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ABSTRACT

We introduce and study online conversion with switching costs,
a family of online problems that capture emerging problems at
the intersection of energy and sustainability. In this problem, an
online player attempts to purchase (alternatively, sell) fractional
shares of an asset during a fixed time horizon with length T. At
each time step, a cost function (alternatively, price function) is re-
vealed, and the player must irrevocably decide an amount of asset
to convert. The player also incurs a switching cost whenever their
decision changes in consecutive time steps, i.e., when they increase
or decrease their purchasing amount. We introduce competitive
(robust) threshold-based algorithms for both the minimization and
maximization variants of this problem, and show they are optimal
among deterministic online algorithms. We then propose learning-
augmented algorithms that take advantage of untrusted black-box
advice (such as predictions from a machine learning model) to
achieve significantly better average-case performance without sac-
rificing worst-case competitive guarantees. Finally, we empirically
evaluate our proposed algorithms using a carbon-aware EV charg-
ing case study, showing that our algorithms substantially improve
on baseline methods for this problem.
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1 PROBLEM FORMULATION

We present the online conversion with switching costs (OCS) prob-
lem, focusing on the minimization variant (0CS-min) in this abstract.
In 0CS-min, an online player must buy an asset with total size C,
while minimizing their total cost. Without loss of generality, let
C = 1. At each time step ¢ € [T], a convex cost function g; (-) arrives
online. The player can buy x; € [0, d;] amount of the asset at a cost
of g;(x), where d; < 11is a rate constraint that limits the purchase
amount. Following convention, g;(0) = 0; i.e., if the player pur-
chases nothing, they pay no cost, and g;(x;) > 0 for any valid x;.
Whenever the player’s decision changes in consecutive time steps,
they incur a switching cost that is formalized as f|x; — x;—1|, where
B is a coeflicient charging the online player proportionally to their
absolute movement. We let xo = 0 and x74; = 0, forcing any player
to incur some switching costs to “turn on” and “off”, respectively.
The online player must purchase the entire asset before the end of
the sequence (the “deadline”). If the player has bought w(® e [0,1]
fraction of the asset at time t, a compulsory trade begins when
Zzzt b dr<1- w(®) (i.e., when the future purchase opportunities
will not be enough). During this compulsory trade, a cost-agnostic
algorithm takes over and purchases maximally to satisfy the con-
straint. The offline version of 0CS-min can be formalized as follows:

T T+1 T
min th(xt) + Z Blxr — x¢-1l, s.t, Z xt =1, (1)
{xeclod; J:te[T]) & £ £
L |
purchasing switching deadline

Our focus is on the online version of 0CS, where the player
must make irrevocable decisions x; at each time step without the
knowledge of future inputs. The most important unknowns are the
cost functions g; (), which are revealed online.

Competitive analysis. Our goal is to design an online algorithm
that maintains a small competitive ratio. For an online algorithm
ALG and an offline optimal solution OPT, ALG is b-competitive if
ALG(Z) < bOPT(Z) VI € Q, where I denotes a valid input se-
quence for the problem and Q is the set of all feasible inputs.

In the emerging literature on learning-augmented algorithms,
competitive analysis is interpreted through consistency and robust-
ness. Let LALG(Z, ¢) denote the cost of learning-augmented algo-
rithm LALG on input 7 when provided predictions with error e.
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LALG is c-consistent when predictions are correct if LALG(Z,0) <
cOPT(I) VI € Q, and r-robust if LALG(Z,E) < rOPT(Z) VI € Q,
where E is a maximum error (or o).

Assumptions and additional notation. We assume that cost func-
tions {g¢(-) };c[7] have a bounded derivative, i.e. L < dg;/dx; < U,
where L and U are known. We assume that all g;(-) are convex —
this models diminishing returns, and is empirically valid for the
applications of interest. The switching cost coefficient f is known
to the player, and is bounded within an interval § € (0, U-L/z).

2 ALGORITHMS AND MAIN RESULTS

Algorithm 1 Online Ramp-On, Ramp-Off (RORO) framework

: input: RAMPON(-) problem, RAMPOFF(-) problem ,
: pseudo-cost function PCosT(-)
: initialization: initial decision x( = 0, initial utilization w0 = 0;

. while cost/price function g, (-) is revealed and w(*~1 < 1 do
solve the (ramping-on problem) to obtain decision x} and its
pseudo cost r},

G W =

x{ = RamMPON(gs (), X¢-1), @
r{ =PCosT(g: (), X}, x¢-1). (3)
6: solve the (ramping-off problem) to obtain decision x; and its
pseudo cost r;,
x; = RamPOFF(g; (), x¢-1), (O]
ry =PCosT(gs (), X7, X¢-1)- (5)
7: if rj <r; then setx; =x] else setx; = x;
8: update the utilization w*) = w(!=1) 4 x,;

Competitive algorithms. We present an online optimization
framework called Ramp-On, Ramp-Off (RORO). At each time step
RORO solves two pseudo-cost minimization problems, with a restricted
decision space in each (the ramping-on and ramping-off prob-
lems). Pseudo-cost minimization is an online search technique that
generalizes threshold-based design for continuous decision spaces.

In the full paper [1], we provide more context about how the
RORO framework’s dynamic threshold approach simultaneously gen-
eralizes prior work [2] on pseudo-cost minimization for one-way
trading and our prior work on an online search problem with switch-
ing costs and a binary decision space (online pause and resume).

DEFINITION 1 (DYNAMIC THRESHOLD ¢ FOR OCS-min). For any
utilization w € [0,1], ¢(w) = U — f + (U/a — U + 2f) exp(w/a),
where a is the competitive ratio and is defined in (9).

DEFINITION 2 (RORO INSTANTIATION FOR OCS-min (RORO-min)).

RORO solves OCS-min when instantiated with the following pseudo-
cost, ramping-on problem, and ramping-off problem:

w1 4,
PCOST(9 (1) x1rx1-1) = g1 ) + Blxe —xial= [ gl
(6)
RAMPON (g (), x4—1) = argmin PCost(g;(-),x,xs-1), (7)
XE[xt,l,min(l—w(t_m,dt)]
RaMPOFF(g;(-),x¢—1) = argmin PCosT(gs(-),x, xr-1). (8)

x€[0,min(xz—1,dt)]

In the following, we state our main theoretical results for 0CS-min.
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THEOREM 3. RORO-min is a-competitive for 0CS-min, where  is

U—I/J;_L[;iﬁgﬁ = exp(1/a) and is given by

W[ g -r)eren)- L
U u U

In the above, W(-) is the Lambert W function.

the solution to

-1
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THEOREM 4. No deterministic online algorithm for 0CS-min can
achieve a competitive ratio better than a, as defined in (9).

Learning-augmentation. We consider how untrusted advice
(e.g., from an ML model) can help break past pessimistic competi-
tive bounds for OCS. We propose a meta-algorithm, RO-Advice, that
integrates black-box advice to significantly improve performance.

DEFINITION 5 (BLACK-BOX ADVICE MODEL FOR OCS). A learning-
augmented algorithm LALG receives advice of the form {%¢};c (7] for
some valid instance I . If the advice is correct, a naive algorithm ADV
choosing %; at each time step satisfies ADV(Z) = OPT(J).

RO-Advice combines the robust decision of RORO (denoted by
Xt) at each time step with the predicted x; obtained from the black-
box advice. Let € € [0,a — 1] parameterize a trade-off between
consistency and robustness. RO-Advice-min sets a combination
factor A := “;:e € [0,1] that determines the decision fraction
from each subroutine (i.e., A from the black-box advice and (1 —
A) from RORO). At each time step, RO-Advice chooses the online

decision x; = A%y + (1 — A)xy.

THEOREM 6. Given a parameter € € [0, — 1], RO-Advice-min

M) -robust for 0CS-min.

is (1 + €)-consistent and ( =)

In the full paper [1], we prove and discuss all of the above results
in detail. We also provide additional theoretical results about the
advice complexity of 0CS, showing that prior advice models used
for e.g., one-way trading are insufficient for the OCS setting.

Experiments. In the full paper [1], we implement and evaluate
RORO and RO-Advice for the motivating task of carbon-aware elec-
tric vehicle (EV) charging. We use real EV charging traces, carbon
intensity data, and a pre-trained open-source ML model for carbon
forecasts, showing that RORO and RO-Advice perform well.
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