
Chasing Convex Functions with Long-term Constraints

Adam Lechowicz 1 Nicolas Christianson 2 Bo Sun 3 Noman Bashir 4 Mohammad Hajiesmaili 1

Adam Wierman 2 Prashant Shenoy 1

Abstract
We introduce and study a family of online met-
ric problems with long-term constraints. In these
problems, an online player makes decisions xt in
a metric space (X, d) to simultaneously minimize
their hitting cost ft(xt) and switching cost as de-
termined by the metric. Over the time horizon
T , the player must satisfy a long-term demand
constraint

∑
t c(xt) ≥ 1, where c(xt) denotes

the fraction of demand satisfied at time t. Such
problems can find a wide array of applications
to online resource allocation in sustainable en-
ergy/computing systems. We devise optimal com-
petitive and learning-augmented algorithms for
the case of bounded hitting cost gradients and
weighted ℓ1 metrics, and further show that our
proposed algorithms perform well in numerical
experiments.

1. Introduction
This paper introduces and studies a novel class of online
metric problems with long-term demand constraints moti-
vated by emerging applications in the design of sustainable
systems. In convex function chasing with a long-term con-
straint, an online player aims to satisfy a demand by making
decisions in a normed vector space, paying a hitting cost
based on time-varying convex cost functions which are re-
vealed online, and switching cost defined by the norm. The
player is constrained to ensure that the entire demand is
satisfied at or before the time horizon T ends, and their
objective is to minimize their total cost. The generality of
this problem makes it applicable to a wide variety of online

1Manning College of Information and Computer Sciences,
University of Massachusetts Amherst, USA. 2Computing &
Mathematical Sciences, California Institute of Technology, USA.
3Cheriton School of Computer Science, University of Waterloo,
Ontario, Canada. 4Computer Science & Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, USA.. Cor-
respondence to: Adam Lechowicz <alechowicz@cs.umass.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

resource allocation problems; in this paper, we consider one
such special case, discussing its connections to other online
settings and suggestions towards broad new areas of inquiry
in online optimization with long-term constraints.

Our motivation to introduce these problems is rooted in an
emerging class of carbon-aware control problems for sus-
tainable systems. A shared objective involves minimizing
carbon emissions by shifting flexible workloads temporally
and/or spatially to better leverage low-carbon electricity
generation (e.g., renewables such as solar and wind). Ex-
amples which have recently seen significant interest include
carbon-aware electric vehicle (EV) charging (Cheng et al.,
2022) and carbon-aware compute shifting (Wiesner et al.,
2021; Bashir et al., 2021; Radovanovic et al., 2022; Acun
et al., 2023; Hanafy et al., 2023).

The problems we introduce in this paper build on a long
line of related work in online algorithms. Most existing
work can be roughly classified into two types: online metric
problems, where many works consider multidimensional
decision spaces and switching costs but do not consider
long-term constraints (Borodin et al., 1992; Koutsoupias,
2009; Chen et al., 2018; Bubeck et al., 2019; 2021; Bansal
& Coester, 2022; Bubeck et al., 2023), and online search
problems, which feature long-term demand constraints but
do not consider multidimensional decision spaces or switch-
ing costs (El-Yaniv et al., 2001; Lorenz et al., 2008; Mohr
et al., 2014; Sun et al., 2021b).

We briefly review the direct precursors of our work below.
In the online metric literature, the problem we study is
an extension of convex function chasing (CFC) introduced
by Friedman & Linial (1993), where an online player makes
online decisions xt in a normed vector space (X, ∥·∥) over
a sequence of time-varying cost functions in order to min-
imize their total hitting and switching cost. In the online
search literature, the problem we study is a generalization
of one-way trading (OWT) introduced by El-Yaniv et al.
(2001), in which an online player must sell an entire asset
in fractional shares over a sequence of time-varying prices
while maximizing their profit.

Despite extensive existing work in the online metric and
online search tracks, few works simultaneously consider
long-term demand constraints (as in OWT) and move-

1

ar
X

iv
:2

40
2.

14
01

2v
2

 [c
s.D

S]
 1

2
Ju

l 2
02

4

Chasing Convex Functions with Long-term Constraints

ment/switching costs (as in CFC). The existing prior
works (Lechowicz et al., 2023; 2024) that consider both
components are restricted to unidimensional decision spaces,
as is typical in the online search literature. However, gener-
alizing from the unidimensional case is highly non-trivial;
e.g., in convex function chasing with a long-term constraint,
the problem cannot simply be decomposed over dimensions
due to the shared constraint function and multidimensional
switching cost. Thus, in this work we tackle the following
question: Is it possible to design algorithms for the studied
problems that operate in multidimensional decision spaces
while simultaneously considering long-term constraints, hit-
ting costs, and switching costs?

Although the aforementioned literature focuses on compet-
itive algorithms in adversarial settings, there has recently
been significant interest in moving beyond worst-case anal-
ysis, which can result in overly pessimistic algorithms. The
field of learning-augmented algorithms (Lykouris & Vassil-
vtiskii, 2018; Kumar et al., 2018) has emerged as a paradigm
for designing and analyzing algorithms that incorporate un-
trusted machine-learned advice to improve average-case
performance without sacrificing worst-case performance
bounds. Such algorithms are evaluated through the met-
rics of consistency and robustness (see Def. 2.1). Recent
studies have proposed learning-augmented algorithms for
related problems, including convex function chasing (Chris-
tianson et al., 2022), one-way trading (Sun et al., 2021a),
metrical task systems (Christianson et al., 2023), and online
search (Lee et al., 2024). While the literature in each of
these tracks considers a spectrum of different advice mod-
els, their results prompt a natural open question: Can we
design algorithms for online metric problems with long-term
constraints that effectively utilize untrusted advice (such as
machine-learned predictions) to improve performance while
preserving worst-case competitive guarantees?

Contributions. Despite extensive prior literature on adja-
cent problems, the problems we propose in this paper are
the first online settings to combine long-term demand con-
straints with multidimensional decision spaces and switch-
ing costs. We introduce convex function chasing with a
long-term constraint, and a special case called online metric
allocation with a long-term constraint. The general forms
of both are independently interesting for further study.

We obtain positive results for both of the questions posed
above under problem instantiations that are especially rele-
vant for motivating applications (namely, weighted ℓ1 norms,
and cost functions with bounded gradients). We provide the
first competitive results for online problems of this form in
Section 3, and show that our proposed algorithm (Algorithm
1) achieves the best possible competitive ratio. In Section 4,
we propose a learning-augmented algorithm, CLIP (Algo-
rithm 2), and show it achieves the provably optimal trade-off
between consistency and robustness.

To achieve these results, the proposed algorithms must
tackle technical challenges distinct from prior work on adja-
cent problems. Motivated by difficulties in directly applying
algorithms for unidimensional decision spaces in the online
search literature, we build on a generalization of threshold-
based design called pseudo-cost minimization. While this
framework is well-known in the online search literature, it
is a new idea in the context of online metric problems and
multidimensional decision spaces (see Section 3).

Our learning-augmented algorithm CLIP uses a novel adap-
tive optimization-based approach to achieve specific target
consistency and robustness bounds. In recent years, there
has been interest in understanding fundamental trade-offs
between consistency and robustness and designing algo-
rithms that exactly match those trade-offs, which has proven
to be non-trivial (Wei & Zhang, 2020). CLIP’s approach
directly incorporates the lower bound and exactly matches
it, distinguishing it from algorithms that achieve, e.g., an
asymptotically optimal trade-off. To achieve this, CLIP
introduces a projected consistency constraint designed to
guarantee consistency against the advice ADV by continu-
ously comparing solutions in terms of cost incurred so far,
switching cost trajectories, and the projected worst-case cost
required to complete the long-term constraint. We believe
CLIP’s high-level approach is applicable to other problems
and may improve current results in the broader field of
learning-augmented algorithms.

2. Problem Formulation and Preliminaries
This section formalizes convex function chasing and on-
line metric allocation with long-term constraints, motivating
them with a sustainability application. We also provide pre-
liminaries used throughout the paper, and give initial results
to build algorithmic connections between both problems.

Convex function chasing with a long-term constraint.
A player chooses decisions xt ∈ X ⊆ Rd online from a
normed vector space (X, ∥·∥) in order to minimize their
total cost

∑T
t=1 ft(xt) +

∑T+1
t=1 ∥xt − xt−1∥, where ft(·) :

X → R is a convex “hitting” cost that is revealed just
before the player chooses xt, and ∥xt−xt−1∥ is a switching
cost associated with changing decisions between rounds.
Additionally, the player must satisfy a long term constraint
of the form

∑T
t=1 c(xt) = 1, where c(x) : X → [0, 1]

gives the fraction of the constraint satisfied by a decision x.
The offline version of the problem is formalized as follows:

min
{xt}t∈[T]

∑T

t=1
ft(xt)︸ ︷︷ ︸

Convex hitting cost

+
∑T+1

t=1
∥xt − xt−1∥︸ ︷︷ ︸

Switching cost

(1)

s.t.
∑T

t=1
c(xt) ≥ 1,︸ ︷︷ ︸

Long-term constraint

(2)

xi
t ∈ [0, 1] ∀i ∈ [d], ∀t ∈ [T]. (3)

2

Chasing Convex Functions with Long-term Constraints

We denote the utilization at time t by z(t) =
∑t

τ=1 c(xτ),
which gives the total fraction of the long-term constraint
satisfied up to and including time t.

Assumptions. Here, we describe the precise variant of
convex function chasing with a long-term constraint for
which we design algorithms in the remainder of the paper.
Let ∥x− x′∥ := ∥x− x′∥ℓ1(w), where ∥·∥ℓ1(w) denotes the
weighted ℓ1 norm with weight vector w ∈ Rd.

We define the long-term constraint such that c(x) :=
∥x∥ℓ1(c), i.e., the weighted ℓ1 norm with weight vector
c ∈ Rd. Then let the metric space X be the ℓ1 ball de-
fined by X := {x ∈ Rd : c(x) ≤ 1}. Note that x is
restricted to lie in the positive orthant by (3).

For all cost functions ft(·) : X → R, we assume bounded
gradients such that L ≤ [∇ft]

i
/ci ≤ U ∀i ∈ [d], t ∈ [T],

where i denotes the ith dimension of the corresponding
vector, and L,U are known positive constants. This also
gives as a corollary that ft(x) ≥ 0 for any valid x.

Letting 0 denote the origin in Rd (w.l.o.g), we have the
property ft(0) = 0 for all t ∈ [T], i.e., that “satisfying none
of the long-term constraint costs nothing”, since c(0) = 0.
We assume the player starts and ends at the origin, i.e.,
x0 = 0 and xT+1 = 0, to enforce switching “on” and “off.”
These assumptions are intuitive and reasonable in practice,
e.g., in our example motivating application below.

For analysis, it will be useful to establish a shorthand for
the magnitude of the switching cost. Let β := max

(
wi
/ci

)
,

which gives the greatest magnitude of the switching cost
coefficient when normalized by the constraint function. We
assume that β is bounded on the interval [0, U−L/2); if β is

“large” (i.e., > U−L/2), we can show that the player should
prioritize minimizing the switching cost.1

Recall that the long-term constraint must be satisfied before
the sequence ends. If the player has satisfied z(t) of the con-
straint at time t, we assume a compulsory trade begins at
time j as soon as (T − (j + 1)) · ci <

(
1− z(j)

)
∀i ∈ [d]

(i.e., when the time steps after j are not sufficient to satisfy
the constraint by moving to a point at the boundary defined
by (3)). During this compulsory trade, a cost-agnostic al-
gorithm takes over, making maximal decisions to satisfy
the constraint. T is unknown in advance, but the player is
notified when this compulsory trade should begin.2 For the
problem to remain technically interesting, we assume that

1As brief justification for the bounds on β, consider that a
feasible solution may have objective value L+ 2β. If β > U−L/2,
L + 2β > U , and we argue that the incurred switching cost is
more important than the cost functions accepted.

2Note that pre-notification of T is necessary to ensure con-
straint satisfaction – if T is completely unknown, the algorithm
has very little flexibility to do anything without risking a violation
of the long-term constraint.

this compulsory trade is a small portion of the sequence.3

For brevity, we henceforth use CFL to refer to the variant of
convex function chasing with a long-term constraint under
the assumptions outlined here. While this setting is chal-
lenging theoretically and useful for real-world applications
as outlined below, it is worth mentioning that our solution
techniques in Sections 3 and 4 do not heavily rely on the
idiosyncrasies of, e.g., the ℓ1 norm. Furthermore, as is com-
mon in the literature, the results in the rest of this paper can
extend to other metrics by leveraging finite-dimension norm
equivalencies (Johnson, 2020).

An example motivating application. CFL can model a
variety of applications, including specific applications that
motivate this study. Consider a carbon-aware temporal load
shifting application with heterogeneous servers. Here, each
of the d dimensions corresponds to one of d heterogeneous
servers. An algorithm makes decisions xt ∈ Rd, where
xi
t ∈ [0, 1] denotes the load of the ith server at time t. The

long-term constraint
∑T

t=1 c(xt) ≥ 1 enforces that an entire
workload should be finished before time T , and each coef-
ficient ci represents the throughput of the ith server. Each
cost function ft(xt) represents the carbon emissions due to
the electricity usage of the servers configured according to
xt, and the switching cost ∥·∥ℓ1(w) captures the carbon emis-
sions overhead (e.g., extra latency) of pausing, resuming,
scaling, and moving the workload between servers.

Our motivation for the assumptions placed on CFL are
deeply rooted in this and other similar applications, where
the switching cost and constraint function are both typically
best modeled as a linear (i.e., ℓ1) function, and bounds on
the marginal hitting cost (i.e., the bounded gradient assump-
tion) are reasonable to obtain.

Online metric allocation with a long-term constraint.
Bansal & Coester (2022) introduced the online metric al-
location problem (MAP), which connects several online
metric problems. MAP on a star metric is equivalent to
CFC when cost functions are separable over dimensions and
supported on the unit simplex ∆n.4 Furthermore, the ran-
domized metrical task systems problem (MTS) is a special
case of MAP when cost functions are linear and increasing.

We build on this formulation in our setting and introduce
online metric allocation with a long-term constraint, which

3We assume the first time j′ where (T − (j′ + 1)) ci < 1 ∀i
satisfies j′ ≫ 1, implying that T and c are both appropriate for the
constraint. This is reasonable for our motivating applications, since
short deadlines (small T) or low throughput (small ci ∀i) imply
that even offline solutions suffer a lack of flexibility in reducing
the overall cost.

4Given metric space X , consider ∆(X), which represents the
set of probability measures over the points of X . Since X is finite,
we have that |X| = n and ∆(X) is denoted as ∆n.

3

Chasing Convex Functions with Long-term Constraints

captures a particularly interesting special case of CFL. The
general version of the problem considers an n-point metric
space (X, d), and a unit resource which can be allocated in
arbitrary fractions to the points of X . At each time t ∈ [T],
convex cost functions fat (·) : [0, 1] → R arrive at each
point a in the metric space. The online player chooses an
allocation xat to each point a in the metric space, such that∑n

a=1 x
a
t = 1 for all t ∈ [T]. When changing this allocation

between time steps, the player pays a switching cost defined
by d(a, b) for any distinct points a, b ∈ X . As in CFL,
the long-term constraint enforces that

∑T
t=1 c(xt) ≥ 1,

where c(x) is a linear and separable function of the form
c(x) =

∑n
a=1 c

axa. As previously, the player’s objective
is to minimize the total cost (hitting plus switching costs)
incurred while satisfying the long-term constraint.

Assumptions. In the rest of the paper, we consider an
instantiation of online metric allocation with a long-term
constraint on weighted star metrics that is particularly rele-
vant to a wide class of resource allocation problems.

To ensure the long-term constraint is non-trivial, we denote
at least one point a′ in the metric space as an “OFF state”,
where ca

′
= 0 and fa

′

t (x) = 0 ∀t ∈ [T], ∀x ∈ [0, 1]. We
do not require that an OFF state be situated at the center
of the star, although this condition creates a useful special
case of MAL (see Lemma 2.2 for details). For all other
cost functions, we carry forward the assumptions that L ≤(

dfa
t

dxa/ca

)
≤ U, fat (0) = 0 ∀t ∈ [T]. We define β :=

maxa′,a
d(a′,a)/ca, i.e., the maximum distance between any

OFF state and any ON state in the weighted star, normalized
by the value of ca at a specific ON state. We inherit the same
assumption that β ∈ [0, U−L/2). For brevity, we henceforth
use MAL to refer to the problem on weighted star metrics
with the assumptions described above.

Competitive analysis. Our goal is to design an algorithm
that guarantees a small competitive ratio (Manasse et al.,
1988; Borodin et al., 1992), i.e., performs nearly as well as
the offline optimal solution. Formally, let I ∈ Ω denote a
valid input sequence, where Ω is the set of all feasible inputs
for the problem. Let OPT(I) denote the cost of an optimal
offline solution for instance I, and let ALG(I) denote the
cost incurred by running an online algorithm ALG over the
same instance. The competitive ratio is then defined as
CR(ALG) := supI∈Ω

ALG(I)/OPT(I) = η, and ALG is said to
be η-competitive. Note that CR(ALG) is always ≥ 1, and a
lower competitive ratio implies that the online algorithm is
guaranteed to be closer to the offline optimal solution.

Learning-augmented consistency and robustness. In
the emerging literature on learning-augmented algorithms,
competitive ratio is interpreted via the notions of consistency
and robustness, introduced by (Lykouris & Vassilvtiskii,

2018; Kumar et al., 2018).

Definition 2.1. Let LALG denote a learning-augmented on-
line algorithm provided with advice denoted by ADV. Then
LALG is said to be b-consistent if it is b-competitive with
respect to ADV. Conversely, LALG is r-robust if it is r-
competitive with respect to OPT when given any ADV (i.e.,
regardless of the performance of ADV).

A connection between CFL and MAL. Below we state
two useful results connecting the CFL and MAL settings
that influence our algorithm design for each problem.

Lemma 2.2. For any MAL instance on a weighted star
metric (X, d), there is a corresponding CFL instance on
(Rn−1, ∥·∥ℓ1(w′)) that preserves fat (·) ∀t, c(·) ∀a ∈ X .
Furthermore, for any points (a, b) ∈ X , their distance is up-
per bounded by a weighted ℓ1 norm between the correspond-
ing vectors (a,b) ∈ Rn−1, i.e., d(a, b) ≤ ∥a − b∥ℓ1(w′).
If the MAL instance contains an OFF state at the center of
the weighted star X , distances are preserved exactly, i.e.,
d(a, b) = ∥a− b∥ℓ1(w′).

Leveraging Lemma 2.2, the following result explicitly con-
nects the competitive results of the CFL and MAL settings.

Proposition 2.3. Given an algorithm ALG for CFL, any
competitive bound for ALG gives an identical competitive
bound for MAL with parameters corresponding to the CFL
instance constructed in Lemma 2.2.

The proofs of both are deferred to Appendix B.3. At a high-
level, Proposition 2.3 shows that if ALG is η-competitive
against OPT which pays no switching cost, Lemma 2.2 im-
plies it is also η-competitive on MAL. In the next section,
our proposed algorithms will be presented using CFL nota-
tion, but these results provide the necessary condition which
allows them to solve MAL as well.

3. Designing Competitive Algorithms
In this section, we present our robust algorithm design. We
start by discussing some inherent challenges in the problem,
highlighting reasons why existing algorithms fail. Next,
we introduce a generalization of techniques from online
search called pseudo-cost minimization, which underpins
our competitive algorithm, ALG1 (Algorithm 1). Finally, we
state (and prove in Appendix B) two bounds, which jointly
imply that ALG1 achieves the optimal competitive ratio for
CFL and MAL.

Challenges. Canonical algorithms for CFC (Chen et al.,
2018; Sellke, 2020; Zhang et al., 2021) make decisions that
attempt to minimize (or nearly minimize) the hitting cost
of cost functions ft(·) and switching cost across all time
steps. As discussed in the introduction, the structure of
the problem with a long-term constraint means that such

4

Chasing Convex Functions with Long-term Constraints

myopic cost-minimization algorithms will fail in general.
To illustrate this, consider the actions of a minimizer-driven
algorithm on an arbitrary sequence with length T . For each
t < T , the algorithm chooses a point at or near 0, since 0 is
the minimizer of each ft. However, since c(0) = 0, such an
algorithm must subsequently satisfy all or almost all of the
long-term constraint during the compulsory trade, incurring
an arbitrarily bad hitting cost.

This challenge motivates an algorithm design that balances
between the two extremes of finishing the long-term con-
straint “immediately” (i.e., at early time steps), and finishing
the long-term constraint “when forced to” (i.e., during the
compulsory trade). Both extremes result in a poor com-
petitive ratio. Algorithms in the online search literature
(e.g., online knapsack, OWT) leverage a threshold-based
design to address precisely this problem, as in (Zhou et al.,
2008; Sun et al., 2021b; Lechowicz et al., 2024). However,
such threshold-based algorithms are traditionally derived
for unidimensional decision spaces with no switching costs.

Generalizing beyond unidimensional decision spaces proves
to be non-trivial – consider the following example. To-
wards the application of carbon-aware load shifting, it may
reasonable to expect that cost functions are separable over
dimensions. It is thus reasonable to consider whether an ex-
isting unidimensional algorithm (i.e., as shown by Lechow-
icz et al. (2024)) can solve the problem via decomposition,
e.g., by running d instances of the unidimensional algorithm.
However, such a technique fails from the perspective of com-
petitive analysis, because the necessary coupling between d
independently determined unidimensional decisions and the
multidimensional long-term constraint is broken. A multidi-
mensional switching cost complicates such a decomposition
even further, as decisions in one dimension increase cost
in other dimensions, potentially beyond the competitive
threshold used to determine a decision in the first place.

In what follows, we describe a pseudo-cost minimization
approach, which generalizes the threshold-based design to
operate in the CFL setting. A key enabling result for this
approach is the ability to simultaneously consider all dimen-
sions for both the hitting costs and the long-term constraint,
leveraging the definition of the constraint function c(x).

Algorithm description. Recall that z(t) gives the fraction
of the long-term constraint satisfied at time t. Building
off of the intuition of threshold-based design, we define a
function ϕ, which will be used to compute a pseudo-cost
minimization problem central to our robust algorithm.

Definition 3.1 (Pseudo-cost threshold function ϕ for CFL).
For any utilization z ∈ [0, 1], ϕ is defined as:

ϕ(z) = U − β + (U/α − U + 2β) exp(z/α), (5)

where α is the competitive ratio and is defined in (6).

Algorithm 1 Pseudo-cost minimization algorithm (ALG1)
input: long-term constraint function c(·), distance metric
∥·∥ℓ1(w), pseudo-cost threshold function ϕ(z)

initialize: z(0) = 0;
while cost function ft(·) is revealed and z(t−1) < 1 do

solve pseudo-cost minimization problem:

xt = argmin
x∈X:c(x)≤1−z(t−1)

ft(x) + ∥x− xt−1∥ℓ1(w)

−
∫ z(t−1)+c(x)

z(t−1)

ϕ(u)du (4)

update utilization z(t) = z(t−1) + c(xt)
end while

Then our algorithm (Algorithm 1, referred to as ALG1)
solves the pseudo-cost minimization problem defined in
(4) to obtain a decision xt at each time step. At a high level,
the inclusion of ϕ in this pseudo-cost problem enforces that,
upon arrival of a cost function, the algorithm satisfies “just
enough” of the long-term constraint. Concretely, the struc-
ture of the ϕ function enforces that ϕ(z(t))− β corresponds
to the “best cost function seen so far”. Then, if a good
cost function arrives, the pseudo-cost minimization problem
solves for the xt which guarantees a competitive ratio of α
against the current estimate of OPT.

At a glance, it is not obvious that the minimization problem
in (4) is tractable; however, in Appendix B.1, we show
that the problem is convex, implying that it can be solved
efficiently. In Theorem 3.2, we state the competitive result
for ALG1. We discuss the significance of the result below,
and relegate the full proof to Appendix B.2.
Theorem 3.2. ALG1 is α-competitive for CFL, where α is
the solution to U−L−2β

U−U/α−2β = exp(1/α), given by

α :=

[
W

((
2β

U
+
L

U
− 1

)
e

2β
U −1

)
− 2β

U
+ 1

]−1

, (6)

where W is the Lambert W function (Corless et al., 1996).

Intuitively, parameters of CFL (L, U , and β) appear in the
competitive bound. While results for OWT and CFC are
not directly comparable with CFL results, we discuss a few
connections here.

When β → 0, α matches the optimal competitive ratio
of

[
W

(
(L/U − 1) e−1

)
+ 1

]−1
for the minimization vari-

ant of OWT (Lorenz et al., 2008; Sun et al., 2021a). In
the intermediate case (i.e., when β ∈ (0, U−L/2)), Taylor
expanding the expression for α yields a leading order ap-
proximation of O

(√
U/L

)
+O (β) – thus, CFL adds a new

linear dependence on β compared to OWT. Furthermore,
as β → U−L/2, α approaches U/L, which is the competitive
ratio achievable by e.g., a myopic cost minimization algo-
rithm. In the Appendix, in Fig. 12, we plot α as a function
of these dependencies (i.e., U/L, β).

5

Chasing Convex Functions with Long-term Constraints

Since α does not feature a dependence on the dimension d of
the vector space, we note a connection with CFC: it is known
that “dimension-free” bounds are achievable in CFC with
necessary structural assumptions on the hitting cost that are
evocative of our bounded gradient assumptions (Argue et al.,
2020). In particular, Chen et al. (2018) give an algorithm
for CFC that achieves a dimension-independent competitive
ratio on ℓ2 metrics when hitting cost functions increase away
from the minimizer at a certain rate. They extend this to a
dimension-dependent bound for general metrics using norm
equivalency results.

Via Proposition 2.3, we obtain an immediate corollary to
Theorem 3.2 which gives the following competitive bound
when ALG1 is used to solve MAL. The full proof of Corol-
lary 3.3 can be found in Appendix B.3.

Corollary 3.3. ALG1 is α-competitive for MAL.

On the tightness of competitive ratios. It is important to
highlight that the bounds in Theorem 3.2 and Corollary 3.3
are the first competitive bounds for any variant of convex
function chasing or online metric allocation imbued with
long-term constraints. A natural follow-up question con-
cerns whether any online algorithm for CFL (or MAL) can
achieve a better competitive bound. In the following, we
answer this question in the negative, showing that ALG1’s
competitive ratio is the best that any deterministic online
algorithm for CFL and/or MAL can achieve. We state the
result here, and defer the full proof to Appendix B.4.

Theorem 3.4. For any L,U, and β ∈ [0, U−L/2), there
exists a family of CFL instances such that any deterministic
online algorithm for CFL is at least α-competitive, where α
is as defined in (6).

Since ALG1 is α-competitive by Theorem 3.2, this implies
that ALG1 achieves the optimal competitive ratio for CFL.
Furthermore, by leveraging Lemma 2.2, this result gives an
immediate corollary result in the MAL setting by construct-
ing a corresponding family of MAL instances, which forces
any algorithm to achieve a competitive ratio of α. We state
the result here, deferring the full proof to Appendix B.5.

Corollary 3.5. The CFL instances in Theorem 3.4 corre-
spond to instances of MAL such that any deterministic on-
line algorithm for MAL is at least α-competitive.

As previously, since ALG1 is α-competitive by Corollary
3.3, it achieves the optimal competitive ratio for MAL. We
note that beyond the settings of CFL and MAL considered
in this paper, Theorem 3.4 and Corollary 3.5 are the first
lower bound results for convex function chasing and online
metric allocation with long-term constraints, and may thus
give useful insight into the achievable competitive bounds
for different or more general settings of these problems.

4. Learning-augmented Algorithms
In this section, we consider how untrusted black-box ad-
vice can help improve the average-case performance of
a learning-augmented algorithm for CFL and MAL while
retaining worst-case guarantees. We first consider a sub-
optimal “baseline” algorithm that directly combines advice
with a robust algorithm such as ALG1. We then propose
a unified algorithm called CLIP, which integrates advice
more efficiently and achieves the optimal trade-off between
consistency and robustness (Definition 2.1).

Advice model. For a CFL or MAL instance I ∈ Ω, let
ADV denote untrusted black-box decision advice, i.e., ADV :=
{at ∈ X : t ∈ [T]}. If the advice is correct, it achieves the
optimal objective value (i.e., ADV(I) = OPT(I)).

A simple baseline. Lechowicz et al. (2024) show that a
straightforward “fixed-ratio” learning-augmented approach
works well in practice for unidimensional online search
with switching costs. Here we show that a similar technique
(playing a convex combination of the solutions chosen by
the advice and a robust algorithm) achieves bounded but
sub-optimal consistency and robustness for CFL.

Let ROB := {x̃t : t ∈ [T]} denote the actions of a robust
algorithm for CFL (e.g., ALG1). For any value ϵ ∈ (0, α−1],
the fixed-ratio algorithm (denoted as Baseline for brevity)
sets a combination factor λ := α−1−ϵ

α−1 . Then at each time
step, Baseline makes a decision according to xt = λat +
(1−λ)x̃t. We present consistency and robustness results for
Baseline below, deferring the full proof to Appendix C.1.

Lemma 4.1. Letting ROB denote the actions of ALG1 and
setting a parameter ϵ ∈ (0, α − 1], Baseline is (1 + ϵ)-

consistent and
(

(U+2β)/L(α−1−ϵ)+αϵ
(α−1)

)
-robust for CFL.

Although this fixed-ratio algorithm verifies that an algo-
rithm for CFL can utilize untrusted advice to improve perfor-
mance, it remains an open question of whether the trade-off
between consistency and robustness given in Lemma 4.1
is optimal. Thus, we study whether a learning-augmented
algorithm for CFL can be designed which does achieve the
provably optimal consistency-robustness trade-off. In the
next section, we start by considering a more sophisticated
method of incorporating advice into an algorithm design.

An optimal learning-augmented algorithm. We present
CLIP (Consistency-Limited Pseudo-cost minimization, Al-
gorithm 2) which achieves the optimal trade-off between
consistency and robustness for CFL.

To start, for any ϵ ∈ (0, α− 1], we define a corresponding
target robustness factor γϵ, the unique positive solution to:

γϵ = ϵ+
U

L
− γϵ

L
(U − L) ln

(
U − L− 2β

U − U/γϵ − 2β

)
. (10)

6

Chasing Convex Functions with Long-term Constraints

Algorithm 2 Consistency Limited Pseudo-cost minimization (CLIP)
input: consistency parameter ϵ, long-term constraint function c(·), pseudo-cost threshold function ϕϵ(·)
initialize: z(0) = 0; p(0) = 0; A(0) = 0; CLIP0 = 0; ADV0 = 0
while cost function ft(·) is revealed, untrusted advice at is revealed, and z(t−1) < 1 do

update advice cost ADVt = ADVt−1 + ft(at) + ∥at − at−1∥ℓ1(w) and advice utilization A(t) = A(t−1) + c(at)
solve constrained pseudo-cost minimization problem:

xt = argmin
x∈X:c(x)≤1−z(t−1)

ft(x) + ∥x − xt−1∥ℓ1(w) −
∫ p(t−1)+c(x)

p(t−1)
ϕ
ϵ
(u)du (7)

such that

CLIPt−1 + ft(x) + ∥x − xt−1∥ℓ1(w) + ∥x − at∥ℓ1(w) + ∥at∥ℓ1(w) + (1 − z
(t−1) − c(x))L + max((A

(t) − z
(t−1) − c(x)), 0)(U − L)

≤ (1 + ϵ)[ADVt + ∥at∥ℓ1(w) + (1 − A
(t)

)L]

(8)

update cost CLIPt = CLIPt−1 + ft(xt) + ∥xt − xt−1∥ℓ1(w) and utilization z(t) = z(t−1) + c(xt)
solve unconstrained pseudo-cost minimization problem:

x̄t = argmin
x∈X:c(x)≤1−z(t−1)

ft(x) + ∥x − xt−1∥ℓ1(w) −
∫ p(t−1)+c(x)

p(t−1)
ϕ
ϵ
(u)du (9)

update pseudo-utilization p(t) = p(t−1) +min(c(x̄t), c(xt))
end while

Note that γα−1 = α, and γ0 = U/L. We use γϵ to define
a pseudo-cost threshold function ϕϵ that will be used in a
minimization problem to choose a decision at each step of
the CLIP algorithm.

Definition 4.2 (Pseudo-cost threshold function ϕϵ).
Given γϵ from (10), ϕϵ(p) for p ∈ [0, 1] is defined as:

ϕϵ(p) = U − β + (U/γϵ − U + 2β) exp(p/γϵ). (11)

For each time step t ∈ [T], we define a pseudo-utilization
p(t) ∈ [0, 1], where p(t) ≤ z(t) ∀t, and p(t) describes the
fraction of the long-term constraint which been satisfied
“robustly” (as defined by the pseudo-cost) at time t.

Then CLIP (see Algorithm 2) solves a constrained pseudo-
cost minimization problem (defined in (7)) to obtain a de-
cision xt at each time step. The objective of this problem
is mostly inherited from ALG1, but the inclusion of a con-
sistency constraint allows the framework to accommodate
untrusted advice for bounded consistency and robustness.

The high-level intuition behind this consistency constraint
(defined in (8)) is to directly compare the solutions of
CLIP and ADV so far, while “hedging” against worst-
case scenarios which may cause CLIP to violate the de-
sired (1 + ϵ)-consistency. We introduce some notation to
simplify the expression of the constraint. We let CLIPt
denote the cost of CLIP up to time t, i.e., CLIPt :=∑t

τ=1 fτ (xτ) + ∥xτ − xτ−1∥ℓ1(w). Similarly, we let
ADVt :=

∑t
τ=1 fτ (aτ)+ ∥aτ −aτ−1∥ℓ1(w) denote the cost

of ADV up to time t. Additionally, we let A(t) denote the
utilization of ADV at time t, i.e., A(t) :=

∑t
τ=1 c(aτ)

The constraint defined in (8) considers the cost of both CLIP
and ADV so far, and the current hitting and switching cost

ft(x)+ ∥x−xt−1∥ℓ1(w), ensuring that (1+ ϵ)-consistency
is preserved. Both sides of the constraint also include terms
which consider the cost of potential future situations. First,
∥x − at∥ℓ1(w) + ∥at∥ℓ1(w) ensures that if CLIP pays a
switching cost to follow ADV and/or pays a switching cost
to “switch off” (move to 0) in e.g., the next time step, that
cost has been paid for “in advance”. As xT+1 = 0, the
constraint also charges ADV in advance for the mandatory
switching cost at the end of the sequence

(
∥at∥ℓ1(w)

)
; this

ensures that there is always a feasible setting of xt.

In the term
(
1−A(t)

)
L, the consistency constraint as-

sumes that ADV can satisfy the rest of the long-term con-
straint at the best marginal cost L. Respectively, in
the term (1 − z(t−1) − c(x))L + max((A(t) − z(t−1) −
c(x)), 0)(U − L), the constraint assumes CLIP can satisfy
up to

(
1−A(t)

)
of the remaining long-term constraint at

the best cost L, but any excess (i.e., (A(t) − z(t))) must be
satisfied at the worst cost U (e.g., during the compulsory
trade). This worst-case assumption ensures that when actual
hitting costs replace the above terms, the desired (1 + ϵ)-
consistency holds.

At each step, CLIP also solves an unconstrained pseudo-
cost minimization problem to obtain x̄t, which updates the
pseudo-utilization p(t). This ensures that when ADV has
accepted a cost function which would not be accepted by
the unconstrained pseudo-cost minimization, the threshold
function ϕϵ can “start from zero” in subsequent time steps.

At a high level, CLIP’s consistency constraint combined
with the pseudo-cost minimization generates decisions
which are as robust as possible while preserving consistency.
In Theorem 4.3, we state the consistency and robustness of
CLIP; we relegate the full proof to Appendix C.2.

7

Chasing Convex Functions with Long-term Constraints

Theorem 4.3. For any ϵ ∈ [0, α − 1], CLIP is (1 + ϵ)-
consistent and γϵ-robust for CFL (γϵ as defined in (10)).

The previous result gives an immediate corollary when CLIP
is used to solve MAL, which we state below. The full proof
of Corollary 4.4 can be found in Appendix C.3.

Corollary 4.4. For any ϵ ∈ [0, α − 1], CLIP is (1 + ϵ)-
consistent and γϵ-robust for MAL.

Optimal trade-offs between robustness and consistency.
Although the trade-off given by CLIP implies that achieving
1-consistency requires a large robustness bound of U/L in
the worst-case, in the following theorem we show that this
is the best we can obtain from any consistent and robust
algorithm. We state the result and discuss its significance
here, deferring the full proof to Appendix C.4.

Theorem 4.5. Given untrusted advice ADV and ϵ ∈ (0, α−
1], any (1+ ϵ)-consistent learning-augmented algorithm for
CFL is at least γϵ-robust, where γϵ is defined in (10).

This result implies that CLIP achieves the optimal trade-off
between consistency and robustness for CFL. Furthermore,
via Lemma 2.2, this result immediately gives Corollary 4.6,
which we state here and prove in Appendix C.5.

Corollary 4.6. Any (1 + ϵ)-consistent learning-augmented
algorithm for MAL is at least γϵ-robust (γϵ defined by (10)).

As previously, this implies CLIP achieves the optimal
consistency-robustness trade-off for MAL. Beyond the
settings of CFL and MAL, these Pareto-optimality results
may give useful insight into the achievable consistency-
robustness trade-offs for more general settings.

5. Numerical Experiments

0 10 20 30 40
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

de
ns

ity

ALG1
agnostic
simple threshold
move to minimizer
CLIP[= 2]

Figure 1. CDFs of empirical
competitive ratios for various
algorithms.

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

baseline[= 10]
baseline[= 5]
baseline[= 2]
CLIP[= 10]
CLIP[= 5]
CLIP[= 2]
ADV
ALG1

Figure 2. Varying adversarial
factor ξ, with U/L = 250, β =
50, d = 5, and σ = 50.

In this section, we conduct numerical experiments on syn-
thetic CFL instances. We evaluate ALG1 and CLIP against
the offline optimal solution, three heuristics adapted from
related work, and the learning-augmented Baseline.

Setup. We construct a d-dimensional decision space,
where d is picked from the set {5, 7, ... , 21}. The com-
petitive ratio of our proposed algorithms depends on both

U/L and β = maxi w
i, as the switching cost. Hence,

we evaluate their performance over the range of these pa-
rameters. We set different cost fluctuation ratios U/L ∈
{50, 150, ... , 1250} by setting L and U accordingly, and
β is picked from the set β ∈ {0, 5, ... , U/2.5}. For each
experiment, c(x) = ∥x∥1.

For a given setting of d, U/L, and β, we generate 1,000
random instances as follows. First, each term of the weight
vector w for the weighted ℓ1 norm is drawn randomly from
the uniform distribution on [0, β]. Next, the time horizon T
is generated randomly from a uniform distribution on [6, 24].
For each time t ∈ [T], a cost function is generated as fol-
lows: Let ft(x) = f⊺t x, where ft is a d-dimensional cost
vector. To generate ft, we first draw µt from the uniform
distribution on [L,U], and then draw each term of ft from a
normal distribution centered at µt with standard deviation σ
(i.e., f it ∼ N (µt, σ)). Any terms which are outside the as-
sumed interval [L,U] (i.e. f it < L or f it > U) are truncated
appropriately. For each instance, we report the empirical
competitive ratios as the evaluation metric, comparing the
tested algorithms against an offline optimal benchmark.

In the setting with advice, we obtain simulated advice as
follows: Let ξ ∈ [0, 1] denote an adversarial factor. When
ξ = 0, ADV gives the optimal solution, and when ξ = 1,
ADV is fully adversarial. Formally, letting {x⋆

t : t ∈ [T]} de-
note the decisions made by an optimal solution, and letting
{x̆t : t ∈ [T]} represent the decisions made by a solution
which maximizes the objective (rather than minimizing it),
we have that ADV = {(1 − ξ)x⋆

t + ξx̆t : t ∈ [T]}. We
note that although {x̆t : t ∈ [T]} is adversarial from the
perspective of the objective, it is still a feasible solution for
the problem (i.e., it satisfies the long-term constraint).

Comparison algorithms. We use CVXPY (Diamond &
Boyd, 2016) to compute the offline optimal solution for each
instance using a convex optimization solver with access
to all cost functions in advance. Since we are the first to
study CFL, there are no directly comparable algorithms with
competitive guarantees – thus, we consider three heuristic
techniques based on literature for adjacent problems.

The first technique is termed “agnostic”, which chooses the
minimum dimension of the cost function in the first time
step t = 1 (i.e., k = argmini∈[d] c

i
1), sets xk

1 = 1, and
xt = 0 ∀t > 1. The second technique is termed “move to
minimizer”, which takes inspiration from algorithms for
CFC (Zhang et al., 2021) and satisfies 1/T fraction of the
long-term constraint at each time step by moving to the min-
imum dimension of each cost function. Formally, at each
time step t, letting kt = argmini∈[d] c

i
t, “move to mini-

mizer” sets xkt
t = 1/T . Finally, the third technique is termed

“simple threshold”, which takes inspiration from algorithms
for online search (El-Yaniv et al., 2001). This algorithm

8

Chasing Convex Functions with Long-term Constraints

200 400 600 800 1000
U/L

0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 3. Varying U/L, with β =
U/5, d = 5, ξ = 0, and σ = U/5.

0 20 40 60 80 100
0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio
Figure 4. Varying β, with U/L =
250, d = 5, ξ = 0, and σ = 50.

5 10 15 20
d

0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 5. Varying d with β =
50, U/L = 250, σ = 50, and ξ=0.

0 20 40 60 80 100 120
0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 6. Varying σ, with β =
50, U/L = 250, d = 5, and ξ = 0.

sets a fixed threshold ψ =
√
UL, and completes the long-

term constraint at the first time step and dimension where
the hitting cost does not exceed ψ. Formally, at the first
time step τ satisfying ∃ k ∈ [d] : fkτ ≤ ψ, “simple thresh-
old” sets xk

τ = 1. In the setting with advice, we compare
our proposed CLIP learning-augmented algorithm against
the Baseline learning-augmented algorithm described in
Section 4 (e.g., Lemma 4.1).

Experimental results. Fig. 1 summarizes the main re-
sults for ALG1, the comparison heuristic algorithms, and
one setting of CLIP (ϵ = 2) in a CDF plot of the empirical
competitive ratios across several experiments. In these ex-
periments, we fix U/L = 250, ξ = 0, σ = 50, while varying
β and d. Notably, ALG1 outperforms in both average-case
and worst-case performance, improving on the closest “sim-
ple threshold” by an average of 18.2%, and outperforming
“agnostic” and “move to minimizer” by averages of 56.1%
and 71.5%, respectively. With correct advice, CLIP sees
significant performance gains across the board.

In Fig. 3-6, we investigate the impact of parameters on the
average empirical competitive ratio for each algorithm. In
Appendix A.1, we give corresponding plots for the 95th per-
centile (“worst-case”) results. Fig. 3 plots competitive ratios
for different values of U/L. We fix β = U/5, d = 5, ξ =
0, σ = U/5, while varying U/L. Since there is a dependence
on U/L in our competitive results, the performance of ALG1
degrades as U/L grows, albeit at a favorable pace compared
to the heuristics. Fig. 4 plots competitive ratios for different
values of β. We fix U/L = 250, d = 5, ξ = 0, σ = 50. As
β grows, the “agnostic” and “move to minimizer” heuristics
improve because the switching cost paid by OPT grows.

In Fig. 6, we plot competitive ratios for different values of σ.
We fix U/L = 250, β = 50, d = 5, ξ = 0, while varying σ.
As cost functions become more variable, the performance of
all algorithms degrades, with the exception of CLIP. There
is a plateau as σ grows, because a large σ implies that
more terms in each ft must be truncated to the interval
[L,U]. Finally, Fig. 5 plots competitive ratios for different
values of d. We fix U/L = 250, β = 50, ξ = 0, σ = 50,
while varying d. As d grows, ALG1 and CLIP’s performance

degrades slower compared to the heuristics, as predicted by
their dimension-free theoretical bounds.5

Fig. 2 plots the effect of prediction error on the learning-
augmented algorithms CLIP and Baseline. We test several
values of ξ ∈ [0, 1/2] (recall that ξ = 0 recovers correct
advice), while fixing U/L = 250, β = 50, d = 5, and σ =
50. We also test Baseline and CLIP for several values of
ϵ ∈ {2, 5, 10} (note that ADV corresponds to Baseline and
CLIP with ϵ = 0). Notably, we find that CLIP significantly
outperforms the Baseline algorithm as ξ grows, showing
an average improvement of 60.8% when ξ > 0.1. This result
implies that CLIP is more empirically robust to prediction
errors than the simple fixed ratio technique of Baseline.

6. Conclusion
We study online metric problems with long-term constraints,
motivated by emerging problems in sustainability. These are
the first such problems to concurrently incorporate multidi-
mensional decision spaces, switching costs, and long-term
demand constraints. Our main results instantiate the CFL
and MAL problems towards a motivating application. We de-
sign competitive and learning-augmented algorithms, show
that their performance bounds are tight, and validate them in
numerical experiments. Several interesting open questions
are prompted by our work. Specifically, (i) what is achiev-
able in non-ℓ1 vector spaces e.g., the Euclidean setting, and
(ii) can our results for MAL inform algorithm designs for
e.g., tree metrics, and by extension, arbitrary metric spaces?

5While the plot suggests a correlation between d and ALG1’s
performance, this seems to be a side effect of the random cost func-
tions, which indirectly introduce more dimension-wise variability
as d increases. There is a large gap between empirical performance
and the theoretical upper bounds – the asymptotic performance of
ALG1 would be constant for large d.

9

Chasing Convex Functions with Long-term Constraints

Impact Statement
This paper presents work whose goal is to advance the field
of online optimization and study problems relevant to sus-
tainability applications. There are many potential societal
consequences of our work, none which we feel must be
explicitly highlighted here.

Acknowledgements
This research is supported by National Science Foun-
dation grants CAREER-2045641, CNS-2102963, CNS-
2106299, CNS-2146814, CNS-1518941, CNS-2106403,
CPS-2136197, CPS-2136199, NGSDI-2105494, NGSDI-
2105648, 1908298, 2020888, 2021693, 2045641, 2213636,
2211888, and an NSF Graduate Research Fellowship (DGE-
2139433).

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Department of Energy Com-
putational Science Graduate Fellowship under Award Num-
ber DE-SC0024386.

Disclaimers
This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or ser-
vice by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

References
Acun, B., Lee, B., Kazhamiaka, F., Maeng, K., Gupta,

U., Chakkaravarthy, M., Brooks, D., and Wu, C.-J.
Carbon Explorer: A Holistic Framework for Design-
ing Carbon Aware Datacenters. In Proceedings of
the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, Volume 2, ASPLOS 2023, pp. 118–132,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9781450399166. doi: 10.1145/
3575693.3575754. URL https://doi.org/10.
1145/3575693.3575754.

Argue, C. J., Gupta, A., and Guruganesh, G. Dimension-
Free Bounds for Chasing Convex Functions. In Proceed-
ings of Thirty Third Conference on Learning Theory, pp.
219–241. PMLR, July 2020.

Bansal, N. and Coester, C. Online Metric Allocation
and Time-Varying Regularization. In Chechik, S.,
Navarro, G., Rotenberg, E., and Herman, G. (eds.),
30th Annual European Symposium on Algorithms
(ESA 2022), volume 244 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 13:1–
13:13, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
247-1. doi: 10.4230/LIPIcs.ESA.2022.13. URL
https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ESA.2022.13.

Bashir, N., Guo, T., Hajiesmaili, M., Irwin, D., Shenoy,
P., Sitaraman, R., Souza, A., and Wierman, A. En-
abling Sustainable Clouds: The Case for Virtualizing
the Energy System. In Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC ’21, pp. 350–358,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450386388. doi: 10.1145/
3472883.3487009. URL https://doi.org/10.
1145/3472883.3487009.

Borodin, A., Linial, N., and Saks, M. E. An Opti-
mal On-Line Algorithm for Metrical Task System. J.
ACM, 39(4):745–763, Oct 1992. ISSN 0004-5411. doi:
10.1145/146585.146588. URL https://doi.org/
10.1145/146585.146588.

Bubeck, S., Klartag, B., Lee, Y. T., Li, Y., and Sellke, M.
Chasing Nested Convex Bodies Nearly Optimally. In Pro-
ceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms (SODA), Proceedings, pp. 1496–1508. Soci-
ety for Industrial and Applied Mathematics, December
2019. doi: 10.1137/1.9781611975994.91.

Bubeck, S., Cohen, M. B., Lee, J. R., and Lee, Y. T. Metrical
Task Systems on Trees via Mirror Descent and Unfair
Gluing. SIAM Journal on Computing, 50(3):909–923,
January 2021. ISSN 0097-5397, 1095-7111. doi: 10.
1137/19M1237879.

Bubeck, S., Coester, C., and Rabani, Y. The Random-
ized k-Server Conjecture Is False! In Proceed-
ings of the 55th Annual ACM Symposium on Theory
of Computing (STOC 2023), STOC 2023, pp. 581–594,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9781450399135. doi: 10.1145/
3564246.3585132. URL https://doi.org/10.
1145/3564246.3585132.

Chen, N., Goel, G., and Wierman, A. Smoothed Online
Convex Optimization in High Dimensions via Online

10

https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1145/3575693.3575754
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.13
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.13
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/3564246.3585132
https://doi.org/10.1145/3564246.3585132

Chasing Convex Functions with Long-term Constraints

Balanced Descent. In Proceedings of the 31st Conference
On Learning Theory, pp. 1574–1594. PMLR, July 2018.

Cheng, K.-W., Bian, Y., Shi, Y., and Chen, Y. Carbon-Aware
EV Charging. In 2022 IEEE International Conference on
Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm), pp. 186–192, 2022.
doi: 10.1109/SmartGridComm52983.2022.9960988.

Christianson, N., Handina, T., and Wierman, A. Chasing
Convex Bodies and Functions with Black-Box Advice. In
Proceedings of the 35th Conference on Learning Theory,
volume 178, pp. 867–908. PMLR, 02–05 Jul 2022.

Christianson, N., Shen, J., and Wierman, A. Optimal
robustness-consistency tradeoffs for learning-augmented
metrical task systems. In International Conference on
Artificial Intelligence and Statistics, 2023.

Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J.,
and Knuth, D. E. On the Lambert W function. Advances
in Computational mathematics, 5:329–359, 1996.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1–5, 2016.

El-Yaniv, R., Fiat, A., Karp, R. M., and Turpin, G. Op-
timal Search and One-Way Trading Online Algorithms.
Algorithmica, 30(1):101–139, May 2001. doi: 10.1007/
s00453-001-0003-0. URL https://doi.org/10.
1007/s00453-001-0003-0.

Friedman, J. and Linial, N. On convex body chasing. Dis-
crete & Computational Geometry, 9(3):293–321, March
1993. doi: 10.1007/bf02189324. URL https://doi.
org/10.1007/bf02189324.

Hanafy, W. A., Liang, Q., Bashir, N., Irwin, D., and Shenoy,
P. CarbonScaler: Leveraging Cloud Workload Elastic-
ity for Optimizing Carbon-Efficiency. Proceedings of
the ACM on Measurement and Analysis of Computing
Systems, 7(3), Dec 2023.

Johnson, S. G. Notes on the equivalence of
norms. https://math.mit.edu/˜stevenj/18.
335/norm-equivalence.pdf, 2020.

Koutsoupias, E. The k-server problem. Computer Science
Review, 3(2):105–118, May 2009. doi: 10.1016/j.cosrev.
2009.04.002. URL https://doi.org/10.1016/
j.cosrev.2009.04.002.

Kumar, R., Purohit, M., and Svitkina, Z. Improving On-
line Algorithms via ML Predictions. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Lechowicz, A., Christianson, N., Zuo, J., Bashir, N., Ha-
jiesmaili, M., Wierman, A., and Shenoy, P. The Online
Pause and Resume Problem: Optimal Algorithms and An
Application to Carbon-Aware Load Shifting. Proceedings
of the ACM on Measurement and Analysis of Computing
Systems, 7(3), Dec 2023.

Lechowicz, A., Christianson, N., Sun, B., Bashir, N., Ha-
jiesmaili, M., Wierman, A., and Shenoy, P. Online
Conversion with Switching Costs: Robust and Learning-
augmented Algorithms, 2024. URL https://arxiv.
org/abs/2310.20598.

Lee, R., Sun, B., Hajiesmaili, M., and Lui, J. C. S. Online
Search with Predictions: Pareto-optimal Algorithm and
its Applications in Energy Markets. In Proceedings of the
15th ACM International Conference on Future Energy
Systems, e-Energy ’24, New York, NY, USA, June 2024.
Association for Computing Machinery.

Lorenz, J., Panagiotou, K., and Steger, A. Optimal Al-
gorithms for k-Search with Application in Option Pric-
ing. Algorithmica, 55(2):311–328, August 2008. doi:
10.1007/s00453-008-9217-8. URL https://doi.
org/10.1007/s00453-008-9217-8.

Lykouris, T. and Vassilvtiskii, S. Competitive Caching with
Machine Learned Advice. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 3296–3305. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/
v80/lykouris18a.html.

Manasse, M., McGeoch, L., and Sleator, D. Competitive
Algorithms for On-Line Problems. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, pp. 322–333, New York, NY,
USA, 1988. Association for Computing Machinery. ISBN
0897912640. doi: 10.1145/62212.62243.

Mitrinovic, D. S., Pečarić, J. E., and Fink, A. M. Inequalities
Involving Functions and Their Integrals and Derivatives,
volume 53. Springer Science & Business Media, 1991.

Mohr, E., Ahmad, I., and Schmidt, G. Online algorithms for
conversion problems: A survey. Surveys in Operations
Research and Management Science, 19(2):87–104, July
2014. doi: 10.1016/j.sorms.2014.08.001. URL https:
//doi.org/10.1016/j.sorms.2014.08.001.

Radovanovic, A., Koningstein, R., Schneider, I., Chen, B.,
Duarte, A., Roy, B., Xiao, D., Haridasan, M., Hung, P.,
Care, N., et al. Carbon-Aware Computing for Datacenters.
IEEE Transactions on Power Systems, 2022.

11

https://doi.org/10.1007/s00453-001-0003-0
https://doi.org/10.1007/s00453-001-0003-0
https://doi.org/10.1007/bf02189324
https://doi.org/10.1007/bf02189324
https://math.mit.edu/~stevenj/18.335/norm-equivalence.pdf
https://math.mit.edu/~stevenj/18.335/norm-equivalence.pdf
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1016/j.cosrev.2009.04.002
https://arxiv.org/abs/2310.20598
https://arxiv.org/abs/2310.20598
https://doi.org/10.1007/s00453-008-9217-8
https://doi.org/10.1007/s00453-008-9217-8
https://proceedings.mlr.press/v80/lykouris18a.html
https://proceedings.mlr.press/v80/lykouris18a.html
https://doi.org/10.1016/j.sorms.2014.08.001
https://doi.org/10.1016/j.sorms.2014.08.001

Chasing Convex Functions with Long-term Constraints

Sellke, M. Chasing Convex Bodies Optimally. In Proceed-
ings of the Thirty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’20, pp. 1509–1518, USA,
January 2020. Society for Industrial and Applied Mathe-
matics.

Sun, B., Lee, R., Hajiesmaili, M., Wierman, A., and Tsang,
D. Pareto-Optimal Learning-Augmented Algorithms for
Online Conversion Problems. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 34, pp. 10339–10350. Curran Associates,
Inc., 2021a.

Sun, B., Zeynali, A., Li, T., Hajiesmaili, M., Wierman,
A., and Tsang, D. H. Competitive Algorithms for the
Online Multiple Knapsack Problem with Application to
Electric Vehicle Charging. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 4(3),
June 2021b. doi: 10.1145/3428336. URL https://
doi.org/10.1145/3428336.

Wei, A. and Zhang, F. Optimal robustness-consistency
trade-offs for learning-augmented online algorithms. In
Proceedings of the 34th International Conference on Neu-
ral Information Processing Systems, NeurIPS ’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Wiesner, P., Behnke, I., Scheinert, D., Gontarska, K.,
and Thamsen, L. Let’s Wait AWhile: How Temporal
Workload Shifting Can Reduce Carbon Emissions in
the Cloud. In Proceedings of the 22nd International
Middleware Conference, pp. 260–272, New York, NY,
USA, 2021. Association for Computing Machinery. doi:
10.1145/3464298.3493399.

Zhang, L., Jiang, W., Lu, S., and Yang, T. Revisit-
ing Smoothed Online Learning, 2021. URL https:
//arxiv.org/abs/2102.06933.

Zhou, Y., Chakrabarty, D., and Lukose, R. Budget Con-
strained Bidding in Keyword Auctions and Online Knap-
sack Problems. In Lecture Notes in Computer Science,
pp. 566–576. Springer Berlin Heidelberg, 2008.

12

https://doi.org/10.1145/3428336
https://doi.org/10.1145/3428336
https://arxiv.org/abs/2102.06933
https://arxiv.org/abs/2102.06933

Chasing Convex Functions with Long-term Constraints

Appendix

A. Numerical Experiments (continued)
In this section, we give supplemental results examining the 95th percentile (“worst-case”) empirical competitive ratio results,
following the same general structure as in the main body.

A.1. Supplemental Results

To complement the results for the average empirical competitive ratio shown in Fig. 5, in this section we plot the 95th per-
centile empirical competitive ratios for each tested algorithm, which primarily serve to show that the improved performance
of our proposed algorithm holds in both average-case and tail (“worst-case”) scenarios.

In Fig. 8-11, we investigate the impact of different parameters on the performance of each algorithm. In Fig. 8, we plot 95th
percentile empirical competitiveness for different values of U/L – in this experiment, we fix β = U/5, d = 5, ξ = 0, and
σ = U/5, while varying U/L ∈ {50, ... , 1250}. As observed in the average competitive ratio plot (Fig. 3), the performance
of ALG1 degrades as U/L grows, albeit at a favorable pace compared to the comparison algorithms. Fig. 9 plots the 95th
percentile empirical competitiveness for different values of β – in this experiment, we fix U/L = 250, d = 5, ξ = 0, and
σ = 50. As previously in the average competitive results (Fig. 4), “agnostic” and “move to minimizer” heuristics perform
better when β grows, because the switching cost paid by the optimal solution grows as well.

0.0 0.1 0.2 0.3 0.4 0.5
0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

baseline[= 10]
baseline[= 5]
baseline[= 2]
CLIP[= 10]
CLIP[= 5]
CLIP[= 2]
ADV
ALG1

Figure 7. Varying adversarial factor ξ, with
U/L = 250, β = 50, d = 5, σ = 50.

In Fig. 10, we plot the 95th percentile empirical competitiveness for different
values of d – in this experiment, we fix U/L = 250, β = 50, ξ = 0, and
σ = 50, while varying d. Mirroring the previous results (Fig. 5), ALG1 and
CLIP’s competitive performance degrades slower as d grows compared to the
comparison heuristics, as predicted by their dimension-free theoretical bounds.
Finally, Fig. 11 plots the 95th percentile empirical competitiveness for different
values of σ, which is the dimension-wise variability of each cost function. Here
we fix U/L = 250, β = 50, d = 5, and ξ = 0, while varying σ ∈ {0, ... , U/2}.
Intuitively, as cost functions become more variable, the competitive ratios of
all tested algorithms degrade, with the exception of our learning-augmented
algorithm CLIP. This degradation plateaus as σ grows, as a large standard
deviation forces more of the terms of each cost vector ct to be truncated to the
interval [L,U].

In Fig. 7, we plot the 95th percentile empirical competitive ratio companion to Fig. 2, which measures the effect of prediction
error on the learning-augmented algorithms CLIP and Baseline. We test several values of ξ ∈ [0, 1], the adversarial factor
(recall that ξ = 0 implies the advice is correct), while fixing U/L = 250, β = 50, d = 5, σ = 50. We test Baseline and
CLIP for several values of ϵ ∈ {2, 5, 10} (note that ADV corresponds to running either Baseline or CLIP with ϵ = 0).
Notably, in these 95th percentile “worst-case” results, we find that CLIP continues to significantly outperforms the Baseline
algorithm as ξ grows, further validating that CLIP is more empirically robust to prediction errors than the simple fixed ratio
technique of Baseline.

200 400 600 800 1000
U/L

0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 8. Varying U/L, with β =
U/5, d = 5, ξ = 0, and σ = U/5.

0 20 40 60 80 100
0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 9. Varying β, with U/L =
250, d = 5, ξ = 0, and σ = 50.

5.0 7.5 10.0 12.5 15.0 17.5 20.0
d

0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 10. Varying d with β =
50, U/L = 250, σ = 50, and ξ=0.

0 25 50 75 100 125
0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 11. Varying σ, with β =
50, U/L = 250, d = 5, and ξ = 0.

13

Chasing Convex Functions with Long-term Constraints

Figure 12. Plotting α, the competitive upper bound of ALG1 (see Equation 6), as a function of the CFL problem’s parameters (i.e., U/L, β).

B. Proofs for Section 3 (Competitive Algorithms)
B.1. Convexity of the pseudo-cost minimization problem in ALG1

In this section, we show that the pseudo-cost minimization problem central to the design of ALG1 is a convex minimization
problem, implying that it can be solved efficiently.

Define ht(x) : t ∈ [T] to represent the pseudo-cost minimization problem for a single arbitrary time step:

ht(·) = ft(x) + d(x,xt−1)−
∫ z(t−1)+c(x)

z(t−1)

ϕ(u)du. (12)

Theorem B.1. Under the assumptions of the CFL and MAL problem settings, ht(·) is always convex.

Proof. We prove the above statement by contradiction.

By definition, we know that the sum of two convex functions gives a convex function. Since we have that d(x,x′) is defined
as some norm, by definition and by observing that x′ is fixed, d(x,x′) is convex. We have also assumed as part of the
problem setting that each ft(x) is convex. Thus, ft(x) + d(x,x′) must be convex.

We turn our attention to the term −
∫ z(t−1)+c(x)

z(t−1) ϕ(u)du. Let k(c(x)) =
∫ z(t−1)+c(x)

z(t−1) ϕ(u)du. By the fundamental theorem
of calculus, ∇k(c(x)) = ϕ(z(t−1) + c(x))∇c(x)

Let g(c(x)) = ϕ(z(t−1) + c(x)). Then ∇2k(c(x)) = ∇2c(x)k(c(x)) +∇c(x)g′(c(x))∇c(x)⊺. Since c(x) is piecewise
linear (CFL and MAL both assume it is linear), we know that ∇2c(x)g(c(x)) = 0. Since ϕ is monotonically decreasing on
the interval [0, 1], we know that g′(c(x)) < 0, and thus ∇c(x)g′(c(x))∇c(x)⊺ is negative semidefinite. This implies that
k(c(x)) is concave in x.

Since the negation of a concave function is convex, this causes a contradiction, because the sum of two convex functions
gives a convex function.

Thus, ht(·) = ft(x) + d(x,xt−1)−
∫ z(t−1)+c(x)

z(t−1) ϕ(u)du is always convex under the assumptions of CFL and MAL.

By showing that ht(·) is convex, it follows that the pseudo-cost minimization (4) in ALG1 is a convex minimization problem
(i.e., it can be solved efficiently using numerical methods).

B.2. Proof of Theorem 3.2

In this section, we prove Theorem 3.2, which shows that α as given by (6) is an upper bound on the worst-case competitive
ratio of ALG1 (given by Algorithm 1) for the CFL problem.

Proof of Theorem 3.2. Let z(j) =
∑

t∈[T] c(xt) denote the fraction of the long-term constraint satisfied by ALG1 before the
compulsory trade on an arbitrary CFL instance I ∈ Ω. Also note that z(t) =

∑
m∈[t] c(xm) is non-decreasing over n.

Lemma B.2. The offline optimal solution OPT(I) for any CFL instance I ∈ Ω is lower bounded by ϕ(z(j))− β.

14

Chasing Convex Functions with Long-term Constraints

Proof of Lemma B.2. We prove this lemma by contradiction. Note that the offline optimum will stay at 0 whenever
possible, and satisfy the long-term constraint using the cost functions with the minimum gradient (i.e., the best marginal
cost). Assume that OPT(I) < ϕ(z(j))− β, and that z(j) < 1 (implying that OPT(I) > L).

Recall that any cost function ft(·) : X → R is minimized exactly at 0, since ft(0) = 0 ∀t ∈ [T]. By convexity of the cost
functions, this implies that the gradient of some cost function ft is similarly minimized at the point 0, and thus the best
marginal cost for ft can be obtained by taking an infinitesimally small step away from 0 in at least one direction, which we
denote (without loss of generality) as i ∈ [d]. For brevity, we denote this best marginal cost in ft by [∇ft]i.

The assumption that OPT(I) < ϕ(z(j)) − β implies that instance I must contain a cost function fm(·) at some arbitrary
time step m (m ∈ [T]) which satisfies [∇fm]

i
< ϕ(z(j))− β for any dimension i ∈ [d].

Prior work (Lorenz et al., 2008; Sun et al., 2021b) has shown that the worst-case for online search problems with long-
term demand constraints occurs when cost functions arrive online in descending order, so we henceforth adopt this
assumption. Recall that at each time step, ALG1 solves the pseudo-cost minimization problem defined in (4). Without
loss of generality, assume that z(m−1) = z(j), i.e. the cost function fm(·) arrives when ALG1 has already reached its
final utilization (before the compulsory trade). This implies that xm = 0, and further that c(xm) = 0. This implies that

fm(x) + ∥x − xm−1∥ℓ1(w) >
∫ z(m−1)+c(x)

z(m−1) ϕ(u)du, since the pseudo-cost minimization problem should be minimized
when ALG1 sets xm = 0.

The pseudo-cost minimization problem at time step m can be expressed as follows:

xm = argmin
x∈Rd:c(x)≤1−z(m−1)

fm(x) + ∥x− xm−1∥ℓ1(w) −
∫ z(m−1)+c(x)

z(m−1)

ϕ(u)du.

We note that ∥x− xm−1∥ℓ1(w) is upper bounded by β(z(m−1) + c(x)), since in the worst case, the previous online decision
xm−1 built up all of ALG1’s utilization (z(m−1)) so far, and in the next step it will have to switch dimensions to ramp up to x.

Since the function ϕ is monotonically decreasing on z ∈ [0, 1], the xm solving the true pseudo-cost minimization problem is
lower-bounded by the x̆m solving the following minimization problem (i.e., c(x̆m) ≤ c(xm)):

x̆m = argmin
x∈Rd:c(x)≤1−z(m−1)

fm(x) + β(z(m−1) + c(x))−
∫ z(m−1)+c(x)

z(m−1)

ϕ(u)du.

This further gives the following:

fm(x) + β(z(t) + c(x))−
∫ z(m−1)+c(x)

z(m−1)

ϕ(u)du

fm(x) + β(z(t) + c(x))−
∫ z(m−1)+c(x)

z(m−1)

[
U − β +

(
U

α
− U + 2β

)
exp(u/α)

]
du

fm(x)− (U − β)c(x) + β(z(t) + c(x))− [U − Uα+ 2βα]

(
exp

(
z(m−1) + c(x)

α

)
− exp

(
z(m−1)

α

))

By assumption, since fm(·) is convex and satisfies [∇fm]
i
< ϕ(z(j)) − β at x = 0, there must exist a dimension i in

fm where an incremental step away from 0 in direction i satisfies the following inequality: fm(x) ≲ [∇fm]
i · c(x) <

[ϕ(z(j))− β]c(x) for some x where c(x) > 0. Thus, we have the following in the pseudo-cost minimization problem:

([∇fm]
i − U + β)c(x) + β(z(t) + c(x))− [U − Uα+ 2βα]

(
exp

(
z(m−1) + c(x)

α

)
− exp

(
z(m−1)

α

))

Letting c(x) be some scalar y (which is valid since we assume there is at least one dimension in ft(·) where the cost function
growth rate is at most ∇fm), the pseudo-cost minimization problem finds the value y which minimizes the following

15

Chasing Convex Functions with Long-term Constraints

quantity:

([∇fm]
i − U + β)y + β(z(t) + y)− [U − Uα+ 2βα]

(
exp

(
z(m−1) + y

α

)
− exp

(
z(m−1)

α

))

Taking the derivative of the above with respect to y yields the following:

d

dy

[
([∇fm]

i − U + β)y + β(z(t) + y)− [U − Uα+ 2βα]

(
exp

(
z(m−1) + y

α

)
− exp

(
z(m−1)

α

))]
=

= [∇fm]
i
+ 2β − U +

(Uα− 2αβ − U) exp
(

z(m−1)+y
α

)
α

If y = 0, we have the following by assumption that [∇fm]
i
< ϕ(z(j))− β and that z(j) = z(m−1):

[∇fm]
i
+ 2β − U + (U − 2β − U/α) exp

(
z(m−1)

α

)
< ϕ(z(j)) + β − U + (U − 2β − U/α) exp

(
z(m−1)

α

)
< ϕ(z(j))−

(
ϕ(z(m−1))

)
= 0

The above derivation implies that the derivative of the cost minimization problem at c(x) = 0 (which corresponds to the
case where x = 0) is strictly less than 0. This further implies that x̆m must be non-zero, since the minimizer must satisfy
c(x̆m) > 0. Since c(x̆m) lower bounds the true c(xm), this causes a contradiction, as it was assumed that the utilization
after time step m would satisfy z(m) = z(m−1) = z(j), but if c(xm) > 0, z(m) must satisfy z(m) > z(m−1).

It then follows by contradiction that OPT(I) ≥ ϕ(z(j))− β.

Lemma B.3. The cost of ALG1 on any valid CFL instance I ∈ Ω is upper bounded by

ALG1(I) ≤
∫ z(j)

0

ϕ(u)du+ βz(j) + (1− z(j))U. (13)

Proof of Lemma B.3. First, recall that z(t) =
∑

τ∈[t] c(xτ) is non-decreasing over t ∈ [T].

Observe that whenever c(xt) > 0, we know that ft(xt) + ∥xt − xt−1∥ℓ1(w) <
∫ z(t−1)+c(xt)

z(t−1) ϕ(u)du. Then, if c(xt) = 0,
which corresponds to the case when xt = 0, we have the following:

ft(xt) + ∥xt − xt−1∥ℓ1(w) −
∫ z(t−1)+c(xt)

z(t−1)

ϕ(u)du = 0 + ∥−xt−1∥ℓ1(w) − 0 ≤ βc(xt−1)

This gives that for any time step where c(xt) = 0, we have the following inequality:

ft(xt) + ∥xt − xt−1∥ℓ1(w) ≤ βc(xt−1), ∀t ∈ [T] : c(xt) = 0. (14)

And thus, since any time step where c(xt) > 0 implies ft(xt) + ∥xt − xt−1∥ℓ1(w) <
∫ z(t−1)+c(xt)

z(t−1) ϕ(u)du, we have the
following inequality for all time steps (i.e., an upper bound on the excess cost not accounted for in the pseudo-cost threshold
function or compulsory trade)

ft(xt) + ∥xt − xt−1∥ℓ1(w) −
∫ z(t−1)+c(xt)

z(t−1)

ϕ(u)du ≤ βc(xt−1), ∀t ∈ [T]. (15)

16

Chasing Convex Functions with Long-term Constraints

Thus, we have

βz(j) =
∑
t∈[j]

βc(xt−1) ≥
∑
t∈[j]

[
ft(xt) + ∥xt − xt−1∥ℓ1(w) −

∫ z(t−1)+c(xt)

z(t−1)

ϕ(u)du

]
(16)

=
∑
t∈[j]

[
ft(xt) + ∥xt − xt−1∥ℓ1(w)

]
−
∫ z(j)

0

ϕ(u)du (17)

= ALG1− (1− z(j))U −
∫ z(j)

0

ϕ(u)du. (18)

Combining Lemma B.2 and Lemma B.3 gives

ALG1(I)
OPT(I)

≤
∫ z(j)

0
ϕ(u)du+ βz(j) + (1− z(j))U

ϕ(z(j))− β
≤ α, (19)

where the last inequality holds since for any z ∈ [0, 1]∫ z

0

ϕ(u)du+ βz + (1− z)U =

∫ z

0

[U − β + (U/α− U + 2β) exp(z/α)] + βz + (1− z)U (20)

= (U − β)z + α(U/α− U + 2β)[exp(z/α)− 1] + βz + (1− z)U (21)
= α(U/α− U + 2β)[exp(z/α)− 1] + U (22)
= α [U − 2β + (U/α− U + 2β) exp(z/α)] (23)
= α[ϕ(z)− β]. (24)

Thus, we conclude that ALG1 is α-competitive for CFL.

B.3. Proof of Corollary 3.3

In this section, we prove Corollary 3.3, which shows that the worst-case competitive ratio of ALG1 for MAL is again upper
bounded by α as defined in (6).

Proof of Corollary 3.3. To show this result, we first prove a result stated in the main body, namely Lemma 2.2, which
states the following: For any MAL instance on a weighted star metric (X, d), there is a corresponding CFL instance on
(Rn−1, ∥·∥ℓ1(w′)) which preserves fat (·) ∀t, c(·) ∀a ∈ X , and upper bounds d(a, b) ∀(a, b) ∈ X .

Before the proof, we note that Bansal & Coester (2022) showed online metric allocation on a weighted star metric (X, d) is
identical to convex function chasing (with separable cost functions) on the normed vector space (∆n, ∥·∥ℓ1(w)), where ∆n

is the n-point simplex in Rn and ∥·∥ℓ1(w) is the weighted ℓ1 norm, with weights given by the corresponding edge weight in
the underlying star metric as follows:

∥x∥ℓ1(w) =
∑
a∈X

wa|xa|.

Proof of Lemma 2.2. Recall that by assumption, the MAL instance contains at least one OFF point denoted by a′ ∈ X in the
MAL instance, where ca

′
= 0. Without loss of generality, let the first dimension in ∆n correspond to this OFF point.

We define a linear map Φ : ∆n → Rn−1, where Φ has n− 1 rows and n columns, and is specified as follows:

Φi,j =

{
1 if j = i+1
0 otherwise

It is straightforward to see that Φx ∈ Rn−1, ∀x ∈ ∆n.

17

Chasing Convex Functions with Long-term Constraints

Recall that a CFL decision space is the ℓ1 ball defined by the long-term constraint function in Rn−1. For any MAL instance
with constraint function c(x) : ∆n → R, we can define a long-term constraint function c′(x′) : Rn−1 → R as follows. The
MAL constraint function c(x) is defined as ∥·∥ℓ1(c) for some vector c ∈ Rn−1. Then

c′ = Φc

c′(x′) = ∥x′∥ℓ1(c′) ∀x′ ∈ Rn−1

Furthermore, for any z ∈ [0, 1], let x ∈ ∆n : c(x) < 1− z. Then it follows that Φx is in Rn−1 : c′(x′) < 1− w.

Recall that cost functions in the MAL instance are convex and linearly separable as follows:

ft(x) =
∑
a∈X

fat (x
a)

Next, again letting x ∈ ∆n, note that the ith term in x is identical to the (i− 1)th term in Φx (excluding the first term in x).
Then we can construct cost functions in the CFL instance as follows:

f ′t(x
′) =

∑
i∈[n−1]

f i+1
t (xi)

Under the mapping Φ, note that it is straightforward to show that ft(x) = f ′t(Φx) for any x ∈ ∆n.

Finally, consider the distances in the MAL instance’s weighted star metric, which can be expressed as a weighted ℓ1 norm
defined by w, where the terms of w correspond to the weighted edges of the star metric. Recall that β := maxa′,a∥a′ −
a∥ℓ1(w), i.e., the maximum distance between the OFF point and any other point in the weighted star.

Then we define a corresponding distance metric in the CFL instance, which is an ℓ1 norm weighted by w′ ∈ Rn−1, which is
defined as follows:

w′i = wi+1 +w0.

Note that w0 is the edge weight associated with the OFF point. Then for any (x,y) ∈ ∆n, it is straightforward to show the
following:

∥x− y∥ℓ1(w) ≤ ∥Φx− Φy∥ℓ1(w′)

This follows since for any (x,y) ∈ ∆n where x0 = 0 and y0 = 0 (i.e., allocations which do not allocate anything to the
OFF point), ∥Φx− Φy∥ℓ1(w′) = ∥x− y∥ℓ1(w) + ∥x− y∥ℓ1 ·w0.

Conversely, if either x or y have x0 > 0 or y0 > 0, we have ∥x− y∥ℓ1(w) ≤ ∥Φx− Φy∥ℓ1(w′) ≤ ∥x− y∥ℓ1(w) + ∥x−
y∥ℓ1 ·w0. Finally, supposing that (without loss of generality) x has x0 = 1, we have that ∥x−y∥ℓ1(w) = ∥Φx−Φy∥ℓ1(w′).
Thus, ∥Φx− Φy∥ℓ1(w′) upper bounds ∥x− y∥ℓ1(w). Furthermore, the constructed distance metric preserves β, i.e. given
(a′, a) = argmaxa′,a∥a′ − a∥ℓ1(w), we have that ∥Φa′ − Φa∥ℓ1(w′) = β.

Next, we show that the transformation Φ is bijective. We define the affine map Φ−1 : Rn−1 → ∆n as follows: Φ−1 has n
rows and n− 1 columns, where the first row is all −1, and the bottom n rows are the n× n identity matrix. Let b ∈ Rn−1

denote the vector with b0 = 1 and all other terms are zero, i.e., bi = 0 ∀i ≥ 1.

For any x′ ∈ Rn−1 : c′(x′) ≤ 1, it is straightforward to show that Φ−1x′ + b is in ∆n, since by definition we have that∑
i∈[n+1]

(
Φ−1x′ + b

)
i
= 1. Furthermore, by definition of c′(x′), we have that c(Φ−1x′ + b) = c′(x′), because the ith

term (excluding the first term) of Φ−1x′ + b is identical to the (i− 1)th term of x′. Similarly, by definition of f ′t , we have
that ft(Φ−1x′ + b) = f ′t(x

′).

Finally, considering the distance metric, we have that for any (x′,y′) ∈ Rn−1 : c′(x′) ≤ 1:

∥(Φ−1x′ + b)− (Φ−1y′ + b)∥ℓ1(w) ≤ ∥x′ − y′∥ℓ1(w′).

This follows by considering that for any x′, Φ−1x′ + b adds a dimension (corresponding to the OFF point) and sets(
Φ−1x′ + b

)
= 1− ∥x′∥1. Then the distance between any two points which allocate a non-negative fraction to the OFF

18

Chasing Convex Functions with Long-term Constraints

point in ∆n is ≤ the distance in Rn−1 by definition of the weight vector w′, and the distance between e.g., the allocation
fully in the OFF point (a′) and any other allocation is exactly preserved.

Furthermore, note that if w0 = 0 (i.e., the weight of the OFF state in the weighted star metric is 0), Φ is a bijective isometry
between (∆n, ∥·∥ℓ1(w)) and (Rn−1, ∥·∥ℓ1(w′)).

The transformation defined by Φ in Lemma 2.2 allows us to put decisions on the CFL instance (Rn−1, ∥·∥ℓ1(w′)) in
one-to-one correspondence with decisions in (∆n, ∥·∥ℓ1(w)).

Below, we formalize this by proving a result stated in the main body (Proposition 2.3) which states the following: Given an
algorithm ALG for CFL, any performance bound on ALG which assumes OPT does not pay any switching cost will translate
to an identical performance bound for MAL whose parameters depend on the corresponding CFL instance constructed
according to Lemma 2.2.

Proof of Proposition 2.3. The cost of ALG on the CFL instance is an upper bound on the cost of the ALG’s decisions mapped
into the MAL instance. This follows since the cost functions are preserved exactly between the two instances, the long-term
constraint function is preserved exactly, and the CFL switching cost is by definition an upper bound on the MAL switching
cost.

If the CFL performance bound assumes that OPT does not pay any switching cost (e.g., as in Theorem 3.2), lower bounding
the cost of OPT on the CFL instance is equivalent to lower bounding the cost of OPT on the MAL instance, as the cost
functions and constraint functions are preserved exactly.

Thus, we have that any such performance bound for ALG on the CFL instance constructed appropriately (as in Lemma 2.2)
immediately gives an identical performance bound for the MAL instance, yielding the result.

By Lemma 2.2, we have that since ALG1 is α-competitive for CFL (Theorem 3.2), ALG1 is α-competitive for any CFL
instance constructed based on a MAL instance. Furthermore, by Proposition 2.3, ALG1 is also α-competitive on the
underlying MAL instance, where α is given by (6).

B.4. Proof of Theorem 3.4

In this section, we prove Theorem 3.4, which shows that α as given by (6) is the best competitive ratio achievable for CFL.

To show this lower bound, we first define a family of special adversaries, and then show that the competitive ratio for any
deterministic algorithm is lower bounded under the instances provided by these adversaries.

Prior work has shown that difficult instances for online search problems with a minimization objective occur when inputs
arrive at the algorithm in an decreasing order of cost (El-Yaniv et al., 2001; Lorenz et al., 2008; Sun et al., 2021b; Lechowicz
et al., 2023). For CFL, we additionally consider how an adaptive adversary can essentially force an algorithm to incur a
large switching cost in the worst-case. We now formalize such a family of adversaries {Ay}y∈[L,U], where Ay is called a
y-adversary.

Definition B.4 (y-adversary for CFL). Let w,m ∈ Z be sufficiently large, and δ := (U−L)/w.

Without loss of generality, let k = argmaxi∈[d] wi, where w is the weight vector for ∥·∥ℓ1(w), and let β = maxi∈[d] wi.
For y ∈ [L,U], an adaptive adversary Ay sequentially presents two types of cost functions ft(·) to both ALG and OPT.

These types of cost functions are Up(x) = U1x⊺, and Downi(x) =
∑d

j ̸=k Uxj + (U − iδ)xk.

The adversary sequentially presents cost functions from these two types in an alternating, “continuously decreasing” order.
Specifically, they start by presenting cost function Up(x), up to m times.

Then, they present Down1(x), which has linear cost coefficient U in every direction except direction k, which has cost
coefficient (U − 1 · δ). Down1(x) is presented up to m times. If ALG ever “accepts” a cost function Down1(x) (i.e., if ALG
makes a decision x where c(x) > 0), the adaptive adversary immediately presents Up(x) starting in the next time step until
either ALG moves to the origin (i.e. online decision x = 0) or ALG’s utilization z = 1.

The adversary continues alternating in this manner, presenting Down2(x) up to m times, followed by Up(x) if ALG accepts
anything, followed by Down3(x) up to m times, and so on. This continues until the adversary presents Downwy (x), where

19

Chasing Convex Functions with Long-term Constraints

y := (U − wyδ), up to m times. After presenting Downwy (x), Ay will present Up(x) until either ALG moves to the origin
or has utilization z = 1. Finally, the adversary presents exactly m cost functions of the form

∑d
j ̸=k Uxj + (y + ε)xk,

followed by m cost functions Up(x).

The mechanism of this adaptive adversary is designed to present “good cost functions” (i.e., Downi(x)) in a worst-case
decreasing order, interrupted by blocks of “bad cost functions” Up(x) which force a large switching cost in the worst case.

AU is simply a stream of m cost functions U , and the final cost functions in any y-adversary instance are always Up(x).

Proof of Theorem 3.4. Let g(y) denote a conversion function [L,U] → [0, 1], which fully describes the progress towards
the long-term constraint (before the compulsory trade) of a deterministic ALG playing against adaptive adversary Ay . Note
that for large w, the adaptive adversary Ay−δ is equivalent to first playing Ay (besides the last two batches of cost functions),
and then processing batches with cost functions Downwy+1(x) and Up(x). Since ALG is deterministic and the conversion is
unidirectional (irrevocable), we must have that g(y − δ) ≥ g(y), i.e. g(y) is non-increasing in [L,U]. Intuitively, the entire
capacity should be satisfied if the minimum possible price is observed, i.e g(L) = 1.

Note that for ε → 0, the optimal solution for adversary Ay is OPT(Ay) = y + 2β/m, and for m sufficiently large,
OPT(Ay) → y.

Due to the adaptive nature of each y-adversary, any deterministic ALG incurs a switching cost proportional to g(y), which
gives the amount of utilization obtained by ALG before the end of Ay’s sequence.

Whenever ALG accepts some cost function with coefficient U − iδ in direction k, the adversary presents Up(x) starting in
the next time step. Any ALG which does not switch away immediately obtains a competitive ratio strictly worse than an
algorithm which does switch away (if an algorithm accepts c fraction of a good price and switches away immediately, the
switching cost it will pay is 2βc. An algorithm may continue accepting c fraction of coefficient U in the subsequent time
steps, but a sequence exists where this decision will take up too much utilization to recover when better cost functions are
presented later. In the extreme case, if an algorithm continues accepting c fraction of these U coefficients, it might fill its
utilization and then OPT can accept a cost function which is arbitrarily better).

Since accepting any price by a factor of c incurs a switching cost of 2βc, the switching cost paid by ALG on adversary Ay is
2βg(y). We assume that ALG is notified of the compulsory trade, and does not incur a significant switching cost during the
final batch.

Then the total cost incurred by an α⋆-competitive online algorithm ALG on adversary Ay is ALG(Ay) = g(U/α⋆)U/α⋆ −∫ y
U/α⋆ udg(u) + 2βg(y) + (1 − g(y))U , where udg(u) is the cost of buying dg(u) utilization at cost coefficient u, the

last term is from the compulsory trade, and the second to last term is the switching cost incurred by ALG. Note that any
deterministic ALG which makes conversions when the price is larger than U/α⋆ can be strictly improved by restricting
conversions to prices ≤ U/α⋆.

For any α⋆-competitive online algorithm, the corresponding conversion function g(·) must satisfy ALG(Ay) ≤ α⋆OPT(Ay) =
α⋆y, ∀y ∈ [L,U]. This gives a necessary condition which the conversion function must satisfy as follows:

ALG(Ay) = g(U/α⋆)U/α⋆ −
∫ y

U/α⋆

udg(u) + 2βg(y) + (1− g(y))U ≤ α⋆y, ∀y ∈ [L,U].

By integral by parts, the above implies that the conversion function must satisfy g(y) ≥ U−α⋆y
U−y−2β − 1

U−y−2β

∫ y
U/α⋆ g(u)du.

By Grönwall’s Inequality (Mitrinovic et al., 1991, Theorem 1, p. 356), we have that

g(y) ≥ U − α⋆y

U − y − 2β
− 1

U − y − 2β

∫ y

U/α⋆

U − α⋆u

U − u− 2β
· exp

(∫ y

u

1

U − r − 2β
dr

)
du

≥ U − α⋆y

U − y − 2β
−
∫ y

U/α⋆

U − α⋆u

(U − u− 2β)2
du

≥ U − α⋆y

U − y − 2β
−
[
Uα⋆ − U − 2βα⋆

u+ 2β − U
− α⋆ ln (u+ 2β − U)

]y
U/α⋆

≥ α⋆ ln (y + 2β − U)− α⋆ ln (U/α⋆ + 2β − U) , ∀y ∈ [L,U].

20

Chasing Convex Functions with Long-term Constraints

g(L) = 1 by the problem definition – we can combine this with the above constraint to give the following condition for an
α⋆-competitive online algorithm:

α⋆ ln (L+ 2β − U)− α⋆ ln (U/α⋆ + 2β − U) ≤ g(L) = 1.

The optimal α⋆ is obtained when the above inequality is binding, so solving for the value of α⋆ which solves
α⋆ ln (L+ 2β − U) − α⋆ ln (U/α⋆ + 2β − U) = 1 yields that the best competitive ratio for any ALG solving CFL is

α⋆ ≥
[
W

(
e
2β/U (L/U+2β/U−1)

e

)
− 2β

U + 1

]−1

.

B.5. Proof of Corollary 3.5

In this section, we prove Corollary 3.5, which shows that α as given by (6) is the best competitive ratio achievable for MAL.

To show this lower bound, we build off of the family of adversaries in Definition B.4, which are designed to force an
algorithm to incur a large switching cost while satisfying the long-term constraint. In Definition B.5 we define this family of
adversarial instances tailored for MAL.

Definition B.5 (y-adversary for MAL). Let w,m ∈ Z be sufficiently large, and δ := (U−L)/w.

Recall that w denotes the vector of edge weights for each point in the weighted star metric X , and the OFF point is defined
(without loss of generality) as the point a′ ∈ X where ca

′
= 0 and fa

′

t (xa) = 0∀t ∈ [T], ∀xa ∈ [0, 1]. We will assume that
ca = 1 ∀a ∈ X : a ̸= a′.

Then we set wa′
= 0, i.e., the OFF point is connected to the interior vertex of the weighted star with an edge of weight 0.

Without loss of generality, we let k = argmaxa∈[n] w
a denote the largest edge weight of any other (non-OFF) point in the

metric. By definition, recall that β = wk.

For y ∈ [L,U], an adaptive adversary Ay sequentially presents two different sets of cost functions fat (·) at each point in the
metric space.

These sets of cost functions are Up = {fa(x) = Uxa ∀a ∈ X\{a′}}, and Downi = {fk(xk) = (U−iδ)xk}∩{fa(xa) =
Uxa ∀a ∈ X \ {a′, k}}. Note that the adversary only ever presents cost functions with a coefficient < U at the point k
which corresponds to the largest edge weight.

The adversary sequentially presents either of these two sets of cost functions in an alternating, “continuously decreasing”
order. Specifically, they start by presenting Up, up to m times.

Then, they present Down, which has cost coefficient U in every point except point k, which has cost coefficient (U − 1 · δ).
Down1 is presented up to m times. If ALG ever “accepts” a cost function in Down1 (i.e., if ALG makes a decision x where
c(x) > 0), the adaptive adversary immediately presents Up starting in the next time step until either ALG moves entirely to
the OFF point (i.e. online decision xa

′
= 1) or ALG’s utilization z = 1.

The adversary continues alternating in this manner, presenting Down2 up tom times, followed by Up if ALG accepts anything,
followed by Down3 up to m times, and so on. This continues until the adversary presents Downwy , where y = (U − wyδ),
up to m times. After presenting Downwy , Ay will present Up(x) until either ALG moves to the OFF point or has utilization
z = 1. Finally, the adversary presents the set of cost functions {fk(xk) = (y+ε)xk}∩{fa(xa) = Uxa ∀a ∈ X \{a′, k}}
m times, followed by Up m times.

The mechanism of this adaptive adversary is designed to present “good cost functions” (i.e., Downi) in a worst-case
decreasing order, interrupted by blocks of “bad cost functions” Up which force a large switching cost in the worst case.

As in Theorem 3.4, AU is simply a stream of m Up sets of cost functions, and the final cost functions in any y-adversary
instance are always Up.

Proof of Corollary 3.5. As previously, we let g(y) denote a conversion function [L,U] → [0, 1], which fully describes the
progress towards the long-term constraint (before the compulsory trade) of a deterministic ALG playing against adaptive
adversary Ay . Since ALG is deterministic and the conversion is unidirectional (irrevocable), g(y) is non-increasing in [L,U].
Intuitively, the entire long-term constraint should be satisfied if the minimum possible price is observed, i.e g(L) = 1. For
ε→ 0, the optimal solution for adversary Ay is OPT(Ay) = y + 2β/m, and for m sufficiently large, OPT(Ay) → y.

21

Chasing Convex Functions with Long-term Constraints

As in Theorem 3.4, the adaptive nature of each y-adversary forces any deterministic ALG to incur a switching cost of 2βg(y)
on adversary Ay , and we assume that ALG does not incur a significant switching cost during the final batch (i.e., during the
compulsory trade).

Then the total cost incurred by an α⋆-competitive online algorithm ALG on adversary Ay is ALG(Ay) = g(U/α⋆)U/α⋆ −∫ y
U/α⋆ udg(u) + 2βg(y) + (1 − g(y))U , where udg(u) is the cost of buying dg(u) utilization at cost coefficient u, the

last term is from the compulsory trade, and the second to last term is the switching cost incurred by ALG. Note that this
expression for the cost is exactly as defined in Theorem 3.4.

Thus by Theorem 3.4, for any α⋆-competitive online algorithm, the conversion function g(·) must satisfy ALG(Ay) ≤
α⋆OPT(Ay) = α⋆y, ∀y ∈ [L,U]. Via integral by parts and Grönwall’s Inequality (Mitrinovic et al., 1991, Theorem 1, p.
356), we have the following condition on g(y):

g(y) ≥ α⋆ ln (y + 2β − U)− α⋆ ln (U/α⋆ + 2β − U) , ∀y ∈ [L,U].

g(L) = 1 by the problem definition – combining this with the previous condition gives the following condition for an
α⋆-competitive online algorithm:

α⋆ ln (L+ 2β − U)− α⋆ ln (U/α⋆ + 2β − U) ≤ g(L) = 1.

As in Theorem 3.4, the optimal α⋆ is obtained when the above inequality is binding, yielding that the best competitive ratio

for any ALG solving MAL is α⋆ ≥
[
W

(
e
2β/U (L/U+2β/U−1)

e

)
− 2β

U + 1

]−1

.

C. Proofs for Section 4 (Learning-Augmentation)
C.1. Proof of Lemma 4.1

In this section, we prove Lemma 4.1, which shows that the baseline fixed-ratio combination algorithm (Baseline) is
(1 + ϵ)-consistent and

(
(U+2β)/L(α−1−ϵ)+αϵ

(α−1)

)
-robust for CFL, given any ϵ ∈ [0, α − 1] and where α is as defined in (6).

Recall that Lemma 4.1 specifies ALG1 as the “robust algorithm” to use for the following analysis.

Proof of Lemma 4.1. Under the assumption that ADV satisfies the long-term constraint, (i.e., that
∑T

t=1 c(at) ≥ 1), we first
observe that the online solution of Baseline must also satisfy the long-term constraint.

Under the assumptions of CFL, note that c(x) is linear (i.e., a weighted ℓ1 norm with weight vector c). By definition,
denoting the decisions of ALG1 by x̃t, we know that

∑T
t=1 c(x̃t) ≥ 1.

Thus, we have the following:

T∑
t=1

c(xt) =
T∑

t=1

c (λat + (1− λ)x̃t) = λ
T∑

t=1

c(at) + (1− λ)
T∑

t=1

c (x̃t) ≥ λ+ (1− λ) = 1.

Let I ∈ Ω be an arbitrary valid CFL sequence. We denote the hitting and switching costs of the robust advice by ALG1hitting
and ALG1switch, respectively. Likewise, the hitting and switching cost of the black-box advice ADV is denoted by ADVhitting
and ADVswitch.

22

Chasing Convex Functions with Long-term Constraints

The total cost of Baseline is upper bounded by the following:

Baseline(I) =
T∑

t=1

ft(xt) +
T+1∑
t=1

∥xt − xt−1∥ℓ1(w),

=
T∑

t=1

ft (λat + (1− λ)x̃t) +
T+1∑
t=1

∥λat + (1− λ)x̃t − λat−1 − (1− λ)x̃t−1∥ℓ1(w),

≤ λ
T∑

t=1

ft(at) + (1− λ)
T∑

t=1

ft(x̃t) +
T+1∑
t=1

∥λat − λat−1∥ℓ1(w) +
T+1∑
t=1

∥(1− λ)x̃t − (1− λ)x̃t−1∥ℓ1(w),

≤ λADVhitting(I) + (1− λ)ALG1hitting(I) + λ
T+1∑
t=1

∥at − at−1∥ℓ1(w) + (1− λ)
T+1∑
t=1

∥x̃t − x̃t−1∥ℓ1(w),

≤ λADVhitting(I) + (1− λ)ALG1hitting(I) + λADVswitch(I) + (1− λ)ALG1switch(I),
≤ λADV(I) + (1− λ)ALG1(I).

Since ALG1 ≤ α · OPT ≤ α · ADV, this gives the following:

Baseline(I) ≤ λADV(I) + (1− λ)αADV(I), (25)
Baseline(I) ≤ (λ+ (1− λ)α) · ADV(I) (26)
Baseline(I) ≤ (1 + ϵ) · ADV(I). (27)

Furthermore, since ADV ≤ U + 2β ≤ OPT
L/(U+2β)

, we have:

Baseline(I) ≤ λ
OPT(I)
L/(U+2β)

+ (1− λ)αOPT(I), (28)

Baseline(I) ≤
[
λ(U + 2β)

L
+ (1− λ)α

]
· OPT(I), (29)

Baseline(I) ≤
(

(U+2β)/L(α− 1− ϵ) + αϵ

(α− 1)

)
· OPT(I). (30)

By combining (27) and (30), we conclude that Baseline is (1 + ϵ)-consistent with respect to black-box advice ADV, and(
(U+2β)/L(α−1−ϵ)+αϵ

(α−1)

)
-robust.

C.2. Proof of Theorem 4.3

In this section, we prove Theorem 4.3, which shows that CLIP is (1 + ϵ)-consistent and γϵ-robust for CFL, where γϵ is
defined as the solution to the following (as in (10)):

γϵ = ϵ+
U

L
− γϵ

L
(U − L) ln

(
U − L− 2β

U − U/γϵ − 2β

)
.

Proof of Theorem 4.3. We show the above result by separately considering consistency (the competitive ratio when advice
is correct) and robustness (the competitive ratio when advice is not correct) in turn.

Recall that the black-box advice ADV is denoted by a decision at at each time t. Throughout the following proof, we use
shorthand notation CLIPt to denote the cost of CLIP up to time t, and ADVt to denote the cost of ADV up to time t. We start
with the following lemma to prove consistency.

Lemma C.1. CLIP is (1 + ϵ)-consistent.

Proof. First, we note that the constrained optimization enforces that the possible cost so far plus a compulsory term is
always within (1 + ϵ) of the advice. Formally, if time step j ∈ [T] denotes the time step marking the start of the compulsory
trade, we have that the constraint given by (8) holds for every time step t ∈ [j].

23

Chasing Convex Functions with Long-term Constraints

Thus, to show (1 + ϵ) consistency, we must resolve the cost during the compulsory trade and show that the final cumulative
cost of CLIP is upper bounded by (1 + ϵ)ADV.

Let I ∈ Ω be an arbitrary valid CFL sequence. If the compulsory trade begins at time step j < T , both CLIP and ADV must
greedily fill their remaining utilization during the last m time steps [j, T]. This is assumed to be feasible, and the switching
cost is assumed to be negligible as long as m is sufficiently large.

Let (1 − z(j−1)) denote the remaining long-term constraint that must be satisfied by CLIP at the final time step, and let
(1−A(j−1)) denote the remaining long-term constraint to be satisfied by ADV.

We consider the following two cases, which correspond to the cases where CLIP has under- and over- provisioned with
respect to ADV, respectively.

Case 1: CLIP(I) has “underprovisioned” ((1− z(j−1)) > (1−A(j−1))). In this case, CLIP must satisfy more of the
long-term constraint during the compulsory trade compared to ADV.

From the previous time step, we know that the following constraint holds: CLIPj−1+ ∥xj−1−aj−1∥ℓ1(w)+ ∥aj−1∥ℓ1(w)+

(1−A(j−1))L+ (A(j−1) − z(j−1))U ≤ (1 + ϵ)
[
ADVj−1 + ∥aj−1∥ℓ1(w) + (1−A(j−1))L

]
.

Let {xt}t∈[j,T] and {at}t∈[j,T] denote the decisions made by CLIP and ADV during the compulsory trade, respectively. By
definition, we have that

∑T
t=j c(xt) = (1− z(j−1)) and

∑T
t=j c(at) = (1−A(j−1)).

Considering {ft(·)}t∈[j,T], we know that by definition
∑T

t=j ft(at) ≥ L
∑T

t=j c(at), and by convex assumptions on the

cost functions,
∑T

t=j ft(xt) ≤
∑T

t=j ft(at) + U(
∑T

t=j c(xt)−
∑T

t=j c(at)).

Note that the worst case for CLIP occurs when
∑T

t=j ft(at) = L
∑T

t=j c(at), as ADV is able to satisfy the rest of the
long-term constraint at the best possible price.

By the constraint in the previous time step, we have the following:

CLIPj−1 + ∥aj−1∥ℓ1(w) + (1−A(j−1))L+ (A(j−1) − z(j−1))U

≤ (1 + ϵ)[ADVj−1 + ∥aj−1∥ℓ1(w) + (1−A(j−1))L],

CLIPj−1 + ∥aj−1∥ℓ1(w) + L

T∑
t=j

c(at) + U

 T∑
t=j

c(xt)−
T∑

t=j

c(at)


≤ (1 + ϵ)

ADVj−1 + ∥aj−1∥ℓ1(w) + L
T∑

t=j

c(at)

 ,
CLIP(I) ≤ (1 + ϵ) [ADV(I)] .

Case 2: CLIP(I) has “overprovisioned” ((1 − z(j−1)) ≤ (1 − A(j−1))). In this case, CLIP must satisfy less of the
long-term constraint during the compulsory trade compared to ADV.

From the previous time step, we know that the following constraint holds: CLIPj−1+ ∥xj−1−aj−1∥ℓ1(w)+ ∥aj−1∥ℓ1(w)+

(1−A(j−1))L+ (A(j−1) − z(j−1))U ≤ (1 + ϵ)
[
ADVj−1 + ∥aj−1∥ℓ1(w) + (1−A(j−1))L

]
.

Let {xt}t∈[j,T] and {at}t∈[j,T] denote the decisions made by CLIP and ADV during the compulsory trade, respectively. By
definition, we have that

∑T
t=j c(xt) = (1− z(j−1)) and

∑T
t=j c(at) = (1−A(j−1)).

Considering {ft(·)}t∈[j,T], we know that by definition,
∑T

t=j ft(xt) ≥ L
∑T

t=j c(xt), and
∑T

t=j ft(at) ≥ L
∑T

t=j c(at).

By convexity, because
∑T

t=j c(xt) ≤
∑T

t=j c(at),
∑T

t=j ft(xt) ≤
∑T

t=j ft(at).

24

Chasing Convex Functions with Long-term Constraints

By the constraint in the previous time step, we have:

CLIPj−1 + ∥xj−1 − aj−1∥ℓ1(w) + ∥aj−1∥ℓ1(w) + (1− z(j−1))L

ADVj−1 + ∥aj−1∥ℓ1(w) + (1−A(j−1))L
=

CLIPj−1 + ∥xj−1 − aj−1∥ℓ1(w) + ∥aj−1∥ℓ1(w) + L
∑T

t=j c(xt)

ADVj−1 + ∥aj−1∥ℓ1(w) + L
∑T

t=j c(at)
≤ (1 + ϵ).

Let y =
∑T

t=j ft(xt)− L
∑T

t=j c(xt), and let y′ =
∑T

t=j ft(at)− L
∑T

t=j c(at). By definition, y ≥ 0 and y′ ≥ 0.

Note that CLIPj−1 + ∥xj−1 − aj−1∥ℓ1(w) + ∥aj−1∥ℓ1(w) + (1− z(j−1))L+ y ≥ CLIP(I) and ADVj−1 + ∥aj−1∥ℓ1(w) +

L
∑T

t=j c(at) + y′ = ADV(I).

Furthermore, by definition and convexity of the cost functions ft(·), we have that y ≤ y′.

Combined with the constraint from the previous time step, we have the following bound:

CLIP(I)
ADV(I)

≤
CLIPj−1 + ∥xj−1 − aj−1∥ℓ1(w) + ∥aj−1∥ℓ1(w) + (1− z(j−1))L+ y

ADVj−1 + ∥aj−1∥ℓ1(w) + (1−A(j−1))L+ y′

≤
CLIPj−1 + ∥aj−1∥ℓ1(w) + L

∑T
t=j c(xt)

ADVj−1 + ∥aj−1∥ℓ1(w) + L
∑T

t=j c(at)
≤ (1 + ϵ).

Thus, by combining the bounds in each of the above two cases, the result follows, and we conclude that CLIP is (1 + ϵ)-
consistent with accurate advice.

Having proved the consistency of CLIP, we proceed to show robustness in the next lemma.

Lemma C.2. CLIP is γϵ-robust, where γϵ is as defined in (10).

Proof. Let ϵ ∈ (0, α − 1] be the target consistency (recalling that CLIP is (1 + ϵ) consistent), and let I ∈ Ω denote an
arbitrary valid CFL sequence.

To prove the robustness of CLIP, we consider two “bad cases” for the advice ADV(I), and show that in the worst-case,
CLIP’s competitive ratio is bounded by γϵ.

Case 1: ADV(I) is “inactive”. Consider the case where ADV accepts nothing during the main sequence and instead satisfies
the entire long-term constraint in the final time step. In the worst-case, this gives that ADV(I) = U + 2β.

Based on the consistency constraint (and using the fact that CLIP will always be “overprocuring” w.r.t. ADV throughout the
main sequence), we can derive an upper bound on the amount that CLIP is allowed to accept from the robust pseudo-cost
minimization. Recall the following constraint:

CLIPt−1 + ft(xt) + ∥xt − xt−1∥ℓ1(w) + ∥xt − at∥ℓ1(w) + ∥at∥ℓ1(w) + (1− z(t−1) − c(xt))L

≤ (1 + ϵ)
[
ADVt + ∥at∥ℓ1(w) + (1−A(t))L

]
.

Proposition C.3. zPCM is an upper bound on the amount that CLIP can accept from the pseudo-cost minimization without
violating (1 + ϵ) consistency, and is defined as:

zPCM = γϵ ln

[
U − L− 2β

U − U/γϵ − 2β

]
Proof. Consider an arbitrary time step t. When CLIP is not allowed to accept anything more from the robust pseudo-cost
minimization, we have that c(xt) is restricted to be 0 (recall that at = 0 for any time steps before T , because the advice is
assumed to be inactive).

25

Chasing Convex Functions with Long-term Constraints

By definition, since any cost functions accepted in CLIPt−1 can be attributed to the robust pseudo-cost minimization, we
have the following in the worst-case:

CLIPt−1 =

∫ z(t−1)

0

ϕϵ(u)du+ βz(t−1).

Combining the above with the left-hand side of the consistency constraint, we have the following by observing that xt = 0
and at = 0, and the switching cost to “ramp-up” is absorbed into the pseudo-cost ϕ:

CLIPt−1 + (1− z(t−1))L =

∫ z(t−1)

0

ϕϵ(u)du+ βz(t−1) + (1− z(t−1))L.

As stated, let z(t−1) = zPCM. Then by properties of the pseudo-cost,

CLIPt−1 + (1− zPCM)L =

∫ zPCM

0

ϕ(u)du+ βzPCM + (1− zPCM)U + (1− zPCM)L− (1− zPCM)U,

= γϵ [ϕϵ(zPCM)− β] + (1− zPCM)L− (1− zPCM)U,

= γϵL+ (L− U)

(
1− γϵ ln

[
U − L− 2β

U − U/γϵ − 2β

])
,

= γϵL+ L− U − (L− U) γϵ ln

[
U − L− 2β

U − U/γϵ − 2β

]
.

Substituting for the definition of γϵ, we obtain:

CLIPt−1 + (1− zPCM)L = γϵL+ L− U − (L− U) γϵ ln

[
U − L− 2β

U − U/γϵ − 2β

]
,

=

[
ϵL+ U − γϵ(U − L) ln

[
U − L− 2β

U − U/γϵ − 2β

]]
+ L− U + (U − L) γϵ ln

[
U − L− 2β

U − U/γϵ − 2β

]
,

= ϵL+ L = (1 + ϵ)L.

As (1 + ϵ)L is exactly the right-hand side of the consistency constraint (i.e., (1 + ϵ)
[
ADVt + ∥at∥ℓ1(w) + (1−At)L

]
=

(1 + ϵ)L), this completes the proposition.

If CLIP is constrained to use at most zPCM of its utilization to be robust, the remaining (1 − zPCM) utilization must be
used for the compulsory trade and/or to follow ADV. Thus, we have the following worst-case competitive ratio for CLIP,
specifically for Case 2:

CLIP(I)
OPT(I)

≤
∫ zPCM

0
ϕϵ(u)du+ βzPCM + (1− zPCM)U

L

By the definition of ϕϵ(p), we have the following:

CLIP(I)
OPT(I)

≤
∫ zPCM

0
ϕϵ(u)du+ βzPCM + (1− zPCM)U

L

≤ γϵ [ϕϵ(zPCM)− β]

L
≤ γϵ [L+ β − β]

L
≤ γϵ.

Case 2: ADV(I) is “overactive”. We now consider the case where ADV accepts bad cost functions which it “should not”
accept (i.e. ADV(I) ≫ OPT(I)). Let ADV(I) = v ≫ OPTT (i.e. the final total hitting and switching cost of ADV is v for some
v ∈ [L,U + 2β], and this is much greater than the optimal solution).

26

Chasing Convex Functions with Long-term Constraints

This is without loss of generality, since we can assume that v is the “best cost function” accepted by ADV and the consistency
ratio changes strictly in favor of ADV. Based on the consistency constraint, we can derive a lower bound on the amount that
CLIP must accept from ADV in order to stay (1 + ϵ)-consistent.

To do this, we consider the following sub-cases:

• Sub-case 2.1: Let v ≥ U+β
1+ϵ .

In this sub-case, CLIP can fully ignore the advice, because the following consistency constraint is never binding (note that
ADVt ≥ U+β

1+ϵ A
(t)):

CLIPt−1 + ft(xt) + ∥xt − xt−1∥ℓ1(w) + ∥xt − at∥ℓ1(w) + ∥at∥ℓ1(w) + (1−A(t))L+ (A(t) − z(t−1) − c(xt))U

≤ (1 + ϵ)
[
ADVt + ∥at∥ℓ1(w) + (1−A(t))L

]
,

(1−A(t))L+ (A(t))U + ∥at∥ℓ1(w) ≤ (1 + ϵ)
[
ADVt + ∥at∥ℓ1(w) + (1−A(t))L

]
,

(1−A(t))L+ UA(t) + βA(t) ≤ (1 + ϵ)

[
U + β

1 + ϵ
A(t) + (1−A(t))L

]

• Sub-case 2.2: Let v ∈ (L, U+β
1+ϵ).

To remain (1 + ϵ) consistent, CLIP must accept some of these “bad cost functions” denoted by v in the worst-case. We
would like to derive a lower bound zADV, such that zADV describes the minimum amount that CLIP must accept from ADV in
order to always satisfy the (1 + ϵ) consistency constraint.

Based on the consistency constraint, we have the following:

CLIPt−1 + ft(xt) + ∥xt − xt−1∥ℓ1(w) + ∥xt − at∥ℓ1(w) + ∥at∥ℓ1(w) + (1−A(t))L+ (A(t) − z(t−1) − c(xt))U

≤ (1 + ϵ)
[
ADVt + ∥at∥ℓ1(w) + (1−A(t))L

]
.

We let ft(xt) + ∥xt − xt−1∥ℓ1(w) + ∥xt − at∥ℓ1(w) + ∥at∥ℓ1(w) ≤ vc(xt) for any xt : c(xt) < c(at), which holds by
convexity of the cost functions ft(·) and a prevailing condition that c(xt) ≤ c(at) for the “bad cost functions” accepted by
ADV. Note that v − U is negative (by the condition of Sub-case 2.2):

CLIPt−1 + vc(xt) + L− LA(t) + UA(t) − Uz(t−1) − Uc(xt) ≤ (1 + ϵ)
[
vA(t−1) + vc(at) + L− LA(t)

]
,

vc(xt)− Uc(xt) ≤ (1 + ϵ)
[
vA(t−1) + vc(at) + L− LA(t)

]
− CLIPt−1 − L+ LA(t) − UA(t) + Uz(t−1),

vc(xt)− Uc(xt) ≤ vA(t) − UA(t) − CLIPt−1 + Uz(t−1) + ϵ
[
vA(t−1) + vc(at) + L− LA(t)

]
,

c(xt) ≥
vA(t) − UA(t) − CLIPt−1 + Uz(t−1) + ϵ

[
vA(t) + L− LA(t)

]
v − U

.

In the event that A(t−1) = 0 (i.e. nothing has been accepted so far by either ADV or CLIP), we have the following:

c(xt) ≥
vc(at)− Uc(at) + ϵ [vc(at) + L− Lc(at)]

v − U
,

c(xt) ≥ c(at)−
ϵ [vc(at) + L− Lc(at)]

U − v
.

Through a recursive definition, we can show that for any A(t), given that CLIP has accepted z(t−1) of ADV’s suggested prices
so far, it must set xt such that:

z(t) ≥ z(t−1) + c(at)−
ϵ [vc(at) + L− Lc(at)]

U − v
.

27

Chasing Convex Functions with Long-term Constraints

Continuing the assumption that v is constant, if CLIP has accepted z(t−1) thus far, we have the following if we assume that
the acceptance up to this point happened in a single previous time step m:

c(xt) ≥ A(t) +
Uc(xm)− CLIPt−1 + ϵ

[
vA(t) + L− LA(t)

]
v − U

,

c(xt) ≥ c(at) + c(am) +
Uc(xm)− vc(xm) + ϵ [v(c(at) + c(am)) + L− L(c(at) + c(am))]

v − U
,

c(xt) ≥ c(at) + c(am)− xm +
ϵ [v(c(at) + c(am)) + L− L(c(at) + c(am))]

v − U
,

c(xt) + c(xm) ≥ c(at) + c(am) +
ϵ [v(c(at) + c(am)) + L− L(c(at) + c(am))]

v − U
,

z(t) ≥ A(t) +
ϵ
[
vA(t) + L− LA(t)

]
v − U

.

This gives intuition into the desired zADV bound. The above describes and motivates that the aggregate acceptance by CLIP

at any given time step t must satisfy a lower bound. Consider that the worst case for Sub-case 2.2 occurs when all of the v
prices accepted by ADV arrive first, before any prices which would be considered by the pseudo-cost minimization. Then let
A(t) = 1 for some arbitrary time step t, and we have the following lower bound on zADV:

zADV ≥ 1− vϵ

U − v
.

If CLIP is forced to use zADV of its utilization to be (1 + ϵ) consistent against ADV, that leaves at most (1− zADV) utilization
for robustness.

We define z′ = min(1− zADV, zPCM) and consider the following two cases.

• Sub-case 2.2.1: if z′ = zPCM, the worst-case competitive ratio is bounded by the following. Note that if z′ = zPCM, the
amount of utilization that CLIP can use to “be robust” is exactly the same as in Case 1:

CLIP(I)
OPT(I)

≤
∫ zPCM

0
ϕ(u)du+ βzPCM + (1− zADV − zPCM)U + zADVv

L
,

≤
∫ zPCM

0
ϕ(u)du+ βzPCM + (1− zPCM)U

L
≤ γϵ.

• Sub-case 2.2.2: if z′ = 1− zADV, the worst-case competitive ratio is bounded by the following. Note that CLIP cannot use
zPCM of its utilization for robustness, so the following bound assumes that the cost functions accepted by CLIP are bounded
by the worst (1 − zADV) fraction of the pseudo-cost threshold function ϕϵ (which follows since ϕϵ is non-decreasing on
z ∈ [0, 1]):

CLIP(I)
OPT(I)

≤
∫ 1−zADV
0

ϕ(u)du+ β(1− zADV) + zADVv

L
.

Note that if z′ = 1− zADV, we know that 1− zADV < zPCM, which further gives the following by definition of zADV:

1− zPCM < 1− vϵ

U − v
,

vϵ < (U − v)zPCM,

v <
U

(1 + ϵ
zPCM

)
.

28

Chasing Convex Functions with Long-term Constraints

By plugging v back into the definition of zADV, we have that zADVv ≤
(

(1−zPCM)U
1+ ε

zPCM

)
, giving the following:

CLIP(I)
OPT(I)

≤

∫ 1−zADV
0

ϕ(u)du+ β(1− zADV) +

(
(1−zPCM)U
1+ ϵ

zPCM

)
L

,

≤
∫ zPCM

0
ϕ(u)du+ βzPCM + (1− zPCM)U

L
≤ γϵ.

Thus, by combining the bounds in each of the above two cases, the result follows, and we conclude that CLIP is γϵ-robust
for any advice ADV.

Having proven Lemma C.1 (consistency) and Lemma C.2 (robustness), the statement of Theorem 4.3 follows – CLIP is
(1 + ϵ)-consistent and γϵ-robust given any advice for CFL.

C.3. Proof of Corollary 4.4

In this section, we prove Corollary 4.4, which shows that CLIP is (1 + ϵ)-consistent and γϵ-robust for MAL, where γϵ is
defined in (10).

Proof of Corollary 4.4. We show the above result by separately considering consistency (the competitive ratio when advice
is correct) and robustness (the competitive ratio when advice is not correct), relying on the proof of Theorem 4.3.

Consistency. By definition, MAL on a weighted star metric is identical to an instance of convex function chasing with a
long-term constraint on (∆n, ∥·∥ℓ1(w′)), where ∆n is the n-point simplex in Rn and ∥·∥ℓ1(w′) is the weighted ℓ1 norm, with
weights w′ given by the corresponding edge weight in the underlying star metric.

Observe that the consistency proof given in Lemma C.1 holds when the consistency constraint at each time step is defined as
follows:

CLIPt−1 + ft(x) + ∥x − xt−1∥ℓ1(w′) + ∥x − at∥ℓ1(w′) + ∥at∥ℓ1(w′) + (1 − z
(t−1) − c(x))L + max((A

(t) − z
(t−1) − c(x)), 0)(U − L)

≤ (1 + ϵ)[ADVt + ∥at∥ℓ1(w′) + (1 − A
(t)

)L],
(31)

where x and a denote decisions by CLIP and ADV (respectively) supported on ∆n. Thus, since the consistency proof in
Lemma C.1 exactly holds under the CFL vector space corresponding to MAL, we conclude that CLIP is (1 + ϵ)-consistent
for MAL.

Robustness. First, we note that the robustness proof given in Lemma C.2 assumes OPT does not pay any switching cost.
This implies that the proof of Lemma C.2 meets the conditions of Proposition 2.3, which states that any performance bound
for an arbitrary ALG solving CFL which assumes OPT pays no switching cost translates to an identical bound for MAL, where
the problem’s parameters can be recovered by constructing a corresponding CFL instance according to Lemma 2.2.

Thus, by Proposition 2.3, we conclude that CLIP is γϵ-robust for MAL, where γϵ is defined in (10).

By combining the two results, the statement of Corollary 4.4 follows – CLIP is (1 + ϵ)-consistent and γϵ-robust given any
advice ADV for MAL.

C.4. Proof of Theorem 4.5

In this section, we prove Theorem 4.5, which shows that any (1 + ϵ)-consistent algorithm for CFL is at least γϵ-robust,
where γϵ is as defined in (10).

Proof of Theorem 4.5. To show this result, we leverage the same special family of y-adversaries for CFL defined in
Definition B.4, where y ∈ [L,U]. Recall that k = argmaxi∈[d] wi, where w is the weight vector for ∥·∥ℓ1(w).

As in the proof of Theorem 3.4, we note that for adversary Ay , the optimal offline solution is OPT(Ay) = y+ 2β/m, and that
as m grows large, OPT(Ay) → y.

29

Chasing Convex Functions with Long-term Constraints

Against these adversaries, we consider two types of advice – the first is bad advice, which sets at = 0 for all time steps
t < T (i.e., before the compulsory trade), incurring a final cost of U + 2β.

On the other hand, good advice sets at = 0 for all time steps up to the first time step when y is revealed, at which point it
sets akt = 1/m to achieve final cost ADV(Ay) = OPT(Ay) = y + 2β/m.

We let g(y) denote a robust conversion function [L,U] → [0, 1], which fully quantifies the actions of a learning-augmented
algorithm LALG playing against adaptive adversary Ay , where g(y) gives the progress towards the long-term constraint under
the instance Ay before (either) the compulsory trade or the black-box advice sets akt > 0. Note that for large w, the adaptive
adversary Ay−δ is equivalent to first playing Ay (besides the last two batches of cost functions), and then processing batches
with cost functions Downwy+1(x) and Up(x). Since LALG is deterministic and the conversion is unidirectional (irrevocable),
we must have that g(y − δ) ≥ g(y), i.e. g(y) is non-increasing in [L,U].

As in the proof of Theorem 3.4, the adaptive nature of each y-adversary forces any algorithm to incur a switching cost
proportional to g(y), specifically denoted by 2βg(y).

For any γ-robust online algorithm LALG given any arbitrary black-box advice, the following must hold:

LALG(Ay) ≤ γOPT(Ay) = γy, ∀y ∈ [L,U].

The cost of LALG with conversion function g on an instance Ay is LALG(Ay) = g(U/γ)U/γ −
∫ y
U/γ

udg(u) + 2βg(y) + (1−
g(y))U , where udg(u) is the cost of buying dg(u) utilization at price u, the last term is from the compulsory trade, and the
second to last term is the switching cost incurred by LALG.

This implies that g(y) must satisfy the following:

g(U/γ)U/γ −
∫ y

U/γ

udg(u) + 2βg(y) + (1− g(y))U ≤ γy, ∀y ∈ [L,U].

By integral by parts, the above implies that the conversion function must satisfy g(y) ≥ U−γy
U−y−2β − 1

U−y−2β

∫ y
U/γ

g(u)du.
By Grönwall’s Inequality (Mitrinovic et al., 1991)[Theorem 1, p. 356], we have that

g(y) ≥ U − γy

U − y − 2β
− 1

U − y − 2β

∫ y

U/γ

U − γu

U − u− 2β
· exp

(∫ y

u

1

U − r − 2β
dr

)
du (32)

≥ U − γy

U − y − 2β
−
∫ y

U/γ

U − γu

(U − u− 2β)2
du (33)

≥ U − γy

U − y − 2β
−
[
Uγ − U − 2βγ

u+ 2β − U
− γ ln (u+ 2β − U)

]y
U/γ

(34)

≥ γ ln (y + 2β − U)− γ ln (U/γ + 2β − U) , ∀y ∈ [L,U]. (35)

In addition, to simultaneously be η-consistent when the advice is correct, LALG must satisfy LALG(AL) ≤ ηOPT(AL) = ηL.
If the advice is correct (and m is sufficiently large), we assume that LALG pays no switching cost to satisfy the long-term
constraint at the best cost functions L. It must still pay for switching incurred by the robust algorithm (recall that OPT pays
no switching cost). ∫ L

U/γ

g(u)du+ 2βg(L) ≤ ηL− L. (36)

By combining equations (35) and (36), the conversion function g(y) of any γ-robust and η-consistent online algorithm must
satisfy the following:

γ

∫ L

U/γ

ln

(
u+ 2β − U

U/γ + 2β − U

)
du+ 2β

[
γ ln

(
u+ 2β − U

U/γ + 2β − U

)]
≤ ηL− L. (37)

30

Chasing Convex Functions with Long-term Constraints

When all inequalities are binding, this equivalently gives that

η ≥ γ + 1− U

L
+
γ(U − L)

L
ln

(
U − L− 2β

U − U/γϵ − 2β

)
. (38)

We define η such that η := (1 + ϵ). By substituting for η into (38), we recover the definition of γϵ as given by (10), which
subsequently completes the proof. Thus, we conclude that any (1+ ϵ)-consistent algorithm for CFL is at least γϵ-robust.

C.5. Proof of Corollary 4.6

In this section, we prove Corollary 4.6, which shows that any (1 + ϵ)-consistent algorithm for MAL is at least γϵ-robust,
where γϵ is as defined in (10).

Proof of Corollary 4.6. To show this result, we leverage the same special family of y-adversaries for CFL defined in
Definition B.5, where y ∈ [L,U]. Recall that k = argmaxa∈[n] w

a, deonotes the largest edge weight of any (non-OFF)
point in the metric space, and β = wk.

As in the proof of Theorem 3.4, we note that for adversary Ay , the optimal offline solution is OPT(Ay) = y+ 2β/m, and that
as m grows large, OPT(Ay) → y.

Against these adversaries, we consider two types of advice – the first is bad advice, which sets aa
′

t = 1 (i.e., ADV stays in the
OFF point) for all time steps t < T (i.e., before the compulsory trade), incurring a final cost of U + 2β.

On the other hand, good advice sets aa
′

t = 1 for all time steps up to the first time step when y is revealed, at which point it
sets akt = 1/m to achieve final cost ADV(Ay) = OPT(Ay) = y + 2β/m.

As previously, we let g(y) denote a robust conversion function [L,U] → [0, 1], which fully quantifies the actions of a
learning augmented algorithm LALG playing against adaptive adversary Ay . Since LALG is deterministic and the conversion
is unidirectional (irrevocable), g(y) is non-increasing in [L,U]. Intuitively, the entire long-term constraint should be satisfied
if the minimum possible price is observed, i.e g(L) = 1.

As in Theorem 4.5, the adaptive nature of each y-adversary forces any deterministic ALG to incur a switching cost of 2βg(y)
on adversary Ay , and we assume that ALG does not incur a significant switching cost during the final batch (i.e., during the
compulsory trade).

For any γ-robust LALG given any arbitrary black-box advice, the following must hold:

LALG(Ay) ≤ γOPT(Ay) = γy, ∀y ∈ [L,U].

The cost of LALG with conversion function g on an instance Ay is LALG(Ay) = g(U/γ)U/γ −
∫ y
U/γ

udg(u) + 2βg(y) + (1−
g(y))U , where udg(u) is the cost of buying dg(u) utilization at price u, the last term is from the compulsory trade, and the
second to last term is the switching cost incurred by LALG. Note that this expression for the cost is exactly as defined in
Theorem 4.5.

Thus by Theorem 4.5, for any learning-augmented algorithm LALG which is simultaneously η-consistent and γ-robust, the
conversion function g(·) must satisfy the following inequality (via integral by parts and Grönwall’s Inequality (Mitrinovic
et al., 1991, Theorem 1, p. 356)):

γ

∫ L

U/γ

ln

(
u+ 2β − U

U/γ + 2β − U

)
du+ 2β

[
γ ln

(
u+ 2β − U

U/γ + 2β − U

)]
≤ ηL− L. (39)

When all inequalities are binding, this equivalently gives that the optimal η and γ satisfy:

η ≥ γ + 1− U

L
+
γ(U − L)

L
ln

(
U − L− 2β

U − U/γϵ − 2β

)
. (40)

We define η such that η := (1 + ϵ). By substituting for η into (38), we recover the definition of γϵ as given by (10), which
subsequently completes the proof. Thus, we conclude that any (1+ ϵ)-consistent algorithm for CFL is at least γϵ-robust.

31

