in the previous point.
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• A wide comparison between the decoupled and coupled

control problems through various numerical case studies

is performed.

Paper Organization. We start by presenting the hydraulic and

water quality models adopted in Section II. Then in Section

III, we delineate several controllability metrics—and assess

their applicability and validity to our application. Next, we for-

mulate the pumps scheduling optimization problem with and

without the integration of the WQ controllability preservation

in Section IV. We compare between the decoupled and coupled

problems through different case studies in Section V. Lastly,

conclusions, paper’s limitations, and future work are discussed

in Section VI. Moreover, Appendix A provides a detailed list-

ing of the units associated with the variables presented in the

paper, aiding readers in understanding the quantitative aspects

of the study, while Appendix B illustrates the dependency

of WQ controllability on the system’s hydraulics through a

simple example.

II. HYDRAULICS AND WATER QUALITY MODELS

We model WDNs by a directed graph G = (N ,L). The

set N defines the nodes and is partitioned as N = J ∪T ∪R
where sets J , T , and R are collections of junctions, tanks,

and reservoirs. Let L ¦ N × N be the set of links, and

define it as, L = P ∪ M ∪ V , where sets P , M, and

V represent the collection of pipes, pumps, and valves. In

each network, nL and nN represent the numbers of links and

nodes. Specifically, network’s nodes include numbers of nR

reservoirs, nJ junctions, and nTK tanks. The total number of

links is the summation of nM, nV, and nP, representing the

numbers of pumps, valves, and pipes, respectively.

In our paper, we have two models (i.e., hydraulic and

water quality models) with different numbers of states and

representations. Next, we succinctly list the governing equa-

tions for both models and their final representations. It is

worth mentioning that the hydraulic time-step ∆tH is different

than the water quality one ∆tWQ. The hydraulic time-step is

taken to be within an hourly scale to reflect the patterned

demand, while the water quality time-step is chosen between

minutes and seconds to allow a stable accurate numerical

simulation [23]. Then, variable t represents a specific time in

the simulation period [0, Ts] and it is updated incrementally

by ∆tWQ within each ∆tH reaching the end of the simulation

period (i.e., t = Ts).

A. Modeling Hydraulics

We apply the principles of conservation of mass and energy

to obtain the amount of water flowing in each network link and

the head at each node. For all the network components, we give

brief description of the equations that model these principles

in the next section. In the latter section and based on these

equations, we formulate a compact state-space representation

of the network hydraulics.

1) Water Network Components Modeling: For each of the

following network elements, we model the hydraulics variables

at/through this element depending on their characteristics and

their connection to other elements.

– Reservoirs: We follow the valid assumption that reservoirs

are infinite source of water with fixed head [24]. Thence, the

head at Reservoir i is calculated as hR
i (t+∆tH) = hR

i (t).
– Tanks: We consider tanks with constant cross section along

its height. Change in the head at the tank depends on its cross

section’s area and the algebraic difference between the inflows

and outflows. The head at Tank i is described as

hTK
i (t+∆tH) = hTK

i (t)+
∆tH

ATK
i

( ∑

j∈Lin

q
j
in(t)−

∑

k∈Lout

qkout(t)
)
,

(1)

where ATK
i is the tank cross section’s area; j and k are the

counters for total Lin links flowing into the node and Lout

links extracting flow from the node; and q
j
in(t) and qkout(t)

are the inflows and outflows from these links connected to the

node.

– Junctions: The conservation of mass law at junctions is

expressed as
∑

j∈Lin

q
j
in(t)−

∑

k∈Lout

qkout(t) = qDJ

i (t), (2)

where qDJ

i (t) is the consumers’ demand withdrawn from this

junction.

– Pipes: As water flows in a pipe, it starts with the head of the

upstream node and reaches the end-node head by applying the

conservation of energy. The difference between the two heads

is due to the losses caused by friction along the pipe’s length

and localized minor losses (e.g., at bends, fittings, etc.). In

our study, we neglect the minor losses as they are relatively

small in comparison to the friction losses in water networks

[25]. That is, the change in head through Pipe i connecting

and flowing water between node j and node k is expressed in

Eq. (3)—these nodes can be junctions, tanks, or reservoirs.

∆hP
i (t) = hj(t)− hk(t) = riq

P
i (t)|q

P
i (t)|

µ−1, (3)

where qPi (t) is the pipe flow; ri is the pipe resistance coeffi-

cient, which is a function of pipe size, length, and material;

and µ is the constant flow exponent. These parameters’ values

depend on the chosen head loss formula. In our study we use

the Hazen-Williams equation; µ = 1.852 [26].

– Pumps: As an active component with variable speeds, pumps

can provide the system with different values of head gain

according to its operating speed and the corresponding head-

flow relationship [26]. For Pump i adding energy to water

flowing from node j to node k, the head gain is calculated as

∆hM
i (t) = hj(t)−hk(t) = −s2i (t)(h

0
i −αi(s

−1
i (t)qMi (t))νi),

(4)

where si(t) is the pump relative speed varying between 0 and

the maximum speed smax
i , which is a positive unique value

(smax
i > 0) for each pump that depends on its characteristics

and impeller size; h0
i is the shutoff head; qMi (t) is the pump

flow; and αi and νi are pump characteristics coefficients. Note

that the head gain is strictly negative, as the pump provides

the water with more energy, causing the head at the delivery

node to exceed that at the suction node, and no back-flow is

allowed.

– Valves: In our model, we consider pumps to be the only con-

troller of the system. Therefore, we formulate and solve pump
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operation problem to obtain the optimal pumping schedule that

fulfills the water flow and head constraints. That being the

case, valves in our networks are considered as on-off valves

and they have two states; fully closed or fully open. The

knowledge of valve state is predetermined along the simulation

period. In the case of fully closed, the two nodes connected

by the valve are considered decoupled. For the other case of

fully open valve, it is treated as a straight pipe section with

minor losses [27] that can be expressed as in Eq. (5) for Valve

i connecting nodes j and k.

∆hV
i (t) = hj(t)− hk(t) = miq

V
i (t)|q

V
i (t)|, (5)

where qVi (t) is the flow through the valve and mi is the minor

losses coefficient that depends on the valve type (e.g., ball,

butterfly, gate, etc.) and its cross-sectional area.
2) Hydraulics in State-Space Form: The hydraulics model

explained in Section II-A1 can be written in a form of nonlin-

ear difference algebraic equations (NLDAE) as expressed in

(6). In these equations, we collect the system state variables

and inputs in vectors of appropriate dimensions as follows:

heads at tanks in w; heads at junctions in l; flows at pipes,

pumps, and valves in z; and relative speed of pumps s. The

vector Ω ∈ R
nJ encapsulates the junctions’ demands which

are considered predetermined in our study.

Hydraulic Dynamics: Hyd-NLDAE

w(t+∆tH) = AHw(t) +BHz(t), (6a)

0nJ
= Ezz(t) +EΩΩ(t), (6b)

0nP+nM+nV
= Eww(t) +Ell(t) +Ψ(z, s), (6c)

where {A,B,E}• are constant matrices that depend on the

network’s topology, components’ characteristics, and hydraulic

parameters. Additionally, Ψ(·) gathers the nonlinear terms in

(3), (4), and (5), and 0n is a zero-vector of size n.
B. Water Network Quality Modeling

This model traces the disinfectant concentrations through-

out the network’s components. The evolution of chlorine

concentrations follows the conservation of chemical’s mass,

transport, and single-species reaction and decay models. In

each component, we represent the chlorine concentration as

c with a superscript of the component symbol. Additionally,

we accentuate the hydraulics variables (e.g., velocities, flows,

volumes, etc.) by coloring them in violet whenever they appear

in the WQ model.
1) Conservation of Chlorine Mass in Nodes: For reser-

voirs, tanks, and junctions, the principles of conservation of

mass are applied. Reservoirs are considered a continuous

source of chlorine with constant concentrations over time; for

a Reservoir i, cRi (t + ∆tWQ) = cRi (t). On the other hand,

junctions and tanks are assumed to have complete immediate

mixing at place with no storage for junction and changing

volume with time for tanks [28], [29]. Accordingly, if node i

is defined as a Junction, chlorine concentration at this node is

calculated as

cJi (t) =

∑
j∈Lin

q
j
in(t)c

j
in(t) + qBi (t)c

B
i (t)

qDJ

i (t) +
∑

k∈Lout
qkout(t)

. (7)

While, if it is defined as a Tank, cTK
i is calculated as follows

V
TK
i (t+∆tWQ)c

TK
i (t+∆tWQ) = V

TK
i (t)cTK

i (t)

+
∑

j∈Lin

q
j
in(t)c

j
in(t)∆tWQ + V

B
i (t+∆tWQ)c

B
i (t+∆tWQ)

−

∑

k∈Lout

q
k
out(t)c

TK
i (t)∆tWQ +R

TK(cTK
i (t))V TK

i (t)∆tWQ,

(8)

where c
j
in(t) is the concentration in the inflow solute; V TK

i (t)
is the water volume of the tank, i.e., V TK

i (t) = ATK
i hTK

i (t);
qBi (t) and V B

i (t+∆t) are the flow and the volume of chlorine

injected to the node with concentration cBi (t) by booster

station if located; and RTK(cTK
i (t)) is the decay and reaction

expression in tanks (refer to Section II-B3). Booster stations

located at tanks offer water utility operators the ability to

maintain constant chlorine concentrations at outflow pipes.

This scenario can be accommodated by incorporating these

constraints into the control problem. In our paper, we present

a generalized model that can be customized to address this

scenario based on the network being studied, as well as

other scenarios with changing desired levels of chlorine to

be maintained.

Booster stations located at tanks can be utilized by water

utilities operators to attain constant chlorine concentrations at

outflows pipes. This scenario is achievable by integrating these

constraints in the control problem. In our paper, we consider a

generalized model that can be tailored to this scenario or not

according to the network under study.

It is worth mentioning that from an operational prospective,

water operators tend to inject chlorine dosages in tanks to

maintain constant chlorine concentrations in th outlet pipe

2) Chlorine Transport and Reaction Model in Links: In

the water quality model, pumps and valves are considered

links with no actual length and accordingly and accordingly

there are no changes in the chemical concentration from the

upstream node. That is, for Pump i and Valve k place after

Junction j, concentrations are expressed as cMi (t+∆tWQ) =
cJj (t+∆tWQ), and cVk (t+∆tWQ) = cJj (t+∆tWQ).

Nonetheless, the transport and reaction model in pipes

is simulated by the one-dimensional advection-reaction (1-D

AR) partial differential equation (PDE), which for Pipe i is

expressed as

∂tc
P
i = −vi(t)∂xc

P
i +RP(cPi (x, t)), (9)

where cPi (x, t) is concentration in pipe at location x along

its length and time t; vi(t) is the mean flow velocity which

is a hydraulic variable that characterizes the rate at which

water flows through the pipe; and RP(cPi (x, t)) is the decay

reaction expression in pipes (more explanation is given in

Section II-B3). Eq. (9) is discretized over a fixed spatio-

tamporal grid using the Explicit Upwind scheme—Eulerian

Finite-Difference based method [30], [31]. This scheme is

conditionally stable by satisfying the Courant-Friedrichs-Lewy

condition (CFL). This condition puts limits on the Courant

number λi(t) =
vi(t)∆t

∆xi

to be 0 < λi(t) f 1, for a Pipe i.

Subsequently, the Pipe i with length Li is split into a number

of segments nsi =
⌊ Li

vi(t)∆t

⌋
of length ∆xi =

Li

nsi

, note that
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the symbol +·, donates the floor function, which takes a real

number as input and returns the greatest integer less than or

equal to that number. The chemical concentrations for the pipe

segments, ranging from the first segment cPi(1, t+∆tWQ) to

all segments in between along the pipe’s length, and reaching

the last segment cPi(s, t+∆tWQ), are calculated as expressed

in Equation (10). This calculation assumes that Junction j is

upstream of this pipe.




cPi (1, t+∆tWQ)

cPi (2, t+∆tWQ)
...

cPi (s− 1, t+∆tWQ)

cPi (s, t+∆tWQ)




= (1− λi(t))




cPi (1, t)

cPi (2, t)
...

cPi (s− 1, t)

cPi (s, t)




+ λi(t)




cJj (t)

cPi (1, t)
...

cPi (s− 2, t)

cPi (s− 1, t)




+∆tWQ




RP(cPi (1, t))

RP(cPi (2, t))
...

RP(cPi (s− 1, t))

RP(cPi (s, t))




.

(10)

3) Single-species Decay Model: The single-species decay

model is a first-order model where the chlorine concentrations

are decaying due to wall reaction dynamics in pipes and bulk

reaction dynamics in both; pipes and tanks. Henceforward,

the chlorine decay reaction rates for Pipe i and Tank j are

kPi = kb +
2kwkf

rPi
(kw + kf )

, kTK
j = kb, where kb is the bulk

reaction rate constant; kw is the wall reaction rate constant;

kf is the mass transfer coefficient between the bulk flow and

the pipe wall; and rPi
is the pipe radius. It is noteworthy that

these parameters are influenced by many factors, which vary

between water chemistry and contact time for bulk parameters,

and pipe material, pipe age, and biofilm growth for the wall

decay parameters. For a more comprehensive understanding

of how these parameters are determined and the factors that

impact them, we refer readers to [2], [32]–[34]. Eventually,

the decay and reaction expressions for Segment s of Pipe i

and Tank j are

RP(cPi (s, t)) = −kPi c
P
i (s, t), RTK(cTK

i (t)) = −kTK
i cTK

i (t).
(11)

4) Water Quality State-space Representation: The water

quality model described in Sections II-B1, II-B2, and II-B3

can be formulated as the following linear difference equations

(LDE):

Quality Dynamics: WQ-LDE

x(t+∆tWQ) = AWQ(t)x(t) +BWQ(t)u(t), (12)

y(t) = CWQ(t)x(t), (13)

where vector x(t) := {cR(t), cJ(t), cTK(t), cP(t), cM(t),
cV(t)} ∈ R

nx depicts the concentrations of chlorine in

the entire network and the total number of states nx =

nR + nJ + nTK +

nP∑

i=1

nsi + nM + nV; vector u(t) ∈ R
nu

represents the dosages of injected chlorine; vector y(t) ∈ R
ny

denotes the sensor measurements of chlorine concentrations

at specific locations in the network. The state-space matri-

ces {AWQ,BWQ,CWQ} are all time-varying matrices that

depend on the network topology and parameters, hydraulic

parameters, decay rate coefficients for the disinfectant, and

booster stations and sensors locations. It is customary to

assume that these matrices evolve at a slower pace than the

states x(t) and control inputs u(t). This is due to the slower

evolution of hydraulic variables, such as flows and heads used

in constructing the WQ system matrices, compared to the

states and inputs related to chlorine concentrations.

III. WATER QUALITY CONTROLLABILITY PROXIES

In this section we introduce the notions of controllability

for linear water quality dynamics. We survey controllability

measures that allow us to qualitatively and quantitatively

evaluate the controllability of the developed water quality

system (12). These metrics are assayed based on their appli-

cability to the water quality model and their suitability to the

optimal pump scheduling problem formulation. We consider

the notion of water quality system controllability and relate

it to the hydraulic pump scheduling problem formulated in

Section IV.

From a control-theoretic perspective, controllability is the

ability to steer a system from initial states xo := x0 to

xs := xTs
by some input u(t) [35]. That is, the goal is to be

able to steer complex dynamical systems to a desired state or

trajectory. Specifically, for water quality control we want to

maintain chlorine concentrations within certain levels.

Definition 1. A linear system [e.g., the water quality system

expressed as (12)] is controllable if for any finite time interval

[0, Ts] and for any initial state xo ∈ R
nx , the initial state xo

can be steered or driven to a final state xTs
∈ R

nx for some

input u(t) under the specified time interval.

That being said, the dynamic linear system (12) is said to

be controllable if only if the controllability matrix for Ns =
Ts

∆tWQ
time-steps given as

CNs
:= {BWQ, AWQBWQ, A2

WQBWQ,

. . . , ANs−1
WQ BWQ} ∈ R

nx×Nsnu , (14)

is full row rank, i.e, rank(CNs
) = nx [36], without loss of

generality as we assume that Nsnu > nx. This is known

as Kalman’s rank condition [35]. However, matrix rank is a

generic property that might lead to similar values depending on

the relations between the variables; it therefore is informative

in a qualitative sense but fails to indicate how controllable the

system is under many cases and various scenarios.
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For the WQ dynamics (12), full row rank of CNs
seldom

occurs—this is due to the complexity and the high dimension-

ality of the system. With that in mind, it is more practical to

consider quantitative measures of controllability which, unlike

the aforementioned rank metric, are able to reflect the difficulty

in controlling the WQ system.

To that end, the notion of control energy

E(AWQ,BWQ, Ns,xo → xTs
) is introduced to quantify

the energy needed to steer the system from xo to xTs
[37].

Ideally, we want to minimize the energy required to control

the system. The concept of energy-related control depends on

the application. For the case of WQ control, it is related to

the amount of chlorine needed to be injected into the system

to keep a desired chlorine level at the network’s components.

Metrics related to the input energy required are based on the

controllability Gramian Wc(AWQ,BWQ, Ns) := Wc ∈ R
nx

that is defined for Ns sum of matrices pair AWQ and BWQ

as

Wc :=

Ns−1∑

τ=0

Aτ
WQBWQB

¦
WQ(A

¦
WQ)

τ = CNs
C¦
Ns

, (15)

where the controllability Gramian Wc, that is a positive

semidefinite metrics, provides an energy-related quantification

of controllability such that, E ∝ trace(Wc)
−1. We note here

that Wc is non-singular if the system is controllable after time

Ts, otherwise it is uncontrollable.

Remark 1. The WQ system matrices AWQ and BWQ

are ”time-variant" throughout the simulation window due to

changes in hydraulic dynamics. However, within each hy-

draulic time-step, they are considered ”time-invariant", as the

hydraulic variables have not yet been updated till the end of

this hydraulic time-step.

In the literature [38], [39] a myriad of measures exist;

these measures provide a scalar energy-related quantification

of the controllability Gramian Wc. These measures include:

logdet(Wc), trace(Wc), rank(Wc), and minimum eigenvalue

λmin(Wc). A discussion on the aforementioned measures is

given as follows.

1) The logdet(Wc) metric is proportional to the volumetric

measure of the ellipsoid enclosing the set of states that

can be reached with at most a unit control energy input.

2) The trace(Wc) metric is inversely related to the average

controllability energy in all directions of the state-space.

3) The rank(Wc) metric quantifies the size of the control-

lable subspace.

4) The λmin(Wc) metric is inversely related to the control

energy in the most difficult control direction. The smallest

eigenvalue quantifies that the worst-case direction that

requires the largest amount of control energy.

In terms of WQ controllability, the above metrics have

several interpretations. For instance, the rank metric can be

interpreted as quantifying the extent to which an operator (i.e.,

booster station) can influence network components (extent of

WQ control coverage). As such, the larger the rank of the

controllability Gramian, the greater the number of network

components where the chlorine injections have an effective

influence on the residual concentrations within the specified

time interval. The trace and logdet quantify the energy in

all directions of the state-space. Thus, maximizing the control

energy within a system signifies a greater capacity for the

chlorine injections to impact the various states within the water

network over the specified time interval. The λmin indicates

the largest energy needed, which is translated as chlorine

injections, for a specific direction to influence its system states

and steer them to the desired states.

It is worth mentioning that the notion of controllable sub-

space is equivalent to the notion of reachable subspace, this is

related to the representation of the Gramian and its associated

metrics [40]. A system is said to be reachable in a specific

state space if the subspace of all the reachable states from an

initial state xo is equal to the whole state space. Attaining

this propriety is important while controlling complex water

quality dynamics. That is, our goal is to preserve and maintain

a certain level of energy, within a controllable and reachable

subspace. In simpler terms: reachable subspace includes all

the states that a system can reach over time, without nec-

essarily applying any specific control inputs. However, for a

controllable subspace, these states can be reached by applying

specific control inputs.

For an uncontrollable WQ system with total number of

states nx, let the rank of the controllability matrix/Gramian be

k < nx. Then there exists a nonsingular matrix T ∈ R
nx×nx

such that

ĀWQ = TAWQT
−1 =


ĀWQ,11 ĀWQ,12

0 ĀWQ,22


 ,

B̄WQ = TBWQ =


B̄WQ,1

0


 ,

(16)

where ĀWQ,11, ĀWQ,12 and ĀWQ,22 have dimensions of k×
k, k × (nx − k) and (nx − k) × (nx − k), and B̄WQ,1 has

k rows. Namely, ĀWQ,11 and B̄WQ,1 define a controllable

subspace. Defining the controllable subspace is instrumental

in measuring metrics like trace, logdet, and λmin when the

system is not full rank. Readers are referred to [41] for the

theorem pertaining to the development of reachable subspace

decomposition.

To that end, we investigate the use of the aforementioned

metrics on the real-time control and pump scheduling op-

timization problem to achieve the stated goal of preserving

energy within specific subspaces of the system.

IV. HYDRAULICS CONTROL

In this section, we build the decoupled and coupled pump

scheduling problems.

A. Decoupled Pump Scheduling Problem

We first follow the approximation approach for the system

components proposed in [42] to formulate the pump control

problem. The system components include the head loss in

pipes, head loss in valves, head gain in pumps, and pump

power consumption. For the head losses in pipes and valves,
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we apply piecewise linear approximations that transform (3)

and (5) to multiple linear constraints.

Specifically, each pipe/valve’s head loss curve is segmented

into linear segments, which are determined by connecting

points that can be calculated offline as a pre-optimization step.

For the curve and piecewise linearization presented in Fig.

1a as an example, four points are located and the segmented

lines are connected. Using the equations for these lines, three

constraints are added to the optimization problem for this

specific pipe. When aiming for closer fits (i.e., employing

more segmentation), a drawback emerges in the context of

large network models, which is that scalability is negatively

affected. For formulations of NPW pieces, the constraints for

Pipe i connecting and flowing water between node j and node

k, are as follows

hj(t)− hk(t)−
NPW∑

n=1

m̃nζn(t)−
NPW∑

n=1

b̃ωn(t) = 0, (17a)

qPi (t)−
NPW∑

n=1

ζn(t) = 0, (17b)

NPW∑

n=1

ωn(t) = 1, (17c)

{
−ζn(t) + qn,minωn(t) f 0,

ζn(t)− qn,maxωn(t) f 0,
(17d)

where m̃n and b̃ are the n segment’s line slope and intercept,

while qn,min and qn,max are the flow boundary limits. In

addition, for the same segment n, ζn(t) and the binary ωn(t)
are decision variables to enable falling within the right segment

range. Constraint (17a) represents the linearized head loss

through the pipe within this segment, (17b) defines the pipe

segments flow equality constraint, (17c) allows the segment

selection, and (17d) are the boundary constraints for each

segment. By adding these equality and inequality constraints

to the optimization problem, new integer decision variables

are introduced; mixed integer programming.

Moreover, in contrast to study [42] we use variable speed

pumps instead of fixed speed pumps, thereby making the

problem more general yet different. This difference arises

due to the variations in pump curves based on the selected

pump speed; see Fig. 1b. Therefore, we follow the proposed

methodology by [43], [44], making minor modifications to

transform the decision variables into the flow through the

pump and pump speed, all while ensuring convexity. This

transformation is achieved by applying the affinity rules that

govern the relationship between pump shaft speed, discharge,

and head gain. These rules relate the discharge and head

gain to the shaft speed via parabolic relations. Specifically,

pump discharge exhibits a linear relationship with pump speed,

whereas head gain depends on the square of the speed. As a

pre-optimization step, both the pump performance curve and

the corresponding power consumption that we aim to minimize

are approximated to formulate two convex expressions to be

integrated in the optimization problem.
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Figure 1. (a) Linear, (b) variable-speed pump curve, and (c) the resultant
power consumption (h0 = 393.7, α = 3.7× 10−6, ν = 2.59).

First, we approximate the characteristic curve of Pump i

from Eq. (4) to the following

∆hM
i (t)

∣∣
App

= β1

(
qMi (t)

)2

+ β2q
M
i (t) + β3

(
sMi (t)

)2

+ β4,

(18)

where β1, β2, β3 and β4 are coefficient calculated by mini-

mizing the error between ∆hM
i in Eq. (4) and Eq. (18) with

β1, β3 g 0 to ensure convexity.

Furthermore, alongside the system dynamics and their ap-

proximations addressed in the preceding sections of the paper,

we also account for the physical constraints on the head levels

and flow values among the various network components—

expressed in Eq. (19). Pump speed vector s(t) is constrained

to be between 0 and smax, where the zero values indicate that

the pump is off. These considerations can all be written as

box constraints

w(t) ∈ [wmin,wmax], l(t) ∈ [lmin, lmax],

z(t) ∈ [zmin,zmax], s(t) ∈ [0, smax].
(19)

Lastly, the objective function for this problem enforces

minimizing the cost of power consumption by pumps. This

objective function is expressed as

Π(t) = ϕEL

nM∑

i

ρWg

ηi(t)
∆hM

i (t)qMi (t), (20)

where ϕEL is the price of each kW of electricity per hour

($/kWh), ρW is water density, g is the gravity acceleration,

ηi(t) is the efficiency of Pump i under a head gain of ∆hM
i (t)

and flow of qMi (t).
As illustrated in Fig. 1c, the power consumption of pumps

exhibits a nonlinear relationship with respect to the flow

rate, and this relationship shifts when the pump speed is

altered. For a specific pump speed, this objective function
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can be approximated to a convex second-order function [44].

However, when the actual pump speed deviates from the

speed at which the curve is approximated, the optimized pump

power consumption varies substantially from the actual power

consumption—a limitation of [44] to work in a vacancy of the

approximation region. To overcome this issue, we approximate

the objective function to be function in the pump speed

and flow. This approach allows us to avoid constructing an

approximate formulation reliant on head gain with inherent

error, thereby preventing an increase in inaccuracies. We define

this function for Pump i to be

ΠApp(t) = θ1 + θ2q
M
i (t) + θ3

(
qMi (t)

)2

+ θ4s
M
i (t)

+ θ5

(
sMi (t)

)2

+ θ6q
M
i (t)sMi (t).

(21)

The vector θ := {θi|i ∈ {1, · · · , 6}} collects the coefficients

of the approximate second-order power consumption function.

These coefficients are derived by solving a straightforward

optimization problem aimed at ensuring the convexity of this

function. This function is convex under the condition that its

Hessian is positive semidefinite. The Hessian is defined to

be H =


2θ3 θ6

θ6 2θ5


. That is, we obtain these coefficients

by solving the following optimization problem (22) after pre-

calculating the power consumption (20) for different NM,OP

operating points in the domain of the characteristic curve of

Pump i. Thereby, qMi,j and sMi,j represent the flow rate and

relative speed, respectively, at the j-th operating point (j =
1, . . . , NM,OP) on the characteristic curve of Pump i.

minimize
θ

NM,OP∑

j=1

(ΠApp(q
M
i,j , s

M
i,j)−Π(qMi,j , s

M
i,j))

2 (22a)

subject to H ° 0. (22b)

Eventually, the decoupled pump scheduling optimization

problem is formulated to minimize the pump power con-

sumption while being subjected to the system dynamics and

functional constraints. The modifications made to the pipe

and pump dynamics to ensure a convex formulation lead to

the elimination of the nonlinear formulation in (6); Eq. (6c).

Henceforward, we incorporate these modification in addition

to the linear expressions in (6), referring to this combina-

tion as Hyd-LDAE. The decision variables are collected in

vector Υ(t) := {w(t), l(t), z(t), ζ(t),ω(t), s(t)}. Therefore,

the final optimization problem is represented as mixed-integer

quadratic constrained quadratic problem (MIQCQP) for each

hydraulic time-step:

Decoupled Hydraulic Control

minimize
Υ(t)

ΠApp(Υ(t))∆tH (23a)

subject to Hyd-LDAE (6a), (6b),

(17), (18), (19).
(23b)

B. Coupled WQ-Aware Pump Control

In this paper, we include the discussed water quality

controllability Gramian (WQ-CG) metrics in the previously

developed pump scheduling problem to formulate the cou-

pled WQ controllability-guided pump scheduling optimization

problem. The dependency of those metrics calculations on the

hydraulics settings is direct, yet complex and lead to highly

nonlinear expressions—Appendix B showcases the raised con-

cern for the case of the Three-node network. In addition, mul-

tiple factors should be taken into consideration that reflect the

general and specific characteristics of the operation of WDNs.

These factors impose logical and physical constraints on the

choice and purpose of controllability metric integrated in our

problem. For instance, during the initial simulation time with

zero initial chlorine concentrations throughout the network, we

aim for a higher controllability Gramian rank along with high

energy. This approach also applies to branched networks with

numerous dead-ends to ensure chlorine concentrations remain

within standard limits. Another scenario arises when we need

to store water with sufficient chlorine concentrations in tanks

during off-peak demand periods, ready for distribution when

the tanks are in demand, supplying either specific network

sections or the entire network.

Formulating and solving a problem that takes into account

these factors and achieves the desired level of WQ controlla-

bility presents several challenges. These challenges primarily

arise from the high nonlinearity and complexity involved in

defining these metrics. Note that, as emphasized in Remark

1, the WQ system matrices are time-invariant within the same

hydraulic time-step. Consequently, the controllability Gramian

and associated metrics, as discussed, are also invariant over

this period. However, the formulation of the WQ state-space

matrices, and consequently, its controllability Gramian, de-

pends on factors such as flow directions in each pipe and the

number of segments into which it is discretized. Yet, these

factors are to be determined by solving the problem itself.

In response to these challenges, we propose the approach we

have developed to address these issues effectively.

First, we overcome the flow directions issue while formulat-

ing the AWQ matrix by building it for both cases and use the

introduced binary variables ω(t) for each pipe. These variables

define which pipe piecewise-linearization segment is chosen

and accordingly the flow direction. For each element of the

matrix depending on the flow direction for a specific pipe, it

is multiplied by the summation of half of the ω(t) variables

representing the corresponding direction.

In addition, as explained in Section II, the number of

segments defined for each pipe depends on the water veloc-

ities (i.e., hydraulics in the system and decision variable of

our problem). This number of segments defines the water

quality model dimensions for the simulation window and

accordingly the dimensions of the AWQ and BWQ matrices.

Yet, the hydraulics variables are to be determined by the

problem through which we aim to account for the water

quality controllability. To that end, we define the water quality

system dimensions offline as a prior-control step that preserves

WQ model stability and hydraulics applicable scenarios. We
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randomly generate pump speeds between 0 and 1 and solve

the systems’ flow and heads according to variety of demands

patterns. Then, we calculate the number of segments needed

for each pipe to ensure a fulfilled stability condition. Finally,

we define that number to be the minimum for each pipe out of

all the scenarios. This approach guarantees that after solving

the pump scheduling problem and obtaining actual operational

hydraulic setting, the water quality model is stable and has

been well-represented.
Last, given that our optimization problem is tailored for the

specific purpose of enhancing dynamics within WDNs, we

simplify the utilization of WQ controllability metrics within

this context. This simplification is based on the characteristics

of the dynamics inherent to these systems. These distinctive

dynamics include: (i) booster stations are located on nodes

only, (ii) as each pipe is discretized into number of segments

for WQ dynamics simulation then ensuring controllability

should be over the whole length of it, and (iii) in many

scenarios, we aim for higher controllability coverage and/or

energy to reach specific junctions/dead-ends that serve large

areas and/or tanks scheduled for on-demand operation dur-

ing various simulation intervals. To that end, we adopt the

concept of target controllability [45] given in Definition 2.

Target controllability allows us to choose the desired target

nodes and accordingly eliminates the large dimentionality

issue associate with the WQ representation. In this case, the

metrics are applied to the targeted controllability Gramian

WT = CT WcC
¦
T .

Definition 2. A discrete linear system is said to be target

controllable with respect to the target set T ¦ G; |T | = nyf

over time [0, Ts], if for any final output yf (t) = CT x(t), yf ∈
R

nyf and xo ∈ R
nx , the initial state xo can be steered or

driven to final state of the target nodes as yf for some input

u(t) under the specified time interval. The output matrix CT

identifies the set of target nodes T .

By integrating constraints on the target controllability

Gramian to Eq. (23), the coupled optimization problem is

formulated in (24) as nonconvex nonlinear problem.

minimize
Υ(t)

ΠApp(Υ(t))∆tH −Θ1trace(WT (Υ(t)))

−Θ2λmin(WT (Υ(t))), (24a)

subject to Hyd-LDAE (6a), (6b), (17), (18), (19),

rank(WT (Υ(t))) g nyf
− 1, (24b)

where Θ1 and Θ2 are scaling factors.
We choose the target nodes to be the one listed in point (iii)

along with the first and last segment of the connecting pipes

to assure the validation of the flow directions. However, while

employing the targeted controllability Gramian helps reduce

the number of constraints, integrating the metrics results in

nonlinear formulations. Nonlinear solvers can address these

issues, but they demand significantly more runtime, which

escalates exponentially as network size increases. Additionally,

the presence of the "rank" constraint imposes limitations on

this formulation, as many solvers do not support constraints

related to rank. That is, we employ the following simplifica-

tions to accelerate the computational process while achieving

Figure 2. Proposed Quality-Aware Hydraulic Control Framework Flowchart.

the desired output. Some of these simplification strategies are

suitable to relatively small systems, while others are tailored

for larger networks. In addition, some preparation steps can

be taken for all sizes.

First, we approximate the Gramian by eliminating the

denominator in all values of AWQ and BWQ to only result

in polynomial expressions in the Gramian and change its

notation to W̃T . This helps the distinguish process between

the columns/rows for the rank determination and also the

increase in the trace and λmin. Second, depending on the

scenario under consideration, the optimization problem (24)

can be modified to be rank-oriented to achieve desired con-

trollability coverage or/and energy-oriented to achieve desired

controllability energy. To solve the rank constraint issue, we

employ the approach detailed in [46], which involves applying

a convex relaxation of the rank constraint by using a nuclear

norm penalty and specifying the required rank—formulated

as Eq. (25). On the other hand, the energy-oriented problem

(Eq. (26)) is formulated to avoid the transformation needed

to maximize the λmin by maximizing the trace of the target

controllability Gramian built for specific direction.

Quality-Aware Hydraulic Control — Rank-Informed

minimize
Υ(t)

ΠApp(Υ(t))∆tH −Θ3||W̃T (Υ(t))||∗, (25a)

subject to Hyd-LDAE (6a), (6b), (17), (18), (19),

lr||(W̃T (Υ(t)))||2 − trace(W̃T (Υ(t))) f 0,
(25b)

where Θ3 is scaling factor, ||W̃T ||∗ is the nuclear norm,

||W̃T ||2 is the second norm, and lr is the desired rank of

the target controllability Gramian.

Quality-Aware Hydraulic Control — Energy-Driven

minimize
Υ(t)

ΠApp(Υ(t))∆tH −
n∑

i=1

Θitrace(W̃Ti
(Υ(t)))

(26a)

subject to Hyd-LDAE (6a), (6b), (17), (18), (19),

trace(W̃Ti
(Υ(t))) g 0 ∀i = 1, . . . , n. (26b)
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The proposed framework is suitable for networks of all

sizes. However, in scenarios where multiple controllability

constraints need to be satisfied for large networks, the com-

putational time can become demanding. That is, for these

networks the controllability Gramian can be built for a defined

important path of the network.In such cases, we propose

focusing on building the controllability Gramian for specific

important network paths. Depending on network character-

istics, this path can be determined based on factors like high

demands, water transfer between reservoirs and elevated tanks,

or mainline locations before branching occurs. To that end, our

approach is applicable for the entire or parts of the network.
It is worth mentioning that the final formulation is nonlinear

and nonconvex, yet tackled by several solvers and the level

of complexity and accordingly the runtime are determined by

the scenario under consideration. Additionally, In some cases

constraining the optimization problem to reach specific level of

controllability results in infeasible problem. To address this,

we put a condition on our formulation to reduce that level

for such case and re-solve the problem successively until a

minimum level of controllability is proven to be unattainable.

Under such condition, we transition to solving the decoupled

problem and focus on further improvements in subsequent

time-steps. Fig. 2 summarizes the flowchart of the proposed

framework.
After building the proposed framework, we discuss herein

the expected results according to the pump status post-solving

the decoupled problem (23) or any of the coupled problems

(25) or (26). Firstly, we emphasize that the flow is one-

directional in pumps, which leads for the pump to only

provide head increase. That is, while the pump is switched

on, the variables associated with the pump outputted from

either control problems are the flow through the pump, its

operating relative speed, and the difference in head between

the downstream and upstream nodes. Nonetheless, while the

pump is switched off, there are two possible scenarios of

outputs that can be obtained:

1) The pump to have a positive flow with a zero head

increase. This is considered a valid scenario as it can

present a bypass link to the pump to allow water to flow

from the upstream to downstream nodes. As the pump is

assumed to be a link with a really small and almost zero

length, the bypass link can hold the same assumption and

accordingly, the change in head to be zero is valid.

2) The pump to have a zero flow, yet the head increase is

positive. Practically, this head increase is called the shut-

off head of the pump. However, achieving this condition

practically is not feasible as there is no water flowing

through the pump. Similarly to the first scenario, it is

a valid scenario but reflects on a different operation

setting. Typically, pumps are equipped with valves to

prevent backflow, ensuring that all the head above the

pump is dissipated in that valve. In this scenario, water

flows towards the pump from the downstream node, and

the head difference is lost in the valve. To validate this

scenario, it is assumed that the node downstream of the

pump is at an equal or higher elevation than the upstream

node, eliminating the need for the head through the pump

Figure 3. Networks under study and their layouts: (a) Three-node network,
(b) Net1, and (c) Richmond skeleton network.

to incur a head loss under any circumstance.

In both scenarios, the results of the decoupled or coupled

problems may display a pseudo pump relative speed, identified

by examining the flow and head increase, and subsequently

disregarded.
In last, after the pump schedules are computed for the

simulation period, the WQ control problem can be solved by

the appropriate chosen technology. In our paper, we apply

the model predictive control (MPC) algorithm adopted in

[16]. For brevity, we do not include the details and the

derivation of the control problem and we refer the reader to the

cited study reaching the final formulation. Note that, the WQ

control problem is constrained by upper and lower bounds

on the chlorine concentrations at all network components.

These bounds are specified by EPA regulations to be between

xmin = 0.2 mg/L and xmax = 4 mg/L [47].

V. CASE STUDIES

In our study, we investigate the validity of our proposed

control algorithms on three networks; Three-node network,

Net1, and the Richmond skeleton network [48] (see Fig. 3

illustrating their layouts). The Three-node network consists of

a reservoir, a pump, a junction, a pipe, and a tank, in addition

to one booster station located at Junction J1 and one WQ

sensor located at Tank TK1. Net1 has a reservoir, a pump,

a tank, 9 junctions, and 12 pipes. Two booster stations are

positioned at Junctions 1 and 6 of Net1, and two WQ sensors

are placed at Junctions 4 and 9 within the network. Lastly, the

Richmond skeleton network is a schematic representation of

the Richmond water distribution system, which is composed

of one reservoir, 7 pumps, 41 junctions, 6 tanks, 8 valves, 37

pipes, 4 booster stations, and 3 WQ sensors.

A. Hydraulics Settings vs. Water Quality Controllability

Before we showcase the developed optimal pump schedul-

ing approach, that is augmented with a desired level of control-

lability of water quality states, we first provide an investigation
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states in the subspace. Change in bars colors to highlight (darker shade) the
windows where the WQ-CG is not full rank.

towards how varying the pump schedule actually affects the

water quality dynamics. First, we run a hydraulic simulation

on the Three-node network which has a simple layout where

chlorine travels along a single available path. This simulation

results in the heads at TK1 and J1 and the head loss in P1

shown in Fig. 5 and the corresponding velocity profile of P1

as demonstrated in Fig. 4 under the flow directions indicated

in Fig. 3. Next, we construct the WQ-CG and employ the rank

metric to assess the system’s performance. It is important to

note that in our analysis, we exclude Reservoir R1 and Pump

M1 from the assessment as they are upstream of the booster

station located at J1. This exclusion allows us to focus on

evaluating the metric results specifically within the subspace

of interest. We present these results as a percentage of the

rank calculated within every hydraulic time-step, relative to the

total number of states within this subspace (nJ +ns1 +nTK),

number of segments ns1 of P1 is 100 segments.
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Figure 5. Head at Tank TK1 and Junction J1 (top) and the corresponding
head loss in Pipe P1 (bottom) of the Three-node network.

In this particular scenario, the hydraulic time-step is set to 1

hour, while the WQ time-step is 10 seconds. Considering that

Pipe P1 has a length of 1,000 ft, it is necessary for a water

parcel to achieve a minimum velocity of 0.278 ft/sec in order

to traverse the entire length of the pipe and reach Tank TK1

within the specified hydraulic time-step. This velocity directly

influences the change of chlorine concentrations over time and

space as expressed in the advection-reaction equation (Eq. (9)).

It is obvious in Fig. 4 that this characteristic has vital influence

on the WQ controllability; when the velocities through P1

surpass this velocity boundary, the WQ-CG exhibits full rank,

indicating full controllability of the system. On the other hand,

in most cases where the velocities are lower, the system is

uncontrollable with different deviations in the rank of the WQ-

CG. It is worth mentioning that other factors are affecting

the response of the system states to the inputs (in this case,

the chlorine injections at J1). For instance, the rate of change

of water volume at TK1 and the flows rates in the system’s

components, which are directly related to the head levels at

the nodes and the head loss/gain at the links—refer to Fig.

5 and Appendix B. Note that, the rank is calculated with

keeping original MATLAB’s machine epsilon which is equal

to 2.2204e−16. Accordingly, with relative difference in that

metric less than that machine epsilon, the two elements are

considered dependent.
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Figure 6. Controllability metrics, trace and λmin of the controllable subspace
Gramian (Wc) of the Three-node network vs. the percentage (%) of the WQ-
CG rank out of the # states. Change in bars colors to highlight (darker shade)
the windows where the WQ-CG is not full rank.

In addition, in Fig. 6 we showcase the trace(Wc) and

λmin(Wc) metrics of the controllable subspaces of the system

over the same simulation period of 24 hours. It is noticeable

that in many cases where the WQ-CG is full rank, there is

change in the trace and λmin values which reflects varying

levels of energy stored in the system and their respective

directions. Furthermore, the greater the disparity between the

trace and λmin values, the more pronounced the sparsity in

the distribution of energy.

Secondly, we apply three different hydraulic settings on

Net1 resulting in the change in tank volume and the oper-

ational pump head gain depicted in Fig. 7. In the Hyd#1

scenario, Tank 11 is filling throughout the whole simulation

window. Whilst, Hyd#2 and Hyd#3 scenarios have smaller
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Figure 7. Change in the volume of Tank 11 and the operational pump head
gain in Net1 under three different hydraulic scenarios; Hyd#1, Hyd#2, and
Hyd#3.

windows where Tank 11 is on demand. This results in different

flow directions for specific pipes, which directly influence the

water quality dynamics. In addition, it results in different total

number of states (i.e, changes the number of segments into

which each pipe is divided). All these scenarios are run over

a 24 hours simulation period with a hydraulic time-step of 1

hour and a WQ time-step of 10 seconds. The total number of

states for Hyd#1 is 490, 470 for Hyd#2, and 425 for Hyd#3.

Fig. 8a shows the change in the rank of the controllability

Gramian for each of the scenarios. The controllability ma-

trix/Gramian does not reach full rank under the conditions

where the booster stations are located at Junctions 1 and 6 and

the water is drawn from Tank 11. In addition, the trace metric

for the controllable subspace is calculated and the results are

illustrated in Fig. 8b. These values are affected by the direction

in which the energy is distributed and the response of the

system states to the inputs. Such response is affected by the

input values in comparison to the systems states—the rate

in which chlorine is injected into the system and the flow

rates in the system. Note that, the results of the logdet metric

for all hydraulic simulations under consideration are equal to

the values of the trace presented in Fig. 8b. This observation

implies that either of these metrics can be effectively employed

in our study. In conclusion, each of the rank, trace, and

λmin reflects an important behavior of the WQ dynamics and

can be taken into consideration to reach the desired level of

controllability over the system tailored to the scenario under

focus.

B. WQ Controllability-Aware Optimal Pump Scheduling

In this section we showcase the results of solving the

decoupled and coupled pump optimal scheduling problems.

The optimization problems are interfaced using YALMIP in

MATLAB R2023a and solved using Gurobi and/or BMIBNB

optimization solvers. The use of two optimization solvers

is to compensate for the difference in the underlying prob-
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Figure 8. For each of the three hydraulic scenarios (Hyd#1, Hyd#2, and
Hyd#3) applied on Net1, (a) the percentage (%) of the WQ-CG rank out of
the # states and (b) trace of the controllable subspace Gramian.

lems formulated for each network and each scenario. The

problems formulations differ in the their level of complexity

and nonlinearity order. That being said, Gurobi is utilized to

solve problems with lower nonlinearity order as it is a robust

and fast solver capable of handling binary decision variables.

Since Gurobi is limited under a highly nonlinear setting, the

BMIBNB solver is used. BMIBNB is a global nonlinear solver

capable of handling nonconvex problems, however as with

all global solvers, the computational time is relatively more

expensive in comparison to Gurobi.

With that in mind, first we apply the decoupled and coupled

problem on the Three-node network under different scenario.

The first scenario imposes no restrictions on the times when

Tank TK1 is in an on-demand or off-demand state. Tank TK1

has a minimum of 904 ft, maximum of 924 ft, and an initial

head level of 912 ft. Fig. 9a shows the optimal pump speed

and Tank TK1 head levels obtained by solving the decoupled

and coupled problems. For this scenario, the coupled problem

is formulated to achieve higher and wider controllability at

the beginning of the simulation period by constraining it with

higher energy. This is done while filling the tank so that when

it is in the on-demand state; it can supply the system with

water that has sufficient chlorine levels. Filling the tank for this

specific window is achieved by initially operating the pump at

a higher speed. However, this increase in the pump speed is

balanced later in the day when the tank supplies the network

and the pump speed is lower compared to the decoupled
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Figure 9. Optimal Tank TK1 head, Pump M1 speed and power unit cost
obtained by solving the decoupled and coupled pump scheduling problems of
the Three-node network under the (a) first and (b) second hydraulic scenarios.

problem. In this scenario, the water quality controller’s per-

formance is effectively improved by injecting chlorine at the

start of the simulation period with fully controllable system.

This approach reduces the reliance on the water volume stored

in TK1, where chlorine concentration tends to decay over

time. In addition, when utilizing the coupled optimization

approach for pump scheduling, the total resulting cost is

8.9% higher compared to the decoupled approach. In terms of

computational efficiency, the solver completes the decoupled

problem in 3.8 seconds, while the coupled problem requires

4.7 seconds to reach a solution. The second hydraulic scenario

that we adopt has an initial tank head level at 908 ft and safe

water level of 909.5 ft (Fig. 9b). The goal of maintaining a safe

water level in TK1 leads to it being in the filling state at the

beginning of the simulation period. Additionally, the coupled

problem aims to higher controllability energy and coverage

levels resulting in higher velocity in Pipe P1. In addition, the

flow directions for both problems differ for the remainder

of the simulation period, and the total operational cost of

pump operation for both problems is comparable. In fact, the

coupled problem’s total cost is lower by 2% in comparison to

the decoupled problem. Moreover, under zero initial chlorine

concentrations at Tank TK1 and Pipe P1, the WQ controller

succeeds to achieve the set point concentration faster by 20

minutes.
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Figure 10. Optimal Tank 11 head and Pump speed obtained by solving the
coupled pump scheduling problem of the Net1 network under the (a) first and
(b) second hydraulic scenarios.

Second, we validate the performance of the coupled problem

on Net1 network. It is worth noting that the pre-computation

of the target controllability Gramian for this network requires

approximately 2 seconds. Consequently, the runtime listed

below exclusively pertains to solving the optimization problem

separated for a 24-hour simulation period. As for the decou-

pled problem, the time required to solve it for this network

using Gurobi is 8.7 sec and 161.1 sec using BMIBNB. On the

other hand, the computational time for the coupled problem–

where both solvers are used alternately during the hydraulic

time-steps based on the constraints developed for each time-

step–amounts to 145.2 seconds. For the first scenario, the

initial Tank 11 head is 920 ft, while the minimum bound on

the head is 910 ft. In this scenario, Junctions 2, 4, and 9 have

water demands with different patterns and bases. Results from

this simulation scenario are illustrated in Fig. 10a. For the

first 6 hrs of the simulation period, Tank 11 is being filled

and accordingly is included in the target nodes while solving

the rank-informed control problem. For the next simulation

window till the 20th hour, Tank 11 is on demand allowing

the pump to work on lower speeds. During this window, the

coupled problem is formulated as an energy-driven problem

with the network’s junctions as the target nodes. However, the

water head in Tank 11 reaches the minimum head level which

requires activating a constraint in the optimization problem

to recover the water level in the tank for the next simulation

period. During the last 4 hrs of the simulation, the energy level

required at start for some directions resulted in an infeasible

solutions and accordingly, the problem is solved decoupled.

Another scenario for Net1, Tank 11 has initial head of 915

ft and minimum safety head of 908 ft. In addition, the stored

water volume in the tank has sufficient chlorine levels of 1.5

mg/L to serve parts of the network, that is, it is excluded from
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the target nodes. Also, the demands’ bases at the junctions are

higher than the first scenario. As shown in Fig. 10b, the pump

speed is lower for the first half of the simulation period to

fulfill the demands at the start of the network while Tank 11

is serving the rest. For the second half, the tank reaches the

minimum safety head and keeps alternating between filling

and emptying states. The coupled problem for this scenario if

formulated to achieve higher controllability energy as the tank

helps with serving the network with water that has sufficient

chlorine levels and accordingly higher network chlorine cover-

age, specifically at the start of the simulation. The integration

of the energy metrics in the hydraulic optimization problem for

this scenario results in balancing the injections of the booster

stations located at Junction 1 and Junction 6, in comparison to

scenarios where the booster station at the start of the network

is overworked and may run to an over capacity state.

Last, we implement our proposed quality-aware pump con-

trol framework on the Richmond skeleton network which has

a more branched layout. This network comprises multiple

elevated tanks at varying elevations, each serving distinct areas

of the network with differing and varying water demands. For

this network, we run multiple hydraulic scenario with varying

target nodes throughout the simulation window. The selection

of target nodes is based on the main pipeline leading to the

tank during filling operations and the inclusion of dead-end

points covered by booster stations. Essentially, the coupled

problem for this network is designed to achieve extensive

controllability coverage in specific network segments while

maintaining a high controllability energy level within areas

with low expected disinfectant residuals. This case study

serves as a validation of the proposed framework’s perfor-

mance on a complex, branched real network and provides

insights into the implementation of WQ control based on the

obtained pump schedule. The average computational time to

solve the coupled optimization problem for these scenarios is

432 seconds. Furthermore, across various scenarios involving

distinct hydraulic settings and constraints, the WQ controller

demonstrates improved and more efficient performance. This

conclusion is drawn from the following observations made

during the aforementioned scenarios: (i) chlorine is injected

by booster stations near tanks that are being filled to reach

desired levels that are set to 2 mg/L; (ii) chlorine injections

are balanced among booster stations to distribute the workload.

For instance, booster station at J9 is not overworked for

the whole network and alternates based on tanks’ on- and

off-demand schedules and J15 supports the network while

ensuring adequate residuals at J20; and (iii) reduction in chlo-

rine injections varies between 3-11% when compared to the

decoupled framework for scenarios with no firm restrictions on

flow directions. However, for scenarios with such constraints,

the increase in injections does not exceed 9%, yet, dead-ends

maintain sufficient chlorine residuals.

VI. SUMMARY, LIMITATIONS, AND FUTURE WORK

This paper provides a comprehensive analysis of how

improving WQ controllability impacts the solution of the

hydraulic settings optimization problem. This aims to enhance

the performance of the WQ control and regulation algorithms.

Specifically, these algorithms’ performance is directly affected

by the system hydraulics. To accomplish this, we incorpo-

rate the goal of improving various controllability metrics

into the operational hydraulics optimization problem, aiming

to achieve a targeted level of water quality controllability

throughout the system. The performance of this approach is

evaluated on three networks: a Three-node network, Net1,

and the Richmond skeleton network. These networks vary

in terms of scale and configurations. Additionally, different

initial hydraulic and quality dynamics are examined for each

network.

The results demonstrate the efficacy of the proposed ap-

proach in enhancing WQ controllability metrics, leading to

a more efficient controller performance in achieving desired

chlorine levels across the network. However, the enhancement

of this performance is significantly influenced by variations

in consumer demand patterns, leading to substantial shifts

in system hydraulics in certain scenarios. Moreover, the net-

work’s configuration has a pivotal role in determining the

operational schedule and chlorine injections, with limitations

imposed in some cases on the feasibility of chlorine reaching

uncontrollable regions due to resultant flow directions. In

conclusion, this approach is a step-forward in advancing the

performance of regulating the water distribution networks

dynamics and further improvement can be achieved by in-

cluding these aspects while designing the network’s layout

and the functional constraints, which can be posed as work

extensions in our group’s future studies. Other future work

encompasses the formulation of joint real-time WDNs control

where hydraulics are updated with feedback that implies the

foreseen effect on both; future hydraulic and WQ settings and

dynamics not an optimization problem that is solved every

hydraulic time-step with no feedback from the future of the

impact of the control action.

It is essential to recognize limitations in our study, particu-

larly concerning the assumption of pre-allocated booster sta-

tion locations throughout the network. Their locations directly

impact water quality controllability. In our study, we set a

specific befitting configuration that ensures a satisfactory level

of controllability across the entire network under different

scenarios of hydraulic settings. Moreover, the chlorine control

problem addressed in this paper does not account for the health

risks associated with the formation of disinfectant by-products.

To that end, we leave this problem for future work. This

entails optimizing chlorine injections while ensuring that the

formation of disinfectant by-products remains below standard

levels, thereby mitigating potential health risks. Another lim-

itation of our study is the reliance on simplified models (e.g.,

approximate pump power, pump affinity rules, and pipe head

loss dynamics piece-wise linearization), which may not cap-

ture the full complexity and variability of real-world hydraulic

dynamics. To that end, our future work on this topic will

pursue more advanced models, realistic scenarios involving

formation of the disinfectant by-products, and understanding

the role of uncertainty in impacting WQ controllability and

subsequent pump control problems solutions.
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APPENDIX A

VARIABLES AND UNITS

In this appendix, we present the variables used in this

paper, along with their respective unit dimensions, and the

units employed for each variable in the Case Studies section

(Section V).

Table I
VARIABLES AND UNITS

Variable Description Dimensions Units

t Time [T ] second, minute, hour

∆tWQ Water quality time-step [T ] second, minute, hour

∆tH Hydraulic time-step [T ] second, minute, hour

h Head [L] feet

A Area [L2] square feet (ft2)

q Flow rate [L3T−1] gallon per minute (GPM)

s Pump relative speed — —

c Chemical concentration [ML−3] milligram per liter (mg/L)

V Volume [L3] cubic feet (ft3)

v Flow velocity [LT−1] feet per second (ft/sec)

APPENDIX B

WATER QUALITY CONTROLLABILITY DEPENDENCY ON

SYSTEM HYDRAULICS—AN EXAMPLE

In this appendix, we demonstrate the dependence of water

quality controllability on system hydraulics using a straight-

forward example of the Three-node network. In our example,

flow directions are assumed to be as illustrated in Fig. 3. Tank

TK1 is considered filling and off-demand and a booster station

is located at Junction J1 dosing chlorine into the system at a

rate of qB1 (t). The WQ system matrices of Eq. (12) are as

expressed in (27) for this scenario. Note that, to calculate

the concentrations at Junction J1 at time-step t + ∆tWQ

following Eq. (7), the flow rates need to be at the same time-

step. Nevertheless, the water quality time-step operates at the

seconds/minutes scale, whereas the hydraulic time-step is on

an hourly scale. That is, within the same hydraulic time-step,

q(t+∆tWQ) = q(t) for all links.

AWQ(t) =


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
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
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BWQ(t) =






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where

aJ =
qM1 (t)

qDJ

1 (t) + qP1 (t)
, aBJ =

qB1 (t)

qDJ

1 (t) + qP1 (t)
,

aTK =
(1− kb)V

TK
1 (t)

V TK
1 (t+∆tWQ)

, aTK =
qP1 (t)∆tWQ

V TK
1 (t+∆tWQ)

,

aP = 1− λ(t)− kb∆tWQ, aP = λ(t).

The formulation of the water quality system matrices clearly

demonstrates a strong dependency on the system hydraulics,

which extends to the water quality controllability matrix and

Gramian as well. However, when these matrices are multi-

plied to calculate the water quality controllability matrix and

Gramian in (14) and (15), the nonlinearity order increases

exponentially.
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