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Abstract

We consider the problem of forming prediction sets in an online setting where the distribu-
tion generating the data is allowed to vary over time. Previous approaches to this problem
su↵er from over-weighting historical data and thus may fail to quickly react to the under-
lying dynamics. Here, we correct this issue and develop a novel procedure with provably
small regret over all local time intervals of a given width. We achieve this by modifying
the adaptive conformal inference (ACI) algorithm of Gibbs and Candès (2021) to contain
an additional step in which the step-size parameter of ACI’s gradient descent update is
tuned over time. Crucially, this means that unlike ACI, which requires knowledge of the
rate of change of the data-generating mechanism, our new procedure is adaptive to both
the size and type of the distribution shift. Our methods are highly flexible and can be
used in combination with any baseline predictive algorithm that produces point estimates
or estimated quantiles of the target without the need for distributional assumptions. We
test our techniques on two real-world datasets aimed at predicting stock market volatil-
ity and COVID-19 case counts and find that they are robust and adaptive to real-world
distribution shifts.

Keywords: Conformal inference, online prediction, distribution shift, prediction set,
online convex optimization

1. Introduction

We consider a situation in which we observe a data stream {(Xt, Yt)}1tT generated by
a dynamic process in which the distribution of (Xt, Yt) (and more broadly of subsequences
(Xt, Yt), . . . , (Xt+s, Yt+s)) is allowed to vary over time. At each time point t, our goal is to
use the previously observed data {(Xs, Ys)}s<t, along with the new covariates Xt, to form a
prediction set for the target value Yt. We are motivated by numerous modern applications
in which a complex model (e.g. neural network, random forest) is employed to produce a
point estimate of Y . While these models have been found to perform well on i.i.d. training
and testing data, rigorous guarantees on their accuracy are lacking and their empirical
performance has been found to degrade under distribution shift (Koh et al. (2021)). Thus,
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a more robust understanding of the uncertainty underlying these methods’ predictions is
necessary before they can be deployed in practice.

Prediction sets have become a popular tool for quantifying the accuracy of machine
learning models. Formally, we say that Ĉ(·) ✓ R is a 1 � ↵ prediction set for Y if P(Y 2
Ĉ(X)) = 1� ↵. Conceptually, by examining the size and scope of Ĉ(X) the user can gain
information above the uncertainty underlying a model’s point-prediction.

Many of the most useful tools for computing prediction sets come from the field of
conformal inference. This general framework provides a flexible set of methodologies for
transforming the point or quantile-estimates output by a black-box machine learning model
into valid prediction sets (see e.g. Saunders et al., 1999; Vovk et al., 1999, 2005; Gammerman
and Vovk, 2007; Shafer and Vovk, 2008; Lei and Wasserman, 2014; Sadinle et al., 2019;
Foygel Barber et al., 2020; Barber et al., 2021). Conformal inference is particularly powerful
because it allows users to leverage improvements in the baseline predictor to obtain smaller
and more accurate prediction sets (Romano et al. (2019)).

The original conformal inference methods developed by Vovk and colleagues typically
require that all the training and testing data be exchangeable (e.g. be i.i.d.), and in particu-
lar, require that all points have the same marginal distribution. While the earlier literature
does contain some extensions beyond exchangeabiltiy to data sequences that are locally
exchangeable or can be transformed to an exchangeable sequence (Vovk et al. (2005)), the
applicability of these methods is limited. More recently, many authors have extended confor-
mal inference to account for a wider variety of distribution shifts and dependency structures
within the training and testing data. Some examples including methods for stationary time
series (Chernozhukov et al. (2018)), cross-sectional time series (Lin et al. (2022)), label
shift (Podkopaev and Ramdas (2021)), covariate shift (Tibshirani et al. (2019); Yang et al.
(2024)), and generic methods for re-weighting non-identically distributed data (Barber et al.
(2023)).

The problem of adjusting a conformal predictor to adapt to arbitrary online distribution
shifts was proposed by the present authors in Gibbs and Candès (2021). There, we gave a
gradient descent method, called adaptive conformal inference (ACI), that tunes the width
of the prediction sets to adapt to the underlying uncertainty in the environment. While
that method was found to produce good results both theoretically and empirically, its
performance critically relies on a good specification of its step-size parameter. Specifically,
it was shown that for optimal performance, the step-size should be set proportional to the
underlying rate of change in the environment, which is unknown in practice.

Recently, two alternatives to ACI have been proposed that avoid the need for a user-
specified step-size. The most direct approach is that of Za↵ran et al. (2022), which gives an
expert learning method for adaptively tuning the step-size based o↵ of the historical per-
formance of a set of candidate values. Moving away from gradient descent based methods,
Bastani et al. (2022) propose an alternative approach in which the width of the predic-
tion set is chosen directly from a set of candidate thresholds. While these methods can
be argued to improve on ACI, both approaches have the shortcoming of heavily weighting
older historical data when choosing amongst their candidate values. As our experiments in
Section 4.1 show, this can lead to a failure to quickly adapt when abrupt changes occur.

In this article, we propose an alternative expert selection scheme for choosing the step-
size in ACI. We show that unlike previous approaches, our method can control the deviation
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in the coverage probability locally over time and we bound the local coverage of our method
in terms of the rate of change of an underlying optimal target parameter. The importance
of this result is not purely theoretical, and we provide example settings where alternative
methods produce worse adaptivity to the local dynamics than our approach. In addition to
the local coverage, we also investigate the average the coverage our method over a long time
horizon. We show that for some choices of our method’s hyperparameters exact long-term
coverage is guaranteed. In practice, we will typically favour alternative hyperparameter
settings that are designed to optimize local coverage. For these values, we find empirically
that our method can have a bias in the long-term coverage. However, this bias is extremely
small, and thus it has a minimal impact on the performance of our method. We evaluate
the performance of our method on two real-world prediction tasks aimed towards predicting
stock market volatility and COVID-19 case counts, and find that it adapts well to real-world
dynamics.

2. Methodology

In this section we outline the main methods of this article. Before developing our new
methodology, we begin by reviewing the conformal inference and adaptive conformal infer-
ence frameworks.

2.1 Conformal Inference

Let (X1, Y1), . . . , (Xn, Yn) 2 Rd⇥R denote a set of observed training data and (Xn+1, Yn+1)
denote a new test point from which we only observe Xn+1. In order to construct a prediction
set, conformal inference begins by imputing guesses y for Yn+1. Then, for each candidate
value y, a conformity score S : (Rd ⇥ R)n ⇥ Rd ⇥ R ! R is used to measure how well the
data point (Xn+1, y) conforms with (X1, Y1), . . . , (Xn, Yn). Typically, this is done by first
using all n+1 datapoints to fit a regression and then measuring how well y aligns with the
prediction of the fitted model at Xn+1. For example, we may take S(·) to be the absolute
residual

S((Xj , Yj)1jn, (Xn+1, y)) := |y � µ̂(Xn+1)|, (1)

where µ̂ is an estimate of E[Y |X] fit on (X1, Y1), . . . , (Xn, Yn), (Xn+1, y), or the estimated
probability

S((Xj , Yj)1jn, (Xn+1, y)) := 1� ⇡̂(y|Xn+1),

where ⇡̂(y|Xn+1) is a fitted estimate of P(Yn+1 = y|Xn+1). In the final step of conformal in-
ference the value y is added to the prediction set if the test score, S((Xj , Yj)1jn, (Xn+1, y)),
is small relative to the training scores, {S((Xj , Yj)1jn,j 6=i, (Xn+1, y), (Xi, Yi))}ni=1, e.g. if
the residual |y � µ̂(Xn+1)| is small relative to |Yi � µ̂(Xi)|.

In general, the only requirement on S(·) necessary for existing theoretical results to
hold is that it is unchanged by permutations of its first n arguments. In the context of
this article, the data (X1, Y1),. . . ,(Xn, Yn), (Xn+1, Yn+1) will often have a temporal depen-
dence structure. As a result, it may not be sensible to treat all of the arguments to S(·)
symmetrically and we will often use conformity scores that are not permutation invariant.

For ease of notation, let S
y
i := S((Xj , Yj)1jn,j 6=i, (Xn+1, y), (Xi, Yi)) and S

y
n+1 :=

S((Xj , Yj)1jn, (Xn+1, y)). For any ⌧ 2 R and distribution D, let Quantile (⌧,D) denote
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the ⌧th quantile of D with the convention that Quantile (⌧,D) = 1 (respectively �1) for
all ⌧ � 1 (respectively ⌧  0). Then, formally, conformal inference outputs the prediction
set

Ĉn+1 :=

(
y : Sy

n+1  Quantile

 
1� ↵,

1

n+ 1

n+1X

i=1

�Sy
i

!)
. (2)

As alluded to in the introduction, this set satisfies the following coverage guarantee.

Theorem 1 If the data (X1, Y1), . . . , (Xn+1, Yn+1) are exchangeable and S(·) is invariant

to permutations of its first n arguments, then

P(Yn+1 2 Ĉn+1) � 1� ↵.

Moreover, if in addition the values {SYn+1
i }1in+1 are distinct with probability one, then

P(Yn+1 2 Ĉn+1)  1� ↵+
1

n+ 1
.

A full proof of this result can be found in Lemma 1 of Romano et al. (2019) (for an earlier
treatment of the first part of the Theorem see also Vovk et al. (2005)).

Unfortunately, in most practical examples, computing Ĉn+1 requires the user to fit the
regression function µ̂ or ⇡̂ for all possible values of y. As this is not usually computation-
ally feasible, many implementations of conformal inference use a data splitting approach in
which the regression estimate is pre-fit in advance using a separate set of training data (Pa-
padopoulos et al. (2002); Vovk et al. (2005); Papadopoulos (2008)). The methods developed
in this article do not rely on any formal guarantee of conformal inference and can be used
in conjunction with any procedure that produces estimated quantiles of a conformity score.
Thus, in our experiments, we avoid extraneous computation by using procedures that do
not strictly adhere to the construction given by (2).

2.2 Adaptive Conformal Inference

The methodology developed in this article builds upon the adaptive conformal inference
(ACI) algorithm proposed by Gibbs and Candès (2021). This procedure accounts for non-
exchangeability by treating the quantile of the conformity scores as a tunable parameter
that can be learned in an online fashion. More concretely, let Dy

t denote our estimate of
the conformity score distribution at time-step t with imputed value y. For instance, in our
experiments we will often use the empirical distribution of the most recent r conformity
scores, Dy

t = 1
r

Pt
i=t�r+1 �S

y
i
(recall that standard conformal inference would take r = t).

Let
Ĉt(�) := {y : Sy

t  Quantile (1� �,Dy
t )} , (3)

denote the prediction set obtained at timestep t using the 1�� quantile ofDy
t . Then, without

any assumptions on the data generating distribution, we know that � 7! P(Yt 2 Ĉt(�)) is
non-increasing with P(Yt 2 Ĉt(0)) = 1 and P(Yt 2 Ĉt(1)) = 0. Now, suppose Dy

t is a
continous distribution (this could be obtained by e.g. smoothing the empirical distribution
of the previous conformity scores). Then, it is reasonable to assume that � 7! P(Yt 2 Ĉt(�))
is continuous, and thus, there exists a value ↵

⇤
t such that P(Yt 2 Ĉt(↵⇤

t )) = 1 � ↵. Since
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we do not know this optimal value a priori, ACI estimates it in an online fashion using a
parameter ↵t that is updated as

↵t+1 = ↵t + �(↵� errt), (4)

where � > 0 is a step-size parameter and

errt :=

(
0, if Yt 2 Ĉt(↵t),

1, if Yt /2 Ĉt(↵t).

In simple terms, the update (4) can be seen as increasing/decreasing the size of the predic-
tion set in response to the historical under/over coverage of the algorithm.

A natural criticism of this approach, originally raised in Bastani et al. (2022), is that
ACI can obtain good coverage not because it successfully learns ↵⇤

t , but rather simply due
to the fact that it reactively corrects its past mistakes. In particular, it may be the case
that ↵t oscillates between being well below and well above ↵

⇤
t and thus good coverage is

obtained only through a cancellation of positive and negative errors. In Section 4.2.2 we
give empirical evidence indicating that the new methods developed in this article do not
exhibit such pathological behaviour.

Returning to (4), the critical di�culty in implementing ACI is the choice of �. Gibbs
and Candès (2021) gives theoretical results suggesting that � should be chosen proportional
to the size of the variation in ↵

⇤
t across time. However, this value is unknown and no

procedure for estimating it is given. Additionally, much of the theory given in Gibbs and
Candès (2021) is only valid under two additional assumptions.

1. The conformity score function S((Xs, Ys)s<t, (Xt, y)) = S(Xt, y) is a fixed function
that depends only on the new data point (Xt, y) and does not use the most recent
data (Xs, Ys)s<t to recalibrate its predictions. For example, under this assumption,
the conformity score (1) would use a regression function µ̂(·) that is fixed in advance
and not updated as time progresses.

2. Instead of using an adaptive distribution, Dy
t to generate quantiles for the prediction

set in (3) we instead have some fixed reference distribution, D that the conformity
scores are compared to, i.e. the prediction set can be written as

Ĉt(↵t) = {y : S(Xt, y)  Quantile(1� ↵t,D)} .

These two assumptions are clearly problematic since under distribution shift the most recent
data should be used to recalibrate both the regression function and the estimated distri-
bution of the scores. The most obvious consequence of using fixed models is an increase
in the size of the prediction sets over time as the true model drifts and the errors in the
point predictions made by the regression model grow. More subtly, holding D fixed can
lead to large oscillations in ↵

⇤
t as the past conformity scores no longer reflect the current

situation. This will increase the di�culty of the online learning problem and may cause the
coverage proability, P(Yt 2 Ĉt(↵t)) to sharply deviate from 1�↵. In the following sections,
we develop a new method and novel theoretical results that make no assumptions on S(·)
and D and thus allow these quantities to be updated over time.
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2.3 Dynamically-Tuned Adaptive Conformal Inference

In order to describe our new method, it is useful to first observe that the ACI update (4)
can be viewed as a gradient descent step with respect to the pinball loss. To see this, let

�t := sup{� : Yt 2 Ĉt(�)},

be the value of � such that Ĉt(�t) is the smallest prediction set containing Yt. Recall the
definition of the pinball loss,

`(�t, ✓) := ↵(�t � ✓)�min{0,�t � ✓}.

Then, one can verify that (4) is equivalent to the update

↵t+1 := ↵t � �r✓`(�t,↵t).⇤

Through this lens, ACI can be viewed as a gradient descent procedure with respect to the
sequence of convex losses {`(�t, ·)}. Thus, in order to learn � we can utilise popular methods
from the online convex optimization literature. In particular, we will employ an exponential
re-weighting scheme that chooses a value for � based o↵ of the historical performance of a
set of candidate values. Methods of this type have a long history dating back to the original
work of Vovk (1990). Our specific procedure is a small modification of an algorithm proposed
by Gradu et al. (2023). In that article, Gradu et al. (2023) consider a control setting in
which present actions a↵ect the future states of the system. This leads them to consider
a surrogate loss function that accounts for the long-term dependence structure induced by
the actions. Because we have no such dependence, we consider a simplified version of their
method here.

We refer to the resulting procedure as dynamically-tuned adaptive conformal inference
(DtACI, Algorithm 1). This algorithm takes as input a candidate set of values for � and
constructs a corresponding candidate set of values for ↵t by running multiple versions of
ACI in parallel. In the convex optimization literature these parallel sequences are typically
referred to as experts. The final value of ↵t output at time t is then chosen from among
these experts by evaluating their historical performance. In e↵ect, we learn the optimal
value of � in an online fashion, enabling dynamic calibration of the prediction set to the
size of the distribution shift in the environment.

Before moving on, we note that Algorithm 1 is not completely parameter free. In fact,
while we have removed the need for an unknown step-size parameter, this has come at the
cost of adding two unknown weight parameters, ⌘ and �. While this may initially appear
to be problematic, in Section 3, we will outline a simple procedure for choosing � and ⌘

that does not involve any unknown quantities. This contrasts sharply with the situation
for � in which an optimal choice requires an in-depth knowledge of the distribution shift.
Moreover, in some environments the size of the distribution shift can vary over time and a
single constant value for � can perform poorly. For example, in Section 4.1 we demonstrate
a setting in which adaptively tuning � allows us to quickly respond to an abrupt change
in the environment, while a more stationary choice of � lags behind. This issue does not

⇤. Here we have ignored the edge case �t = ↵t. In this case to match the original ACI update one should
take the smallest subgradient of `(�t,↵t), i.e. the value 0.
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Algorithm 1: DtACI, modified version of Algorithm 1 in Gradu et al. (2023).

Data: Observed values {�t}1tT , set of candidate � values {�i}1ik, starting
points {↵i

1}1ik, and parameters � and ⌘.
w

i
1  1, 1  i  k;

for t = 1, 2, . . . , T do

Define the probabilities pit := w
i
t/
P

1jk w
j
t , 81  i  k;

Output ↵t = ↵
i
t with probability p

i
t;

w̄
i
t  w

i
t exp(�⌘`(�t,↵i

t)), 81  i  k;
W̄t  

P
1ik w̄

i
t;

w
i
t+1  (1� �)w̄i

t + W̄t�/k;

errit := {Yt /2 Ĉt(↵i
t)}, 81  i  k;

errt := {Yt /2 Ĉt(↵t)};
↵
i
t+1 = ↵

i
t + �i(↵� errit), 81  i  k;

exist for � and ⌘ and we provide extensive empirical evidence demonstrating that a single
choice of these parameters performs well across a large variety of environments. A more
theoretical discussion on the optimal settings for � and ⌘ that justifies a specific fixed choice
for these parameters can be found at the end of Section 3.1.

2.4 Comparison to Existing Methods

As mentioned in the introduction, two other alternatives to ACI have been proposed in the
literature. Most closely related to the present paper is the AgACI method of Za↵ran et al.
(2022), which aims to learn the value of � in ACI using the adaptive Bernstein online expert
aggregation scheme of Wintenberger (2017). To describe this method, let {Li

t} and {⌘it}
denote the cumulative loss and learning rate for expert i 2 {1, . . . , k} given by the recursive
updates, Li

t = 0, ⌘it = 0, and

`
i
t := (errt�1 � ↵)(↵i

t � ↵t),

L
i
t := L

i
t�1 +

1

2
(`it(1 + ⌘

i
t�1`

i
t) + 2dlog2(max1st |`is|)e+1 {⌘it�1`

i
t > 1/2}),

⌘
i
t := max

(
2�dlog2(max1st |`is|)e�1

,

s
log(1/k)
Pt

s=1(`
i
s)

2

)
.

The details of these definitions are not critical. The most important thing to note is that
`
i
t is exactly equal to the first order linearization of the di↵erence `(�t�1,↵

i
t�1)� `(�t�1,↵t)

and thus L
i
t can be interpreted as a cumulative loss over time. With these definitions in

hand AgACI defines the probabilities

epit :=
⌘
i
t exp(�⌘itLi

t)Pk
j=1 ⌘

j
t exp(�⌘

j
tL

j
t )
,

and outputs the estimate ↵t :=
Pk

i=1 epit↵i
t.

7



Gibbs and Candès

The primary di↵erence between AgACI and our method is the relative weight given to
the historical performance of the experts. To see this, we first observe that by unravelling
the DtACI updates, the DtACI weights can be re-written as a mixture distribution where
element s considers the most recent s losses. More precisely, we have

w
i
t+1 =

tX

s=0

(1� �)t�s
W̄s

⇣
�

k

⌘ {s 6=0}
exp

0

@�⌘
tX

j=s+1

`(�j ,↵
i
j)

1

A ,

where for ease of notation we have set W̄0 = 1. Without any formal analysis, it can be
immediately seen that the more recent datapoints appear more often in this mixture and
thus contribute more to our choice of weights. On the other hand, the AgACI weights
are based o↵ a cumulative sum of all previous losses and thus assign a similar degree of
importance to all historical data-points. The upside of this choice is that in environments
where the rate of distribution shift is constant, AgACI can e↵ectively converge on a single
optimal step-size. However, this comes at the cost of reduced adaptivity over time. For
instance, if the environment starts in a state of slow distribution drift, but then undergoes
an abrupt shift, AgACI can fail to increase the step-size quickly and thus be slow to react
to the change. Empirical examples demonstrating these properties are given in Section 4.1.

The second alternative to ACI that we consider is the multivalid conformal prediction
(MVP) method of Bastani et al. (2022). Instead of targeting the optimal parameter ↵

⇤
t ,

this algorithm chooses ↵t in order to explicitly obtain the desired long-term miscoverage fre-
quency limT!1 T

�1PT
t=1 errt = ↵. In addition, MVP is also designed to satisfy threshold-

calibrated coverage, i.e. for every ⌧ , limT!1(
PT

t=1 {↵t = ⌧})�1PT
t=1 errt {↵t = ⌧} = ↵.

At a high level, this is accomplished by setting a grid of possible choices for ↵t, and then
at each time step outputting the value in the grid that has produced the best historical
coverage.

While MVP can perform well in stationary environments where there exists a single
optimal choice for the threshold, it does not give significant adaptivity to local changes.
This is demonstrated by our experiments in Section 4.1 where MVP fails to adjust to the
local variation in ↵

⇤
t . For a more complete description of the MVP algorithm see Section A

of the Appendix.

Finally, we emphasize that the good local coverage properties of DtACI are not solely an
empirical phenomena. Indeed, in the next section we give bounds that control the di↵erence
between the estimates ↵t produced by DtACI and the optimal values, ↵⇤

t over any local time
interval. This theory is new to our methods and no similar results exist for AgACI or MVP.

3. Coverage Properties of DtACI

In this section we outline the main coverage guarantees of DtACI. We begin by drawing
from known results in the online convex optimization literature that bound a quantity
known as the dynamic regret of DtACI. We then draw a connection between this regret and
the coverage. Finally, we evaluate the long-term coverage in a specialized case where the
hyperparameters ⌘ and � decay to 0 over time. All proofs are deferred to the Appendix.
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3.1 Dynamic Regret of DtACI

Our first result quantifies the error in the expert aggregation scheme by bounding the
di↵erence between the loss we obtain and that of the best expert.

Lemma 2 (Modified version of Lemma A.2 in Gradu et al. (2023)) Assume that � 
1/2. Then, for any interval I = [r, s] ✓ [T ] and any 1  i  k,

sX

t=r

E[`(�t,↵t)] 
sX

t=r

`(�t,↵
i
t) + ⌘

sX

t=r

E[`(�t,↵t)
2] +

1

⌘
(log(k/�) + |I|2�), (5)

where the expectation is over the randomness in Algorithm 1 and the data �1, . . . ,�T can

be viewed as fixed.

With this lemma in hand, we now turn to our true target, namely the values ↵⇤
t defined

in Section 2.3. Our first step is to recall the following regret bound for gradient descent
with a dynamic target.

Lemma 3 (Application of Theorem 10.1 of Hazan (2019)) For any fixed interval I =
[r, s], sequence ↵

⇤
r , . . . ,↵

⇤
s , and 1  i  k,

sX

t=r

`(�t,↵
i
t)�

sX

t=r

`(�t,↵
⇤
t ) 

3

2�i
(1 + �i)

2

 
sX

t=r+1

|↵⇤
t � ↵

⇤
t�1|+ 1

!
+

1

2
�i|I|.

By combining the previous two lemmas we obtain the main result of this section.

Theorem 4 Let �max := max1ik �i and assume that �1 < �2 < · · · < �k with �i+1/�i  2
for all 1 < i  k. Assume additionally that �k �

p
1 + 1/|I| and �  1/2. Then, for any

interval I = [r, s] ✓ [T ] and any sequence ↵
⇤
r , . . . ,↵

⇤
s 2 [0, 1],

1

|I|

sX

t=r

E[`(�t,↵t)]�
1

|I|

sX

t=r

`(�t,↵
⇤
t ) 

log(k/�) + 2�|I|
⌘|I| +

⌘

|I|

sX

t=r

E[`(�t,↵t)
2]

+ 4(1 + �max)
2max

8
<

:

sPs
t=r+1 |↵⇤

t � ↵⇤
t�1|+ 1

|I| , �1

9
=

; ,

where the expectation is over the randomness in Algorithm 1 and the data �1, . . . ,�T can

be viewed as fixed.
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If we assume that �1 
rPs

t=r+1 |↵⇤
t�↵⇤

t�1|+1

|I| and take the optimal choices � = 1/(2|I|)

and ⌘ =
q

log(2k|I|)+1Ps
t=r E[`(�t,↵t)2]

, we obtain the much simpler bound,

1

|I|

sX

t=r

E[`(�t,↵t)]�
1

|I|

sX

t=r

`(�t,↵
⇤
t )  2

s
log(2k|I|) + 1

|I|

vuut 1

|I|

sX

t=r

E[`(�t,↵t)2]

+ 4(1 + �max)
2

sPs
t=r+1 |↵⇤

t � ↵⇤
t�1|+ 1

|I|

= O

 s
log(|I|)

|I|

!
+O

0

@
sPs

t=r+1 |↵⇤
t � ↵⇤

t�1|
|I|

1

A .

The quantity
Ps

t=r+1 |↵⇤
t�↵⇤

t�1|
|I| can be viewed as a one-dimensional quantification of the

size of the distribution shift in the environment. Thus, Theorem 4 gives a direct control on
the average peformance of DtACI in terms of the distribution shift. We emphasize that this
result holds over any interval |I| of a fixed length, justifying our earlier claim that DtACI
is able to adapt to the distribution shift locally over all time steps.

Unfortunately, the values for � and ⌘ specified above are not usable in practice since they
depend on both the size of the time interval |I| and the non-constant value

Ps
t=r E[`(�t,↵t)]2.

For this first issue, the user can pick any interval size of interest, with the consideration
that choosing larger intervals gives a tighter bound at the cost of weaker local guarantees.
In our experiments, we will set ⌘ and � using the choice |I| = 500.

For the second issue, we give two options. The first is to note that in the idealized
setting, where there is no distribution shift, we would have �t ⇠ Unif(0, 1) and ↵

i
t
⇠= ↵

⇤
t = ↵.

Plugging in these approximations we obtain

1

|I|

sX

t=r

E[`(�t,↵t)
2] ⇠= E�⇠Unif(0,1)[`(�,↵)

2] =
(1� ↵)2↵2

3
,

and substituting this value into the expression for ⌘ above gives the choice ⌘ =q
3

500

q
log(2k·500)+1
(1�↵)2↵2 .

Our second option, is to simply update ⌘ in an online fashion through the equation

⌘ = ⌘t :=

s
log(2k · 500) + 1

Pt
s=t�501 E[`(�s,↵s)2]

.

This choice would allow us to adaptively track any changes in 1
500

Pt
s=t�501 E[`(�s,↵s)2]

across time. In the Appendix, we prove a generalization of Theorem 4 that allows ⌘ = ⌘t to
vary across time. We find that a dynamic choice of ⌘t o↵ers the same regret guarantees as
a fixed choice so long as the variability in ⌘t is not too large. Hence, adaptive values for ⌘t
can be used to minimize the regret bound of Theorem 4. On the other hand, empirically, we

find that on real data the approximation 1
|I|
Ps

t=r E[`(�t,↵t)2] ⇠= (1�↵)2↵2

3 is highly accurate.
Thus, the two di↵erent choices for ⌘ give nearly identical results in practice. For ease of
presentation in the sections that follow, we will only display results using the first fixed,
heuristic choice of ⌘. Results for the variable choice are given in the Appendix.
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3.2 Bounds on the Short-Term Coverage

The previous section gives bounds on the performance of ↵t in terms of the pinball loss
`(�t,↵t). However, the pinball loss is not our true objective, and our primary goal is to
obtain a value of ↵t that is close to ↵

⇤
t . Our next result provides a direct connection between

bounds on `(�t,↵t) and bounds on (↵t � ↵
⇤
t )

2.

Proposition 5 Let � be a random variable and assume that there exists a value ↵
⇤
such

that P(� < ↵
⇤) = ↵. Then, for any ⌧ ,

E[`(�, ⌧)]� E[`(�,↵⇤)] =

(
E[(⌧ � �) ↵⇤<�⌧ ], if ⌧ � ↵

⇤
,

E[(� � ⌧) ⌧<�↵⇤ ], if ⌧ < ↵
⇤
.

So, in particular, if � has a density p(·) on [0, 1] with p(x) � p > 0 for all x 2 [0, 1], then

E[`(�, ⌧)]� E[`(�,↵⇤)] � p(⌧ � ↵
⇤)2

2
.

Now, let ↵
⇤
t be any value satisfying P(Yt 2 Ĉt(↵⇤

t )|{�s}s<t) = 1 � ↵. Then, combining
Proposition 5 with the results from Section 3.1 we obtain the desired bound on (↵t � ↵

⇤
t )

2,

1

|I|

sX

t=r

pE[(↵t � ↵
⇤
t )

2]

2
 O

 s
log(|I|)

|I|

!
+O

0

@
sPs

t=r+1 E[|↵⇤
t � ↵⇤

t�1|]
|I|

1

A , (6)

where the expectation is now over the randomness in both Algorithm 1 and {�t}ts, and p is
any lower bound on the density of �t, |{�r}r<s, 8t  s. Similarly, if we additionally assume
that � 7! P(Yt 2 Ĉt(�)|{�s}s<t) is L-Lipschitz, then |P(Yt 2 Ĉt(�)|{�s}s<t) � (1 � ↵)| 
L|↵t � ↵

⇤
t | and thus (6) can also be read as a bound on the local coverage of DtACI. Such

a Lipschitz assumption may be reasonable if the distribution of the conformity scores and
our estimates of its quantiles are su�ciently smooth.

In Gibbs and Candès (2021), it was shown that adaptive conformal inference satisfies
a similar bound to (6). However, that result required three major assumptions: 1) the

size of the distribution shift
Ps

t=r+1 |↵⇤
t�↵⇤

t�1|
|I| is known, 2) (Xt, Yt) is generated by a hidden

Markov model, and 3) the regression model is not re-fit across time. In stark contrast, here
we make no such assumptions and, in addition, give a result that is adaptive to changes
in the size of the distribution shift across time. In practical settings, none of these three
assumptions can be reasonably expected to hold and thus our new results constitute a
significant generalization of those in Gibbs and Candès (2021).

3.3 Bounds on the Long-Term Coverage

The results of the previous section show that DtACI obtains a coverage rate close to 1� ↵

over any local time interval. It is natural to ask if elongating this interval leads to an average
coverage of exactly 1 � ↵. Here, we show that this is indeed the case if the parameters
⌘ = ⌘t ! 0 and � = �t ! 0. At a high-level, sending ⌘ and � to 0 causes the method to
put more weight on older historical data and thus gives a version of DtACI that is closer to

11
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AgACI and MVP. Prior work has shown that MVP also obtains exact long-term coverage
(Bastani et al. (2022)), while for AgACI, this property has only been observed empirically
(Za↵ran et al. (2022)).

Theorem 6 Consider a modified version of Algorithm 1 in which on iteration t the param-

eters ⌘ and � are replaced by values ⌘t and �t. Let �min := mini �i and �max := maxi �i.
Then,

�����
1

T

TX

t=1

E[errt]� ↵

����� 
1 + 2�max

T�min
+

(1 + 2�max)2

�min

1

T

TX

t=1

⌘te
⌘t(1+2�max) + 2

1 + �max

�min

1

T

TX

t=1

�t,

where the expectation is over the randomness in Algorithm 1 and the data �1, . . . ,�T

can be viewed as fixed. So, in particular, if limt!1 ⌘t = limt!1 �t = 0, then

limT!1
1
T

PT
t=1 errt

a.s.
= ↵.

Following the discussion of the previous sections, decaying values of ⌘t and �t should
only be used if the size of the distribution shift in the environment is known to be stationary.
Since we do not consider this to be a realistic assumption in most situations, we advocate for
using constant or slowly varying values for ⌘ and �. For these choices, we empirically find
that DtACI can produce intervals that are biased in the sense that limT!1

1
T

PT
t=1 errt 6= ↵.

However, in all the examples we have investigated, this bias is su�ciently small to be of
little practical consequence.

3.4 Removing Randomness in the Choice of ↵t↵t↵t

In practical settings, the randomness in the choice of ↵t may be undesirable. To rectify
this, we provide an alternative approach that replaces the choice ↵t ⇠

Pk
i=1 p

i
t�↵i

t
with

↵̄t =
Pk

i=1 p
i
t↵

i
t. The full version of this procedure is stated in Algorithm 2. Importantly,

this new method admits the same regret bound as our original procedure.

Corollary 7 Under the same conditions, the conclusion of Theorem 4 holds with ↵t replaced

by ↵̄t on the left-hand side of the display.

Proof This is an immediate consequence of Jensen’s inequality.

Unsurprisingly, we find that in practice Algorithms 1 and 2 produce nearly identical
results. Thus, we will abuse terminology and also refer to Algorithm 2 as DtACI. For
simplicity, the following sections show results only for Algorithm 2.

4. Empirical Results

In this section we investigate the performance of DtACI as well as the previously proposed
AgACI and MVP methods. In all experiments the set of candidate � values is taken to be
{0.001, 0.002, 0.004, 0.008, 0.0160, 0.032, 0.064, 0.128}. Code for reproducing these results
can be found at https://github.com/isgibbs/DtACI.

12
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Algorithm 2:

Data: Observed values {�t}1tT , set of candidate � values {�i}1ik, starting
points {↵i

1}1ik, and parameters � and ⌘.
w

i
1  1, 1  i  k;

for t = 1, 2, . . . , T do

Define the probabilities pit := w
i
t/
P

1jk w
j
t , 81  i  k;

Output ↵̄t =
P

1ik p
i
t↵

i
t;

w̄
i
t  w

i
t exp(�⌘`(�t,↵i

t)), 81  i  k;
W̄t  

P
1ik w̄

i
t;

w
i
t+1  (1� �)w̄i

t + W̄t�/k;

errit := {Yt /2 Ĉt(↵i
t)}, 81  i  k;

errt := {Yt /2 Ĉt(↵̄t)};
↵
i
t+1 = ↵

i
t + �i(↵� errit), 81  i  k;

4.1 Simulated Examples

We begin by considering a set of simulated examples in which we can exactly measure the
local coverage properties of the methods. To make the results interpretable, we focus on
a simple setting in which we observe a sequence of independent random variables {Yt}Tt=1,
where Yt ⇠ N (µt, 1), and form prediction sets using the standard normal distribution as
our quantile estimator, i.e. we set

Ĉt(↵t) := {y : y  Quantile(1� ↵t,N (0, 1))} .

We consider three di↵erent choices for the sequence of means {µt}Tt=1:

• A stationary setting in which µt = 0 is held constant and thus the data are i.i.d..

• A smooth shift setting in which µt drifts continuously across time. More precisely, we
set µ0 = 0 and

µt+1 = µt +
1

2
(µt � µt�1) +

1

2
✏t,

where {✏t}
i.i.d.⇠ N (0, 0.006).

• A setting with jump shifts in which µt undergoes jump discontinuities of various sizes.
In particular, we divide the time period into three equally sized intervals. In the first
and third interval µt oscillates between -0.075 and 0.075, while in the second interval
the distribution shifts are larger and µt oscillates between �1.5 and 1.5.

The final trajectories of µt generated in all three settings are shown in Figure 4.1.
Figure 4.2 shows the corresponding trajectories of ↵⇤

t as well as the estimates, ↵t, produced
by DtACI, AgACI, and MVP. We can immediately see that DtACI and AgACI accurately
adapt to the local changes in ↵

⇤
t across all three settings, while MVP only performs well in

the stationary environment.
To get a more fine-grained comparison of the relative performance of DtACI, AgACI, and

MVP we additionally compute the time-instantaneous coverages of these methods. Namely,
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Figure 4.1: Trajectories for µt in the stationary, smooth, and jump settings. To aid readability, the
trajectory of µt in the center panel has been locally averaged over a moving time interval of width 50.
Vertical grey dotted lines in the jump shift plot denote the regime switches where the size of the distribution
shift changes.
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Figure 4.2: Comparison of the simulated trajectories of ↵⇤

t (black) against the estimated values, ↵t output
by DtACI (blue), AgACI (red), and MVP (green). Solid lines display averages across 100 trials with µt (and
thus ↵⇤

t ) held fixed and ↵t regenerated using independent draws of {Yt}. Shaded regions show confidence
intervals for the corresponding means. To aid readability, means and confidence intervals have been locally
averaged over a moving time interval of width 50. Finally, the vertical grey dotted lines in the jump plot
denote the regime switches where the size of the distribution shift changes.

let ↵D
t , ↵

A
t , and ↵

M
t denote the values output by DtACI, AgACI, and MVP at time step t.

Then, we compute the instantaneous coverage gaps CGx = |P(Yt 2 Ĉ(↵x
t )|↵x

t )� (1�↵)| for
x 2 {D,A,M} and we plot the di↵erence between the values obtained by AgACI and MVP
and those obtained by DtACI (i.e. the values CGA � CGD and CGM � CGD). Thus, in
the results that follow a value of 0 indicates identical performance, while positive/negative
values indicate that DtACI performs better/worse than the competitors.

The resulting coverage performances are shown in Figure 4.3. Overall, we find that
DtACI o↵ers greater adaptivity and more precise coverage than AgACI and MVP in the
non-stationary settings, while su↵ering only a slight degradation in performance under

14



Conformal Inference for Online Prediction
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Figure 4.3: Comparison of the coverage gaps obtained by AgACI and MVP against the baseline of DtACI
(left-panels) and the mean step-size trajectories output by DtACI and AgACI (right-panels). Solid lines
display averages across 100 trials, while shaded regions show confidence intervals for the corresponding
means. To aid readability, means and confidence intervals have been locally averaged over a moving time
interval of width 50. Finally, vertical grey lines in the jump shift plots denote the regime switches where the
size of the distribution shift changes, while horizontal black lines in the coverage gap plots denote the value
0 at which the performance of DtACI exactly matches the competing methods.
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stationarity. More specifically, our results for each of the three settings can be summarized
as follows.

• Stationary setting: In the stationary setting MVP and AgACI slightly outperform
DtACI. This is due to the fact that MVP and AgACI are able to more precisely
converge to the single optimal value for ↵

⇤
t , while DtACI can never set its step-size

to exactly 0 and thus maintains some minor fluctionations around ↵
⇤
t across all time

steps.

• Smooth shift setting: For non-stationary data MVP now gives significantly worse
performance and shows little adaptivity to the distribution shifts. On the other hand,
both AgACI and DtACI perform well and are able to approximately track the changes
in ↵

⇤
t over time. Overall, the results for AgACI and DtACI are nearly identical, which

is expected since a single choice of the step-size is su�cient to give good performance
in this environment.

• Jump shift setting: Once again MVP fails to adapt to the distribution shifts. Addi-
tionally, while AgACI does show reasonable adaptivity, it fails to adjust its step-size
to track the changes in the environment. We visualize this behaviour in the right
panels of Figure 4.3, which show the average step-sizes, �̄t =

Pk
i=1 p

i
t�i produced by

AgACI and DtACI. We see that AgACI correctly gives a small step-size in the first
phase when the distribution shifts are small. However, once when we enter the second
stage and the distribution shifts jump in magnitude, AgACI is slow to react and its
step-size lags behind that of DtACI. This behaviour is amplified in the third stage
during which AgACI never decreases its step-size to match the smaller distribution
shifts and thus su↵ers large coverage errors throughout.

Overall, we find that while AgACI and MVP perform slightly better than DtACI in the
stationary setting, this comes at the cost of a greater loss of adaptivity in the non-stationary
settings.

4.2 Real Data Examples

We now compare AgACI, MVP, and DtACI on two real-world datasets.

4.2.1 Online Prediction in the Stock Market

For our first real-world data example, we return to a stock market prediction task that was
originally used to evaluate ACI (Gibbs and Candès (2021)). In this problem, the goal is to
use the previously observed values of a stock price, {Ps}s=0,...,t�1, to predict its volatilty at
the next step, defined as

Vt :=

✓
Pt � Pt�1

Pt�1

◆2

.

To predict the volatility, we model the stock returns Rt := Pt�Pt�1

Pt�1
as coming from a

GARCH(1,1) design. This is a classical financial model for market dynamics in which it is
assumed that Rt = �t✏t with ✏t ⇠ N (0, 1) and

�
2
t = ! + ⌧Vt�1 + ��

2
t�1,
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for some unknown parameters !, ⌧ , �. At each time step, t, we use the most recent 1250
days of returns {Rs}t�1250s<t to produce estimates !̂t, ⌧̂t, �̂t, {�̂s

t }s<t, and a one-step
ahead prediction (�̂t

t)
2 = !̂t + ⌧̂tVt�1 + �̂t(�̂

t�1
t )2. We then construct prediction sets using

the equation

Ĉt(↵t) :=

(
v : St(v)  Quantile

 
1� ↵t,

1

1250

t�1X

s=t�1250

�Ss(Vs)

!)
,

where St(v) is taken to be either the normalized conformity score St(v) = |v � (�̂t
t)

2|/(�̂t
t)

2

or the unnormalized score St(v) := |v � (�̂t
t)

2|.
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Figure 4.4: Estimation of stock market volatility using conformity score St(v) = |v � (�̂t
t)

2|/(�̂t
t)

2. Solid
lines show the local coverage level for DtACI (blue), AgACI (red), MVP (green), and a naive baseline that
holds ↵t = ↵ fixed (yellow). Dashed lines indicate the global coverage frequency over all time steps for the
same methods. Finally, the black dashed lines indicates the target level of 1 � ↵ = 0.9. Note that in some
of the panels (e.g. the top-right AMD panel) the yellow and green lines exactly overlap for many time steps
leaving only the green line clearly visible. Some overlap is also observed in the red and blue lines.

In Gibbs and Candès (2021) it was found that the normalized and unnormalized confor-
mity scores lead to distribution shifts of drastically di↵erent sizes. To gain some intuition
as to why this is the case, let W ⇠ �

2
1 and observe that if the GARCH(1,1) model is true,

and moreover (�̂t
t)

2 = �
2
t is an exactly accurate prediction, then the normalized score is dis-

tributed as St(Vt)
D
= |W�1|, while the unnormalized score follows St(Vt)

D
= �

2
t |W�1|. Thus,

in this setting, ↵⇤
t will be invariant across time for the normalized score and highly variable

for the unnormalized score. Consistent with this intuition, Gibbs and Candès (2021) found
that the distribution shift is much larger for the unnormalized score than the normalized
score and, thus, in order to obtain good local coverage, ACI requires di↵erent (and a priori
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unknown) step sizes for the two scores. In contrast, as we will show shortly, DtACI obtains
good performance in both conditions without any prior knowledge of the distribution shift.

Similar to the previous section, we measure the performance of the prediction sets by
their local coverage. Since the true time-instantaneous coverage is no longer an observable
quantity, we instead compute empirical local average coverage rates over a moving 500-day
window, i.e. we compute the moving average

LocalCovt := 1� 1

500

t+250X

t�250+1

errt. (7)
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Figure 4.5: Estimation of stock market volatility using conformity score St(v) = |v � (�̂t
t)

2|. Solid lines
show the local coverage level for DtACI (blue), AgACI (red), MVP (green), and a naive baseline that holds
↵t = ↵ fixed (yellow). Dashed lines indicate the global coverage frequency over all time steps for the same
methods. Finally, the black dashed lines indicates the target level of 1� ↵ = 0.9.

Figures 4.4 and 4.5 show the local average coverage rates obtained by DtACI, AgACI,
and MVP, using the normalized and unnormalized conformity scores on four di↵erent stocks.
In addition, we have also plotted the coverage values for a naive baseline method that holds
↵t = ↵ fixed. At a high level, this baseline essentially measures the size of the underlying
shifts in the environment. Finally, as an additional reference, Figure D.6 in the Appendix
shows the prices of the stocks over the same period.

All four stocks demonstrate obvious price swings leading to clear distribution shifts in
the data. Similar to our simulated examples, we find that DtACI is able adapt to both the
presence and size of these shifts and obtain a local coverage rate near the target level of
1�↵ = 0.9 over all time steps and conditions. Overall, the size of the distribution shifts in
these environments appears relatively constant, and thus AgACI produces nearly identical
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results to DtACI. Perhaps the only exception to this is the Fannie Mae data in Figure 4.4
for which there is a small time window following the 2009 financial crisis where AgACI is
slower to react to the sharp rise in volatility. Finally, we find that MVP shows minimal
adaptivity to the underlying shifts throughout and often performs nearly identically to the
fixed baseline method.
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Figure 4.6: Q-Q plots comparing the distribution of local coverage gaps obtained by an i.i.d. Bernoulli(↵)
sequence against those realized by DtACI. The dashed line indicates the ideal situation of exact equality.

While DtACI seems to perform reasonably well across all settings, one may still wonder
if additional improvements can be made. Namely, is it possible for a sensible method to
produce local coverage errors that are tighter to the 1 � ↵ line? To answer this question,
we compare the coverage properties of DtACI against the ideal situation in which the
coverage errors are an i.i.d. Bernoulli(↵) sequence. Figure 4.6 shows Q-Q plots comparing
the empirical distributions of |LocalCovt�(1�↵)| realized by DtACI against the distribution
of the same quantity for an i.i.d. Bernoulli(↵) sequence. We find that the two distributions
tightly align across all four stocks, indicating that in some sense the local coverage properties
of DtACI are di�cult to improve. A small exception occurs in the right tail on the Nvidia
and Blackberry data (left two panels), where the local coverage error produced by our
method is smaller than what would be expected from Bernoulli(↵) random variables. As a
final remark, note that while Figure 4.6 only shows results for the normalized conformity
scores, we also obtained similar results for the unnormalized scores (see Figure D.4 in the
Appendix).
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4.2.2 Evaluating the Reactivity of DtACI

In Bastani et al. (2022), adaptive conformal inference was criticized for failing to provide
a coverage guarantee conditional on the value of ↵t. Indeed, one may be concerned that
since ACI acts reactively by widening/shrinking its prediction sets in response to past
mistakes, good local coverage is obtained not due to successfully learning ↵

⇤
t , but rather as

a result of the simple tendency of the algorithm to correct its prior under/over-coverage.
Our simulations in Section 4.1 already partially show that DtACI can successfully learn ↵

⇤
t .

Here, we provide further evidence demonstrating that DtACI is not simply acting reactively
on real data.
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Figure 4.7: Empirical conditional coverage of ↵̄t for the estimation of stock market volatility with confor-
mity score St(v) = |v� (�̂t

t)
2|/(�̂t

t)
2. Red points show the empirical conditional coverage given ↵̄t 2 Bi with

error bars indicating the corresponding 0.025 and 0.975 quantiles across 100 block bootstrap resamples of
the data {(Xt, Yt)} with block-size 100. For visual clarity all error bars are truncated to the range [0.5, 1].
Black dashed lines shows the target level of 1� ↵ = 0.9.

To do this, we divide the interval [0, 1] into m evenly sized sub-intervals B1, . . . , Bm and
evaluate the conditional coverage levels

CondCoveragei :=
1

|{t : ↵̄t 2 Bi}|
X

t:↵̄t2Bi

errt. (8)

We apply this to the volatility dataset outlined in the previous section using the normalized
conformity score and display our results in Figure 4.7. As a visual aid, this figure contains
error bars indicating the 0.025 and 0.975 quantiles of CondCoveragei across block bootstrap
re-samples of the data (see Algorithm 4 in the Appendix for details). These error bars would
be expected to give a valid confidence interval for the conditional coverage if, for instance,
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{(Xt, Yt)} was a stationary time-series. However, since there is distribution shift in these
examples, the error bars are not accompanied by any coverage guarantee. Thus, we present
them simply as a visual aid to help the reader judge the distance between CondCoveragei
and 1� ↵ relative to the sample size |{t : ↵̄t 2 Bi}|.

Overall, we find that almost all of the error bars cover the target level of 1�↵ = 0.9 and
for a large majority of the bins, CondCoveragei is nearly exactly equal to 0.9. If DtACI was
simply acting reactively to its past mistakes we would expect to observe over-coverage at
small values of ↵t and under-coverage at large values of ↵t. Thus, Figure 4.7 provides strong
evidence that DtACI is not enacting any such pathological behaviour. Similar results were
also obtained using the unnormalized conformity scores (see Figure D.5 in the Appendix).

4.2.3 Predicting Covid-19 Case Counts

Our final example considers the problem of predicting future COVID-19 case counts. We
base our methods on the work of Tibshirani (2020) and work with a simple model for
generating one-week ahead forecasts of the seven day moving average of the number of
confirmed cases of COVID-19 in each county in the United States. In this model, future
forecasts are generated based o↵ of the historical prevalence of COVID-19 across the US and
Facebook survey data that provides us with a moving seven day average of the proportion of
people who report knowing someone in their local community with COVID-19. All data is
obtained from a public repository made available by the DELPHI group at Carnegie Mellon
(Reinhart et al. (2021)).

Let {COt,i}t,i and {Ft,i}t,i denote the time series of COVID-19 case counts and Facebook
survey responses, respectively, where t indexes time and i indexes one of the 3243 counties
in the US. At each time step t we predict {COt+7,i}i by using least-squares regression to fit
the model

COs,i ⇠ �
t
0 +

3X

j=1

�
t
jCOs�7j,i +

3X

j=1


t
jFs�7j,i, s = t� 14 . . . , t, i = 1, . . . , 3243,

and setting

dCOt+7,i = �̂
t
0 +

3X

j=1

�̂
t
jCOt�7j,i +

3X

j=1

̂
t
jFt�7j,i, i = 1, . . . , 3243.

Because Facebook survey data is not available for all counties at all time steps, we restrict
our analysis to those counties with no missing values in the above expressions.

To compute prediction sets for county i, we define the conformity scores St,i := |dCOt,i�
COt,i|/|COt�7,i � COt,i| and counts nt := |{i : County i has available data at time t� 1}|,
and set

Ĉt,i(↵t,i) :=

(
c :

|dCOt,i � c|
|COt�7,i � c|  Quantile

 
1� ↵t,i,

1

nt

X

i

�St�1,i

!)
.

Since di↵erent counties will undergo di↵erent dynamics at di↵erent stages of the pandemic,
we run DtACI, AgACI, and MVP separately for each county to obtain a set of county-
specific trajectories, {↵t,i}t,i for ↵t.
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Figure 4.8: Coverage results for the prediction of county-level COVID-19 case counts. Solid lines show the
local coverage level for DtACI (blue), AgACI (red), MVP (green), and a naive baseline that holds ↵t = ↵
fixed (yellow). Dashed lines indicate the global coverage frequency over all time steps for the same methods.
The black dashed lines indicates the target level of 1� ↵ = 0.9.

Figure 4.8 shows the empirical local coverage rates over the nearest 200 time steps
(i.e equation (7), with 250 replaced by 100) for four US counties. These four counties were
chosen because they are large urban centres for which data was available over the entire
time window we considered. All four of these counties have undergone multiple waves of
COVID-19, each of which caused a large swing in the observed case count (see Figure D.7)
and thus induced a clear distribution shift into the data. Much like the previous example,
we find that DtACI and AgACI successfully correct for these shifts, while MVP provides
inconsistent coverage across the four examples. This contrasts sharply with the baseline
method that holds ↵t = ↵ fixed, which, depending on the example, undergoes large swings
(e.g. top-left panel) or displays a systematic bias (e.g. bottom-left panel) away from the
target coverage frequency.
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Appendix A. Detailed Description of Multivalid Conformal Prediction

The generic version of multivalid conformal prediction (MVP) proposed by Bastani et al.
(2022) is designed to give simultaneous coverage over a collection of subsets of the covariate
space. This is accomplished by constructing prediction sets of the form {y : St(Xt, y)  q},
where q is chosen from a set of candidate values based o↵ of their performance on historical
data. To make this method comparable to DtACI and AgACI we implement a modified
version that does not consider any subsets of the covariate space and treats 1 � �t as the
conformity score. More specifically, our implementation outputs prediction sets of the form
{y : 1� �t(y)  q}, where q is chosen using the MVP algorithm and

�t(y) := max{0  �  1 : Sy
t  Quantile(1� �,Dy

t )}.

With this construction the value of 1� q output by MVP is exactly anologous to the values
↵t output by DtACI and AgACI.

The full details of our implementation are given in Algorithm 3 below. Following the
original implementation of MVP in Bastani et al. (2022) we take our hyperparameters to be

m = 40, ⌘ =
q

log(m)
4.2m , and r = 800000. Finally, in what follows f(·) refers to the function

f(n) :=
p

(n+ 1) log(n+ 2)2

Algorithm 3: Modified version of the MVP algorithm of Bastani et al. (2022).

Data: Observed values {�t}1tT , target coverage level ↵, number of candidate
thresholds m, hyperparameters ⌘, r.

for t = 1, 2, . . . , T do

for i = 0, 1, . . . ,m� 1 do

n
i
t  

P
s<t {i/m  qs < (i+ 1)/m or i = m� 1, qs = 1};

V
i
t  

P
s<t {i/m  qs < (i+1)/m or i = m�1, qs = 1}(↵� {�s < 1�qs});

C
i
t = (exp(⌘V i

t /f(n
i
t))� exp(�⌘V i

t /f(n
i
t)))/f(n

i
t);

if C
i
t > 0 for all i 2 [m] then
Output qt = 0;

else if C
i
t < 0 for all i 2 [m] then

Output qt = 1;

else

Set i⇤ 2 [m� 1] to be the minimum index such that Ci⇤
t C

i⇤+1
t  0;

pt  |Ci⇤+1
t |/(|Ci⇤+1

t |+ |Ci⇤
t |), with the convention 0/0 = 1;

Output qt = i
⇤
/m� 1/(rm) with probability pt and qt = i

⇤
/m with

probability 1� pt;
Output prediction set {y : 1� �t(y)  qt};

Appendix B. Details of the Block Bootstrap for Section 4.2.2

Algorithm 4 below outlines the block bootstrap procedure used to generate the error bars in
Figures 4.7 and D.5. Both figures were generated using the choices M = 100 and b = 100.
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Algorithm 4: Block bootstrap

Data: Sequence of stock returns {Rt}1tT , number of bootstrap samples M ,
block size b, partition B1, . . . , Bk of [0, 1].

Define the blocks of data Di := {Rib+1, . . . , R(i+1)b}}, 0  i  T/b� 1;

for j = 1, 2, . . . ,M do

Sample i
j
1, . . . , i

j
T/b

i.i.d.⇠ Unif({0, . . . , T/b� 1});
Run the procedure outlined in Section 4.2.1 on dataset {Dij1

, . . . , DijT/b
} to

obtain sequences {↵̄j
t}1tT and {errjt}1tT ;

For 1  `  k compute

CondCoveragej` :=
1

|{t : ↵̄j
t 2 B`}|

X

t:↵̄j
t2B`

errjt .

For all 1  `  k output the 0.025 and 0.975 empirical quantiles of
{CondCoveragej`}1jM .

Appendix C. Proofs for Section 3

This section contains the proofs of Lemma 2, Lemma 3, Theorem 4, Proposition 5, and
Theorem 6. In addition we prove a modified version of Theorem 4 that allows ⌘ to vary
over time.

C.1 Proof of Lemma 2

Proof We follow the calculations of Gradu et al. (2023). Let `(�t) :=
(`(�t,↵1

t ), . . . , `(�t,↵
k
t )), `(�t)2 := (`(�t,↵1

t )
2
, . . . , `(�t,↵k

t )
2) and pt := (p1t , . . . , p

k
t ). By

construction notice that Wt+1 :=
Pk

i=1w
i
t+1 = W̄t. Thus, using the inequalities exp(�x) 

1� x+ x
2 and 1� y  exp(�y) we find that

Wt+1

Wt
=

kX

i=1

p
i
t exp(�⌘`(�t,↵i

t))  exp(�⌘pTt `(�t) + ⌘
2
p
T
t `(�t)

2),

and thus inductively

Ws+1/Wr  exp

 
�

sX

t=r

⌘p
T
t `(�t) + ⌘

2
p
T
t `(�t)

2

!
.

On the other hand, for any i, wi
t+1 � w

i
t(1� �) exp(�⌘`(�t,↵i

t)) which gives

Ws+1

Wr
�

w
i
s+1

Wr
� (1� �)|I| exp

 
�

sX

t=r

⌘`(�t,↵
i
t)

!
p
i
r � (1� �)|I| exp

 
�

sX

t=r

⌘`(�t,↵
i
t)

!
�

k
.

Combining these two inequalities and taking a logarithm yields

log(�/k) + |I| log(1� �)�
sX

t=r

⌘`(�t,↵
i
t)  �

sX

t=r

⌘p
T
t `(�t) + ⌘

2
p
T
t `(�t)

2
.
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Finally, since �  1/2 we may use the inequality log(1� �) � �2� to get the final result

sX

t=r

E[`(�t,↵t)] 
sX

t=r

`(�t,↵
i
t) + ⌘

sX

t=r

E[`(�t,↵t)
2] +

1

⌘
(log(k/�) + |I|2�).

C.2 Proof of Lemma 3

Proof Lemma 4.1 in Gibbs and Candès (2021) shows that for all values t, ↵i
t 2 [��i, 1+�i].

Since �t 2 [0, 1] we then also have that `t(�t,↵i
t)  max{↵, 1 � ↵}|�t � ↵

i
t|  1 + �i.

Plugging this fact into Theorem 10.1 of Hazan (2019) gives the result.

C.3 Proof of Theorem 4

Proof Fix any i 2 [k] and write

sX

t=r

E[`(�t,↵t)]�
sX

t=r

`(�t,↵
⇤
t )

=

✓ sX

t=r

E[`(�t,↵t)]�
sX

t=r

`(�t,↵
i
t)

◆
+

✓ sX

t=r

`(�t,↵
i
t)�

sX

t=r

`(�t,↵
⇤
t )

◆
.

Applying Lemma 2 to the first term and Lemma 3 to the second term gives

sX

t=r

E[`(�t,↵t)]�
sX

t=r

`(�t,↵
⇤
t ) ⌘

sX

t=r

E[`(�t,↵t)
2] +

1

⌘
(log(|E|/�) + |I|2�)

+
3

2�i
(1 + �i)

2

 
sX

t=r+1

|↵⇤
t � ↵

⇤
t�1|+ 1

!
+

1

2
�i|I|.

Now, there are two cases. If
sPs

t=r+1 |↵⇤
t � ↵⇤

t�1|+ 1

|I| � �1 (9)

then since

rPs
t=r+1 |↵⇤

t�↵⇤
t�1|+1

|I| 
p

1 + 1/|I|  �k we may find a value �i such that

sPs
t=r+1 |↵⇤

t � ↵⇤
t�1|+ 1

|I|  �i  2

sPs
t=r+1 |↵⇤

t � ↵⇤
t�1|+ 1

|I| .

Plugging this value into the previous expression gives the desired result. Otherwise if (9)
does not hold, then we may simply plug in �1 for �i.
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C.4 Results for Variable ⌘

We conclude this section by stating and proving a modified version of Theorem 4 that allows
⌘ to vary over time. In particular, we consider a modified version of DtACI in which the
update for w̄i

t is replaced by w̄
i
t  w

i
t exp(�⌘t`t(�t,↵i

t)). Now, recall that our regret bounds
consider a target interval length. Call this target length L. Then, Theorem 8 below shows
that if the normalized variation in ⌘t is of order

p
1/L, DtACI will have dynamic regret of

size O(
p

log(L)/L+max{�1,
q

1
L

Ps
t=r+1 |↵⇤

t � ↵⇤
t�1|}).

The primary case of interest is that in which ⌘t =

r
log(2Lk)+1Pt

s=t�L+1 E[`(�s,↵s)2]
. Here, the

assumption that ⌘t has small variability is motivated by a time-series model in which
(�t, (↵i

t, w
i
t)i2[k])) has a stationary distribution. For example, the original work of Gibbs

and Candès (2021) considers a setting in which {(Xt, Yt)} follows a hidden Markov model
and S

y
t = S(Xt, y) and Dy

t = D are fixed quantities that do not depend on t. In this set-up,
it follows that (�t, (↵i

t, w
i
t)i2[k]) forms a Markov chain and thus under reasonable mixing as-

sumptions on (Xt, Yt), one can expect 1
L

Pt
s=t�L+1 E[`(�s,↵s)2] to have variations of order

1/
p
L.

Theorem 8 Let L 2 N denote a fixed target interval length and I = [r, s] be any interval

of length L with r > L. Set � = 1/(2L) and for t > L set ⌘t :=

r
log(2Lk)+1Pt

s=t�L+1 E[`(�s,↵s)2]
. Let

{↵i
t, p

i
t}t2[T ],i2[k] be generated by a modified version of Algorithm 1 in which the update for

w̄
i
t is replaced by w̄

i
t  w

i
t exp(�⌘t`t(�t,↵i

t)). Assume that

1

L⌘s

sX

t=r

|⌘t � ⌘s|,
1

L⌘s

sX

t=r

|⌘2t � ⌘
2
s |  O

✓
1p
L

◆
.

Then, under the conditions of Theorem 4,

1

L

sX

t=r

E[`(�t,↵t)]�
1

L

sX

r=1

`(�t,↵
⇤
t )  2

r
log(2Lk) + 1

L

vuut 1

L

sX

t=r

E[`(�t,↵t)2]

+ 4(1 + �max)
2max

8
<

:

sPs
t=r+1 |↵⇤

t � ↵⇤
t�1|+ 1

L
, �1

9
=

;

+O

✓
1p
L

◆

= O

 r
log(L)

L

!
+O

0

@max{�1,

vuut 1

L

sX

t=r+1

|↵⇤
t � ↵⇤

t�1|}

1

A ,

where the expectation is over the randomness in DtACI and the data �1, . . . ,�T can be

viewed as fixed.

Proof Proceeding identically to the proof of Lemma 2 we have that for any i 2 [k],
sX

t=r

⌘tE[`(�t,↵t)] 
sX

t=r

⌘t`(�t,↵
i
t) +

sX

t=r

⌘
2
tE[`(�t,↵t)

2] + log (k/�) + |I|2�
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Now, by Lemma 4.1 of Gibbs and Candès (2021) we know that ↵i
t 2 [��i, 1 + �i] and thus

that `(�t,↵i
t), `(�t,↵t)  1 + �max. Hence,

⌘s

sX

t=r

E[`(�t,↵t)]  ⌘s

sX

t=r

`(�t,↵
i
t) + ⌘

2
s

sX

t=r

E[`(�t,↵t)
2] + log(k/�) + |I|2�

+ 2(1 + �max)
sX

t=r

|⌘t � ⌘s|+ (1 + �max)
2

sX

t=r

|⌘2t � ⌘
2
s |.

The remainder of the proof is identical to that of Theorem 4.

C.5 Proof of Proposition 5

Proof For simplicity we will only prove the case where ⌧ > ↵
⇤. The case where ⌧  ↵

⇤ is
identical. By a direct computation we have that

E[`(�, ⌧)]� E[`(�,↵⇤)]

= E[↵(� � ⌧) ��⌧ ] + E[(1� ↵)(⌧ � �) �<⌧ ]� E[↵(� � ↵
⇤) ��↵⇤ ]� E[(1� ↵)(↵⇤ � �) �<↵⇤ ]

= �E[↵(⌧ � ↵
⇤) ��⌧ ] + E[(1� ↵)(⌧ � ↵

⇤) �<↵⇤ ] + E[((1� ↵)(⌧ � �)� ↵(� � ↵
⇤)) ↵⇤�<⌧ ]

= �E[↵(⌧ � ↵
⇤) ��↵⇤ ] + E[(1� ↵)(⌧ � ↵

⇤) �<↵⇤ ] + E[↵(⌧ � ↵
⇤) ↵⇤�<⌧ ]

+ E[(1� ↵)(⌧ � ↵
⇤) ↵⇤�<⌧ ]� E[(� � ↵

⇤) ↵⇤�<⌧ ]

= �↵(1� ↵)(⌧ � ↵
⇤) + ↵(1� ↵)(⌧ � ↵

⇤) + E[(⌧ � ↵
⇤) ↵⇤�<⌧ ]� E[(� � ↵

⇤) ↵⇤�<⌧ ]

= E[(⌧ � �) ↵⇤�<⌧ ].

This proves the first part of Proposition 5. For the second part, note that if � has a density
on [0, 1] that is lower bounded by p, then

E[(⌧ � �) ↵⇤�<⌧ ], E[(� � ⌧) ⌧�<↵⇤ ] �
Z |⌧�↵⇤|

0
xpdx = p

(⌧ � ↵
⇤)2

2
.

C.6 Proof of Theorem 6

Proof Let

↵̃t :=
X

i

p
i
t↵

i
t

�i

and observe that

↵̃t =
X
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�i
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+
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Thus,

E[errt]� ↵ = ↵̃t � ↵̃t+1 +
X

i

(pit+1 � p
i
t)↵

i
t+1

�i
. (10)

Now, for ease of notation let Wt :=
P

iw
i
t and p̃

i
t+1 :=

pit exp(�⌘t`(�t,↵i
t))P

i0 p
i0
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t ))
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p
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w
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k
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Moreover, by a direct computation

p̃
i
t+1 � p

i
t =

p
i
t exp(�⌘t`(�t,↵i

t))P
i0 p

i0
t exp(�⌘t`(�t,↵i0

t ))
� p

i
t

= p
i
t
exp(�⌘t`(�t,↵i

t))�
P

i0 p
i0
t exp(�⌘t`(�t,↵i0

t ))P
i0 p

i0
t exp(�⌘t`(�t,↵i0

t ))

= p
i
t

P
i0 p

i0
t (exp(�⌘t`(�t,↵i

t))� exp(�⌘t`(�t,↵i0
t )))P

i0 p
i0
t exp(�⌘t`(�t,↵i0

t ))

= p
i
t

P
i0 p

i0
t exp(�⌘t`(�t,↵i0

t ))(exp(⌘t`(�t,↵
i0
t )� ⌘t`(�t,↵i

t))� 1)P
i0 p

i0
t exp(�⌘t`(�t,↵i0

t ))

= p
i
t

X

i0

p̃
i0
t+1(exp(⌘t`(�t,↵

i0
t )� ⌘t`(�t,↵

i
t))� 1).

By Lemma 4.1 of Gibbs and Candès (2021) we know that ↵i
t 2 [��i, 1 + �i] and thus that

|`(�t,↵i0
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i
t|  1 + 2�max. Hence, by the mean value

theorem,
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and thus also,
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Applying Lemma 4.1 of Gibbs and Candès (2021) again we conclude that
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So, taking a sum over t in equation 10 we arrive at the inequality,
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Applying Lemma 4.1 of Gibbs and Candès (2021) one final time gives �min↵̃t 2 [��max, 1+
�max] and thus |↵̃1 � ↵̃T+1|  (1 + 2�max)/�min. Plugging this into the previous expression
gives the desired upperbound.
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Now, recall that if {at}1t=1 is a sequence such that at ! 0, then limT!1
1
T

PT
t=1 at = 0

(see Lemma 9 below). So, applying this to the above expression we find that if ⌘t,�t ! 0,
then

lim
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A standard application of the law of large numbers then gives that,
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as desired.

We conclude this section by stating a standard analysis fact that was used in the proof
of Theorem 6.

Lemma 9 Let {at}1t=1 be a sequence such that at ! 0. Then, limT!1
1
T

PT
t=1 at = 0.

Proof For any fixed S 2 N we have the bound,

�����
1
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TX
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at
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T
+max
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|at|.

So, sending T !1 gives,

lim sup
T!1
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1
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at,

and sending S !1 gives the desired result.

Appendix D. Additional Figures

We begin by giving three figures showing the results for Section 4.2 in the case where we

use a variable value for ⌘, given by ⌘ = ⌘t =

r
log(2k·500)+1Pt

s=t�501 E[`(�s,↵s)2]
. We see that the results

are nearly exactly identical to those obtained with the fixed heurisitic choice of ⌘.
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Figure D.1: Estimation of stock market volatility using conformity score St(v) = |v � (�̂t
t)

2|/(�̂t
t)

2 and

either ⌘ fixed at 2.72 (blue) or a variable value (purple) of ⌘t =
r

log(2k·500)+1Pt
s=t�501 E[`(�s,↵s)2]

. Solid lines show the

local coverage level for ↵̄t, while dashed lines indicate the global coverage frequency over all time steps. The
black dashed lines indicates the target level of 1� ↵ = 0.9.
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Figure D.2: Estimation of stock market volatility using conformity score St(v) = |v � (�̂t
t)

2| and either

⌘ fixed at 2.72 (blue) or a variable value (purple) of ⌘t =
r

log(2k·500)+1Pt
s=t�501 E[`(�s,↵s)2]

. Solid lines show the local

coverage level for ↵̄t, while dashed lines indicate the global coverage frequency over all time steps. The black
dashed lines indicates the target level of 1� ↵ = 0.9.
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Figure D.3: Coverage results for the prediction of county-level COVID-19 case counts using either ⌘ fixed

at 2.72 (blue) or a variable value (purple) of ⌘t =
r

log(2k·500)+1
Pt�1

s=t�500 E[`(�s,↵s)2]
. Solid lines show the local coverage

level for ↵̄t, while dashed lines indicate the global coverage frequency over all time steps. The black dashed
lines indicates the target level of 1� ↵ = 0.9.

Our next figure shows Q-Q plots comparing the quantiles of the local coverage gaps
realized by DtACI against those for an i.i.d. Bernoulli(0.9) sequence for the volatility
dataset of Section 4.2.1 and the unnormalized conformity score St(v) = |v � (�̂t

t)
2|.
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Figure D.4: Q-Q plots comparing the distribution of local coverage gaps obtained by an i.i.d. Bernoulli(↵)
sequence against those realized by DtACI. Results for DtACI were generated with conformity score St(v) =
|v � (�̂t

t)
2|. The dashed line indicates the ideal situation of exact equality.
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The next figure shows the empirical conditional coverage (8) for the estimation of stock
market volatility with the unnormalized conformity score. As for the normalized conformity
score, we observe conditional coverages close to the target level across all values of ↵̄t.
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Figure D.5: Empirical conditional coverage of ↵̄t for the estimation of stock market volatility with con-
formity score St(v) = |v � (�̂t

t)
2|. Red points show the empirical conditional coverage given ↵̄t 2 Bi with

error bars indicating the corresponding 0.025 and 0.975 quantiles across 100 block bootstrap resamples of
the data {(Xt, Yt)} with block-size set to 100. For visual clarity all error bars are truncated to the range
[0.5, 1]. Black dashed lines shows the target level of 1� ↵ = 0.9.

Finally, Figures D.6 and D.7 show the stock prices and the COVID-19 case counts for
the datasets considered in Section 4.2.
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Figure D.6: Daily open prices for the four stocks considered in Section 4.2.1.
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Figure D.7: Moving seven day averages of the number of new confirmed COVID-19 cases per 100,000
people in the four counties considered in Section 4.2.3.
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