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ABSTRACT
We introduce and study the online pause and resume problem. In

this problem, a player attempts to find the 𝑘 lowest (alternatively,

highest) prices in a sequence of fixed length𝑇 , which is revealed se-

quentially. At each time step, the player is presentedwith a price and

decides whether to accept or reject it. The player incurs a switching
cost whenever their decision changes in consecutive time steps, i.e.,

whenever they pause or resume purchasing. This online problem

is motivated by the goal of carbon-aware load shifting, where a

workload may be paused during periods of high carbon intensity

and resumed during periods of low carbon intensity and incurs a

cost when saving or restoring its state. It has strong connections to

existing problems studied in the literature on online optimization,

though it introduces unique technical challenges that prevent the

direct application of existing algorithms. Extending prior work on

threshold-based algorithms, we introduce double-threshold algo-

rithms for both variants of this problem. We further show that the

competitive ratios achieved by these algorithms are the best achiev-

able by any deterministic online algorithm. Finally, we empirically

validate our proposed algorithm through case studies on the appli-

cation of carbon-aware load shifting using real carbon trace data

and existing baseline algorithms.
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1 PROBLEM FORMULATION
We present the online pause and resume problem (OPR), focusing on
the minimization version (OPR-min) in this abstract, and deferring

the maximization version to the full paper. In OPR-min. a player
must buy 𝑘 ≥ 1 units of some asset (one unit at each time step) with

the goal of minimizing their total cost. At each time step 1 ≤ 𝑡 ≤ 𝑇 ,

the player is presented with a price 𝑐𝑡 , and must immediately decide

whether to accept this price (𝑥𝑡 = 1) or reject it (𝑥𝑡 = 0). The player

is required to complete this transaction for all 𝑘 units at or before

time 𝑇 . Both 𝑘 and 𝑇 are known in advance. The requirement of

𝑘 transactions is a deadline constraint, i.e.,
∑𝑇
𝑡=1 𝑥𝑡 = 𝑘 , and if at

time 𝑇 − 𝑖 the player still has 𝑖 units remaining to buy/sell, they

must accept the prices in the subsequent 𝑖 slots to accomplish 𝑘

transactions. Additionally, the player incurs a fixed switching cost
𝛽 > 0 whenever they decide to change decisions between two

adjacent time steps (i.e., |𝑥𝑡−1 − 𝑥𝑡 | = 1). We assume 𝑥0 = 𝑥𝑇+1 = 0,

implying that any player must incur a minimum switching cost of

2𝛽 , once for switching “on” and once for switching “off”. We also

note that the total switching cost incurred by the player is bounded

by the size of the asset 𝑘 , since the switching cost cannot be larger

than 𝑘2𝛽 . The offline version of OPR-min is summarized as follows:

min

{𝑥𝑡 ∈{0,1}:𝑡 ∈[𝑇 ] }

𝑇∑︁
𝑡=1

𝑐𝑡𝑥𝑡︸   ︷︷   ︸
purchases

+
𝑇+1∑︁
𝑡=1

𝛽 |𝑥𝑡 − 𝑥𝑡−1 |︸              ︷︷              ︸
switching

, s.t.,

𝑇∑︁
𝑡=1

𝑥𝑡 = 𝑘,︸      ︷︷      ︸
deadline

(1)

Our focus is the online version of the above, where the player

must make irrevocable decisions at each time step without the

knowledge of future inputs. More specifically, the sequence of prices

{𝑐𝑡 }𝑡 ∈[𝑇 ] is revealed sequentially – future prices are unknown to

an online algorithm, and each decision 𝑥𝑡 is irrevocable.

Competitive analysis. Our goal is to design an online algorithm

that maintains a small competitive ratio. For an online algorithm

ALG and an offline optimal solution OPT, ALG is 𝑐-competitive if

ALG(I) ≤ 𝑐OPT(I) ∀I ∈ Ω, where I denotes a valid input se-

quence for the problem and Ω is the set of all feasible inputs.

Assumptions and additional notations. We make no assumptions

on the underlying price distribution other than assuming that the

set of prices arriving online {𝑐𝑡 }𝑡 ∈[𝑇 ] has bounded support, i.e.,
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𝑐𝑡 ∈ [𝐿,𝑈 ] ∀𝑡 ∈ [𝑇 ], where 𝐿 ≥ 0 and 𝑈 > 0 are known to the

player. We also define 𝜃 = 𝑈 /𝐿 as the price fluctuation. These are
standard assumptions in the literature for many online problems,

including one-way trading, online search, and online knapsack; and

without them the competitive ratio of any algorithm is unbounded.

Relation to 𝑘-search. The OPR problem is a generalization of the

𝑘-search problem [2], which belongs to a broader class of online con-

version problems. OPR generalizes 𝑘-search by adding the switching
cost, which poses a significant additional challenge in algorithm

design. We note that OPR exactly reduces to 𝑘-search as 𝛽 → 0.

2 ALGORITHMS AND MAIN RESULTS

Algorithm 1 Double Threshold Pause and Resume for OPR-min
(DTPR-min)

Input: threshold values {ℓ𝑖 }𝑖∈[𝑘 ] and {𝑢𝑖 }𝑖∈[𝑘 ] (2), deadline 𝑇
Output: online decisions {𝑥𝑡 }𝑡 ∈[𝑇 ]
1: initialize: 𝑖 = 1

2: while price 𝑐𝑡 arrives and 𝑖 ≤ 𝑘 do
3: if (𝑘 − 𝑖) ≥ (𝑇 − 𝑡) then ⊲ must accept remaining prices

4: price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

5: else if 𝑥𝑡−1 = 0 then ⊲ If previous price was not accepted

6: if 𝑐𝑡 ≤ ℓ𝑖 then price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

7: else price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0

8: else if 𝑥𝑡−1 = 1 then ⊲ If previous price was accepted

9: if 𝑐𝑡 ≤ 𝑢𝑖 then price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

10: else price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0

11: update 𝑖 = 𝑖 + 𝑥𝑡

We propose double threshold algorithms for both variants of

this problem, abbreviated by DTPR and summarized in Algorithm 1.

Prior to any prices arriving online, DTPR-min computes two families

of threshold values, {ℓ𝑖 }𝑖∈[𝑘 ] and {𝑢𝑖 }𝑖∈[𝑘 ] , where ℓ𝑖 ≤ 𝑢𝑖 ∀𝑖 ∈
[𝑘], defined below. The DTPR algorithm then chooses a family of

thresholds to use based on previous online decision, i.e., 𝑥𝑡−1 ∈ {0, 1}.
Definition 1 (DTPR-min Threshold Values). For each 𝑖 ∈ [𝑘],

the following expressions give the corresponding threshold values of
𝑢𝑖 and ℓ𝑖 for DTPR-min.

𝑢𝑖 = 𝑈 −
(
𝑈 − 𝑈

𝛼

) (
1 + 1

𝑘𝛼

)𝑖−1
+
(
2𝛽

𝑘𝛼
− 2𝛽

𝑘
+ 2𝛽

) (
1 + 1

𝑘𝛼

)𝑖−1
, (2)

where ℓ𝑖 = 𝑢𝑖−2𝛽 and 𝛼 is the competitive ratio of DTPR-min from (3).

The key idea of DTPR is to design the thresholds in Equation (2) by
incorporating the switching cost as a hedge against possible worst-

case scenarios. We discuss the design of these thresholds in detail

in the full paper [1]. The intuition behind this double threshold

technique is to address a shortcoming in threshold-based algorithm

design, which is oblivious to the switching cost present in OPR. By
adding some “resistance to change”, the double thresholds allow

DTPR to exhibit desirable behavior: (1) when DTPR is in “trading

mode,” it will not impulsively switch off in response to a price

that is only slightly worse, since this would result in a switching

penalty; and (2) DTPR will not switch to “trading mode” unless

prices are sufficiently good to justify the switching cost. In the

following theorems, we state our main theoretical results for DTPR
when applied to the minimization version of OPR.

Theorem 2. DTPR-min is an 𝛼-competitive deterministic algo-
rithm for OPR-min, where 𝛼 is the unique positive solution of

𝑈 − 𝐿 − 2𝛽

𝑈 (1 − 1/𝛼) −
(
2𝛽 − 2𝛽

𝑘
+ 2𝛽

𝑘𝛼

) =

(
1 + 1

𝑘𝛼

)𝑘
. (3)

To investigate the tightness of Theorem 2, we first consider

special cases that correspond to prior work. DTPR exactly recovers

the optimal single-threshold based 𝑘-search algorithms [2] when

𝛽 → 0 (i.e., when OPR degenerates to 𝑘-search). Outside of this

special case, one can ask if the competitive ratios of DTPR can be

improved upon. The next result highlights that no improvement is

possible, i.e., that DTPR-min achieves the optimal competitive ratio

for any deterministic algorithm solving OPR-min.

Theorem 3. Let 𝑘 ≥ 1, 𝜃 ≥ 1, and 𝛽 ∈ (0, 𝑈 −𝐿
2

). Then 𝛼 given by
Equation (3) is the best competitive ratio that a deterministic online
algorithm for OPR-min can achieve.

In the full paper [1], we prove and discuss our results for both the

minimization and maximization settings in detail. We also provide

an array of empirical experiments for the motivating application

of carbon-aware load shifting using real carbon data. In Fig. 1, we

plot example plots of DTPR’s performance versus three baseline

methods from the literature, showing that DTPR performs well.
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Figure 1: Example CDF plots of the empirical competitive ra-
tios for DTPR and three baseline methods, using carbon traces
from two electric grids for the carbon-aware load shifting
task. Experiment details can be found in the full paper [1].
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