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Abstract

Decision making or scientific discovery pipelines such as job hiring and drug discovery often
involve multiple stages: before any resource-intensive step, there is often an initial screening
that uses predictions from a machine learning model to shortlist a few candidates from a
large pool. We study screening procedures that aim to select candidates whose unobserved
outcomes exceed user-specified values. We develop a method that wraps around any pre-
diction model to produce a subset of candidates while controlling the proportion of falsely
selected units. Building upon the conformal inference framework, our method first con-
structs p-values that quantify the statistical evidence for large outcomes; it then determines
the shortlist by comparing the p-values to a threshold introduced in the multiple testing
literature. In many cases, the procedure selects candidates whose predictions are above
a data-dependent threshold. Our theoretical guarantee holds under mild exchangeability
conditions on the samples, generalizing existing results on multiple conformal p-values. We
demonstrate the empirical performance of our method via simulations, and apply it to job
hiring and drug discovery datasets.

Keywords: Conformal inference, selective inference, multiple testing, p-values, false
discovery rate

1. Introduction

Decision making and scientific discovery are resource intensive tasks: human evaluation
is needed before high-stakes decisions such as job hiring (Shen et al., 2019) and disease
diagnosis (Etzioni et al., 2003); several rounds of expensive clinical trials are required before
a drug can receive FDA approval (FDA, 2018). Early on, we often hope to identify viable
candidates from a very large pool—consider hundreds of applicants to a position or hundreds
of thousands of potential compounds that may bind to the target. In such problems, machine
learning prediction is useful for an initial screening step to shortlist a few candidates; in
later, more costly stages, only these shortlisted candidates are carefully investigated to
confirm the interesting cases.

This paper concerns scenarios where outcomes taking on higher values are of interest.
Formally, suppose we have access to a set of training data {(Xi, Yi)}ni=1 and a set of test
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samples {Xn+j}
m
j=1 whose outcomes {Yn+j}

m
j=1 are unobserved, all (X,Y ) 2 X ⇥ Y pairs

being i.i.d. from some arbitrary and unknown distribution.1 Given some thresholds {cj}mj=1,
our goal is to find as many test units with Yn+j > cj as possible, while ensuring the false
discovery rate (FDR), the expected proportion of errors (Yn+j  cj) among all shortlisted
candidates, is controlled. To be specific, letting R ✓ {1, . . . ,m} be the selection set, we
define FDR as the expectation of the false discovery proportion (FDP), so that

FDR = E[FDP], FDP =

P
m

j=1 1{j 2 R, Yn+j  cj}

1 _ |R|
, (1)

where we denote a _ b = max{a, b} for any a, b 2 R, and the expectation is over the
randomness of all training data and all test samples. The FDR is a natural measure of
type-I error for binary classification (Hastie et al., 2009). For regression problems with a
continuous response, counting the error is reasonable if each selected candidate incurs a
similar cost. We discuss below potential applications with binary or quantitative outcomes.

Candidate screening. Companies are turning to machine learning to support recruit-
ment decisions (Faliagka et al., 2012; Shehu and Saeed, 2016). Predictions using automatic
resume screening (Amdouni and abdessalem Karaa, 2010; Faliagka et al., 2014), semantic
matching (Mochol et al., 2007) or AI-assisted interviews are used to screen and select can-
didates from a large pool. Related tasks include talent sourcing, e.g., finding people who
are likely to search for new opportunities, and candidate screening, i.e., selecting qualified
applicants before further human evaluation (Heaslip, 2022). One may be interested in con-
trolling the FDR (1) for resource e�ciency: each shortlisted candidate incurs similar costs
such as communication for talent sourcing and interviews before the hiring decisions. In
candidate screening, controlling FDR ensures most of the costs are devoted to evaluating
and ranking qualified candidates. Job recruitment also has fairness concerns; an alternative
goal is to ensure that qualified candidates do not get screened out before human evaluation.
To this end, one can flip the sign of the outcomes, and (1) represents the proportion of
qualified candidates in the filtered out ones.

Drug discovery. Machine learning is playing a similar role in accelerating the drug dis-
covery pipeline. Early stages of drug discovery aim at finding molecules or compounds—
from a diverse library (Szymański et al., 2011) developed by institutions across the world (Kim
et al., 2021)—with strong e↵ects such as high binding a�nity to a specific target. The ac-
tivity of drug candidates can be evaluated by high-throughput screening (HTS) (Macarron
et al., 2011). However, the capacity of this approach is quite limited in practice, and it
is generally infeasible to screen the whole library of readily synthesized compounds. In-
stead, virtual screening (Huang, 2007) by machine learning models has enabled the auto-
matic search of promising drugs. Often, a representative (ideally diverse) subset of the
whole library is evaluated by HTS; machine learning models are then trained on these data
to predict other candidates’ activity based on their physical, geometric and chemical fea-
tures (Carracedo-Reboredo et al., 2021; Koutsoukas et al., 2017; Vamathevan et al., 2019;
Dara et al., 2021) and select promising ones for further HTS and/or clinical trials. Given
the cost of subsequent investigation, false positives in this process are a major concern (Sink

1. Later on, we will relax the i.i.d. assumption to exchangeablity conditions.
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et al., 2010). Ensuring that a su�ciently large proportion of resources is devoted to promis-
ing drugs is thus important for the e�ciency of the whole pipeline.

In these two examples, the FDR quantifies a trade-o↵ between the resources devoted to
shortlisted candidates (the selection set) and the benefits from finding interesting candidates
(the true positives). This interpretation is similar to the justification of FDR in multiple
testing (Benjamini and Hochberg, 1995, 1997; Benjamini and Yekutieli, 2001): when eval-
uating a large number of hypotheses, the FDR measures the proportion of “false leads” for
follow-up confirmatory studies. However, in our prediction problem, the a�nity of a new
drug is inferred not from the observations, but from other similar compounds, i.e., other
drugs in the training data. This perspective also blurs the distinction between statistical
inference and prediction; we will draw more connections between these sub-fields later.

The FDR may not necessarily be interpreted as a resource-e�ciency measure. In the
next two examples, controlling the FDR, which limits the error in inferring the direction of
outcomes, is relevant to monitoring risk in healthcare and counterfactual inference.

Healthcare. With increasingly available patient data, machine learning is widely adopted
to assist human decisions in healthcare. For example, many works use machine learning
prediction for large-scale early disease diagnosis (Shen et al., 2019; Richens et al., 2020)
and patient risk prediction (Rahimi et al., 2014; Corey et al., 2018; Jalali et al., 2020).
Calibrating black-box models is important in such high-stakes problems. When it is more
desired to limit false negatives than false positives, machine learning prediction might be
used to filter out low-risk cases, leaving other cases for careful human evaluation. It is
sensible to control the proportion of high-risk cases among all filtered out samples.

Counterfactual inference. In randomized experiments that run over a period of time,
inferring whether the patients have benefited from the treatment option compared to an al-
ternative might inform decisions such as early stopping of the trial for some patients. More
generally, inferring the benefit of certain patients also provides evidence on treatment e↵ect
heterogeneity. This is a counterfactual inference problem (Lei and Candès, 2021; Jin et al.,
2023) in which one could predict the counterfactuals, i.e., what would happen should one
takes an alternative option, by learning from the outcomes of patients under that option,
and then compare the prediction to the realized outcomes. In this case, the set of those
declared as having benefited from the treatment is informative if the FDR is controlled.

The generic task underlying these applications is to find a subset of candidates whose
not-yet-observed outcomes are of interest (e.g., qualification or high binding a�nity to
the target) from a potentially enormous pool of test samples. This is often achieved by
thresholding their test scores—the model prediction on the test samples—from models built
on a set of training data that are assumed to be from the same distribution. However,
controlling the error in the selected set is a nontrivial task.

1.1 Why calibrated predictive inference is insu�cient

We consider a binary example to fix ideas, so that Y = {0, 1}. Our goal is to find test
samples with Yn+j = 1. A natural starting point is to train a machine learning model that
predicts (classifies) Y given X, with the hope that test samples with higher predicted values
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are more promising. To achieve valid prediction, one could calibrate the model (Vovk et al.,
2005) to output a prediction set bC1�↵(X) taking the form ?, {0}, {1} or {0, 1} with the
prescription that bC1�↵(X) must cover the outcome Y with probability at least 1 � ↵ for
some user-specified ↵ 2 (0, 1). The probability is averaged over the randomness in the test
sample and the training process.

However, a prediction set with marginal coverage guarantees is insu�cient for selection.
For instance, one might consider selecting all test samples j with bC1�↵(Xn+j) = {1}. The

FDR of the selected set would then be below ↵ if bC1�↵(Xn+j) covers 1 with probability at
least 1 � ↵ for the selected units, that is, conditional on selection. However, this is clearly
a false statement because predictive inference only ensures (1� ↵) coverage averaged over
all test samples. In fact, no matter how large we set the coverage (1 � ↵), such a naive
approach might still return a selection set that contains too many uninteresting candidates.

It might be best to preview our results on a real-world drug discovery dataset properly
introduced and studied later in the paper (Section 4.2.1). In short, the goal is to find
promising drug candidates, among thousands of molecules, that are active (Y = 1) for
the HIV target. This dataset is highly imbalanced in the sense that only 3% of the drugs
are active, as is often the case in studies on drug discovery. Our main purpose is here
to rapidly demonstrate that a straightforward application of conformal prediction methods,
selecting those leads with bC1�↵(Xn+j) = {1}, results in over-confident predictions in a sense
described below.

We use a deep learning model (this is introduced in Section 4.2.1) to construct conformity
scores, and ultimately, conformal prediction sets that are one-sided in the sense that they
only take on three possible values: ?, {1} and {0, 1}; (see Appendix C.1 for details). The left
panel of Figure 1 shows the FDR of the naive approach as a function of the confidence level
1� ↵ 2 {0.99, 0.98, . . . , 0.70}, along with the marginal miscoverage of conformal prediction
sets and the proportion of cases in the test set for which bC1�↵(X) = {1}.
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Figure 1: Left: FDR (set-conditional miscoverage) of the naive approach and marginal
miscoverage as a function of the parameter ↵; the light blue bars are the proportion of cases
among all test samples for which bC1�↵(X) = {1}. Right: FDR (curve) and power (bar) of
our selective inference approach and of Bonferroni’s method as a function of the nominal
FDR target q. The FDR (resp. power) is computed by averaging the FDP (resp. proportion
of true positives) in N = 100 independent splits of training, calibration, and test data.
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While conformal prediction always achieves nearly exact marginal validity (brown), it
is overconfident for seemingly promising candidates, as the error rate among the selected
(FDR)— those with bC1�↵(X) = {1}—is very high (orange). When 1 � ↵ = 0.90, we
witness an error rate of about 80%, meaning that 4 out of 5 ‘discoveries’ are false. Even in
the extremely conservative case where 1� ↵ = 0.99, the FDR exceeds 35%. Note that this
phenomenon is independent of the target FDR level. We can thus see that the selection
issue would be especially pressing if, say, we aim for a small FDR level. In fact, conformal
prediction outputs a large proportion of uninformative sets: as seen from the light bars,
about 1�↵ of the prediction sets are bC1�↵(X) = {0, 1} (we observe no empty prediction sets
for this data). Thus, it ensures valid marginal coverage even though those bC1�↵(X) = {1}
seldom cover the true label.

To make sure the FDR falls below a user specified tolerance q 2 {0, 1}, one might
want to employ a Bonferroni correction. To do this we would pick test cases for which
bC1�q/m(Xn+j) = {1}, wherem is the number of test samples. That is, we apply a Bonferroni
correction to the marginal coverage, and this ensures that the probability of making a single
false selection—which upper bounds the FDR—is below q. In the right panel of Figure 1,
we compare the FDR and power of our approach and Bonferroni’s method applied to a
range of nominal FDR levels q 2 {0.11, 0.15, . . . , 0.3}.2 Our approach yields almost exact
FDR control and much higher power than Bonferroni’s.

To ensure calibration on the selected, we will bridge conformal inference and selective
inference and devise cfBH, an algorithm that turns any prediction model into a screening
mechanism. In a nutshell, instead of calibrating to a fixed confidence level ↵, we will use
tools from conformal inference to quantify the model confidence in outcomes with larger
values, and then employ multiple testing ideas to construct a shortlist of candidates with
statistical guarantees.

Returning to the drug discovery application, we acknowledge a substantial literature
using conformal inference for uncertainty quantification in compound activity prediction,
see Lampa et al. (2018); Eklund et al. (2015); Svensson et al. (2018, 2017); Lindh et al.
(2017), and Cortés-Ciriano and Bender (2019) for a recent review. Whether explicitly
stated or not, the goal is eventually to select or prioritize compounds that progress to
later stages of drug discovery (Ahlberg et al., 2017a,b) after constructing valid prediction
intervals. That said, current tools for selection are all heuristic, e.g., picking cases with
a high predicted value and a relatively short prediction interval. As already mentioned, a
marginally valid prediction set does not necessarily imply reliable selection. The method
from this paper fills this gap, and can wrap around the predictions from the literature to
produce reliable selection rules for drug discovery.

1.2 Hypothesis testing and conformal p-values

One may view our problem as testing the random hypotheses

Hj : Yn+j  cj , j = 1, . . . ,m. (2)

From now on, we denote H0 = {j : Yn+j  cj} as the set of null hypotheses. That is, we
define a hypothesis Hj for each test sample j, and we say Hj is non-null if Yn+j exceeds the

2. Here we take a subset of m = 1000, as otherwise q/m exceeds the resolution of conformal prediction.
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threshold cj . This is perhaps non-classical since the hypothesis Hj is random: it concerns
a random variable rather than a model parameter. However, we show that we can still use
p-values and rely on multiple hypothesis testing ideas to construct the “rejection” set R.

We start by introducing the tool we use to quantify model confidence: conformal p-

values; as its name suggests, these p-values build upon the conformal inference frame-
work (Vovk et al., 2005, 1999). Suppose we are given any prediction model from a training
process that is independent of the calibration and test samples. We condition on the train-
ing process and view the prediction model as given. We first define a nonconformity score
V : X ⇥ Y ! R based on the prediction model. Intuitively, V (x, y) measures how well a
value y conforms to the prediction of the model at x. For example, given a prediction
bµ : X ! R, one could use V (x, y) = |y � bµ(x)|; other popular choices in the literature
include ideas based on quantile regression (Romano et al., 2019) and conditional density
estimation (Chernozhukov et al., 2021). Should Yn+j be observed, one could compute the
nonconformity scores Vi = V (Xi, Yi) for i = 1, . . . , n and Vn+j = V (Xn+j , Yn+j). The
corresponding conformal p-value (Vovk et al., 2005, 1999; Bates et al., 2021) is defined as

p⇤j =

P
n

i=1 1{Vi < Vn+j}+ Uj · (1 +
P

n

i=1 1{Vi = Vn+j})

n+ 1
, (3)

where Uj ⇠ Unif[0,1] are i.i.d. random variables to break ties. If the test sample (Xn+j , Yn+j)
follows the same distribution as the training data, then p⇤

j
⇠ Unif [0, 1]. However, the mu-

tual dependence among {p⇤
j
} is complicated as they all depend on the same calibration data.

A recent paper (Bates et al., 2021) used conformal p-values for outlier detection; in their
setting, observations {(Xn+j , Yn+j)}mj=1 are available, and the null set {j : Hj is true} is
deterministic since the null hypothesis Hj posits that (Xn+j , Yn+j) follows the same distri-
bution as the training samples. In our setting, the response Yn+j is not observed. This leads
us to introduce a di↵erent set of conformal p-values. Our analysis also generalizes Bates
et al. (2021) to exchangeable data.

1.3 Related work

This work concerns calibrating prediction models to obtain correct directional conclusions
on the outcomes. In situations where one cares more about the mistakes on the selected
subset, our error notion, the FDR, might be more relevant than average prediction errors.
That said, several works have studied FDR control in prediction problems, especially in
binary classification. Among them, Dickhaus (2014) connects classification to multiple
testing, showing that controlling type-I error (FDR) at certain levels by thresholding an
oracle classifier asymptotically achieves the optimal (Bayes) classification risk; Scott et al.
(2009) provides high-probability bounds for estimating the FDR achieved by classification
rules, rather than adaptively controlling it at a specific level.

Our problem setup is close to several recent works on calibrated screening or threshold-
ing (Wang et al., 2022; Sahoo et al., 2021) in classification or regression problems. These
works however focus on di↵erent targets; Wang et al. (2022) focuses on selecting a subset
with a prescribed expected number of qualified candidates; Sahoo et al. (2021) focuses on
the calibration of the predicted score itself to achieve a similar notion of error control as
ours, but at varying levels for all thresholds. The di↵erence is that our method rigorously
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controls FDR in finite samples, while it might be di�cult to obtain such guarantees for the
targets in Wang et al. (2022); Sahoo et al. (2021).

Our methods build upon the conformal inference framework (Vovk et al., 2005, 1999).
Although conformal-inference-based methods have been developed for reliable uncertainty
quantification in various problems (Lei and Candès, 2021; Candès et al., 2021; Jin et al.,
2023; Tibshirani et al., 2019), the theoretical guarantee usually concerns a single test point.
However, in many applications, one might be interested in a batch of individuals and desire
uncertainty quantification for multiple test samples simultaneously; in such situations, these
methods are insu�cient due to the complex dependence structure of test scores and p-values
as well as multiplicity issues.

This work is closely related to Bates et al. (2021), in which the authors use conformal
p-values (3) to test for multiple outliers. Our conformal p-values di↵er from theirs as the
outcomes are not observed. A few works (Mary and Roquain, 2021; Roquain and Verzelen,
2022) are parallel to Bates et al. (2021), studying multiple testing in a setting where all null
hypotheses specify an identical null distribution; they are further generalized by Rava et al.
(2021) to achieve subgroup FDR control in classification. Our method is similar to this line
of work in constructing a threshold for certain “scores” and selecting candidates with scores
above that threshold. However, we work with random hypotheses and propose distinct
procedures, whereas in their works, the hypotheses are deterministic (or conditioned on).
We will discuss these distinctions in more detail as we present our results.

Our perspective on the problem is also generally related to the multiple hypothesis
testing literature where the FDR is a popular notion of type-I error. Since we pay more
attention to one particular direction (e.g., we are interested in finding those Yn+j > cj),
our work is related to testing the signs of statistical parameters (Bohrer, 1979; Bohrer and
Schervish, 1980; Hochberg, 1986; Guo et al., 2010; Weinstein and Ramdas, 2020). Our
framework di↵ers from the existing directional testing literature in important ways. Firstly,
we test for the direction of a random outcome instead of a model parameter. This leads
to random null sets, whose dependence structure is complicated. Secondly, our inference
relies on exchangeability of the data while imposing no assumption on their distribution;
this di↵ers from standard practice, in which a null hypothesis specifies the distribution of
test statistics and leads to a uniform p-value.

2. Methodology

2.1 Selection by prediction with conformal p-values

We construct new conformal p-values to test the random hypotheses (2) regarding Yn+j ,
building on an arbitrary nonconformity score V obeying the monotone property.

Definition 1 A nonconformity score V (·, ·) : X ⇥Y ! R is monotone if V (x, y)  V (x, y0)
holds for any x 2 X and any y, y0 2 Y obeying y  y0.

In general, V (x, y) should measure how extreme the value y is compared to the normal
behavior of the outcome for a value x of the covariate. For example, one could let V (x, y) =
y � bµ(x) if the prediction machine outputs some estimate bµ(x) of the conditional mean
function or conditional quantile function. One could also set V (x, y) as an estimator for
F (x, y) := P(Y  y |X = x) that obeys monotonicity (Chernozhukov et al., 2021).
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The choice of V may also account for the form of R: given a monotone nonconformity
score V , our method includes case j in R if V (Xn+j , cj) is su�ciently small. As warm-up,
consider binary classification. To find samples with Y = 1, one could set cj ⌘ 0.5. Suppose
bµ(·) is some prediction from a machine learning algorithm; for instance, one could think
of bµ(x) as an estimate for P(Y = 1 |X = x) obtained by means of a neural network. If
one would like to select individuals with larger fitted probability bµ(Xn+j), then V (x, y) can
be chosen in a way such that V (x, cj) is decreasing in bµ(x). One such choice is V (x, y) =
y � bµ(x). This reasoning also applies to continuous responses with regression modeling.

We first compute Vi = V (Xi, Yi) for i 2 Dcalib = {1, . . . , n} and bVn+j = V (Xn+j , cj)

for j = 1, . . . ,m; here we use the notation bVn+j to distinguish from the unobserved scores
Vn+j := V (Xn+j , Yn+j). Then for each j = 1, . . . ,m, we construct the conformal p-values

pj =

P
n

i=1 1{Vi < bVn+j}+ (1 +
P

n

i=1 1{Vi = bVn+j}) · Uj

n+ 1
, (4)

where Uj ⇠ Unif(0, 1) are i.i.d. random variables to break ties.

Remark 2 Our conformal p-values have an intuitive interpretation: pj is the smallest sig-
nificance level such that a one-sided conformal prediction interval for Yn+j excludes cj .
Indeed, the split conformal inference procedure (Lei et al., 2018) (using �V as the noncon-
formity score) yields the one-sided prediction interval bC(Xn+j , 1�↵) = [⌘(Xn+j , 1�↵),+1)
for Yn+j , where

�⌘(Xn+j , 1� ↵) = Quantile
�
1� ↵; 1

n+1

P
n

i=1 ��Vi +
1

n+1��1
�
.

It is guaranteed that P(Yn+j 2
bC(Xn+j , 1�↵)) � 1�↵ where the expectation is taken over

the randomness in Dcalib and {Xn+j , Yn+j}. Thus, ignoring the tie-breaking Uj , we see that
the conformal p-value pj is the smallest ↵ such that cj < ⌘(Xn+j , 1 � ↵). Put it another
way, we have confidence of at least 1� pj that Yn+j > cj .

The di↵erence between {pj} in (4) and {p⇤
j
} in (3) is whether we use bVn+j or Vn+j to

contruct the p-values. To distinguish, we call {p⇤
j
} the oracle conformal p-values hereafter,

which are not observable in our setting. In Bates et al. (2021), p⇤
j
quantifies how extreme

a score is and is used to test whether the test sample j is an outlier. In our context, pj
quantifies how extreme the threshold is compared to the usual behavior of the outcomes.

We then run the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001) with the conformal p-values {pj}. The whole procedure for
cfBH is summarized in Algorithm 1.

2.2 Finite sample FDR control

Throughout, we define the random vector Zi = (Xi, Yi) for 1  j  n + m, and eZn+j =
(Xn+j , cj) for 1  j  m. The following theorem establishes generic conditions under which
cfBH controls the FDR (1) using {pj} in (4) with i.i.d. calibration and test samples.

Theorem 3 Suppose V is monotone, the calibration data {Zi}
n

i=1 and test data {Zn+j}
m

j=1

are i.i.d., and data in {Zi}
n
i=1 [ { eZn+`}` 6=j [ {Zn+j} are mutually independent for any j.

Then, for any q 2 (0, 1), the output R of Algorithm 1 satisfies FDR  q.
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Algorithm 1 cfBH: Selection by prediction with conformal p-values

Input: Calibration data {(Xi, Yi)}ni=1, test data covariates {Xn+j}
m
j=1, thresholds {cj}

m
j=1,

FDR target q 2 (0, 1), monotone nonconformity score V : X ⇥ Y ! R.
1: Compute Vi = V (Xi, Yi) for i = 1, . . . , n, and bVn+j = V (Xn+j , cj) for j = 1, . . . ,m.
2: Construct conformal p-values {pj}mj=1 as in (4).

3: (BH procedure) Compute k⇤ = max
�
k :

P
m

j=1 1{pj  qk/m} � k
 
.

Output: Selection set R = {j : pj  qk⇤/m}.

Our framework applies to scenarios where cj are random variables (see Examples 1, 2
and 3 in the next subsection). In this case, all data being i.i.d. does not necessarily imply
the mutual independence of data in {Zi}

n
i=1 [ { eZn+`}`6=j [ {Zn+j}.

We note some conceptual novelty regarding our p-values in cfBH. In conventional statis-
tical inference, a null hypothesis (approximately) specifies the distribution of a test statistic,
e.g., a p-value dominating Unif [0, 1]. In sharp contrast, p-values defined in (4) do not satisfy
such a property, i.e., it does not necessarily hold that P(pj  ↵ | j 2 H0)  ↵ for ↵ 2 (0, 1).
This is because pj and the random hypothesis Hj are dependent in an unknown fashion.3

Instead, they obey a generalized notion which states that

P(pj  ↵ and j 2 H0)  ↵, for all ↵ 2 [0, 1]. (5)

That is, for testing one single hypothesis Hj at level ↵, rejecting pj  ↵ yields the control
of the generalized error (5) that accounts for the randomness in Hj as well. This might
connect to the Bayesian perspective where parameters are themselves random variables.

We outline some important properties of our p-values to develop intuitions regarding the
FDR control of cfBH. It is proved in Bates et al. (2021) that the oracle p-values {p⇤

j
} satisfy a

specific dependence structure called positive regression dependent on a subset (PRDS) (Ben-
jamini and Yekutieli, 2001).

Definition 4 (PRDS) A random vector X = (X1, . . . , Xm) is PRDS on a subset I if for

any i 2 I and any increasing set D, the probability P(X 2 D |Xi = x) is increasing in x.

Here a set D ✓ Rm is increasing if a 2 D and b ⌫ a implies b 2 D, where ⌫ denote
coordinate-wise inequality. To be specific, Bates et al. (2021) proved that the random
vector of oracle conformal p-values (p⇤1, . . . , p

⇤
m) is PRDS on the index set I consisting of all

cases (Xn+j , Yn+j) that follow the same distribution as the training data. Relying on this
result, we show that our p-values are PRDS after modifying one coordinate. The following
lemma shows the key properties for proving Theorem 3.

Lemma 5 (i) If V is monotone, then pj � p⇤
j
on the event {j 2 H0} for each j. (ii) If

the calibration and test samples are i.i.d., then p⇤
j
⇠ Unif ([0, 1]). (iii) If data in {Zi}

n

i=1 [

{ eZn+`}` 6=j [ {Zn+j} are independent, then (p1, . . . , pj�1, p⇤j , pj+1, . . . , pm) is PRDS on p⇤
j
.

3. To see this, consider a special case where V (x, y) = y � x for Y = �X + ✏ with (X, ✏)
i.i.d.⇠ N(0, 1), and

c = 0. With su�ciently many calibration data (n ! 1), one can show that pj = �(�Xn+j) where � is
the c.d.f. of standard normal distribution. One can check that in this case, P(pj  0.05 |Y  0) > 0.09.
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The first two properties in Lemma 5 mean that pj is more conservative than p⇤
j
⇠

Unif [0, 1] on the null event, hence leading to (5). Generalizing to multiple hypotheses
testing, one could expect that the false discoveries from {pj} can be controlled with those
using {p⇤

j
}; the latter is studied in Bates et al. (2021) and works well with the Benjamini-

Hochberg (BH) procedure (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001)
because of the PRDS property (c.f. Definition 4). These heuristics are made concrete by
a careful leave-one-out analysis for FDR control, as well as the general PRDS property of
conformal p-values in (iii) of Lemma 5. We defer the detailed proofs to Appendix B.2.

2.3 Extension to exchangeable data

Our previous result extends to the situation where the calibration and test samples obey a
natural exchangeability condition.

Theorem 6 Suppose V is monotone, and that for any j = 1, . . . ,m, the random variables

{V1, . . . , Vn, Vn+j} are exchangeable conditional on {bVn+`}`6=j. Also, the random variables

{Vi}
n
i=1 [ {bVn+`}

m

`=1 have no ties almost surely. Then cfBH applied to p-values defined as

pdtmj =
1 +

P
n

i=1 1{Vi < bVn+j}

n+ 1
,

satisfies FDR  q.

This result may be of interest in the case where one is sampling from a finite set without
replacement. For instance, in drug discovery, the calibration data may be molecules that
have already been evaluated; to curate such dataset, it is common to randomly sample and
evluate a fixed number of molecules from a fixed drug library. Conditional on all the data
in the library, the randomness from sampling still ensures the exchangeability conditions
in Theorem 6. On the contrary, the i.i.d. assumptions in Theorem 3 may not hold under
sampling without replacement. The proof of Theorem 6 is in Appendix B.3. Its analysis no
longer relies on the PRDS property developed in Bates et al. (2021) for i.i.d. data.4

2.4 Setting the testing thresholds

Our framework allows us to test the random hypothesis (2) for general thresholds {cj}. The
simplest case is to set cj = ⌧ , where ⌧ is some constant which could possibly be obtained
from an independent training process. It covers binary or one-versus-all classification prob-
lems as well as many scenarios in regression modeling where a threshold on the outcomes
can be decided beforehand. Consider an application of large-scale screening in early-stage
diagnosis (Shen et al., 2019), where the practitioner would like to find individuals with high
unobserved health risk. The threshold of the risk measure as being hazardous could be de-
cided by domain knowledge, or by looking at the experience of former patients. In this case,
as ⌧ is independent of all subsequent steps, it can be viewed as fixed and the conditions
in Theorem 3 are thus satisfied. However, we do note that ⌧ should not depend on the
calibration data, because this would potentially break the mutual independence condition
on {Zi}

n

i=1 and { eZn+`} 6̀=j in Theorem 3 and invalidate FDR control.

4. A consequence is that our new technique can be used to show finite sample FDR control for the outlier
detection problem in Bates et al. (2021) under a similar exchangeability condition.
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More generally, cj can also be a random variable for test sample j as discussed below.

Example 1 (Random variable associated with test sample) In early disease diag-
nosis, one might want to identify individuals whose future cholestrol level Yn+j in a month
would be higher than cj := Wn+j , their current measurements upon a first visit. In this

case, we simply modify the construction of pj in Algorithm 1 to bVn+j = V (Xn+j ,Wn+j). All
the conditions in Theorem 3 remain true as long as {(Xn+j , Yn+j)}mj=1 are i.i.d. pairs, and
{(Xn+j , Yn+j ,Wn+j)}mj=1 are i.i.d. triples, hence our method still yields valid FDR control.

Continuing the above example, we allow for situations where the random variable W is
unobserved (missing) in the calibration data.

Example 2 (Missing variable in the calibration data) While the goal is to compare
the future cholesterol level of a new patient to that upon admission, the cholesterol level
upon a first visit, Wi, may not be measured for former patients i = 1, . . . , n in the calibration
set. This setting cannot be turned into a classification problem because the (W,Y ) pair
is never simultaneously observed for calibration samples. However, our method is still
applicable with bVn+j = V (Xn+j ,Wn+j) as the conditions in Theorem 3 still hold.

Another example that is closely related to the missing variable setting is to infer whether
the counterfactual is larger or smaller than the realized outcome in causal inference.

Example 3 (Counterfactual inference) Predicting counterfactuals is another applica-
tion whose setup is similar to Example 2 (Lei and Candès, 2021; Jin et al., 2023). Under the
potential outcomes framework (Imbens and Rubin, 2015), we let {Xi, Ti, Oi(1), Oi(0)}Ni=1
be i.i.d. tuples from an unknown super-population P, where Xi 2 X is the vector of covari-
ates, Ti 2 {0, 1} is the treatment indicator, and (Oi(1), Oi(0)) 2 R2 are potential outcomes
under treatment and control, respectively. We observe {(Xi, Oi, Ti)}Ni=1 where Oi = Oi(Ti).
We consider completely randomized experiments where for some p 2 (0, 1), Ti ⇠ Bern(p)
are independent of all other quantities. Counterfactual inference (e.g. predicting Oi(0)
when Ti = 1) asks what would happen should unit i receive another treatment status.
A potential application is to find treated units with Oi(1)  Oi(0) so that they might
drop out early from the experiment to avoid adverse e↵ects. In this case, we take all the
control units {(Xi, Oi(0))}ni=1 as the calibration data, each i.i.d. from PX,O(0) |T=0. The
test data are {Xn+j}

m

j=1 for which {On+j(0)}mj=1 are not observed. That is, we set the
response as Y = O(0) for all samples and cj = On+j(1) (the observed outcome) in (2)
which is a random variable. This task cannot be turned into a classification problem
because (Oi(1), Oi(0)) is never simultaneously observed for any unit. However, letting
bVn+j = V (Xn+j , cj), the conditions in Theorem 3 still hold, because randomized treatments
imply PX,Y |T=1 = PX,O(0) = PX,Y |T=0. In this way, our method identifies multiple treated
units among whom a prescribed proportion have negative individual treatment e↵ects.

2.5 Asymptotic analysis and choice of nonconformity score

While the only requirement for the validity of cfBH is the monotonicity of the nonconformity
score function, a carefully constructed score might enhance the power. This concerns two
aspects: (i) what should the prediction machine pursue (as a function of x), and (ii) given
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any output of the prediction machine, which nonconformity score (as a function of both x
and y) should the practitioner use. We o↵er some heuristics through asymptotic analysis.

To simplify the discussion, we take the thresholds as cj = 0, and assume the samples
{(Xi, Yi)}

n+m

i=1 are i.i.d. from an unknown distribution. In this case, the outcomes can be
encoded into a binary variable 1{Yi > 0} for i 2 Dcalib [ Dtest. We thus consider the case
Y 2 {0, 1}, and define

Power = E
"P

m

j=1 1{j 2 R, Yn+j = 1}

1 _
P

m

j=1 1{Yn+j = 1}

#
.

We consider the regime where both n, the size of the calibration set, and m, the size of the
test set, tend to infinity. Throughout, we hold the nonconformity score V as fixed, and the
randomness is only in the calibration and test samples. The proof of the next proposition
is in Appendix B.4.

Proposition 7 Let V be any fixed monotone nonconformity score, and suppose {(Xi, Yi)}
n+m

i=1
are i.i.d. Define F (v, u) = P(V (X,Y ) < v)+u·P(V (X,Y ) = v) for any v 2 R and u 2 [0, 1].
Define t⇤ = sup

�
t 2 [0, 1] : t/P(F (V (X, 0), U)  t)  q

 
. Suppose that for any su�ciently

small ✏ > 0, there exists some t 2 (t⇤ � ✏, t⇤) such that t/P(F (V (X, 0), U)  t) < q. Then

the output R of cfBH satisfies

lim
n,m!1

FDR =
P{F (V (X, 0), U)  t⇤, Y  0}

P{F (V (X, 0), U)  t⇤}
, and

lim
n,m!1

Power =
P{F (V (X, 0), U)  t⇤, Y > 0}

P{Y > 0}
.

In words, Proposition 7 states that the rejection threshold for conformal p-values in cfBH

converges to t⇤, leading to the convergence of FDR. By definition, t⇤ is the largest value of
t such that the mass of F (V (X,Y ), U) below t is less than q times that of F (V (X, 0), U).
Since F (v, u) is increasing in the first argument, t⇤ is large if V (X, 0) has a far more heavier
left tail than V (X,Y ). One such case is when the probability of Y = 1 is large for small
V (X, 0). For instance, if we use V (x, y) := y � bµ(x) for a point prediction bµ(·), then t⇤

is large if Y = 1 is more probable for X = x with large bµ(x). The convergence is not
necessarily true if the asymptotic FDR lies on the critical line near t⇤, i.e., if there exists
some t1 < t⇤ such that t/P(F (V (X, 0), U)  t) = q for all t 2 [t1, t]. The technical condition
in Proposition 7 rules out this situation, and actually guarantees that

q =
t⇤

P{F (V (X, 0), U)  t⇤}
=

P{F (V (X,Y ), U)  t⇤}

P{F (V (X, 0), U)  t⇤}

since the distribution of F (V (X, 0), U) has no point mass. In particular, the asymptotic
FDR of cfBH satisfies

P{F (V (X, 0), U)  t⇤, Y  0}

P{F (V (X, 0), U)  t⇤}


P{F (V (X,Y ), U)  t⇤, Y  0}

P{F (V (X, 0), U)  t⇤}


P{F (V (X,Y ), U)  t⇤}

P{F (V (X, 0), U)  t⇤}
 q. (6)

12



Selection by Prediction with Conformal p-values

To further simplify, we suppose the distribution of V (X,Y ) does not have a point mass,
hence F (u, v) = P(V (X,Y )  v). We also let v⇤ = sup{v : P(V (X,Y )  v)  t⇤), such that
F (u, v)  t⇤ if and only if v  v⇤. Thus, (6) becomes

P{V (X, 0)  v⇤, Y = 0}

P{V (X, 0)  s⇤}
=

P{V (X,Y )  v⇤, Y = 0}

P{V (X, 0)  s⇤}


P{V (X,Y )  v⇤}

P{V (X, 0)  v⇤}
 q. (7)

Choice of V . We first investigate (7) to provide some heuristics on the choice of V . If
we could design some nonconformity score V such that

V (X,Y )  v⇤ ) Y = 0, (8)

then the first inequality in (7) becomes an equality. Given a prediction bµ(x) from any
machine learning algorithm, if one would like to select individuals with larger values of
bµ(Xn+j), one might design a nonconformity score V such that

V (x, 0) = �bµ(x), V (x, 1) = +1.

In this way, selecting cases where V (Xn+j , 0) is small is equivalent to selecting large bµ(Xn+j),
and this choice guarantees (8) as long as v⇤ < 1. We recommend a relaxation given by

V (x, y) = M · y � bµ(x) (9)

for some su�ciently large constant M . This “clipped” score obeys infx V (x, 1) = M �

supx bµ(x) � supx V (x, 0) if M � 2 supx |bµ(x)|. That is, the nonconformity score for Y = 1
is always larger than that for Y = 0, regardless of the value of x. Recalling the definitions,
we know t⇤  q · P(F (V (X, 0), U)  t⇤)  q. Thus, when q < P(Y = 0), by definition, v⇤

is smaller than the q-th quantile of V (X,Y ). As a result, (8) holds exactly and the first
inquality in (7) is an equality—that is, using (9) could potentially yield a value of FDR
close to the nominal level q, using up all the FDR budget; we thus anticipate a higer power.
We indeed verify these heuristics in our simulations.

Choice of bµ. We then discuss the choice of bµ when V (x, y) = My � bµ(x) and (8) holds.
Recall that given the conditions in Proposition 7, the last inequalities in (6) and (7) are
exact equalities. Hence

lim
n,m!1

FDR =
P{�bµ(X)  v⇤, Y = 0}

P{�bµ(X)  v⇤}
, lim

n,m!1
Power =

P{�bµ(X)  v⇤, Y = 1}

P{Y = 1}
.

Since our procedure always ensures that the asymptotic FDR is below q, letting f(x) =
v⇤+bµ(x), we could view asymptotic power maximization as solving an optimization problem

maximize P{f(X) � 0, Y = 1}

subject to
P{f(X) � 0, Y = 0}

P{f(X) � 0}
 q.

Equivalently, this is

maximize E
⇥
1{f(X) � 0}P(Y = 1 |X)

⇤
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subject to E
⇥
1{f(X) � 0}

�
P(Y = 0 |X)� q

�⇤
 0.

By Neyman-Pearson lemma, the optimal choice of f should be a monotone function of
P(Y = 1 |X). That is, we should aim for some bµ(x) that is monotone in P(Y = 1 |X = x).
The most convenient option is to fit P(Y = 1 |X = x). This heuristic derivation leads to a
quite intuitive recommendation: the predicted score should indeed aim to reflect how likely
Y = 1 is given X.

3. Numerical experiments

We evaluate our method on simulated datasets, leading to some practical suggestions.
We generate i.i.d. covariates Xi ⇠Unif [�1, 1]20 and responses Yi = µ(Xi) + ✏i, where
µ(x) = E[Y |X = x] is nonlinear in x, and ✏i is the independent random noise. We
design 8 simulation settings to demonstrate the performance of our methods under var-
ious data generating processes, with di↵erent configurations of µ(·) and distributions for
the ✏i’s. In particular, we vary (i) whether the image {µ(x) : x 2 [�1, 1]20} is a con-
tinuous set, and (ii) whether the noise is heterogeneous, such that the hardness of cor-
rectly identifying those outcomes exceeding zero varies. The details of all settings are
summarized in Appendix C.2. The reproduction codes for this part can be found at
https://github.com/ying531/selcf_paper.

The task is to select individuals with Yn+j > 0 among all test samples. We fix the sizes of
training and calibration data at n = |Dtrain| = |Dcalib| = 1000 and vary the test sample size
|Dtest| 2 {10, 100, 500, 1000}. We use gradient boosting, SVM with rbf kernel, and random
forest to fit a regression model bµ(·) for E[Y |X], all from the scikit-learn Python library
without fine tuning. We then apply cfBH and Algorithm 2 at the FDR target q = 0.1,
which, together with the Bonferroni baseline, leads to four algorithm configurations:

1. BH sub: cfBH0 (Algorithm 2) with bVn+j = �bµ(Xn+j);

2. BH res: cfBH with V (x, y) = y � bµ(x);
3. BH clip: cfBH with V (x, y) = M · 1{y > 0} � bµ(x) and a large constant M = 100;

this value is chosen to ensure it is larger than 2 supx |bµ(x)|;
4. Bonferroni: Select all pj  q/m with V (x, y) the same as in BH clip.

Algorithm 2 used in BH sub is formally introduced in Appendix A; when applied to
classification problems, it is equivalent to the score-based methods of Mary and Roquain
(2021) and Rava et al. (2021). The only di↵erence from cfBH is that Algorithm 2 (cfBH0)
uses {(Xi, Yi) : i 2 Dcalib, Yi = 0} as the calibration data when constructing conformal
p-values (4), which leads to a slightly stronger theoretical guarantee although it comes at
a price: loss of power (see Appendix A.2). Other than this, we are not aware of alternative
methods for exact control of FDR in classification.

3.1 Valid FDR control

We empirically evaluate the FDR by averaging the FDP
P

j2Dtest
1{j2R,Yn+j>0}
1_|R| over N =

1000 independent runs (R is the rejection set). We observe similar power and FDR for
di↵erent values of ntest, hence we only plot the results for q = 0.1 and ntest = 100 in
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Figure 2: Realized FDR for four procedures at FDR target q = 0.1. Each row corresponds
to one data generating process, and each column corresponds to one regressor (gbr for
gradient boosting, rf for random forest, svm for support vector machine). The x-axis is the
parameter � for the noise level of ✏i, whose precise definition is in Appendix C.2.

Figure 2. The FDR is controlled below q = 0.1 in all configurations, showing the validity
of our procedure. In particular, the FDR of Bonferroni is always close to zero.

Among the three nonconformity scores, the realized FDR of BH clip is the highest in
all settings, and is often very close to the nominal level. FDR also varies with the regression
algorithms that are adopted, but the variation is not very large.

In settings 1-4 and 8, the FDR levels of di↵erent methods are relatively stable across
various noise strengths. In settings 5-7, the FDR decreases as the noise level (the x-axis)
increases. It might seem counterintuitive because at first sight, one might think that a
harder problem (larger noise) would lead to a higher error rate. However, we observe that
it is accompanied by lower power (Figure 3 as we will present shortly) and a smaller rejection
set (Figure 10 in Appendix C.3). This might be contributed by two factors. The first is
the increased di�culty of prediction; with larger noise, machine learning is less capable
of capturing the heterogeneity in the true conditional mean function µ(Xn+j). Since a
test sample needs to have a su�ciently small value of V (Xn+j , 0) to be selected, such
lack of heterogeneity leads to small selection sets. The second is the decreased confidence
even with ground truth available: even when µ(Xn+j) is known, when the noise is too
large, there is hardly any value of the covariate for which one has a high confidence that
Y > 0. To be more specific, when cj = ⌧ is a constant, the selection set is fully decided by
Dcalib [ {Xn+j}j2Dtest ; in addition, {Yn+j}j2Dtest are independent of Dcalib conditional on
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{Xn+j}j2Dtest by the i.i.d. assumption. The tower property then implies

FDR = E
"P

m

j=1 1{j 2 R}1{Yn+j  0}

1 _ |R|

#
= E

"P
m

j=1 1{j 2 R}P
�
Yn+j  0 |Xn+j

�

1 _ |R|

#
,(10)

which is roughly the average of P(Yn+j  1 |Xn+j) among selected individuals. Thus, when
P(Y  0 |X = x) > q for almost all x 2 X , sometimes one needs to output R = ?
in order to keep the FDR below q, leading to smaller selection sets. In general, as the
selection becomes di�cult, selected units should have extremely small nonconformity scores
and extremely strong confidence in a positive response, resulting in a lower FDR.

3.2 Power

We evaluate power by averaging
P

j2Dtest
1{j2R,Yn+j>0}P

j2Dtest
1{Yn+j>0} , the proportion of correct selections

among all positive test samples, over all replicates. We again observe stable power across
di↵erent values of ntest, hence we only plot the average power for q = 0.1 and ntest = 100 in
Figure 3. BH clip always has the highest power while BH res always has the lowest power
(excluding Bonferroni); BH sub is sometimes closer to BH clip and sometimes closer to
BH res. We note that the general applicability of BH res comes with its low power in
such binary classification problems, while the other two (which are only applicable for fixed
thresholds) are more powerful. Finally, the Bonferroni correction nearly has no power (even
if we set V (x, y) to be the same as the most powerful BH clip).

method BH_sub BH_res BH_clip Bonferroni

gbr rf svm

Setting 1
Setting 2

Setting 3
Setting 4

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Noise strength

po
w

er

gbr rf svm

Setting 5
Setting 6

Setting 7
Setting 8

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.0

0.2

0.4

0.6

Noise strength

po
w

er

Figure 3: Realized power of four procedures at FDR target q = 0.1 for various data gener-
ating processes. Details are otherwise the same as Figure 2.

The power of our procedure also varies with the prediction algorithms (the columns).
In setting 1 where the FDR is similar across the three algorithms, the power is actually
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drastically di↵erent: gbr performs the best in most settings; however, svm performs the
best in settings 4 and 8 where there is strong heterogeneity in the distribution of ✏i |Xi, in
which case the other two prediction algorithms might fail to capture the true dependence
between Y and X.

The power decreases as the noise strength increases in all settings. This is because larger
noise makes it more di�cult to fit the prediction model, and the fundamental detection
hardness increases as sketched in (10). (10) also implies that in practice, the FDR target
q should be properly chosen: in situations where P(Yn+j > 0) is small, it might be too
demanding to choose a very small q since Xn+j for which P(Yn+j > 0 |Xn+j) is very large
may not exist. A practical choice might be some q that is moderately larger than the
marginal proportion of positive Y ’s in the training data (our method is still valid). In this
way, when there exists some region in X where P(Y > 0 |X) � 1 � q, our method finds
critical subsets while achieving some power.

4. Real data application

4.1 Candidate screening in recruitment

We apply cfBH as an automatic screening tool in recruiting, where a human resources sta↵
uses machine learning prediction to screen all applicants and shortlist some for subsequent
test and interviews. In this application, machine learning is used to predict whether a new
candidate is qualified for the job (i.e., whether the recruitment is successful); a higher pre-
dicted value might indicate a better fit to the position, but no guarantee can be provided
for a black-box prediction machine. We will use cfBH to calibrate the prediction and gen-
erate a shortlist of candidates with rigorous FDR control, i.e., limiting the proportion of
unqualified individuals among the selected candidates.

We assume new applicants to the position and previous applicants on record (such as
those who applied last year) are i.i.d. from the same distribution. This is reasonable if
the pool of applicants for the position is stable over the years. The recruiters may train
any prediction model on previous applicants and use any monotone nonconformity score
as their choice. We use a small-scale recruitment dataset from Kaggle (Roshan, 2020), as
recruitment datasets from companies are often confidential. There are ntot = 215 samples
in total. Each sample is from an applicant for the position; the data includes covariates
about their education, work experience, gender, specialization, etc., and the response is a
binary variable indicating whether the applicant is finally o↵ered the job. Here, we use this
binary outcome as a perfect proxy for the qualification of a candidate. We randomly split
the data into a training set of size |Dtrain| = 86 and a test set of size |Dtest| = 43. We first
train a gradient boosting model to predict the job o↵ering, using the sckit-learn Python
library without fine tuning, and apply the three procedures (except Bonferroni since it is
less powerful) in Section 3 for q =2 {0.1, 0.2, 0.5}. We plot the false discovery proportion
(FDP) and power over N = 100 independent runs in Figures 4 and 5, respectively.

All three scores achieve valid FDR control (averaging the FDPs). BH res and BH clip

have similar FDP (hence FDR). The FDP of BH sub is lower, potentially because of its low
power, and also less stable than the other two. As BH sub only uses the subset of training
samples with Y = 0 to calibrate the selection set as Bates et al. (2021); Rava et al. (2021)
did (see discussion in Appendix B.5), when such subset is small, the calibration, hence the
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Figure 4: Boxplot for false discovery proportions over N = 100 independent runs for the
recruitment dataset, with q = 0.1 (left), q = 0.2 (middle), and q = 0.5 (right). Red dashed
lines are the nominal levels.
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Figure 5: Boxplot for power over N = 100 independent runs for the recruitment dataset,
with q = 0.1 (left), q = 0.2 (middle), and q = 0.5 (right).

FDP, can be unstable. Intuitively, BH res and BH clip achieve a more stable behavior by
using all the calibration data.

The power of these methods di↵er more significantly. In general, predicting qualified
candidates from our data is a relatively easy task: once we allow the FDR level to be 0.2 or
0.5, BH res and BH clip could almost identify all qualified candidates. Both these methods
achieve similar power while BH clip is again a little better. However, BH sub, which only
uses training samples with Y = 0 to calibrate the selection set as Bates et al. (2021)
and Rava et al. (2021) did, has much lower power. We discuss this issue in Appendix A.1:
in finding positives for a binary response, our method can be more powerful than BH sub

when there are many positive samples in the population.

4.2 Drug discovery

We apply cfBH to therapeutic datasets for drug discovery, focusing on two tasks: (i) selecting
molecules that bind to a target protein for a certain disease, and (ii) selecting drug-target
(molecule-protein) pairs with a high a�nity score. Our main focus is to calibrate any given
prediction model to limit false positives. Therefore, we use the pre-trained models and the
prediction pipelines established in the DeepPurpose library (Huang et al., 2020).
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4.2.1 Drug property prediction for HIV

We first consider the task of predicting drug properties for a certain protein target for HIV.
As we mentioned in the introduction, given a specific target, machine learning models are
often trained on a representative subset of the whole drug library screened by HTS, and
then used to predict the activity of the remaining proteins to find promising candidates. It
is important to control for false positives in the shortlisted candidates.

We use the HIV screening dataset with a total size of ntot = 41127. We randomly
split the data into three folds with ratio 6 : 2 : 2 in size. The first two folds contain
binary outcomes indicating whether the drugs interact with the disease. We use the first
fold to train a machine learning model to predict the outcome, where the drugs are encoded
into numerical features using Extended-Connectivity FingerPrints (ECFP) that characterize
topological properties of molecules and compounds. We train a small neural network in only
3 epochs so that the whole procedure works well with CPUs; using more complicated or
pre-trained networks might improve power but this is not the main focus here. The second
fold serves as the calibration data. Our goal is to find active proteins in the last test fold
while controlling for the false discovery rate.

In the training fold, about 3% of the drugs are active for the HIV disease. We choose the
FDR levels among q 2 {0.1, 0.2, 0.5}. We compute the empirical FDR, power, and average
size of the selection set over N = 100 independent runs of the procedure in Table 1.

FDR Power |R|

Level q 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

BH clip 0.0957 0.196 0.495 0.0788 0.174 0.410 26.5 64.2 240

BH res 0.0989 0.196 0.494 0.0766 0.174 0.410 25.8 64.4 239

BH sub 0.0862 0.192 0.474 0.0739 0.169 0.397 24.8 61.8 222

Table 1: FDR and power of the three methods averaged over N = 100 random splits.

All three choices of nonconformity scores control FDR below the nominal levels. Their
performance is also similar, while BH clip has the highest power and BH sub is the least
powerful, both with a small margin. This is because the positive samples in the population
is extremely small, so that using Y = 0 samples or the whole calibration set does not have
a huge impact on the selection set.

Using all three methods, the selection set consists of all test samples whose predicted
binding a�nity is above some value. This value is specific to the training model we use.
Figure 6 shows the selection threshold of the predicted value for all configurations. If we
control FDR at q = 0.1, the predicted scores needs to be as large as 0.8 to be considered
promising; this leads to around 25 candidates among about 8000 test samples. However, if
we set q = 0.5, then the thresholds are in the range [0.2, 0.4] most of the time: a moderately
large score is su�cient to stand out.

4.2.2 Drug-target interaction (DTI) prediction

Last, we consider the task of predicting drug-target interactions (DTI) among a huge pool of
drug-target pairs. This might be of use to a therapeutic company to prioritize its resources in
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Figure 6: Selection thresholds over N = 100 runs, with q = 0.1 (left), q = 0.2 (middle), and
q = 0.5 (right).

developing drugs that might be e↵ective for any of the targets they happen to be interested
in. In this application, one may need to be cautious about the i.i.d. assumption: this can be
reasonable if the drugs and targets are drawn from a diverse library, and a representative
subset of all pairs have been screened to form the training data.

We use the DAVIS dataset published in Davis et al. (2011), which records real-valued
binding a�nities for ntot = 30060 drug-target pairs. In this application, we mimic a scenario
where a small proportion of the whole library has been screened, and one would like to find
promising ones among a huge amount of pairs whose binding a�nities are unknown. In
particular, we randomly split the dataset into three folds of size 2 : 2 : 6; we use the first
fold for training the model, the scond for calibration, and the last largest set as test samples.
We use ECFP and Conjoint triad feature (CTF) (Shen et al., 2007; Shao et al., 2009) to
encode the drugs and the targets into numeric features, respectively. We train a small
neural network over 10 epochs. These choices are suitable for experiments on CPUs (one
might of course use other more computationally intensive alternatives).

Because the a�nity is continuously valued, and to account for the heterogeneity in
targets, we set cj as the qpop-th quantile of the outcomes of the training samples with the
same binding target as sample j, where qpop 2 {0.7, 0.8, 0.9}. Given a predicted score, there
is no natural way to use BH sub in this setting, so we test the following two methods:

• BH res with nonconformity score V (x, y) = y � bµ(x),
• BH clip with nonconformity score V (x, y; c) = M1{y � c}+ c1{y < c} for M = 100,

where x is the vector of features, y is the binding a�nity ranging in [5, 10], and c is the
threshold that is computable for both calibration and test samples. We set the FDR level
at q 2 {0.1, 0.2, 0.5}. There are 18 configurations in total, with 2 nonconformity scores and
3⇥3 combinations of (qpop, q). In this case, since the threshold cj varies among the samples,
the selection is not monotone in the predicted score.

The empirical FDP, computed as
Pm

j=1 1{Yn+jcj}
1_|R| (R is the selection set), over N = 100

independent runs is plotted in Figure 7. For all configurations of qpop, both methods control
the FDR (average of FDPs) at the nominal level. However, there can be some variation in
the FDP for q = 0.1; BH res is less stable than BH clip. Also, the FDR from BH clip is
very close to the nominal level while that from BH res is much lower. This is due to the
low power of BH res as we show in the power plot (Figure 8).
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Figure 7: FDP over N = 100 runs, with q = 0.1 (left), q = 0.2 (middle), q = 0.5 (right).

The power of both methods decrease as qpop increases, which is natural because this
leads to higher thresholds for binding a�nity. In all settings, BH clip is more powerful and
also yields larger selection sets. Thus, when the thresholds are computable for both the
calibration and test samples (as Example 1), we recommend BH clip for higher power.
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Figure 8: Power over N = 100 runs, with q = 0.1 (left), q = 0.2 (middle), q = 0.5 (right).

5. Discussion

In this paper, we introduce cfBH, which is a generic tool to turn any prediction model into
a selection threshold for interesting outcomes. By constructing conformal p-values based on
i.i.d. calibration data and leveraging multiple testing ideas, we guarantee that a prescribed
proportion of the selected set is indeed of interest. Controlling the false discovery rate
ensures e�cient use of resources for follow-up investigations.

A crucial condition that cfBH relies on is that the calibration and test samples are i.i.d. or
exchangeable. However, in practice, the two datasets might di↵er because of selection or
distribution shift. For example, to infer the performance of this year’s job candidates, last
years’ candidates that are documented might in general be more competent than average;
to infer new drugs, the drugs that have been screened by HTS might be selected with
varying preference based on the features; drug discovery also needs to deal with domain
shift (repurposing) for completely unseen targets. Reliable selection under distribution shift,
if not infeasible, may require more involved techniques.

FDR, as a measure of Type-I error, may be limited in applications such as healthcare,
where both type-I and type-II errors are of concern. Therefore, it might also be interesting to
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see whether our methodology can be extended to controlling a mixture of both error types.
Meanwhile, counting the number of errors may be less sensible if the cost of making an
error varies with individuals or depends on the outcomes. Developing calibration methods
to control general risks in screening procedures is also an interesting direction to pursue.
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Appendix A. Connections to the literature

This section provides a detailed comparison of our method to related ones in the literature.
In Section A.1, we present a variant of our method that applies to classification problems
and controls FDR conditional on the test responses. We then compare it to the score-based
methods of Mary and Roquain (2021) and Rava et al. (2021) for classification problems
in Section A.2. In Section A.3, we show how the outlier detection problem in Bates et al.
(2021) with conformal p-values can be turned into the classification setting and discuss its
connection to our methods.

A.1 A variant for hypotheses-conditional FDR control

A variant of Algorithm 1 provides a slightly stronger guarantee, FDR control for test data
conditional on H0. This variant applies to binary or one-versus-all classification; it also
applies to our directional selection with constant thresholds, because it can be turned into
a classification problem. The classification setting is close to that of Rava et al. (2021),
while our analysis through conformal p-values o↵ers a complementary perspective.

We assume access to i.i.d. training data {(Xi, Li)}ni=1 where Li is the label of unit i and
Xi 2 X is the features. We also assume the covariates of the testing sample {Xn+j}

m

j=1 are
observed, but not the label. Suppose one is interested in finding a subset R of test samples
whose labels are in some user-specified class C, while controlling the FDR, defined as

FDR := E
"P

m

j=1 1{Lj /2 C, j 2 R}

1 _ |R|

#
,

where the expectation is with respect to the randomness in all the training and testing
data. One could encode a binary label Y = 1{L 2 C}, which turns it into our setting with
cj ⌘ 0.5 in (2).

Since the label is observable in the calibration fold, we choose a subset D
0
calib = {i 2

Dcalib : Yi = 0} and let n0 = |D
0
calib|. We construct conformal p-values via

p0j =

P
i2D0

calib
1{bVi < bVn+j}+ (1 +

P
i2D0

calib
1{bVi = bVn+j}) · Uj

n0 + 1
, (11)

where Uj ⇠ Unif [0, 1] are i.i.d. random variables. The construction of p-values in (11) di↵ers
from (4) in that we use a smaller calibration set D0

calib, and compare the test nonconformity

scores bVn+j to bVi = V (Xi, 0), instead of Vi = V (Xi, Yi) for i 2 D
0
calib. We then run BH with

{p0
j
}. We name this procedure as cfBH0, which is summarized in Algorithm 2.

Algorithm 2 cfBH0: Selection by prediction with same-class calibration

Input: Calibration data {(Xi, Yi)}i2D0
calib

, test data covariates {Xn+j}
m
j=1, FDR target q 2

(0, 1), monotone nonconformity score V : X ⇥ Y ! R.
1: Compute bVi = V (Xi, cj) for i 2 Dcalib and bVn+j = V (Xn+j , 0) for j = 1, . . . ,m
2: Construct conformal p-values {p0

j
}
m
j=1 as in (11)

3: (BH procedure) Compute k⇤ = max
�
k :

P
m

j=1 1{p
0
j
 qk/m} � k

 

Output: Selection set R = {j : p0
j
 qk⇤/m}.
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Using a slightly di↵erent argument, the following proposition shows the FDR control of
cfBH0 conditional on the labels of test samples. The proof is in Appendix B.5.

Proposition 8 Suppose V is monotone, Dcalib and test data are i.i.d., and Y = {0, 1}. Let

D
0
calib = {i 2 Dcalib : Yi = 0}. Given any q 2 [0, 1], the output of Algorithm 2 satisfies

E
"P

m

j=1 1{j 2 R, Yn+j = 0}

1 _ |R|

����� {Yn+j}
m

j=1

#
 q.

A.2 Connection to classification methods

A recent paper (Rava et al., 2021) considers controlling the mis-classification rate (called
FSR, the false selection rate), a similar notion as our FDR, for certain pre-specified sub-
groups in classification problems. Given any model bs(x) that predicts how likely the label
of a sample with feature value x is in a specified class C, they use an independent set of data
from class C to calibrate a threshold bs 2 R, and classify all the test samples with bs(Xn+j) � bs
into C. Using a martingale argument, they show that the proportion of mis-classified units
among the detected ones is controlled below a pre-specified level. Also related are Mary
and Roquain (2021) and Roquain and Verzelen (2022) that consider testing whether the
test data follow a “null” distribution and provide similar analysis.

Without the subgroup fairness aspect, the procedure in Rava et al. (2021) is equivalent
to our cfBH0 if we set bV (x, 0) = bs(x). Our analysis for Proposition 8 is an alternative to the
martingale argument of Rava et al. (2021); Mary and Roquain (2021); Roquain and Verzelen
(2022). We note that both cfBH and cfBH0 can be extended to account for subgroup fairness
by applying the selection procedure separately to di↵erent subgroups.

While providing a stronger guarantee (i.e., conditional on the hypotheses), cfBH0 is
less general than cfBH. cfBH applies to problems that cannot be easily translated to a
classfication problem (see, e.g., Examples 2 and 3). Moreover, in classification problems
where cfBH0 is applicable, cfBH can be more powerful with a suitable choice of V . We
discuss this issue in the following.

Remark 9 (Power comparison in classification problems) Suppose Y 2 {0, 1} and
the goal is to find Y = 1. We set V (x, y) = My � bs(x) as discussed in Section 2.5, where
bs(Xi) is any score to predict how likely Yi = 1 happens conditional on Xi (such as those used
in Rava et al. (2021)), and M is a su�ciently large constant. We suppose M > 2 supx |bs(x)|,
for which often M = 2 su�ces. Since M > 2 supx |bs(x)|, for those i /2 D

0
calib, i.e., Yi = 1,

we have V (Xi, Yi) = M � bs(Xi) > �bs(Xn+j) = bVn+j . Thus our conformal p-values used in
cfBH reduce to

pj =

P
i2D0

calib
1{Vi < bVn+j}+ Uj · (1 +

P
i2D0

calib
1{Vi = bVn+j})

n+ 1
,

while the p-values in cfBH0 are

p0j =

P
i2D0

calib
1{Vi < bVn+j}+ Uj · (1 +

P
i2D0

calib
1{Vi = bVn+j})

|D
0
calib|+ 1

.
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That is, in classification problems, such a choice of nonconformity score leads to

pj =
|D

0
calib|+ 1

n+ 1
p0j < p0j .

With strictly smaller p-values, the rejection set of cfBH is a superset of that of cfBH0, hence

achieving strictly higher power. Also, the coe�cient
|D0

calib|+1
n+1 implies that the smaller the

proportion of Yi = 0 samples is among the calibration data, the greater the power gain of
cfBH over cfBH0.

A.3 Connection to outlier detection

The outlier detection problem in Bates et al. (2021) can also be turned into the above
classification setting. As stated in Lemma 10, Bates et al. (2021) studies a problem where
given i.i.d. calibration data {Zi}

n
i=1 from an unknown distribution P, one would like to test

for outliers in independent test samples {Zn+j}
m

j=1, and the hypotheses are Hj : Zn+j ⇠ P.
There, Zn+j is called an inlier if Hj is true, and an outlier otherwise; the calibration data
are all inliers.

To turn the outlier detection problem into our language, one could view Z as the covari-
ate, and encode a label Y = 0 for inliers and Y = 1 for outliers. This setup is the same as
the preceding subsection, where one would like to control the average proportion of inliers
in those classified as Y = 1. Here, the inlier distribution is PZ |Y=0; it is then equivalent
to the hypothesis testing problem in Mary and Roquain (2021) and Roquain and Verzelen
(2022) as well, where data associated with null hypotheses are i.i.d. from a null distribution.
The method in Bates et al. (2021) for marginal FDR control is the same as cfBH0 if we
set V (x, 0) = �bs(x) for the one-class-classifier bs(·) trained on inliers for outlier detection
in Bates et al. (2021). Similar to cfBH0, only inliers are used for calibration in Bates et al.
(2021), and the FDR control is conditional on the test labels.

Besides the di↵erences in the methodology and the FDR control guarantee, another
distinction between cfBH and that of Bates et al. (2021) is the assumption on the data
distributions. In Bates et al. (2021) (and also Mary and Roquain (2021); Roquain and
Verzelen (2022)), it is only assumed that the inliers in the test samples are i.i.d. from
PZ |Y=0, but the outliers can be arbitrary distributed and are not necessarily from the same
distribution. In contrast, cfBH assumes all (Zi, Yi) pairs in the calibration and test data are
from an i.i.d. super-population. Leveraging this additional structure, cfBH can deal with
more general thresholds for continuous responses, see Examples 2 and 3, and achieve higher
power in classification problem by including all observations in the calibration fold as we
discussed in Section A.2. This super-population assumption can be reasonable in many
cases, such as healthcare diagnosis, job hiring, and drug discovery.

At a high level, responses of higher values in our setting can be roughly viewed as
“outliers”. However, many applications such as job hiring and drug discovery may not be
easily turned into an outlier detection problem. The one-class-classification in Bates et al.
(2021) may also be insu�cient in such applications when information from both positive
and negative training samples is available. In contrast, cfBH is able to use any prediction
model from an independent training process.
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Appendix B. Technical proofs

B.1 Proof of Lemma 5

Recall that Vn+j = V (Xn+j , Yn+j) is the unobserved score for the j-th test sample, and the
oracle p-value is

p⇤j =

P
n

i=1 1{Vi < Vn+j}+ (1 +
P

n

i=1 1{Vi = Vn+j}) · Uj

n+ 1
, (12)

where Uj is the same as in pj .
Proof [Proof of Lemma 5] The first property follows from the monotonicity of V . To be
specific, on the event {Yn+j  cj}, we have Vn+j = V (Xn+j , Yn+j)  V (Xn+j , cj) = bVn+j

hence p⇤
j
 pj .

The second property follows from an application of the PRDS property proved in Bates
et al. (2021). In the following lemma, we cite the results from Bates et al. (2021).

Lemma 10 (PRDS property in Bates et al. (2021)) Let Z1, . . . , Zn

i.i.d.
⇠ P be the cal-

ibration data, and Zn+1, . . . , Zn+m be independent test samples. For each j = 1, . . . ,m,

the null hypothesis is H⇤
j
: Zn+j ⇠ P. For any fixed nonconformity score V : Z ! R, we

compute Vi = V (Zi) for 1  i  m + n, and construct p-values {p⇤
j
} as in (12). If H⇤

j
is

null, i.e., if Zn+j ⇠ P, then the vector (p⇤1, . . . , p
⇤
m) is PRDS on p⇤

j
.

We now construct another set of ‘oracle p-values’ in the setup of Bates et al. (2021)
that coincide with our {pj}. Let j be any fixed index. We keep p⇤

j
as it is, and let Z⇤

n+`
=

(Xn+`, c`) for all ` 6= j. Without loss of generality we define Z⇤
n+j

= (Xn+j , Yn+j) and
Z⇤
i
= (Xi, Yi) for i = 1, . . . , n. This can be viewed as the (Xn+`, Yn+`) pair by setting

Yn+` = c` a.s. to be an “outlier” for all ` 6= j. Then we let eVi = V (Z⇤
i
) for 1  i  n+m,

and construct p-values using the same {U`} as in (12):

ep⇤` =
P

n

i=1 1{
eVi < eVn+`}+ (1 +

P
n

i=1 1{
eVi = eVn+`}) · U`

n+ 1
, for all ` = 1, . . . ,m.

Note that ep⇤
`
= p` for ` 6= j and ep⇤

j
= p⇤

j
, where p` is our new conformal p-values in (4).

In the view of Lemma 10, Z⇤
1 , . . . , Z

⇤
n are the i.i.d. calibration data, Z⇤

n+1, . . . , Z
⇤
n+m are

independent test samples, and Z⇤
n+j

follows the same distribution as Z⇤
1 , . . . , Z

⇤
n. Hence

by Lemma 10, we know the vector (ep⇤1, . . . , ep⇤m) is PRDS on p⇤
j
, which is equivalent to the

second property of Lemma 5. This concludes the proof of Lemma 5.

B.2 Proof of Theorem 3

Proof [Proof of Theorem 3] Let R be the rejection set, and let Rj = 1{j 2 R} for
j = 1, . . . ,m. In the BH procedure, j 2 R if and only if pj  q|R|/m. The FDR can thus
be decomposed as

FDR = E
Pm

j=1 1{Yn+j  cj}Rj

1 _
P

m

j=1Rj

�
=

mX

j=1

mX

k=1

1

k
E
⇥
1{|R| = k}1{Yn+j  cj}1{pj  qk/m}

⇤
.
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Let Rj!⇤ be the rejection set obtained by setting pj to p⇤
j
while keeping others fixed. By

Lemma 5, we have pj  p⇤
j
on the event {Yn+j  cj}. In addition, by the property of the

BH procedure, if j 2 R, i.e., if pj � q|R|/m, then sending pj to a smaller value does not
change the rejection set. Thus,

1{|R| = k}1{Yn+j  cj}1{pj  qk/m} = 1{|Rj!⇤| = k}1{Yn+j  cj}1{pj  qk/m}

 1{|Rj!⇤| = k}1{Yn+j  cj}1{p
⇤
j  qk/m}.

Therefore, the FDR is bounded as

FDR 

mX

j=1

mX

k=1

1

k
E
⇥
1{|Rj!⇤| = k}1{Yn+j  cj}1{p

⇤
j  qk/m}

⇤



mX

j=1

mX

k=1

1

k
E
⇥
1{|Rj!⇤| = k}1{p⇤j  qk/m}

⇤
.

By Lemma 5, the vector of p-values (p1, . . . , pj�1, p⇤j , pj+1, . . . , pm) is PRDS (Bates et al.,
2021) on p⇤

j
. Thus, following standard proofs for the BH(q) procedure under PRDS condi-

tion Benjamini and Yekutieli (2001), each term can be controlled as

mX

k=1

1

k
E
⇥
1{|Rj!⇤| = k}1{p⇤j  qk/m}

⇤


q

m
,

which completes the proof of Theorem 3.

B.3 Proof of Theorem 6

Proof [Proof of Theorem 6] For notational simplicity, set pj = pdtm
j

(3) in this proof only.
Also define the corresponding deterministic oracle p-values

p⇤j =
1 +

P
n

i=1 1{Vi < Vn+j}

n+ 1
,

and let this notation override (3) in this proof only.
For any j = 1, . . . ,m, define a set of slightly modified p-values

p(j)
`

=

P
n

i=1 1{Vi < bVn+`}+ 1{Vn+j < bVn+`}

n+ 1
, 8 ` 6= j.

These p-values are only used in our analysis (our method cannot use them since they
cannot be computed from the observations). Also define R(a1, . . . , am) ✓ {1, . . . ,m} as the
rejection (indices) set obtained by the BH procedure, from p-values taking on the values
a1, . . . , am.

Recall that the output of Algorithm 1 is R = R(p1, . . . , pm). In the sequel, we will
compare R to

R(p(j)1 , . . . , p(j)
j�1, p

⇤
j , p

(j)
j+1, . . . , p

(j)
m )
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on the event {Yn+j  cj , j 2 R}. First, on this event, since V is monotone, we have
Vn+j = V (Xn+j , Yn+j)  V (Xn+j , cj), whence p⇤

j
 pj . For the remaining p-values, since

the scores have no ties, we consider two cases:

(i) If bVn+` > bVn+j , then bVn+` > Vn+j since bVn+j > Vn+j . This means

p(j)
`

=
1 +

P
n

i=1 1{Vi < bVn+`}

n+ 1
= p`.

(ii) If bVn+` < bVn+j , then p`  pj . Since j 2 R, the BH procedure implies ` 2 R. By
definition, we have

p(j)
`


1 +

P
n

j=1 1{Vi < bVn+`}

n+ 1


1 +
P

n

j=1 1{Vi < bVn+j}

n+ 1
= pj .

To summarize, suppose we are to replace pj by p⇤
j
and p` by p(j)

`
for all ` 6= j. Then on the

event {Yn+j  cj , j 2 R}, such a replacement does not change any of those p` � pj ; also,
all those p`  pj including pj itself (they are rejected in R) are still no greater than pj after
the replacement. Thus, by the step-up nature of the BH procedure, such a replacement
does not change the rejection set, meaning that

R = R(p(j)1 , . . . , p(j)
j�1, pj , p

(j)
j+1, . . . , p

(j)
m )

= R(p(j)1 , . . . , p(j)
j�1, p

⇤
j , p

(j)
j+1, . . . , p

(j)
m ) =: R⇤

j

on the event {Yn+j  cj , j 2 R}. As in the proof of Theorem 3, a leave-one-out analysis of
the FDR then implies

FDR = E
Pm

j=1 1{Yn+j  cj}Rj

1 _
P

m

j=1Rj

�

=
mX

j=1

mX

k=1

1

k
E
⇥
1{|R| = k}1{Yn+j  cj}1{pj  qk/m, j 2 R}

⇤



mX

j=1

mX

k=1

1

k
E
⇥
1{|R⇤

j | = k}1{Yn+j  cj}1{p
⇤
j  qk/m}

⇤



mX

j=1

mX

k=1

1

k
E
⇥
1{|R⇤

j | = k}1{p⇤j  qk/m}
⇤

=
mX

j=1

mX

k=1

1

k
E
⇥
1{|R⇤

j | = k}1{p⇤j 2 R
⇤
j}
⇤
;

the second and the last lines use the property of the BH procedure, whereas the third uses
the facts stated just above. By the step-up nature of the BH procedure, we know that on
the event {p⇤

j
2 R

⇤
j
}, sending p⇤

j
to zero does not change the rejection set, i.e., we have

R
⇤
j = R(p(j)1 , . . . , p(j)

j�1, 0, p
(j)
j+1, . . . , p

(j)
m ) =: R⇤

j!0.
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Thus

FDR 

mX

j=1

mX

k=1

1

k
E
⇥
1{|R⇤

j | = k}1{p⇤j 2 R
⇤
j!0}

⇤
=

mX

j=1

E

1{p⇤

j
 q|R⇤

j!0|/m}

1 _ |R
⇤
j!0|

�
.

Note that by definition, {p(j)
`

}` 6=j is invariant after permuting {Vi}
n
i=1 [ {Vn+j}. Since

{Vi}
n
i=1 [ {Vn+j} are exchangeable conditional on {bVn+`}`6=j , we know that the distri-

bution of {p(j)
`

} 6̀=j is independent of {Vi}
n

i=1 [ {Vn+j} conditional on the unordered set

[V1, . . . , Vn, Vn+j ]. Also note that R⇤
j!0 only depends on {p(`)

j
}`6=j , and p⇤

j
only depends on

{Vi}
n
i=1[{Vn+j}. This implies that R⇤

j!0 is independent of p
⇤
j
conditional on the unordered

set [V1, . . . , Vn, Vn+j ]. The tower property yields

E

1{p⇤

j
 q|R⇤

j!0|/m}

1 _ |R
⇤
j!0|

�
= E

"
E

1{p⇤

j
 q|R⇤

j!0|/m}

1 _ |R
⇤
j!0|

���� [V1, . . . , Vn, Vn+j ]

�#
.

In addition, since the variables {Vi}
n

i=1 [ {Vn+j} are conditionally exchangeable, they are
also marginally exchangeable. Thus, for any random variable t 2 R that is measurable with
respect to the unordered set [V1, . . . , Vn, Vn+j ], we have

P
�
p⇤j  t

�� [V1, . . . , Vn, Vn+j ]
�
 t.

This gives

E

1{p⇤

j
 q|R⇤

j!0|/m}

1 _ |R
⇤
j!0|

���� [V1, . . . , Vn, Vn+j ]

�


q

m
.

Summing over j 2 {1, . . . ,m} concludes the proof.

B.4 Proof of Proposition 7

Proof [Proof of Proposition 7] We utilize an equivalent representation of the BH(q) proce-
dure, communicated in Storey et al. (2004): the rejection set is R = {j : pj  b⌧}, where

b⌧ = sup

⇢
t 2 [0, 1] :

mtP
m

j=1 1{pj  t}
 q

�
. (13)

To clarify the dependence on the calibration data, we denote the p-values as pj = bFn(V 0
j
, Uj),

where for simplicity we denote V 0
j
= bVn+j = V (Xn+j , 0), and define

bFn(v, u) =

P
n

i=1 1{Vi < v}+ (1 +
P

n

i=1 1{Vi = v}) · u

n+ 1

for any (v, u) 2 R⇥ [0, 1]. We know that {(V 0
j
, Uj) : 1  j  m} are i.i.d., and independent

of Dcalib. We first define

F (v, u) = P
�
V (X,Y ) < v) + P

�
V (X,Y ) = v

�
· u.

34



Selection by Prediction with Conformal p-values

Then by the uniform law of large numbers, we have

sup
v2R,u2[0,1]

�� bFn(v, u)� F (v, u)
�� a.s.
! 0, as n ! 1. (14)

We then repeatly employ the (uniform) strong law of large numbers to show the asymp-
totic behavior of the testing procedure. Based on (14), we show the uniform convergence
of the criterion in (13).

Lemma 11 With the same setup as in the proof of Proposition 7, suppose supx2X w(x) 
M for some constant M > 0. Then

sup
t2[0,1]

����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  t}� P

�
F (V 0

j , Uj)  t
�����

a.s.
! 0,

as m,n ! 1, where P is taken with respect to V 0
j
= V (Xn+j , 0) and an independent Uj ⇠

Unif[0, 1].

Proof [Proof of Lemma 11] Let 0 = t0 < t1 < · · · < tK = 1 be a partition of [0, 1]. Then
for each t 2 [0, 1], there exists some k such that tk  t < tk+1, whence

1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk+1} (15)


1

m

mX

j=1

1{ bFn(V
0
j , Uj)  t}�

1

m

mX

j=1

1{F (V 0
j , Uj)  t}


1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk+1}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk}.



����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk+1}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk}

����



����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk+1}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk+1}

����

+

����
1

m

mX

j=1

1{F (V 0
j , Uj)  tk+1}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk}

����. (16)

For any fixed � > 0, we have

����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk+1}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk+1}

����


1

m

mX

j=1

⇣
1{ bFn(V

0
j , Uj)  tk+1, F (V 0

j , Uj) > tk+1}

+ 1{ bFn(V
0
j , Uj) > tk+1, F (V 0

j , Uj)  tk+1}

⌘
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 1
�
sup
j

�� bFn(V
0
j , Uj)� F (V 0

j , Uj)
�� � �

 

+
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk+1, tk+1 + � � F (V 0

j , Uj) > tk+1}

+
1

m

mX

j=1

1{ bFn(V
0
j , Uj) > tk+1, tk+1 � � < F (V 0

j , Uj)  tk+1}

 1
�
sup
j

�� bFn(V
0
j , Uj)� F (V 0

j , Uj)
�� � �

 
+

1

m

mX

j=1

1{tk+1 � �  F (V 0
j , Uj)  tk+1 + �}.

Then (14) implies lim supn!1 1
�
supj

�� bFn(V 0
j
, Uj) � F (V 0

j
, Uj)

�� � �
 

= 0 almost surely.
Combinining with the decomposition (16), we have

lim sup
n!1

����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk+1}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk}

����


1

m

mX

j=1

1{tk+1 � �  F (V 0
j , Uj)  tk+1 + �}+

1

m

mX

j=1

1{tk < F (V 0
j , Uj)  tk+1}

almost surely. Again invoking the (uniform) law of large numbers for i.i.d. random variables
F (V 0

j
, Uj),

lim sup
m!1

sup
k

����
1

m

mX

j=1

1{tk+1 � �  F (V 0
j , Uj)  tk+1 + �}� P

�
tk+1 � �  F (V 0

j , Uj)  tk+1 + �
�

+
1

m

mX

j=1

1{tk < F (V 0
j , Uj)  tk+1}� P

�
tk < F (V 0

j , Uj)  tk+1

����� = 0

with probability one. We thus have

lim sup
m,n!1

sup
k

����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk+1}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk}

����

 sup
k

���P
�
tk+1 � �  F (V 0

j , Uj)  tk+1 + �
�
+ P

�
tk < F (V 0

j , Uj)  tk+1

���� (17)

for any partition {tk} and � > 0. On the other hand, we note that since Uj ⇠ Unif[0,1] is
independent of the observations, F (V 0

j
, Uj) are i.i.d. with continuous distributions. Letting

� ! 0 and {tk} be fine enough sends the supremum in (17) to zero. With similar arguments,
we can show a lower bound for (15) that leads to

lim sup
m,n!1

sup
k

����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  tk}�

1

m

mX

j=1

1{F (V 0
j , Uj)  tk+1}

���� = 0

almost surely. Combining the above two results, we then have

sup
t2[0,1]

����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  t}�

1

m

mX

j=1

1{F (V 0
j , Uj)  t}

����
a.s.
! 0. (18)
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Invoking the uniform strong law of large numbers, we have

sup
t2[0,1]

����
1

m

mX

j=1

1{F (V 0
j , Uj)  t}� P

�
F (V 0

j , Uj)  t
�����

a.s.
! 0,

hence by the triangular inequality we complete the proof of Lemma 11.

With similar arguments as in the proof of Lemma 11, we can also show that as n ! 1,

sup
t2[0,1]

����
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  t, j 2 H0}� P

�
F (V 0

j , Uj)  t, Y (1)  Y (0)
�����

a.s.
! 0. (19)

Suppose there exists some t0 2 (0, 1] such that
P(F (V 0

j ,Uj)t
0)

t0 > 1
q
. We then define

t⇤ = sup

⇢
t 2 [0, 1] :

P
�
F (V 0

j
, Uj)  t

�

t
�

1

q

�
= sup

�
t 2 [0, 1] : G1(t)  q

 
,

where G1(t) = t/P(F (V 0
j
, Uj)  t). It is well-defined and t⇤ � t0. Fix any � 2 (0, t0). By

Lemma 11,

sup
t2[�,1]

����

P
m

j=1 1{F (V 0
j
, Uj)  t}

mt
�

P(F (V 0
j
, Uj)  t)

t

����
a.s.
! 0. (20)

In particular,
Pm

j=1 1{F (V 0
j ,Uj)t

0}
mt0

a.s.
!

P(F (V 0
j ,Uj)t

0)

t0 > 1
q
, hence b⌧ � t0 � � eventually. Fur-

thermore, since F (V 0
j
, Uj) admits a continuous distribution, the function t 7! P

�
F (V 0

j
, Uj) 

t
�
is continuous in t 2 [0, 1]. Under the assumption that for any ✏ > 0, there exists some

|t� t⇤|  ✏ such that
P(F (V 0

j ,Uj)t)

t
> 1/q, the uniform convergence in (20) implies b⌧ a.s.

! t⇤.
Let � 2 (0, t⇤) be any fixed value such that P(F (V 0

j
, Uj)  �) > 2✏ for some constant

✏ > 0. Then we know inft2[�,1] P{F (V (X,Y (0)), U)  t} � ✏, and by Lemma 11,

lim inf
m!1

inf
t2[�,1]

⇢
1

m

mX

j=1

1{ bFn(V
0
j , Uj)  t}

�
� ✏

almost surely. Combining this lower boundedness property with the uniform convergence
results in Lemma 11, equation (18), and (19), we know that

sup
t2[�,1]

�����

P
m

j=1 1{
bFn(V 0

j
, Uj)  t, j 2 H0}

1 _
P

m

j=1 1{
bFn(V 0

j
, Uj)  t}

�
P{F (V (X,Y (0)), U)  t, Y (1)  Y (0)}

P{F (V (X,Y (0)), U)  t}

�����
a.s.
! 0.

Since b⌧ a.s.
! t⇤ and the distribution functions are continuous, the asymptotic FDR is

lim
m,n!1

FDR = lim
m,n!1

E
"P

m

j=1 1{
bFn(V 0

j
, Uj)  b⌧ , Yn+j  0}

1 _
P

m

j=1 1{
bFn(V 0

j
, Uj)  b⌧}

#
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= E
"

lim
m,n!1

P
m

j=1 1{
bFn(V 0

j
, Uj)  b⌧ , Yn+j  0}

1 _
P

m

j=1 1{
bFn(V 0

j
, Uj)  b⌧}

#

=
P{F (V (X, 0), U)  t⇤, Y  0}

P{F (V (X, 0), U)  t⇤}
,

where the second line follows from the Dominated Convergence Theorem. With similar
arguments, we can show that the asymptotic power of the procedure is

lim
m,n!1

Power = lim
m,n!1

E
"P

m

j=1 1{
bFn(V 0

j
, Uj)  b⌧ , Yn+j > 0}

1 _
P

m

j=1 1{Yn+j > 0}

#

=
P{F (V (X, 0), U)  t⇤, Y > 0}

P{Y > 0}
.

Therefore, we complete the proof of Proposition 7.

B.5 Proof of Proposition 8

Proof [Proof of Proposition 8] We show that the FDR conditional on all signs of the data
is controlled, i.e.,

E
"P

m

j=1 1{Yn+j  0, j 2 R}

1 _
P

m

j=1Rj

����1{Yi  0} : i 2 D
�
calib [Dtest

#
 q.

Following the same arguments as in the proof of Theorem 3, it su�ces to show

mX

k=1

1

k
E
⇥
1{|Rj!⇤| = k}1{p⇤j  qk/m}1{Yn+j  0}

��1{Yi  0} : i 2 D
�
calib [Dtest

⇤


q

m
,

where Rj!⇤ is the rejection set obtained by changing pj to its oracle counterpart

p⇤j =

P
i2D�

calib
1{Vi < Vn+j}+ (1 +

P
i2D�

calib
1{Vi = Vn+j}) · Uj

n+ 1
.

Recall that we define Zi = (Xi, Yi) for 1  i  n+m and eZn+j = (Xn+j , cj) = (Xn+j , 0) for

j = 1, . . . ,m. Conditional on all signs, for any fixed j with Yn+j  0, {Zi}
n
i=1[{ eZn+`}`6=j [

{Zn+j} are mutually independent, and {Zi : i = 1, . . . , n, n+ j} are i.i.d. The desired result
thus follows from the PRDS of conformal p-values, or equivalently the conditions in Theo-
rem 3.

Appendix C. Additional details and results

C.1 Detailed setup for the data illustration in Section 1.1

We use the same dataset, same data splitting scheme, and the same machine learning model
bµ(·) as in Section 4.2.1. That is, we repeat the procedure independently for N = 100 times;
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in each time, we randomly split the whole dataset into training Dtrain, calibration Dcalib, and
test data Dtest with ratio 6: 2 : 2 in size. The model bµ(·) is trained on Dtrain; Dcalib is used to
construct conformal prediction sets; the prediction sets on Dtest are used to evaluate FDP,
miscoverage rate, and proportion of bC1�↵(X) = {1}. These quantities are then averaged
over N = 100 runs to estimate the FDR, marginal miscoverage, and average proportion of
bC1�↵(X) = {1}. In constructing conformal prediction sets, we set V (x, y) = y � bµ(x) for
all three methods. The split conformal prediction set with (1� ↵) marginal coverage is

bC1�↵(x) = {y 2 {0, 1} : V (x, y) � b⌘},

where b⌘ is the 1� (1�↵)(1+1/ncalib)-th empirical quantile of {V (Xi, Yi) : i 2 Dcalib}. The
naive approach takes R = {j 2 Dtest : bC1�↵(Xj) = {1}}. Our approach is Algorithm 1.
Bonferroni correction sets R = {j 2 Dtest : pj  q/m}, where {pj} are the conformal
p-values constructed in our approach. When evaluating our approach and Bonferroni cor-
rection (i.e., producing the plot on the right panel), we randomly take a subset of m = 1000
test samples, such that conformal prediction at resolution q/m is still feasible.

C.2 Data generating processes

To better illustrate the data distributions, Figure 9 shows the scatterplots of data from our
eight settings.

Setting 5 Setting 6 Setting 7 Setting 8

Setting 1 Setting 2 Setting 3 Setting 4
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Figure 9: Scatter plots of i.i.d. samples {(Xi, Yi)}1000i=1 from the data generating processes in
our simulations. The x-axis is the conditional mean function µ(Xi); the y-axis is the actual
outcome Yi.

In particular, we vary the following two aspects such that the hardness of correctly
identifying those Y > 0 is not the same.

1. Continuity of the range of µ: settings 1 and 5 have disjoint ranges of µ(X ) for negative,
zero, and positive mean outcomes. Among the remainings with continuous ranges of
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µ, settings 2, 3, 4 have more samples with positive µ(x), and settings 6, 7, 8 have more
samples with negative µ(x). While directional selection seems to be easy in setting
1 and 5 (where a perfect selection would be to choose those µ(Xi) > 0), with large
noise level it may still be di↵cult to learn the true model. The hardness of prediction
in continuous-range settings also depends on the absolute scale of the mean functions.

2. Noise heterogeneity: in settings 1, 2, and 5, 6, we set ✏i ⇠ N(0,�2) with ho-
mogenous variance. Other continuous-range settings all have heterogenous noise
✏i |Xi ⇠ N(0,�(Xi)2) for some function �(·). To be specific, in settings 3, 4, 8,
the variance of noise increases with |µ(x)|, showing more di�culty in the direction of
interest. In setting 7, the noise is smaller for larger |µ(x)|. In general, the task would
be easier if the mean value is large and the noise variance is small for the direction of
interest.

The specific configurations of µ(x) and �(x) in all of our simulation settings are detailed
in Table 2 to reproduce the results in Section 3.

Setting µ(·) �(·) for ✏i |Xi = x ⇠ N(0,�(x)2)

1
4x11{x2 > 0} ·max{0.5, x3}

�2

+4x11{x2  0} ·min{x3,�0.5}

2 5(x1x2 + ex4�1) 2.25�2

3 5(x1x2 + ex4�1) � · (5.5� |µ(x)|)/2

4 5(x1x2 + ex4�1)
� · 0.25µ(x)21{|µ(x)| < 2}

+� · 0.5|µ(x)|1{|µ(x)| � 1}

5
x11{x2 > 0, x4 > 0.5} · (0.25 + x4)

�
+x11{x2  0, x4 < �0.5} · (x4 � 0.25)

6 2(x1x2 + x23 + ex4�1
� 1) 1.5�

7 2(x1x2 + x23 + ex4�1
� 1) � · (5.5� |µ(x)|)/2

8 2(x1x2 + x23 + ex4�1
� 1)

� · (0.25µ(x)21{|µ(x)| < 2}

+0.5|µ(x)|1{|µ(x)| � 1})

Table 2: Details of the eight data generating processes in the simulations of Section 3. The
parameter � corresponds to the noise strength on the x-axis in Figures 2 and 3.

C.3 Additional plots
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method BH_sub BH_res BH_clip Bonferroni
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Figure 10: Average size of rejection set for four procedures at FDR target q = 0.1 for various
data generating processes. Details of the plots are otherwise the same as Figure 2.
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