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ABSTRACT. Consider R? x R™ with the group structure of a two-step
nilpotent Lie group and natural parabolic dilations. The maximal func-
tion originally introduced by Nevo and Thangavelu in the setting of the
Heisenberg group deals with noncommutative convolutions associated
to measures on spheres or generalized spheres in R?. We drop the non-
degeneracy assumptions in the known results on Métivier groups and
prove the sharp LP boundedness result for all two step nilpotent Lie
groups with d > 3.

1. INTRODUCTION

We consider the problem of bounding maximal operators for averages over
spheres with higher codimension on a two-step nilpotent Lie group G which
was introduced for the special case of the Heisenberg group by Nevo and
Thangavelu [?]. The setup is as follows: The Lie algebra splits as a direct
sum in two subspaces referred to as the horizontal and the vertical part,
g = Whor B Wyert, where dim Wy, = d, dim Wyery = m, and Wyert C 3(g), with
3(g) the center of the Lie algebra. We use the natural parabolic dilation
structure on 1o, @ Wyert, and define for X € topgr, X € yert, 0(X, X) =
(tX,t*>X). Using exponential coordinates on the group we identify G with
Wphor ® Wyert = R @ R™. With z = (2,%) € RY x R™ the group law then
becomes

(1.1) (z,7)-(y,9) = (& +y,T+y+zJy)
where 2TJy := S ez Jiy, {€:}7, is the standard basis of unit vectors in
R™ and Ji,...,Jy, are d x d skew-symmetric matrices. The above dilations
on g induce automorphisms &; : (x,%) ~ (tz,t>T) on the group. We will
study averaging operators which will be convolution operators; the noncom-
mutative convolution for functions f * K(z) = [ f(y)K(y~! - z)dy is then
given in the form

(12)  [xK(z7) = / J K @ -y, — 7+ 27Ty dy
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Let © be a bounded open convex domain in o, = R? x {0} containing
the origin and assume throughout the paper that the boundary X = 0Q
is smooth with nonvanishing Gaussian curvature. In most previous papers
one takes for Q the unit ball in R? x {0}. Let u be the normalized surface
measure on X. For ¢ > 0 the dilate p; is defined by (f, ) = [ f(tz,0)dp.
For Schwartz functions f on R4T™ the averages over dilated spheres are then
given by the convolutions

(1.3) Af(z,t) = fx*m(x) = /Ef(x tw, T — thfw)d,u(w).

The analogue of the Nevo-Thangavelu maximal operator is defined (a priori
for Schwartz functions) by

(1.4) M () := sup | ().

The objective is to establish an LP(R¥™) — LP(R™) bound for M,
in an optimal range of p. Taking ¥ = S%! a partial boundedness result
for p > % was first obtained by Nevo and Thangavelu on the Heisenberg
groups H", for 2n = d > 4; here m = 1 and J = Jj is an invertible symplectic
matrix. The optimal result on LP boundedness on the Heisenberg group H",
for n > 2, namely that 9 is bounded on LP(R¥*1) for p > % was obtained
by Miiller and the second author [?] and independently by Narayanan and
Thangavelu [?]. The paper [?] also establishes this result in the more general
setting of Métivier groups, that is, under the nondegeneracy condition that
for all # € R™ \ {0} the matrices Y ;- 0;J; are invertible. Regarding the
case n = 1 it is not currently known whether 9 is bounded on LP(H') for
any p < oo (see however results restricted to Heisenberg radial functions in
[?] and [?]).

The purpose of this paper is to examine the behavior of the maximal
function on general two-step nilpotent Lie groups with d > 3, i.e. when
the nondegeneracy condition on Métivier groups fails. A trivial special case
occurs when all the matrices J; are zero; in this case one immediately obtains
the same LP boundedness result for p > %, d > 3 by applying Stein’s result
[?] (or Bourgain’s result [?] when d = 2) in the horizontal hyper-planes and
then integrating in tyet. The two extreme cases of Euclidean and Métivier
groups suggest that LP boundedness for p > %1 should hold independently
of the choice of the matrices .J;. However the intermediate cases are harder,
and neither the slicing argument nor the arguments in [?, ?, 7, ?] for the
Heisenberg and Métivier cases seem to apply; this was posed as a problem
in [?]. In particular there seems to be no regularity theorem on Fourier
integral operators which covers the averages in this general case. The special
case m = 1 was recently considered by Liu and Yan [?] who obtain LP

boundedness of M in the partial range p > % and d > 4. Here we prove

the optimal result in the range p > d%il’ for all two-step nilpotent Lie groups
with d > 3.
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Theorem 1.1. Let d > 3, let G be a general two step nilpotent Lie group
of dimension d + m, with group law (?7). Let d%‘ll < p < oo. Then for
f € LP(G) and almost every x € G the functionst — Af(x,t) are continuous
and the maximal operator M extends to a bounded operator on LP(QG).

By a standard argument Theorem ?7 implies

Corollary 1.2. Let f € LP(G), p > 7% . Then limy_,0 Af(z,t) = f(z)
almost everywhere.

To show in Theorem ?? the continuity in ¢, for a.e. « € G, we shall prove

a stronger inequality involving the standard Besov space B;{lp (R) which
is embedded in the space of bounded continuous functions. Namely, for

u € C((3,4)) and A > 0 the functions s — u(s)Aysf(z) are in B;{f;
this implies that sup,.( |4 f(7)| = supeq |A¢f ()| almost everywhere and
establishes M f as a well defined measurable function, for every f € LP. In

fact one gets the following global result which implies Theorem 77.

Theorem 1.3. Let d >3, 7% < p < co. Then for u € C((3,4))

/
(1.5) (/G [sup Hu(-)Af(x,2“—)I!B;(f(R)}pdx)l "<l

nez
Remark 1.4. The smoothness parameter for the Besov space in the s-variable
can be increased in Theorem ?7?. In fact we can replace B;’/f with ngl/ P
Whereﬁ<d—1+%ifd%'ll<p§2andﬁ<%if2§p<oo,seealso
a relevant discussion in §77. Such improvements will not yield additional
insights on the maximal operator.

It is also of interest to consider a local variant for which we get a restricted
weak type inequality at the endpoint p = d%‘ll:

Theorem 1.5. Letd > 3, p > d%‘ll and let I C (0,00) be a compact interval.
Then A maps LPY(G) to LP>°(G; L*°(I)).

The optimality of the p-range in the above maximal function theorems is
shown by modifying an example of Stein [?], see also the discussion in [?7].

Outline of the paper and methodology. In §77 we reduce matters to the case
where the matrices Ji,...,J,, are linearly independent. In §77 we set up
standard dyadic frequency decompositions of the underlying spherical mea-
sures and formulate the main Proposition 77 to be proved for the bounded-
ness of the local maximal operator (with dilation parameters in a compact
interval). The arguments to extend to the global maximal operator (and
the slightly stronger Theorem ?7) are modifications from those in [?]; this is
taken up in §??. The main L? estimates are discussed in §?7; here we first
recast Proposition 77 in a convenient form using Fourier integral operators,
and then reduce matters to the problem of getting uniform estimates for a
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family of oscillatory integral operators acting on functions in R?. The main
L? estimates for this family are stated in Proposition ??. The crucial and
most novel part of the paper is §77 where we give the proof of this proposi-
tion via two decompositions of the operator into more elementary building
blocks which are combined via almost orthogonality arguments.

Notation. For nonnegative quantities a, b write a < b to indicate a < Cb for
some constant C'. We write a =~ b to indicate a < b and b < a.

Acknowledgements. The second author thanks Shaoming Guo for re-raising
the question, Detlef Miiller for useful remarks on Carnot groups, and Brian
Street for conversations on general pointwise convergence issues. We are
indebted to the anonymous referee for a thorough and careful reading of
the manuscript and for very helpful suggestions to improve it. The first
author was supported in part by KIAS Individual Grant MG087001 during
a research stay at UW Madison. The second author was supported in part
by NSF Grant DMS-2054220.

2. PRELIMINARY REDUCTIONS

In the following theorem (which will be proved in subsequent sections)
we formulate the main results, with a hypothesis of linear independence on
the skew-symmetric matrices entering in the group structure. We then show
how the proof of Theorems 7?7 and ?? are reduced to this result.

Theorem 2.1. Let Si,...,S, be a linearly independent set of d x d skew
symmetric matrices. Let U be a neighborhood of the origin of R*™! and let
g:U — R be a C™ function satisfying g(0) = 1, ¢’(0) = 0, ¢”(0) positive-
definite. There exists p > 0 such that the following holds for C2° functions
Bo supported in a ballU, C U of diameter p centered at the origin in RA-1:

Let Ty(w') = g(w)er + S0, wiei, and define Af(z,t) = Aif(z) by
(2.1) Af(z,t) = /f(x — th(w’),f - tZEigTSiI‘g(w’))ﬁg(w')dw’ .
i=1

Let u € C=((1,4)). Then for p > % the inequality

22) | sup (A2 e < Ol gaem)

Lp(Rdtm

holds for all functions f € LP(R™). Here C depends on p but is inde-
pendent of f, and independent of By as By ranges over a bounded subset of
C*(U,). Moreover for a compact interval I C (0,00)

2.3) ess supe | A 7‘|H <C r +m = -4
c D, + = —
( H PerlAt Lp,00 (Rd-+m) IHfH p.1(Rd+m), p d—1

We shall now show in several steps how Theorems 7?7, 7?7 and ?? are
implied by Theorem ?7?7. In our first reduction we reduce to the situation
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that the manifold 3 C R™ that supports the measure p is given as a graph
with the property required in Theorem ?77.

We fix a point y, € ¥ and consider the operator f — f x (x¥°u); where
x¥e is a Cg° function supported in a neighborhood of y,. It suffices to
prove the analogues of Theorem ?7 and 77 for these convolutions; once this
is achieved one can use a compactness and partition of unity argument to
deduce Theorems ??, ?? in their original formulation. Let ec1 = yo/|yo]
(recall that the origin lies in the domain surrounded by ¥ and thus y, # 0).
Pick unit vectors e ;, 2 <7 < d so that eo 1, ..., e, 4 is an orthonormal basis
of R, As €o,1 does not belong to the tangent space to |yo\_12 at e, 1 we
may parametrize |yo| 1Y near e, by

d
[(w) =G(W)eoq + Zwieo,i;
=2

here (w)T = (wa, . ..,wy) and the function G satisfies
G(0) =1, G'(0) = b and G”(0) positive definite.

We then have for v = x¥%pu
Fremne) = [ £~ telD). 7 tyela™ TE @) o)

with xo(w') = X¥° (5o T(w))]ye|4(1+ |G (w')|?)!/2 and 2TJT(w') denotes the
vector Y i, gaTJ;I'(w').

Let P be the (d—1) xd matrix defined by P = (0 Id,l), corresponding to
the projection (z1,x2,...,24)T — (z2,...,24)T. Let R denote the rotation
satisfying Reo; = e; for i =1,...,d. Then

d
RI(W') =Tg(W) := G(w)er + Zwiei = G(W)er + PTW.
i=2
Setting J; = |yo|2RJ;RT we define AY f(z,t) = Agl]f(m) by

24)  AVf(a) = / flz — (), T — Y e Fa(w)xo(w)do'.
=1

Then we compute
fxu(x) = AMR(yo| 7 Ra, T), with h(z, %) = f(jyo| Rz, 7).

Since R~! = RT it suffices to prove (??) and the maximal bounds with A
in place of A.

We now use another transformation to reduce to the situation in Theorem
??. To this end we set g(w') = G(w') —bTw’ so that ¢’(0) = 0 as in Theorem
7?7 (recall b = G'(0)).
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We then have (splitting z = (z1,2') € R x R%1)
/f 1 —tg(W') —thTw' 2’ —t T — tv(z, w'))xo (W' )dw'’

where U = (U1,...,Tp,) with
i(z,w') = 2T J;(9(w') + bTw')er + 2T J; PTu.

Now write

(2.5) 7 — tg(w') — thTw' = 21 — b7’ — tg(w') + b7 (2’ — tu')

and

Ti(z, ') =(2')TPJierg(w') + (z')TPJer (bTw') + (bTa")el J; PTu’
+ (1 — bT2)el i PTw + (/)T PJ;PTu .
Observe that, with I'y(w') = g(w)er + PTw/,

() TPJier (bTw') = —QTPTPjiTelePI‘g(w')
(b2 )el J;PTw' = 2T PThel J; PTPT 4 (w'),

also the analogous formulas remain true if on the right hand sides z is
replaced with (z1 — b72’)e; + PT2’. Furthermore

(z")TPJerg(w) + (z1 — b7z )el J,PTw' + (2)TPJ; PTo’
= [(z1 — bT2")er + PT2/|TT,T4(w).
We combine the above observations, and setting
(2.6) Ji = Ji+ PTbel ;PTP — PTP.JTe;b™ P

we see that J; are skew symmetric d x d matrices satisfying J;e; = jiel,
and that

(2.7) Uiz, W) = [(z1 — bTa)er + PTa/]TT;0g(w').
Now if we define A?] by

(2.8) .At2]f /f (x —tTy( xftZelx Jily Xo(w')dw'

then it follows from (??) and (??) that
AN f (o m) = AP fo(r — b7 o )

(2.9) . o e
with fo(y1, v, %) = fyr + 07y, v, 7).

Hence the desired bounds for the families (Aﬁ”)bo and (.A?])bo are equiv-
alent. For the case that the matrices Ji,...,Jmn are linearly independent
(??) and the LP boundedness of the maximal operator in theorem ?? can
now be obtained from Theorem ?? (using S; = J; in that theorem).
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In the other extreme case, when all 7; are the zero-matrices the LP bound-
edness of the maximal operator operator (and the analogue of (77?)) follows
by an application of the spherical maximal theorems in the Euclidean case
in R? ([?]) and integration in the vertical variables. In this case we also
have the result for d = 2 by using Bourgain’s theorem [?] (although this is
not needed in our proof). If d > 3 the restricted weak type inequality for
p= ddl can be deduced from [?] and a slicing argument. These slicing argu-

ments also apply to the variants where a Bp/lp -norm is used on the dilation
parameter.

It remains to consider the case where the matrices J; are not all zero but
are linearly dependent. For this case we need a further reduction.

Lemma 2.2. Assume that J1,...,Jm are not all zero. Then there exist
linearly independent skew symmetric d X d matrices Si,...,Sy, with 1 <

n < m, and an orthogonal matrix V € O(m) such that for .AE] as in (77?)
(2.10) AP f(x) = AT f (2, V),
with fi(y) = f(y, V77) and

(2.11) .A[3 /f (x —tTy( tZer Silg(w'))xo(w')dw' .

Proof. Consider a basis F1, ... Fqa-1 in the space of d x d skew symmetric

2
matrices. We can express the J; in terms of the basis matrices, and obtain
d(d—1)

Ji = Zj:f cijEj, 1 = 1,...,m for suitable scalars c¢;;. We denote by

C the m x @ matrix whose (i,7) entry is given by ¢;;. We apply the

singular value decomposition of the transposed matrix CT. That is, we
d(d D, dd=1)
2

decompose CT = UDV where U is an orthogonal
d(d-1)
2

matrix, V

is an orthogonal m x m matrix and D is a X m matrix such that

D — s f1<i=j53<n
R ) otherwise.

Here n < min{ d(d2—1) ,m} and s; > --- > s, > 0 are the singular values. For

the coefficients of C' we then get

d(d 1)
m n
cij = (CT)ji Z Ujk DreVei = Y UjisVii-
Defining
d(d—1)
2

Sk:Sk Z UjkEja kzl,...n,
J=1
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it is clear by the invertibility of U that Si,...,S, are linearly independent
skew symmetric matrices and we obtain

d(d 1) d(d 1)
n
Z cijE > UjksiViiEj —ZVmSk, i=1,...,m.
j=1 k=1 k=1
Hence (usmg Vi=Vv-1
wftZezx Jily(w') = VT[ Vx—tZekxTSkF )]
k=1
which gives (??). O

By Lemma 7?7 the desired bounds for .,4,[52} and AE}] are equivalent. We
show how Theorem ?7 yields the analogue of Theorem 7?7 for the family
(A£3])t>0 in place of (A4¢). In R™ we split variables T = (Z, %) € R™ x R™™".
For h € LP(R™") we define 2Ah(x,t) = Ash(z) by

Weh(z, &) = /h(gc—tf‘ tZerSF ") xo (W) dw'.

We get from Theorem 77 applied with n in place of m, that

d
S Rl e ratny, > -1

[ s lss) 2l

Lp(Rd+n)

z), and observe that .A?]f(a? 7,%) = A f*(z, 7).
boundedness result stated above to the functions

Let f*(z,7) = f(z.4,
We apply the LP(RH")-
for h = f% and get

//sup”u 2@ flz,z,2)|" BYP(Rds )dxdx < C’p/ |f(z,z, %) [Pdzdz,

with C' independent of &. Integrating over & € R™ ™" gives the desired result.

We have now reduced the proof of Theorem ?? to the inequalities (?7) in
Theorem ?7. The above arguments also reduce (after minor modifications)
the proof of Theorem ?7 to the proof of inequality (?7). For the remainder
of the paper we will be concerned with the proof of Theorem ?7.

Remark. The shear transformation showing the equivalence of the LP bound-
edness of the operators associated with Al and A2 is not needed for the
spherical case ¥ = S9! when b = 0. However in the general case it
seems necessary, and we take this opportunity to correct an inaccuracy in
[?] which deals with the case of Métivier groups (i.e. the matrices > ;" ¢;J;
are invertible if (c1,...,¢m) # 0). There it is stated that this reduction
follows for more general ¥ by a rotation argument which is not the case.
One can use the above shear transformations instead and deduce that the
arguments in [?] apply to surfaces ¥ that are small perturbations of the
sphere. Such a perturbation assumption would be needed for the proof in
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[?] since the Métivier condition on the matrices J; (and, equivalently, on the
Ji = |yo|?RJ;RT) guarantees the Métivier condition on the matrices J; in
(??) only when b is sufficiently small. In the setup of this paper there is no
such small smallness assumption on b needed.

For the remainder of the paper we will give the proof of Theorem 7?7 and
fix linearly independent skew symmetric matrices Si,...,.S,. For later use
notice that this assumption implies that there is a ¢y > 0 such that

(2.12) ;! for all § € R™ with 1/4 < |0] < 4.

This is immediate from the fact that 6 — ||>, 0;5;|| is a continuous
function which takes a minimum and a maximum on the annulus {6 : 1/4 <
|0| < 4}, and by the assumed linear independence this minimum is positive.

3. DYADIC FREQUENCY DECOMPOSITIONS

We now use the group structure on R given by (??) but with the .J;
replaced by the skew symmetric matrices S;, with Sl, ey S linearly inde-
pendent. We denote by v the measure defined by (v, f) = [ f(g(w’),w’,0)dw’
which can also be written as the pairing of the dlstrlbutlon

Bo(z")B1(x1,T)d(x1 — g(2'),T)

with f; here § is the Dirac measure in R™*!, 3y is a C* function supported
on a ball of radius o centered at the origin of R*~! and £ is a C* function
supported on an g2-ball centered at (1,0,...,0) € R™"! here e, < 9. We
assume that o is small compared with the reciprocal of the C? norm of g,
also 0 < ||(¢”(0))7}||7! and finally ¢ < ¢ where ¢ is as in (77?).

We use a dyadic frequency decomposition of the Fourier integral of § to
decompose v = Y 22, vF where

/81 xla io(x T, T
1) o) = PR [ G (oT reret oe e i
where (p € C°(R) is supported on (—1,1), {p(s) = 1 for |s| < 3/4 and
Ce(s) = C(27%s) — (o(2'7%s) when k > 1; hence, for k& > 1 the function
G = ¢1(27=1.) is supported in (—2F~1, —2F=3) U (253, 2F=1). For k > 0
we make a further decomposition in the o-variables setting

(3.2) VRl (g) = /81('(%217)31_’_1 / G0, 7)ei7 @9 EN D) i g
™

where

Cor(o,7) = C1(21_k\/m)fl(2l+l_ka) forl < k
RUDT) =N 20 F o F T P)Go(o) for | —
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ie., for k > 1, 1 < k we have the restriction |o| + |7| ~ 2F and |o| ~ 2F~!
in the frequency variables. We set Vf Nz) = ¢t=d=2mykl(t=13 ¢727) and
similarly define v},

We state the main local estimates for f yf’l.

Proposition 3.1. Let ¢ > 0. Let I be a compact subinterval of (0,00).
Then there ezists a constant C = C(e,I) > 0 such that the following holds.

1/p
33 ([ 170 @)+ 27 (105 5 sy
k

(d—1)

D _j(d=2 )
<102 N )2( P HfHLp(Rd+m) if1<p<2,
= k(d—1 a—2

027 7 2T fl gy 2 < p < 0.

Corollary 3.2. Let ;4 < p < oo, u € C=((0,00)). Let f € LP(RT™),
Then for almost every x € RT™™ the function t — Af(x,t) is continuous,
and for any A > 0

1/p
(3.4) ( / oo [HOAF@ X)) ™ S 1 oy

Proof. By scaling we can assume that A = 1. The first statement follows

from the second, since 3;7/11’ embeds into the space of bounded continuous

functions. Let 1 < p < 2. Set Rk’lf(:t:,s) = u(s)f * v (z). We use

the interpolation inequality [|g|/po S gl lg'll% (0 < 6 < 1), Holder’s
p,1

inequality, Fubini and the prop0s1t10n to deduce that the left hand side of
(??7) is dominated by

RSy S IR ORS00
—k —0 -0
< 27 MET OG0+ g

The desired inequality follows by summing over | < k and then summing
over k (which is possible if d > 3 and ;% < p < 2,0 = 1/p). A similar
argument applies for p > 2. O

Proof of the restricted weak type inequality in Theorem ?77. Let RF!f(x,t) :=
I utk ! and as in the proof of Corollary ?? we have that R*! maps LP to

00\ i k(5 —21) =15 — 252 —e) d—1
LP(L*°) with operator norm O(2"'» ¢ ’2 "» » ) 1 <p< 9= we
may (for sufficiently small €) sum in [ and obtain in this range

k < k(l*diixl)
lesssuper|f* villp <277 27| flp-
We are now applying the ‘Bourgain trick’ in [?] to sum in k& and deduce that

HeSSSUpteI’f * v pooe S| flloer, = d%‘ll- O
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The most interesting part of Proposition ?? is the L2-estimate. The LP
estimates follow by interpolation with L' estimates which we now briefly
discuss.

L' and L™ estimates. In what follows 3(x) = B1(z1,%)Bo(2'). By integra-
tion by parts with respect to o, 7 we obtain the inequality

Qkfl 2km
0+ 25T — g@))™ (L + 2™

(3.5) WM (@) Sn

moreover 2 KV kL 9l=kg Rt 9l=2kg 7 B satisfy for |s| ~ 1 the same
pointwise bounds. Hence we obtain

(3.6) 15+ 2R ok S 1.
For later use we also record

(3.7) VR 4 2R | Vot < 2.

We will show in the next section §??7 how to prove the LP boundedness
for the global maximal operator and its strengthening in Theorem 77, given
the result of Proposition ?? and (??), (??). The proof of Proposition ??
will be given in §77 -§77.

4. THE GLOBAL MAXIMAL OPERATOR

We prove the global bound in Theorem ??, given Proposition ?7. The
reduction to Proposition ?7? follows closely arguments in [?]; we include
details for the convenience of the reader.

Let I = (1,4) and u € C°(I). We will prove the estimate

(41) || suplfuls)f 4L
nez p,1 llp

d— d—
c o [T g < <o
T (@ 4 )Rk T g 2 < p< oo,

for 0 <1 < k; here the Besov-norm is taken with respect to the s variable.
Summing in [, k for p > d%‘ll implies (77?).

Recall that v*! is compactly supported and that
‘/uk’l(ac)d:c‘ <N 27kN.

this is seen by using (?7?) and repeated integration by parts, with respect to
(x1,7), if I is small and with respect to T if [ is large.

As noted in [?] we can write

vl (2, 7) = KM (2, %) + ez, 7)
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where p € C2°(R%™) function supported near the origin, |y < ex27*V
for 0 <! <k and

(4.2) /ICk’l(x)dac =0.

Set IC{;€ (z,7) = t=472mCRL (¢ 2, 727, py(2, @) = t~ 92 p(t~ e, t27).
The contribution from ~yp is harmless, indeed for all n € Z, s € [1/4,4]
with j = 0,1,2, ...

(Y u(s)f  ponal)]| < M7 (@)

where M is the Hardy-Littlewood maximal operator associated to the Carnot-
balls on the group G. This implies

< OnN27*| fllp-

sup Hu( )f * p2”s’7k,l||31/p
neZ p,1 llp
Therefore we need to show the equivalent of (??) where v*! is replaced
by K. This is implied by two stronger inequalities where the sup in n is
replaced by an 2 norm in n when 1 < p < 2 and by an ¢ norm in n when
2 <p<oo.
We shall prove for 1 < p <2
(4.3)

(3 luts) s = K5,

ne”Z

1/2 E(L_dsly j(d=2te 1
we) | S Cenl W2 GTIAEE T g

and for 2 < p < o0

40 [(S o k8 )] < Centr w5725

ne”L

We use the interpolation inequality

(4.5) lgll 10 < S lglly + llglly ™7 llg" 137

which is elementary and also expresses the identification of B;/lp as the real
interpolation space [LP, W1P]; /.l

We focus on the case 1 < p < 2 and prove (?7?). The embedding inequality
implies

H@”u@f*Kéﬁswlzgf)“upsH@</I|fwsws>“>”up

nez
+H /\f*/c’;f /|f* 4kt

pds);?)l/QHp L E 4 &
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For the first expression on the right hand side we have by the integral
Minkowski’s inequality for ¢2/7

as ([ (Sirnthr)”es)™],

and for the second term we use applications of Holder and then the integral
Minkowski inequality

2

52<H (fireritpas)) (S ( [ dcstras)’)?
/ oK) )% S ( [fire st pas) )}
S'\</,<Zlf*fcsw>%s>i ; </,<z\f*;5,c;gse>2ds>p

Since we may interchange the z and the s integration, everything for p < 2
follows now from

(4.6a) (//le (Z f*IC];%fs(x)\Q)gd:L‘%);

S (1+ k)P 5 o749

B o B owe S

and

d kl g i
IC p
(4.6b) //ze §:|f* \) dxds)

d—1 d—2
S 25714 Ry 2 G g
We prove (??) by Marcinkiewicz interpolation, using the L? bounds

1

am (f[, > oIk s ds)” e (1 RO )

(4.7b) //G STF o+ Kk )‘2da:ds)§

nGZ

S A I P
and the weak type (1,1) inequalities

(4.8a) meas({(z,s) € G x I: Z |f * lClgnl )% > a})

nel

< (L +ka M flL,
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(4.8b) meas({(z,s) e Gx I: (Y |f+ 7/c @)A)"* > a})

ne”L

< (L + k)25 a7 £l

The kernels ICl;nl s and 21*’{%1@;} ; enjoy similar qualitative and quantitative
properties and therefore we shall only give the proofs of (??) and (?7?); the
proofs of (?7), (??) require only minor notational modifications.

Proof of (?7). As a consequence of Proposition 7?7 and scaling we have, for
each fixed n,

1/2 _pd=1d=2
(f17 kL) s 25154

Note that Proposition 77?7 Was stated for uf ’l, but clearly by the above dis-
cussion we can replace Vt ! with ICkl

To combine the estimates for different n we need the following variant of
the Cotlar-Stein lemma. Let Hi, Hy be Hilbert spaces and let T, : H; — Ho,
n € Z be bounded operators. Assume B > 2A, and

I Tollits s € Ay I TaTl bty < B2270
for all n,n’ € Z. Then for all f € H;

1/2
(19) (S f13.)" <2 AviceETBIA |
ne”Z
This is proved for the case Hy = Hs in [?, Lemma 3.2] but the proof also
extends to the situation of two different Hilbert spaces.

We apply this with H; = L?(R%™) and Hy = L?>(R™™ x [1,2]), for
the operators T,, : H;y — Hj given by T,,f(z,s) = f * ICS;}S. Clearly we
have || T, Tl <o AR, with Ay = 9~ k(d=1)/2+U(d=2+2)/2. e use this for
|n —n'| < 2(m + 2)k. For large |n — n’| we need to establish exponential
decay in |n — n/| but in view of the logarithmic dependence on B in (??) we
do not have to care about any blowup in terms of powers of 2% in such an
estimate.

As Vf ! and 2_kV1/§ ! are for s ~ 1 pointwise dominated by the right hand
side of (?7?) the kernels K&, 27 FV KK satisfy up to a constant the same
bounds. Since they are also supported on a fixed common compact set we
have

(4.10) IS +27 =0(1)

for |s| & 1. For the orthogonality arguments it is convenient to just use
the following trivial pointwise bounds with an exponential dependence on
k, with N > max{d, m}:

(K ()] + 27| VEH ()] Sy 28D (L )72
Sv 20D (1 )N (L + Jal) Y

(4.11)
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Clearly, (??) is implied by the stronger bounds in (?7?).
A standard argument using (??) and the cancellation property (?7?) gives
the (non-optimal) estimate

IREL % K ||y < obemt3g-in—n'l/2,

here we use the notation K(z) = K(—x). We refer to [?, ch.XIII, §5.3] for a
very similar calculation. Consequently

~ -~ _ /!
”f % ,C;C;Lls *’C’;ALZ/SHZ +2l—2k||f *aS,C;C;LlS *asKZI;fISHQ S 2k(2m+3)2 |n—n |/2||f||2

Hence we get || T T < B2271n71/2 with B? = 2¥(2m+3) We may thus
apply the almost orthogonality inequality (??) with log(B/Ax;) S 1+ k,

~

and (??) follows. O

Proof of (7?). We use a Calderén-Zygmund decomposition of f € L'(G), at
height «, as described in [?, Ch.3A]. The Carnot-Carathéodory balls B(0,r)
at the orgin are given by {y : |y| < r,|y] < r?}, and the ball centered at
some z is just the left translate, i.e., B(z,7) = {y: 271 -y € B(0,r)}.

One can decompose an L'(G) function f as f = g+ b where ||g|l1 < || f]l1,
l9llc S o, and b = >, b, where b, are supported on the balls B(y,,r,)
which are explicitly given by

B(yw,r) ={(w0) : | =y, +yl <ru,| =9, + 75—y Syl <rp}.

Moreover, the b, satisfy [b,(y)dy = 0 and Y, [|by][1 < [|f]1. Finally
the B(y,,r,) have bounded overlap and if for A > 2 we define Q, :=
U, B(yy, Ary), then

(4.12) meas(Qa) S A7 £l

We set ||S]| := Yot 11Si]] (with the matrix norm associated to the Eu-
clidean norm in R%) and we will choose A > 10(||S]| + 1).

We now turn to the estimation of (??). By Chebyshev’s inequality and
then (77)

meas({(z,s) € G x I : (Z lg * IC’;JS(:E)F)% > a/2})

neL

_ k.l _ _
<a //G 3 lg K5 Frds S 02gl S oI I
X

nez
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Moreover meas(Qy x 1) < 4|Q] < a7 Y| f|1. It remains to estimate the
contribution involving b, namely

meas({(z, s) EQC x I : Z|b*l€ )% > /2})
nez
1// (3" |+ K5 (@)[?)? dods
nez
12// ]by*ng;fs(x)IQ)%dxds
B(yV7ATV nGZ
~1 kil
sup / b, * Kon ()| dx
zl/: sEI Z (B(yu,A'r))U| 2 ( )|
We claim that for s € I and fixed v,
(4.13)
1 foralln e Z
/ |b, * Ianls(xﬂ dr < { 2k(mt+gn,—1 for n <logy T,
(B(yv,Ar))C

2k(m+2)(9=ny Y1/2 for n > logy 1,

We use the first bound when log, 7, —10km < n < log, r,+10km, the second
bound when n < logyr, — 10km and the third when n > log, r, + 10km.
Summing these yields

sip Y / by * KL (@) do < (1 + F) b 1.
sel nel (B(yy,Ar))C

If we then sum over v and use ), [|b, |1 < HfH1 above we get

meas({(z,s) € G x I : Z\g*/Czn ) >a/2}) S (1+k)a | f]lh

nez

We now prove (??). The O(1) bound in (??) is immediate and follows
from HICI;nl /[t = O(1) which is a consequence of (??). For the second and
third case in (??) we will just use the trivial pointwise bounds in (?7?).

We now assume that n < log, 7, to prove the second bound in (??). Here
we will strongly use that the integration is extended over the complement
of (B(yl,,Ar,,))E and split it as X1 U X9 where

Xi={(z,7):|lz—y | > Ar,},
Xo={(z.7) |z —y | < Ar,,| -7, +T —yTSz| > A%2}.
Then
[ bkl @ldn £ 240 [ )
Xy

B(yv,rv)

(2"s) (2ns)"2m
/|CC—y |>Ar, (@)N T 1 |E—Q+QT§E| N dz d& dy .
= pl= ong ( _|_ W)
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The Z-inner integral is O(1) and in the z-integral we can use [z—y| ~ [z—y |
and get a bound (Ar,(2"s)"1)9N here. Hence

(4.14) / b, % Kbl (@) |da < 280m D) (277, )A=N < gk (tmgng—L)p 11
X1

For the Xs-contribution

(4.15) / by % KL (2) da < 2¥m+D) / b ()] %
X2 B(yVﬂ'V)

/ _@9)™ / @7 d
lz—y |<Ar, (1 + @)N |z—7 +xT§y |>A272 ( |f—?+£T§g| )N XL ay .
== 27 s TEem (27s)2

Here we gain in the Z-integral. For this observe for z € X, y € B(y,,7,)
|7~ 5+a7Syl - [z~ 5, +27Sy, || < |5, ~ 5 +27S(y - y,)

<w-y+ySy—y)+1z-y,)Sy—y,)l
<-7,+y" Sy |+lz—y ISy —y,| <r2+AlS|rE < (Ar,)?/2

(here we used that [z —y | < Ar, in X3 and A > 15]]). The displayed
inequality tells us that we can replace [z — 3 + @ng’ with [z — 7, + &Tgyyl
in the integrand of the inner integral in (??). Then we get the bound

O((Ar,,(Q"s)_l)_(QN_2m)) for this inner integral. This proves the second
bound in (77).

Finally, we prove the third bound in (??); assume 2" > r, and extend
the integration over all of R*?™, Let, with 6 € (0, 1),

2TL
Xo=fotle-y) 2 (0, X,=xF

14

Clearly for y € B(y,,7,,) we have [z —y| ~ |z —y | and thus integrating first
in T,

n\—d
[ sk @lde 5 2t | (@)
X3

_ 146 (lz—y, |
|§ QV|ZTU(2”/7‘I/) (TSV)N

dz [|by 1
S 28D @2y ) TN D |
For x € X4 we use the mean value zero property of b, and write
by, * K’;;fs(m) =

/ o) [K5, (@ — 3,7 — 7+ 278y) — Kb (@ —u, 7 — 7, + 278, )] dy
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and from this

/;\bu*Kﬁiwadw:52“m*”HbAh x
4
sup [(2") 7y, — gl + (2" sup |~ 5+, + 2"y —y,)I|.
YEB(yv,Tv) N N reXy -
For x € X4 and y € B(yy,7y),
|-7+7, +2"S@y -y ) <lz—y ) Sy-y)l+|-7+7, +y S —w)

<lz -y, |||5H|y—y |+ 17 -7, — y] Syl

2

Ty

Using this in the estimate above and combining with the integral over X3
yields

/ b, * KEL (2)|dz

2
m Ty \6(N—d m Ty Tv\1-6 (8
S Ny 2 [0 (Z2) D ghme ) (22 (20)170 4 )

and choosing 6 = 1/2 gives the third estimate in (??), for 2" > r,,. O
The case 2 < p < oco. We prove (??). We are again using the Sobolev em-
bedding inequality (?7?), now for p > 2. We proceed similarly as in the p < 2
case (however the proof is now simpler since we are working with ¢P-valued
functions and not with ¢?-valued functions and this allows to use trivial L™

bounds in place of the previously used Calderén-Zygmund estimates). After
uses of Holder’s inequality we get

(S rwtorr oty )], = (5 / 15 bt )
ne p,1
# (X [ estizan) ™ (X [l e it )™

Hence (??) follows from

(4.16a) Z/Hf*lC’;J

neL

1 d 1 d—2
Pas)” <- (14 Byr2 T

and

(4.16b) Z/ Hf * ilckl {pd ) < okl(1 4 k)%Q_k%H(%ﬂ)Hpr-

nez
We now have for p = oo the inequalities

(4.17a) supsur;suplf*/C S@)] S 1 lloo
n sel xeG
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and
d kil < okl
(4.17b) sup sup sup | f * dSICZnS(:U)| S 27 fl oo
n  sel zeG
which are immediate consequences of HIC sl = 0(1), H%/Cg;lsﬂ = 02

(see (?7)). Inequality (??) follows from ("7) (??) by interpolation, and
likewise (??) follows from (??), (??). This finishes the proof of (77?). O

Comment on Remark ?7. An examination of the proof above allows, for
fixed p, inclusions of factors of 2(5~18 on the left hand sides of the inequalities
(??) for p < 2 and (??) for p > 2. Specifically we can have g 1

D
for % <p<2andf < @ for p > 2. This observation can be used

to justify replacing the Besov space B, / P in the s variable with B/B P
those ranges. For the cases where 5+ 1 / p > 1 one needs to use that also for

§ > 1 the terms 20—k (dd )7vE! behave like v&! (in particular this requires a
straightforward extension of calculations for j = 1 at the end of §?7 below).

5. BASIC CONSIDERATIONS FOR THE L2 ESTIMATE IN PROPOSITION ?7?

It suffices to prove the proposition for functions that are supported in a
small neighborhood of the origin of diameter < ¢? < 1 since one can use a
standard argument using a tiling via the group translations to reduce to the
general case (for more details we refer to §2 of [?]). We follow [?] to discuss
further reductions which will simplify the forthcoming L? bounds.

5.1. A shear transformation. When acting on functions f supported in an

o0%-ball centered at the origin we can rewrite f Vf = AL f (z,t) where
2 f(a,t) = [ K o) )y
and Ktk s given by
KM (@, y) = t-4-2mkl (=1 (g — )t 2@ -7+ ﬂgy))

(5.1) xty/ CklaTer(ml n-t(™

))H( Za— y+wTSy>d dr

with

iz, t,y) = (2m) " dm g (o, T ywsy)ﬁo(‘”; )Xo (y)

and y — X,(y) supported in a o? neighborhood of the origin. Notice that
a lives, where |t — 1| < 0%, |z1 — 1] < 0%, |2/), |7, ly| < Q2 Introducing the
frequency variables ¥ = (91,7) € Rm+1 with 91 = 21~ TRy o,0; =27kt 27;
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we can rewrite the integral as

52) KM T,y) = o(k=1){1+m) g z,t,y G (2490 u1 (¢, 91,0) X
t

12571 (01 (21— —tg( """';y' NH@Z-T+27S9)) g9, 79,

where we have abbreviated
v (t,91,9) = 2 (12092 + t49)2) V).

When [ = k we get a similar formula where (;(2¥t9;) is replaced with
Co(2F101).
Following [?] we rewrite the phase and verify that

O1(z1—y1 — tg(z/;y,)) + Z@'(@ —7; +27S;y)
i—1
(5.3) Z zTSier) (z1 —y1 — tg(x,;y/))

=1
m ! !
Z T + 2127 Sie1 — Yy + 2T S PTy' — 27 S;ertg(71)).
Setting 1 = ¥ — Y_v, JizTS;e1, 0; = VU;, we can write the Schwartz
kernel using the (61,0) frequency variables. Define the phase function ¥ by

(5.4) Y(z,t,y,0)=

m
b1 (a1 — 41 Z — G, +2TSPTY — T Sieatg(Y7L))

Making the substitution (91,9) = (01 + QTSgel,g), here using the notation
Sf = >, 6;S; we obtain

(5.5) thl( y) = o(k=1)(1+m) o a(z,t,y // (274127 Seq,t,y,0) %

(1 (2 t(91 + @TS 61))’1)1 (t, 01+ Qngel,g)deldg;
here note the nonlinear shear transformation
(z,T) — (z,T + 127 Sep)

which is present in the phase function. It is now natural to consider a variant
AR which is related to %! via this shear transformation. Let

ARLf(zt) = Aklf /iKkl x,y) f(y)dy
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where the Schwartz kernel is given by

(5.6) K (2, y) = 2 DAEM g ¢ 4) // T

C(2'4(01 + 27S%1))u(t, 01 + 27 S0, 0)df,do,
here s +— ((s) is supported where |s| ~ 1, and we use the modification that
for k = I we replace ¢(2"t(6, —i—gTS?el)) with (o(2F(01 + gngel)). We are
still assuming that a is supported where

supp(a) C {(z.t.y) : [t = 1] < 0, |z1 = 1] S &, |2'], [z, y| < o°}-

Notice that the nonlinear shear transformation does not essentially change
this support assumption since by the skew-symmetry of the S; we have
2127 Sier] S 07

With the choice of

a(z,t,y) = a(z, T — x127Ser, t,y), (=0, v=u

we get for [ < k
(5.7) Al f (2,7, t) = A (2, T+ 2127 Se 1)
(and the same with ¢ = (y if £ =1).

We deduce the L?-estimate in Proposition ?? from the following variant.

Proposition 5.1. Let ¢ > 0. Then there exists a constant C = C(g) > 0
such that
k(d—1)

_ 42
(5.8) ||«4k’lf\|L2(Rd+mx[%,2}) <C2 7 20T £ o army,

with C bounded as ¢, v, a are varying over bounded subsets of C>° (with the
above support assumptions).

Proof that Proposition 7?7 implies Proposition 7?7. By (??) Proposition ??
immediately implies the first half of (??), by a change of variable. To prove
the derivative bound in (?7) first observe

/

O (z, T+ maTSer,t,y,0) = (01 +a7S"er) (£, V(7)) — g(*71))
From (??7) we calculate that
o fla,t) = Y7 AWM f () 2t f ()
i=1.2,3

where the Schwartz kernel of Q(f L g given by Ktk L defined as in (77)

but with ¢, a, v replaced by ¢, alil, vl for 4 = 1,2,3,4, resp., with the
following definitions (for [ < k)
8
Mis) =s¢1(s), Pls) =) = Gis), M) = Sals),

4]

= V1, U[g} = 8tUl7

all =1 1a, &l =96, abl =a,

Dl l2)
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and
iz t,y) =t al, t,y) ((5FL, Va(5515)) — g(555)).
For | = k replace (7 by (y. These formulas show that the derivative bound
in (?7?) follows from Proposition ?? as well, as we have

A0 f(z,7) = AP f (2T + 2127 Se)

Where’ with CLM (.’B,t,y) = &[l] (g,f - x1£T§617t7y)7 the Operator A,’?l’m has

Schwartz kernel

IR (g ) — 2=D(4m) i) 4 ) // G2 (e 0)
¢t (0) + 278%1))oll (t, 01 + 2787y, B)d6 dO.

Now we can use a change of variables and apply Proposition ??7 to Af ’l’m,
for ¢ =1,2,3,4 to complete the proof of Proposition ?7. O

5.2. A family of oscillatory integral operators. It remains to prove Proposi-
tion ?7. We reduce it to a result on oscillatory integrals acting on functions
on RY. Here we write, z = (z1,2'), y = (y1,¥’) for the vectors in R, omit-
ting the underbar. In what follows we are given a skew-symmetric d x d
matrix S and assume that its matrix norm satisfies

(5.9) co < |IS|I < ¢t

with 0 < ¢g < 1; in particular the rank of .S is at least 2.
We define the phase function v by

(510) ez ty) = (e — tg(EFL) + aTS(PTY — tg(Y 7L Yer)
and set
(5.11) o(z',y1) = y1 + (2')TPSey.

The function ¢; can be split as ¢; = ¢;” + ¢; where supp(¢j") C (3,2) and

27
supp(¢y ) C (=2, —3).
Setting A = 2¥~1 and letting I < k we define, for functions f € L?(R9),

(5.12) TM (e, 1) = / AL\ (1) £ (y)dy

where

(513) Xl(x,t,y) — {X(xvt’y)C(QltO'(aj,’yl)) I<k-—1

X(x7t7y)g0(2lto—(xlayl))v [ =k.

Here y is CS°-function supported where t &~ 1, |2/[, |y/| < p, and the diameter
of supp(x) does not exceed p. For | < k—1 we use the convention for ¢ to be
either ¢;” or ¢; . Note then that for I < k — 1 we have |o| ~ 27! on supp(x;)
and in addition the sign of ¢ is the same for all (z,t,y) in the support.
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Proposition 5.2. Suppose ¢y < ||S|| < ¢yt Fore >0,

d=2 . _d
(5.14) HT)\JfHL?(]RdX[l/ZQ]) S C2' T N HfHL2(Rd)-

The constant C. depends on cg but not on the specific matrix S, and stays
bounded if (o, Cfc,x range over a bounded set of C° functions.

For [ > 1 this is the key technical result of this paper; see §77.

5.3. Reduction of Proposition 77 to oscillatory integral operators. We will
use Proposition 77 to deduce Proposition ?7?. The estimate is more straight-
forward if a can be written as a tensor product of functions of each of the vari-
ables z;,t,y;. To reduce to this situation we choose functions x; — «;(z;),
t—=(t), yj = B(y;), 1 <i,7 < d+m, all with compact support such that

d+m d+m

(:rty Hazxz H/Bjyj

equals 1 on supp(a), so that the support of each factor is contained in an
interval of length less than 2.

On the support of @ we have the following Fourier series expansion
d+m d+m

oot = Y ewne® I e [T e
i=1 j=1

(n,v,u) EZX ZA+m x 7d+m
where the coefficients ¢, ,,,, are rapidly decreasing. This yields a decompo-
sition
d+m

(515) Aklf JZ t Z cn V”ueltn H ezx Z/ZAklf x t)

n,v,p

k. . o
where A" is factorized as a composition of three operators,

(5.16) AR f(a,t) = 20D Fnghl Fm L £ (0 1),
here " is defined on functions (z,0,t) — G(z,0,t) by
d+m =
(5.17) Fi'G(z H a;(z;) G(g,@,t)ez2 @0 qp,
i=d+1

GF! is defined on functions (61,y’,0) — F(61,%,0) by

(518) GHF(z,8,1) Haz i / 2 (00001

01,y

U

X (1(2lt(01 —|—§TS§€1 t 91, H Hl,y 0)d91dy
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with
(519) wg(xla xlv t,01, y/) = 91(1‘1 - tg(%)) + gTSG(PTy/ - tg(%)el)7

and finally .7:]2”: is defined on functions (y1,%',%) — f(y1,7,7) by

(520) ‘/—..]lelf(glvylag)

= / e 2 OGO i) g (yy) dltf Bi(y;) f(y1, ¢, 9)dy1dy.
j=d+1
We have the estimates
(5.21) I Gl 2 arminy S 2752 Gl p2marmsn
(622)  [GMF | a(gasmery < C-2F 2R F| o oy
(5.23) IFZ Fll poatmy S 27D £l o gy

and clearly the desired estimate (??) follows from (??), (?7?), (??) in con-
junction with (??), (??) and the rapid decay of the ¢, ;..

We justify the L2 estimates. (??) is an immediate consequence of Plancherel’s
theorem in R™ and likewise (?7) is a consequence of Plancherel’s theorem
in R™*1. Tt remains to consider (??); here we rely on Proposition ??7. With

9 as in (??) define for functions (61,y') — g(61,y')
(5.24) TMg(a,t) =

/ exp(iA? (z, 1, 01, )X (z, 1, 01,5/ )C1 (240 (2, 01)) (61, v/ )b dyf
01,y

where 0'5(56/, 01) =61 + 2TS%; = 6, + (x’)TPSgel; moreover

_ d d
X6(£7 t? 617 y/) = ")/(t)U(t, 01) 5) H O[Z(xz) H BJ (yj) .
i=2

i=1
By Proposition ?? we have with A\ ~ 2F
Al d—2 _
(5.25) HTg g||L2(Rd+1) S 2! ("2 +)2 kd/ZHQHLQ(Rd)

uniformly in #; note that we have exactly the setup in (??), except there we
use the notation z for z, y; for 61, and S for S?. For the estimate (??7) the
uniformity assertion in Proposition ?7 is crucial and so is the assumption
of the S; being linearly independent and therefore satisfying (?7). We have
GMF (2,0, t):T;k_l’l [F(-,0)] and thus applying (??) gives (??). This covers
the case [ < k, and the case | = k is analogous, requiring a minor notational

modification. This finishes the proof of Proposition 77, given Proposition
77
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6. PROOF OF PROPOSITION 77

For small [ we shall rely on a standard T*T argument from [?]. The
main part of the proof concerns the case of large [; here we rely on almost
orthogonality arguments based on the Cotlar-Stein lemma, in the following
version. Consider a finite set V indexing bounded operators T,, : Hy — Ho
where Hy, Ho are Hilbert spaces. Then we have the following bound for the
operator norm of the sum:

(6.1) H ST,
veV

This well known version follows by a simple modification of the proof in [?,
ch. VIL2] (cf. also [?, p.223)).

X 1/2 «1/2
Hi—H, S Sgp; HTVTV’||H1_>H1 + Slip; HTVTV/||H2_>H2-

6.1. The case of small I. This is the regime where one can use a standard
T*T argument (cf. [?]). Recall that ¢g(0) =1, Vg(0) = 0, diam(supp(x)) <
0 < 1, in particular |2'],]y'| < o < 1 for (z,t,y) € supp(x). Denote as
before

(6.2) o=o(x',y1) =y + (')TPSe;.

Let the (d 4 1) x d matrix 9;0; 1) be defined by (9)0z1%)ij = 0p, 0y, ¢ for
1<i,j<dand (0)0z¢)as1; = 010y,;1p for 1 < j < d. One calculates ([?])

(6.3) Of0ut] ) =

1 el SPT
—¢(5F)  tlo(@,y)g"(UFE) + PSPT + PSer(g/(“F)T
-1 +:qv($7t7y) —t720($/,y1>($/ - y/)Tg//(%)

where (. ,y) == 1= g(*F%) +7¢/(*F5) (¢ — /).

Using (??) we obtain for the determinant of the d x d submatrix 9],
det(A] D, (w, t,y)) = det (t o (2, y1)g" (XFL) + PSPT) + O(o).
From [?, Lemma 5.3, it follows that the matrix t’lag”(#) + PSPT is in-
vertible. This says that 90,1 (z,t,y) is invertible for all (z,t,y) € supp(x).
Also, the derivatives of the amplitude x(z,t,y)C(2'to(2’,41)) are bounded
when 2! ~ 1. Thus the standard oscillatory integral theorem from [?] applies
and we may conclude the bound ||[TMf(-,t)[l2 < C())A~%?||f||2 which one

uses for 2! < oL

6.2. The case of large |. We may assume that 27! < o < 1 (recall from
the beginning of §77 the specifications of the parameter p). Choose an
orthonormal basis e1,...,eq with ¢y = e1, and Se; € span(es). Set

(6.4) &) = max{|Sey|,27'}

To prepare for almost orthogonality arguments we tile R? into boxes with
sidelengths (2//d\~1, 2le/d\=15 -1 gl(e/d) N1 9li+e/d)\=1) " with the
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sides parallel to the e, ¢9, e3, ..., ¢4. The family of boxes s can be parametrized
by Z%; we define the lower corners by c(3) = QZE/d(A*IMQ + /\*15[_132@ +

S84 20A 55e:), and let
5(3) = {y : (cG1,---53a),00) < (y, i) < (c(r+l,...,3a+1),¢),0=1,...,d}.

We also write ¢ = ¢(3) if s = s(3). Denote by & the (finite) family of
those boxes which intersect {y : (z,t,y) € supp(x) for some (z,t)}. We
then decompose

(6.5) TV =3 TM, with T [f] = TM[f1].
s€6

Note that

(6.6) TM(TIN = 0if s # 5.

Notice that we have |T3" f(x,t)| < |s|*/2||f||2. Because of the compact
support of the kernel in the (x,t) variable we see that the L? operator norm

1T (|22 is O(|s|*/2). Tt is crucial for our analysis that this can be improved
1/2
by a factor of §,"":

Lemma 6.1. There exists a constant C > 0 independent of s € & such that
the estimate

_d jd=2
HTs)\7lf('?t)HL2(Rd) <CA 22l( 2 +a)||f”L2(R’1)
holds for every s € &, with C' independent of t € [%,4] and s.

Proof of Lemma 77. We freeze t € [%, 4] for this proof and write 7;)"lf(33) =
Ts)"lf(w, t), all estimates will be uniform in ¢.

We have |s| < 2/@=2+9)5 1A~ and therefore obtain from the Cauchy-
Schwarz inequality

_ —1/2\—
||7;)\JHL2%L2 §2l(d 2+e)/26l /)\ d/2‘

Let ¢; < ¢g be a small constant, and the displayed estimate is already
sufficient if |Sej| > ¢1. In what follows we consider the case |Se1| < ¢;. We
note that in this case
(6.7) sup |PSPTw'| > ¢o/2.
w’€RI—L ' |=1

Indeed, write w = (w1, w’) and Sw = (eISPTw’,wlpSel + PSPTw’); we
have |e] SPTw'| + |wy1 PSe1| < ¢1|w| with ¢1 < ¢ and (?7) holds by (?7).

Let do be the smallest integer greater than or equal to (d — 1)/2. Since
PSPT is skew-symmetric, there exists nonnegative numbers s; > --- > sq4,
and orthonormal vectors iy, ... 41 € R4 such that

PSPy 1 = siily;,

6.8
(6.82) PSPy = —sjtlai—1,
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for 1 <i<d,if d—11is even, and
PSPV = sy,
PSPV = —s;tigi—1,
for 1 <i<d,—1,if d—11is odd. By (??7), we have s; 2 co.

To estimate 7;)"1 f, we further decompose the slab s into smaller pieces.
We may write PSe; = Zf;ll o;i; and let b = Byt + Botls where B% —l—ﬁ% =1
and agf] — ayfe = 0. Then b is a unit vector in span(iy,dz) with the
property that PSPTh = —(ss11; + (151U is perpendicular to PSey. For
later use notice that |[PSPTH| = s;.

We now decompose s into subsets t,(s) defined for n € Z by

(6.9)  ta(s) ={y=(y1,9) €5: 29N n < (b,y/) <290+ 1)}

Define 7;?‘,’llf = 7;)"l[f]ltn(5)] so that 7?"1 =>. 7;?#. As (PTb,e1) = 0 we
have

(6.8b) PSPTilsg, 1 =0

’tn(5)| 5 2l(d—2+a))\—d’
and by the Cauchy-Schwarz inequality we get
(6.10) TN 2oy 2 S 214722 N—42,
Since in view of the disjointness of the sets t,(s) we have 72,;[(7; ’\ﬁl,)* =0
for n # n’ it suffices, by the Cotlar-Stein Lemma, to show

(6.11) (T Tz S 22N —n/|7N i [n—n'| > Cy

for some large C'.
We now assume that y € v,(s), z € t,#(s); since both y, z belong to s this
means that |n —n/| < C2'. The Schwartz kernel of (7;%[)*7"\7;[, is given by

S

(6'12) Hn,n’(y’ Z) = ]llfn(ﬁ) (y)]ltn/ (s) / eii)\gb(x,t’y’Z)Xl(xv t? y)xz(x, ta y) dx
where

(6.13) oz, t,y, z) = P(x,t,y) — P(z,t, 2).

The argument will rely on an integration by parts using the directional
derivative
d
0 PSPTH
6.14 Opr) = i— with v = —————.
(6.14) (000 = S with v = e

Note that

d 1
(6.15) (v, 0p) (. t,y, 2) = Z vi/o Oy Oz, (z, t,w™ (y,2)) d7 (y — 2)
1=2

(6.16) where w™ = w" (y,2) == (1 = 7)y + 72.
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Using (?7), we write
(6.17) 9]0, z/;\ ety U = 2) =y =2, B)PSPTb+ PSP (y — &) +
t~o (2, ul)g’ (%ﬂ)(y —2) =g (5 (1 —=1) +PSer (g (F)) (Y —2).
Since PSPTh and thus v is perpendicular to both PSey, PSPTIL,. (v — 2/),
and |[PSPTb| = s; we have
(6.18) ) (v, 0yr) @D’(myuﬂ)(y —2)=s1(y — 2, b)+
(ts1) "o (2, w])(PSPTH)Tg" (X547) (v —2) —s7 ' (y1—21) (PSPT) Ty (7).
Notice from (?7?) that
(6.19) ol@,(1 =1y +7121) = (1 = 1)o(2',y1) + 7o (2, 21).

Thus if x;(z,t,y) # 0 and x;(z,t,2) # 0 then o(z/,w](y,z)) = O(27).
Since y, z € 5, we also have |y; — 21| < A712%/4 and |y — 2/| < A~ 12(+e/dL,
Hence the expression in the second line of display (?7?) is O(A~12!/). Finally
[y — 2, b)| = |n — n/|\"12!/ because (y, 2) € t,(s) X ty(s). Thus, we may
use these observations in (?7?), (??) to conclude that

(6.20) (v, 0u)(, t,y, 2)| 2 [n—n/|NT12/0 0 if jn—n/| > Oy

for a large constant C. This lower bound allows us to integrate by parts in
the integral (77).
Let £ be the formal adjoint of g + (— (v, d)¢) " v, D)y, i.e.

L= 0.9, (—9 ) = 0y g{v.00)0
9= 00N G 558) = Wome ~ (0.00)97
Setting
(6.21) m(z,t,y,2) = xi(z, t,y)xi(z, t, 2)
we have

7 T z ﬁN $7t7 y 2
(6:22)  Hyw(y,2) = Lo, (s) (9)Le,(s) (%) / e )T(n—(z‘A)Ny) da.

In order to estimate £V, we first observe that because v and PSe; are
perpendicular we have (v, )0 (z',y1) = 0 and (v, 0p)9yo(2’,y1) = 0. This
implies that the functions (v,d,/)7 9y, (z,t,w™), 2 < i < d, j > 2, belong
to ideal generated by o(z’,41), a quantity which is O(27!). This in turn
implies that for (x,t,y,2) € supp(m), y,z € s

(v, ) B, t,y, 2)| S lyn — 2| + 27y — 2| S 2N
A straightforward calculation together with (?7) shows

1L, t,y, 2)] S AN @ n — ') N for y € ta(s), 2 € to(s)
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and from (?77) we get
SUP/ | He (9, 2))] dy+Sup/ | Ho o (y, 2)|dz S 21072 N/ N~y — /| =N
2 y
for [n —n'| > C;. Hence we get (??) by Schur’s test. O

In order to finish the proof of Proposition ?? using Lemma ?? and (77),
it remains to show that the operator norms of (7. 5’\’l)*T5/>’l are small if s, s
are far apart. In order to quantify this we decompose the set of pairs (s,s’)
in families Uy, 1g 1, With k; € {0,1,2,...} which we now define. For s € &,
we write ¢t = (cs,¢;), i =1,2, ci = Hgpan(er e0)t = ZZ::& ey

Let ki,ke,k3 € Ng = {0,1,2,...} such that 2% < 4\. To parse the
following definition note that 2257 '] = 2% if x € N and 2|27 | = 0 if
k = 0. We define Uy, 1,15 as the set of pairs (s,5") € & x & such that

(6.23a) 220 AT < o7lE/d|el ol < oty
(6.23b)  2[2r2l oMl < o7le/d) 2 (2| < gratmitlgml N

(6.23¢) 9|21t [oretri\Tlgl < 9=le/d| L _ L) < grstratril \—lol
We let U, )y = 18" € & 1 (5,5") € Upy pyms)- It is easy to see that for
every s € 6
6= U ulilﬁz,lf?,'
K1,K2,k320

When all k; are small we can use Lemma ??7. The following lemma gives
improved bounds if at least one of k1, ko, k3 is large.

Lemma 6.2. For k1,k2,k3 € Ny, (5,5') € & x & we have the following
estimates:

(1) If k1 > 5, Ko, k3 < 10 and (8,8") € Uy, 1k then for all N >0
(624) ||(115)\7l)*T5>/\’lHL2—>L2 S,N 2*(%+K1)N21(d72+€)5l—1)\7d )
(it) If ko > 5, k3 < 10 and (s,8") € Uy, ry.rs then for all N >0
le — —
(6.25) H(Tﬁ)\,l)*Tg)/\J”LQ—)LZ ,SN 2*(g+m+n2)N2l(d72+€)5l Ih\—d.
(iii) If k3 > 5 and (s,8") € Uy, ko ns then for all N >0
(6.26) |’(Ts)\7l)*T5>/\7ZHL2—>L2 <n 2*(%+m+m+n3)N2l(d72+5)5l—1)\7d.

Lemma 77 will be proved in §77. In each case, we will analyze for y € s
and z € §' the size of the Schwartz kernel X, ¢ = JC:"SI, of (Tg)"l)*Tﬁ))’l given
by

(6.27) Ko (y,2) = Ls(y) Lo (2) /eiA¢(x’t’y’z)nl(x,t,y,z) dxdt

with 7; as in (??). Note that whenever [ < k — 1 the definition (??) of ; via
(??) implies that o(2’,y1) and o(2/,21) have the same sign, and absolute
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value comparable to 2. Our proof will then rely on various integration by
parts in the integral (?7?). Specifically for (s,8") € Uy, x, 15 We use integration
by parts with respect to ¢, when k1 > 5, ko, k3 < 10, integration by parts
with respect to 1, when |Sei| > 27! and k9 > 5, k3 < 10, and integration
by parts using the directional derivative <%,
when kg > 5, k3 < 10, |Sey| < 27! (see §7? below). Assuming Lemma ??
we can now give the

0y), either when k3 > 5 or

Proof of Proposition ??7. We verify (7?). In view of (?7) it suffices to prove
for each s

(6.28) ST T S AN
5’

with implicit constant independent of s. From the definition of U, x, ks it
is easy to see that

(6.29) SUP F (UL, oy iy) S 271 2(A7 1) Fria(072)
S
From Lemma 7?7 we have
T T | S ITMN T S 22 ne

and thus by (?7?) for x; < 10, i = 1,2,3 we have

(6:30)  sup o Yo (TMTYE S 2RA,
° 51752»53S105/€u21,n2,f€3

Moreover using that §; ' < 2! we obtain from Lemma ?? and (??)

sup Z Z H(Ts)\,l)*T;/\,lHl/Q

max{r1,K2,53}>58"€UZ, 1o a

5 2ld_§+5 )\_ng(%_%) Z 2—(H1+H2+’€3)(%_d)'

(k1,k2,k3)ENG

For N > 2d we can sum in k1, ko, k3, and if in addition we also choose
d—24e

N > 1+d/e we get the bound O(2!" =2 A %) for the last display and (?7)
follows. 0

6.3. Proof of Lemma ?7?. We verify first (?77), then (??) in the case |Se;| >
27! and then give a unified treatment of (??) and the case |Se;| < 27! in
(7?).

Proof of (?7). We are now in the case k1 > 5, and kg2, k3 < 10 in (?7?).
We examine the Schwartz kernel K. of (Ts’\’l)*Ts’}’l given in (?77?); in
the case under consideration we have |y — 2| & 29 A"121/4 ) |(y — 2, ep)| <
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oy AT 2mle/d |y — 2 ey | S AT2mi2lre/d) =3 . d. We now integrate
by parts with respect to ¢; for this observe that (with w” as in (?7))
(6.31)

8t¢(x7 12572 Z) = 3t¢(95» t y) - 8{(#(%, t, Z) = _(yl - Zl)+

1
/O [9(z,t,wT) (g1 — 21) =t 2o (2, wi) (2! —w™)Tg" (F5) (Y — =) dr.

Since |2/ — /| < 0 < 1 we have [g(z,t,w™)] < 1, and from, (??) and
lo| < 27! we see that

(6.32) |Os(x,t,y, 2)| & |y1 — 21| e 29 ATT2E/

Observe that the higher t-derivatives of g are < p <« 1. Moreover o does
not depend on ¢t and we see that

]8§V¢(x,t,y, Z) SN ‘yl - Zl‘ + 2_l]y’ - Zl‘ S 2”12l5/d)\_1,
’agv[nl(xatay7z)]| SN 1.

Hence integration by parts with respect to ¢ yields the pointwise bound
| Ko (y,2)] S (2“12l6/d)_N which gives

— - -1
A d2l(d 2+6)5l
(2/{1 215/d)N

sup [ oy 2)dz +sup [ [Kouy,2)ldy S
Y z
As §;! < 2! we obtain (?7?), by Schur’s test.

Proof of (?7) in the case |Sei| > 27!, This now concerns the case kg > 5.
We will integrate by parts with respect to =1 in (??) and observe

8x1¢(x7 Ly, Z) = amw(xa L, y) - 8:c1w(x7 t Z)
=y1— 21+ e]SPT(Y — ) =y1 — 21 — |Ser|(y’ — ', e2).
In the present case |Sei| = §; and (s,58) € Uy, xyxs With kK2 > 5 and thus
foryes, zes
|<y -z, 22>| > 2/@2*1+/€1)\715l—1215/d’ ‘yl - Zl‘ < 2H1+1)\*12l€/d;
hence
(6.33) 100, 0(2,t,y, 2)| & |Ser||(y — 2/, e2)| 2 21 FF2\71olE/d,

Note that o does not depend on z; and ij\igb =0 for N > 2. After N-fold
integration by parts with respect to z1 we get |K, o (y, )| S (2172 ole/dy=N,
As above, the asserted estimate (?7?) follows by Schur’s test. O

Proof of (??) in the case |Sei| < 27! and proof of (?7?). Notice that in
view of the small support of x we have in the present case UC;\”ﬁl/ = 0 when
2IA=1 > 1, so the case | = k is trivial. In what follows we assume | < k — 1;
it will be crucial that in this case o(2/,y1), o(2/, 21) have the same sign for
ye€sand z €5.
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If |Sey| < 27! we have & = 27! and for the proof of (??) we have also
k3 < 10 and we shall prove the pointwise estimate
(6.34) Koo (y, 2)| Siv (271 F221/4) =N
under the assumption that y € s, z € &' satisfy
gritra=l\~1gl < 9=le/d|(y _ ;o)) < gF1+hat2) 1ol
9-1e/d|(y — L)L < gmtratliy-lgl 1 ge | < 2L,

here (y — 2)* := Zf:?)(y — z,¢;)¢;.
Moreover for (??) we shall prove

(6.36) |j{5’5, (y’ Z)| ,SN (2n1+1€2+n32l€/d)—N

(6.35)

under the assumption that k3 > 5 and that y € 5, 2 € ' satisfy
2/{14—}-{2—‘,—/{3—1)\—12[ < 2—lE/d‘(y o Z)J_‘ < 2H1+H2+H3+2A—12l’

6.37
( ) 2—lg/d’<y — 2z, 32>‘ S 2H1+I€2+25l—1)\—1.

We use the directional derivative <|y’ 8 /) in our integration by parts
argument. From (?7) we get (with w” as i ( 7))

(6.38) 5x/¢(x,t,y,z):/0 Oy Oprp(x, t,w")(y — 2)dT

o(x

! 1! —wT W) gl g '
= | [0 - )+ TR (R - )

T/

+ PSPT(y — 2) + PSey (g (Z=2")T(y/ —z))] dr.

Take the scalar product with £ | | and use that (y' —2")TPSPT(y' —2') =0
to get
;o 1 ! T /_/T//O)(/_Z/)
Y= g, . _ [olhw]) (Y —2)Tg"(0)(y
(639) (e 0wl by, 2) /0 o Y — 2]
+ R]_(l’,t, Y, Z) + R2(337t,3/, Z)
where
y' =2 \T 10—(1-”14;1') "oz —wt! " / /

Rifat) = (=27 [ D (g5 - 1 0)arty — 2)
and
RQ(:Uatvy? Z) =

1
/0 |~ (B9 (5 - 21) + (=2, PSead (g (5522 T(y - 21)|ar

/

1
—(y1— 21— |Ser|(y/ = 2/, e2)) /O g ()T (= dr.
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By the single-signedness of o we have | fol t~to(z',wl)dr| = 27 here we
use (?77). Hence, because of the positive definiteness of ¢”(0) we see that
the main term in (??) satisfies the lower bound

‘ /1 o(a’,wi) (¥ = Z)T9"(0)(y — =)
0 t ly' — 2|

> 27ty — 2|

and we use
27y — 2|~ 27! (y — 2, e0)| A 2//d2m R\ if (27) holds,
27!y — 2|~ 27N (y — 2)t| ~ 2le/dpmitRatha \ =1 if (22) holds.

Since [|g"(2=27) — ¢"(0)|| = O(0) we get

p2ritrz \—1ole/d if (??) holds

< =l <
’Rl(:’ratayv Z)| ~ 492 |y z ‘ ~ {Q2K1+H2+K3)\12l6/d if (??) holds.

Finally
|Ra(z,t,y,2)| S o(lyr — z1] + |Ser|[(y' — 2/, e2)])
and we have |y; — 2| < 2/ A~120e/d
|Ra(x,t,9,2)| S o(lyr — z1] + 27y — #|) < 02772 A~ 12!/4 if (72) holds.

Moreover we get this when (??) holds and |Se;| < 27",
Now consider the case that (??) holds and |Se;| > 27!, Then

|S€1||<y/ B Z/, 22>| 5 2ﬁ1+ﬁg+2>\—12l6/d

and thus clearly

and thus we also get
|Ry(z,t,y, 2)| < 0281 TR2 X ~121/4 if (27) holds.

Altogether, for y € 5, z € &,

(6.40) (=2, 0u) b, 1.y, 2)| 2 27 FF2A7121/ if (22) holds,
and
(6.41) (=2, 0 ) (1,9, 2)| 2 2552\ 7121/ i (22) holds.

0.

We need corresponding upper bounds for the higher derivatives <ﬁ,
First observe that

(6.42) (ﬁ,@y)a(x',yl) = (ﬁ,PS’eﬁ.

Clearly this is O(27!) when ¢; = 27!, in particular under assumption (??).
On the other hand, if §; > 27! then we use that PSe; = |Se1les and if we
now assume (??) we have |(y/ —2', PSe;)| < §)|(y—z, e0)| < 2F1 22\~ 19le/d

and [y — 2/| > |(y — 2)*| > 2m+retre=I 19090/, hence (=2, PSe;) =
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O(27") and therefore <%, dy)o(x',y1) = O(27Y). Moreover, for the higher
derivatives we have <%, 0,)No =0 for N > 2. This implies, for all N,

(=2 00) V(e . 2)]| S L

Differentiating in (??) and using these estimates for o and <%, Op)o,

also yields
(=2, 0u) V(@ t,y, 2)| S 27y = 2| + [y — 21| + [Sea |y — 2/, e2)]

Ty’ =2’
_ or1tr2 \—1ole/d if (??7) holds
~ 251-&-%2-&-%3)\—1255/51 if (??) holds

An integration by parts yields

N
. t
(6.43) Koo (y,2) = Ls(y) 1o (2) / equﬁ(z,t,y,Z)M dadt
’ (—iN)N
where ) )
Y= g\,
Eg(x,t,y, Z) - <|y/ . Z/|7ax >< y’—z/ 8 /¢ )
ly'—2"| 7%
and we have

251+/€22l8/d)_N)\N if (??) holds
£V, b, D) S
L UICARTEI S {Qmmmya/d)—fv AN if (27) holds.

By (?7) this leads to the pointwise estimates (??) (under assumption (?77))
and (??) (under assumption (??)). By applying Schur’s test we obtain the
claimed bounds in both cases. g

7. OPEN PROBLEMS AND FURTHER DIRECTIONS

7.1. d = 2. The problem of nontrivial L? bounds for the Nevo-Thangavelu
maximal operator when d = 2 remains currently open even in the model
case of the Heisenberg group H!.

7.2. A restricted weak type endpoint bound. Theorem 77 establishes a re-

stricted weak type (d%‘ll, d%dl) endpoint estimate for the local maximal op-

erator, when d > 3. Does this endpoint bound also hold for the global
operator? This is the case when all J; are zero (cf. [?]).

7.3. LP-improving estimates. One can ask whether the local operator f
SUDj <4<y | f* p¢| maps LP to LY for some g > p; this would imply correspond-
ing sparse bounds for the global maximal operator (see [?]). As a model case
for the case m = 1 the precise g-range for such results should depend on
the rank of J; (and no LP improving takes place when J; = 0). For m > 2
the dependence on the matrices Ji, ..., Jn, could be quite complicated. The
case of Heisenberg type groups is covered in [?].
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7.4. Restricted dilation sets. One can also consider maximal functions with
restricted dilation sets. The LP — LP estimates with Minkowski dimension
type assumptions are rather straightforward; one can combine the methods
of this paper with elementary arguments in [?, ?]. In contrast the LP-
improving estimates are harder; for the Heisenberg groups H"”, with n > 2,
this problem was considered in [?]. For general dilation sets there is a large
variety of possible type sets (¢f. [?, Thm.1.2]), and much remains open.

7.5. Higher step groups. It would be interesting to develop versions of our
theorem which apply in the general setting of stratified groups; here only
the case of lacunary dilations is well understood (see e.g. [?]).

7.6. Awverages over tilted measures. The above problems can also be formu-
lated for the case where the spherical measure p is no longer supported
in a subspace invariant under the automorphic dilations. The assumption
of invariance under automorphic dilations is crucial for the analysis in the
present paper but it has been relaxed in [?, ?] which cover results on maximal
functions associated with such tilted measures on Heisenberg or Heisenberg

type groups.
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