Federated Linear Bandits
with Finite Adversarial Actions

Li Fan Ruida Zhou
University of Virginia Texas A&M University
1f2byQ@virginia.edu ruida@tamu.edu

Chao Tian Cong Shen
Texas A&M University University of Virginia
chao.tian@tamu.edu cong@virginia.edu

Abstract

We study a federated linear bandits model, where M clients communicate with a
central server to solve a linear contextual bandits problem with finite adversarial
action sets that may be different across clients. To address the unique challenges
of adversarial finite action sets, we propose the FedSupLinUCB algorithm, which
extends the principles of SupLinUCB and OFUL algorithms in linear contextual
bandits. We prove that FedSupLinUCB achieves a total regret of 0(\/d7T), where T’
is the total number of arm pulls from all clients, and d is the ambient dimension of
the linear model. This matches the minimax lower bound and thus is order-optimal
(up to polylog terms). We study both asynchronous and synchronous cases and
show that the communication cost can be controlled as O(dM? log(d) log(T')) and

O(Vd3M?31log(d)), respectively. The FedSupLinUCB design is further extended

to two scenarios: (1) variance-adaptive, where a total regret of O(y/d ZZ;I o?)
can be achieved with o being the noise variance of round ¢; and (2) adversarial

corruption, where a total regret of O(v/dT + dC,,) can be achieved with C,, being
the total corruption budget. Experiment results corroborate the theoretical analysis
and demonstrate the effectiveness of FedSupLinUCB on both synthetic and real-
world datasets.

1 Introduction

In the canonical formulation of contextual bandits, a single player would repeatedly make arm-pulling
decisions based on contextual information with the goal of maximizing the long-term reward. With
the emerging federated learning paradigm (McMahan et al., 2017) where multiple clients and a
server jointly learn a global model with each client locally updating the model with its own data and
server only aggregating the local models periodically, researchers have started exploring contextual
bandits algorithms in such federated learning setting (Dubey and Pentland, 2020; Huang et al., 2021;
Li and Wang, 2022a,b). This federated contextual bandits framework broadens the applicability of
contextual bandits to practical scenarios such as recommender systems, clinical trials, and cognitive
radio. In these applications, although the goal is still to maximize the cumulative reward for the
overall system, decision-making and observations are naturally distributed at the participating clients.

Several intrinsic challenges arise with the federated contextual bandit formulation. One important
issue is that besides regret, we should also take into account the communication cost, which is
usually the system bottleneck. To reduce the communication cost while maintaining the same regret
guarantee, the clients should transmit the necessary information to the server only when the local

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



information has accumulated to the extent that it would affect the decision-making. Compared with
the centralized contextual bandits, which have a linearly growing communication cost, algorithms for
federated contextual bandits attempt to achieve a comparable regret with sub-linear communication
cost.

Second, most existing studies on federated contextual bandits focus on the synchronous commu-
nication scenario (Huang et al., 2021; Li and Wang, 2022b), in which all participating clients first
upload local information and then download updated global information from the server in each
communication round. This stringent communication requirement is often not met in practice. A
recent work of Li and Wang (2022a) studies the asynchronous federated linear bandit problem.
However, communications for different clients are not independent in their approach because the
upload from one client may trigger the server to perform downloads for all clients. To address this
issue, He et al. (2022a) proposes FedLinUCB, which enables independent synchronizations between
clients and the server.

Third, the majority of prior studies on federated linear bandits focused on the infinite-arm setting
(Li and Wang, 2022b,a; He et al., 2022a) (see Section 2 for a detailed literature review). From a
methodology point of view, these papers largely build on the OFUL principle (Abbasi-Yadkori et al.,
2011). One notable exception is Huang et al. (2021), which studies synchronous communication with
fixed contexts and proposes the Fed-PE algorithm based on the phased elimination G-optimal design
(Lattimore and Szepesvari, 2020). To the best of our knowledge, no prior result exists for federated
linear bandits with finite arms and time-evolving adversarial contexts, which is the focus of our work.

Table 1: Comparison of this paper with related works

System Action Algorithm Regret Communication
Single-player infinite arm OFUL (Abbasi-Yadkori et al., 2011) d\/TlogT N/A
Single-player finite fixed arm _ PE+ G—optimal} . O(\/dTlogT) N/A

(Lattimore and Szepesvari, 2020)

Single-player finite adversarial arm SupLinUCB (Chu et al., 2011) ()(\/dT log® T) N/A
Federated (Async) infinite arm FedLinUCB (He et al., 2022a) O(dvVTlogT) O(dM?1ogT)
Federated (Async) infinite arm Async-LinUCB (Li and Wang, 2022a) | O(dv/TlogT) O(dM?1logT)

Federated (Sync) infinite arm DisLinUCB (Wang et al., 2019) O(dVT1og?T) O(dM?3/?)
Federated (Sync) finite fixed arm Fed-PE (Huang et al., 2021) O(y/dT'logT) O(d’MK logT)
Federated (Async) | finite adversarial arm FedSupLinUCB (This work) O(\/ dT1og®T) | O(dM?1logdlogT)
Federated (Sync) | finite adversarial arm FedSupLinUCB (This work) O(VdT1og® T) | O(d3/2 M3/ 1og(d))

d: the dimension of the unknown parameter, M : the number of clients, K: the number of finite actions, 7": the total arm pulls from all clients.

Main contributions.

Our main contributions are summarized as follows.

* We develop a general federated bandits framework, termed FedSupLinUCB, for solving the problem
of federated linear contextual bandits with finite adversarial actions. FedSupLinUCB extends
SupLinUCB (Chu et al., 2011; Ruan et al., 2021) and OFUL (Abbasi-Yadkori et al., 2011), two
important principles in (single-player, centralized) linear bandits, to the federated bandits setting
with a carefully designed layered successive screening.

* We instantiate FedSupLinUCB with both asynchronous and synchronous client activities. For the
former setting, we propose Async-FedSupLinUCB where communication is triggered only when
the cumulative local information impacts the exploration uncertainty to a certain extent. We prove
that Async-FedSupLinUCB achieves O(v/dT) regret with O(dM? log dlogT) communication
cost, which not only reduces the regret by v/d compared with previous results on asynchronous
federated linear bandits with infinite arms, but also matches the minimax lower bound up to polylog
terms, indicating that Async-FedSupLinUCB achieves order-optimal regret.

* For synchronous communications, we propose Sync-FedSupLinUCB, which has a refined communi-
cation design where only certain layers are communicated, as opposed to the complete information.
Sync-FedSupLinUCB achieves order-optimal regret of O(\/ﬁ) with horizon-independent com-

munication cost O (v d3M3 log d). Compared with the best previous result (Huang et al., 2021)
which achieves the same order-optimal regret but only for fixed actions, we show that it is the finite
actions that fundamentally determines the regret behavior in the federated linear bandits setting.

* We further develop two extensions of FedSupLinUCB: (1) Variance-adaptive FedSupLinUCB, for
which a total regret of O(y/d Zil o2) is achieved, where o7 is the noise variance at round t. (2)



Adversarial corruption FedSupLinUCB, for which a total regret of O(\/ dT + dC,) is achieved,
where C}, is the total corruption budget.

2 Related Works

The linear bandit model, as a generalization of finite armed bandits with linear contextual information,
has been extensively studied. The setting of infinite arm sets solved by LinUCB was analyzed in
(Dani et al., 2008; Abbasi-Yadkori et al., 2011), which achieves regret O(d\/T) with appropriate
confidence width (Abbasi-Yadkori et al., 2011) and matches the lower bound (Dani et al., 2008) up
to logarithmic factors. In contrast, algorithms like SupLinRel (Auer, 2002) and SupLinUCB (Chu
etal., 2011) achieve O(\/ﬁ ) in the setting of finite time-varying adversarial arm sets under K < 24,
with a lower bound Q(+v/dT’) (Chu et al., 2011). The SupLinUCB algorithm was later optimized and
matches the lower bound up to iterated logarithmic factors in Li et al. (2019). As a special case of
the finite arm setting, if the arm set is time-invariant, an elimination-based algorithm (Lattimore and
Szepesvari, 2020) via G-optimal design can be applied to achieve similar optimal performance.

The federated linear bandits problems were studied under the settings of infinite arm set (Dubey
and Pentland, 2020; Li et al., 2020; Li and Wang, 2022a) and time-invariant finite arm set (Huang
et al., 2021), while the time-varying finite arm set setting has not been well explored. A finite
time-varying arm set has many meaningful practical applications such as recommendation system
(Li et al., 2010; Chu et al., 2011), and the distributed (federated) nature of the applications naturally
falls in the federated linear bandits problem with finite time-varying arms. The paper fills this gap by
generalizing the SupLinUCB algorithm to the federated setting.

We study both the asynchronous setting (Li and Wang, 2022a) (He et al., 2022a), where clients are
active on their own and full participation is not required, and the synchronous setting (Shi et al., 2021;
Dubey and Pentland, 2020), where all the clients make decisions at each round and the communication
round requires all the clients to upload new information to the server and download the updated
information. We design algorithms so as to reduce the communication cost while maintaining optimal
regret. Technically, the communication cost is associated with the algorithmic adaptivity, since less
adaptivity requires fewer updates and thus fewer communication rounds. The algorithmic adaptivity
of linear bandits algorithms was studied in the single-player setting (Han et al., 2020) (Ruan et al.,
2021). It was also considered in the federated setting (Wang et al., 2019; Huang et al., 2021; Salgia
and Zhao, 2023).

3 System Model and Preliminaries

3.1 Problem Formulation

We consider a federated linear contextual bandits model with K finite but possibly time-varying arms.
The model consists of M clients and one server in a star-shaped communication network. Clients
jointly solve a linear bandit problem by collecting local information and communicating with the
central server through the star-shaped network in a federated manner, with no direct communications
among clients. The only function of the server is to aggregate received client information and to send
back updated information to clients. It cannot directly play the bandits game.

Specifically, some clients I; C [M] are active at round ¢. Client ¢ € I; receives K arms (actions to
take) associated with contexts {x} ,}ae(x] C R? with ||z ,[|2 < 1. Here we adopt the oblivious
adversarial setting, where all contexts are chosen beforehand, and not dependent on previous game
observation. Client ¢ then pulls an arm a} € [K] based on the information collected locally as well
as previously communicated from the server. A reward r! , = Gngaé + € is revealed privately

i
t,af;
to client i, where § € R? is an unknown weight vector with |||l < 1 and ¢, is an independent
1-sub-Gaussian noise. At the end of round ¢, depending on the communication protocol, client ¢ may
exchange the collected local information with the server so that it can update the global information.

We aim to design algorithms to guide the clients’ decision-making and overall communication
behaviors. We analyze two patterns of client activity. 1) Synchronous: all M clients are active at
each round. 2) Asynchronous: one client is active at each round. For the latter case, we further
assume that client activity is independent of data and history. Denote by 7} the number of times client



1 is active. In the former case, T; = T},V1,j € [M], while in the latter case, T; may be different
among clients. We define T = Zf\il T; as the total number of arm pulls from all clients.

The performance is measured under two metrics — fotal regret and communication cost, which
concern the decision-making effectiveness and the communication efficiency respectively. Denote by
Pi ={t €[T]|i€ I} the set of time indices at which client i is active, with | P%| = T;. The total
regret is defined as

M M
=1

i=1

where a;" = arg maX, e[k 0Tz .. We define the communication cost as the total number of
communication rounds between clients and the server.

3.2 Preliminaries

Information encoding. In the linear bandits setting (federated or not), the information a client
acquires is usually encoded by the gram matrix and the action-reward vector. Specifically, when
the client has observed n action-reward pairs {(x¢,7¢)}?_;, the information is encoded by matrix
A, =>"1, xx] and vector b, = Y | riz¢. Denote by Encoder(-) this encoding function, i.e.,
Ay, by, <+ Encoder({xg, 1 7).

Communication criterion. Communication in our proposed framework is data-dependent, in the
same spirit as the “doubling trick” introduced in Abbasi-Yadkori et al. (2011) to reduce the compu-
tation complexity in single-player linear bandits. The key idea is that communication is triggered
only when the cumulative local information, represented by the determinant of the gram matrix A,
affects the exploration uncertainty to a great extent and hence the client needs to communicate with
the server. Detailed communication protocols will be presented in each algorithm design.

Synchronization procedure. Denote by Sync() a routine that n clients (client 1, . . ., client n) first
communicate their local gram matrices and action-reward vectors to the server, and the server then ag-
gregates the matrices (and vectors) into one gram matrix (and action-reward vector) and transmits them
back to the n clients. Specifically, each client i holds newly observed local information (A A%, Ab?),
which is the difference between the client’s current information (A?, b%) and the information after
the last synchronization. In other words, (AA?, Ab?) is the information that has not been commu-
nicated to the server. The server, after receiving the local information {(AA?, Ab*)}™ |, updates
the server-side information (A", b*") by A" «— A%eT 4 570 AAT b5 «— b% 4+ 31 | Ab
and sends them back to each of the n clients. Each client ¢ will then update the local information by
At Asem b < b*°". The procedure is formally presented in Algorithm 1.

Algorithm 1 Sync(s, server, client 1, . .. client n)

1: for:=1,2,...,ndo > Client-side local information upload
2: Client i sends the local new layer s information (A A%, Ab%) to the server

3: end for

4: Update server’s layer s information: > Server-side information aggregation and distribution

n 5 " .
ASET — AT 4 21:1 AAG, b b + zi:l Ab,

Send server information A5°", b3¢" back to all clients
fori=1,2,...,ndo A A

AL — AT DL b3, AAL 0, AbL 0 > Client ¢ updates the local information
end for

Z A

4 The FedSupLinUCB Framework

In this section, we present a general framework of federated bandits for linear bandits with finite obliv-
ious adversarial actions. Two instances (asynchronous and synchronous) of this general framework
will be discussed in subsequent sections.



Building block: SupLinUCB. As the name suggests, the proposed FedSupLinUCB framework
is built upon the principle of SupLinUCB (Chu et al., 2011; Ruan et al., 2021). The information
(A, b) is useful in the sense that the reward corresponding to an action = can be estimated within
confidence interval 70 + a|z| 4-1, where 6 = A~1b. It is shown in Abbasi-Yadkori et al. (2011)
that in linear bandits (even with an infinite number of actions) with ov = O(\/&), the true reward is
within the confidence interval with high probability. Moreover, if the rewards in the action-reward
vector b are mutually independent, « can be reduced to O(1). The former choice of « naturally
guarantees O(dv/T) regret. However, to achieve regret O(v/dT), it is critical to keep o = O(1).
This is fulfilled by the SupLinUCB algorithm (Chu et al., 2011) and then recently improved by Ruan
et al. (2021). The key intuition is to successively refine an action set that contains the optimal action,
where the estimation precision of sets is geometrically strengthened. Specifically, the algorithm
maintains (S + 1) layers of information pairs {(As, bs)}5_, and the rewards in the action-reward
vectors are mutually independent, except for layer 0. The confidence radius for each layer s is

we = 2’5d1'5/\/T.

Algorithm 2 S-LUCB

1: Initialization: S = [logd], Wo = d*° /T, Ws + 2~ °Wo, Vs € [1 : S].

2 ag =1+ /dIn(2M2T/5), a5 < 1+ /2In(2KMT Ind/5),Vs € [1: 5]

3: Input: Client i (with local information A%, b, AA?, Ab%), contexts set {xf ;,..., ] x}

40 Al AL+ AALDL DL+ ADL or Af |« AL bi < b for lazy update

5 98 A (Ai,s)ilb%,s’ TAz,s,a = 0;$i7a, wz,s,a A QSH‘I%,CL”(A?S)_l’ Vs € [O : SLVQ € [K]

6: s 0 Ag « {a € [K] | 7,4+ w)o, > maxaeer) (Pl oa — Whoa)t > Initial screening
7: repeat > Layered successive screening
8: if s = S then _

9: Choose action a; arbitrarily from Ag

10: else if w; , , < 7w, forall a € A, then
11: Asp1 {ae A | 7], , > maxgea, (f;s’a,) —2Ws}; s+ s+1
12: else _
13: aj < arg MaX{ae A, wi, >} Wi g q
14: endif
15: until action a; is found '
16: Take action a; and and receive reward r; .
17: AAL < AAL + $i7ai$il—li’ AL «— ADL + ri,aixi,ai > Update local information
18: Return layer index s

FedSupLinUCB. S-LUCB, presented in Algorithm 2, combines the principles of SupLinUCB and
OFUL (Abbasi-Yadkori et al., 2011) and is the core subroutine for FedSupLinUCB. We maintain
S = [log d] information layers, and the estimation accuracy starts from d'->//T of layer 0 and
halves as the layer index increases. Finally, it takes ©(log d) layers to reach the sufficient accuracy of

\/d/T and achieves the minimax-optimal regret.

When client 7 is active, the input parameters (A, b*) contain information received from the server at
the last communication round, and (A A?, Ab?) is the new local information collected between two
consecutive communication rounds. {z,... ,a:; x } is the set of contexts observed in this round.
Client % can estimate the unknown parameter 6 either with all available information or just making a
lazy update. This choice depends on the communication protocol and will be elaborated later. During
the decision-making process, client ¢ first makes arm elimination at layer 0 to help bootstrap the
accuracy parameters. Then, it goes into the layered successive screening in the same manner as
the SupLinUCB algorithm, where we sequentially eliminate suboptimal arms depending on their
empirical means and confidence widths. After taking action a! and receiving the corresponding
reward Ti,a;" , client i updates its local information set (A A%, Ab%) by aggregating the context into
layer s in which we take the action, before returning layer s.



S Asynchronous FedSupLinUCB

In the asynchronous setting, only one client is active in each round. Note that global synchronization
and coordination are not required, and all inactive clients are idle.

5.1 Algorithm

We first initialize the information for all clients and the server (gram matrix and action-reward vector)
in each layer s € [0 : S]. We assume only one client 7, is active at round ¢. It is without loss of
generality since if multiple clients are active, we can queue them up and activate them in turn. More
discussion of this equivalence can be found in He et al. (2022a); Li and Wang (2022a). The active
client chooses the action, receives a reward, updates local information matrices of layer s with a lazy
update according to S-LUCB, and decides whether communication with the server is needed by the
criterion in Line 7 of Algorithm 3. If communication is triggered, we synchronize client ¢; with the
server by Algorithm 1.

Algorithm 3 Async-FedSupLinUCB
1: Imitialization: T, C, S = [log d|

20 {AST I, 05" <~ 0] s€[0:S5]} > Server initialization
30 {AL I, AAL UL, AD. <+~ 0] s€[0:5],i € [M]} > Clients initialization
4: fort =1,2,--- ;T do 4 4 4

5: Client i; = i is active, and observes K contexts {z} 1, %} 5, "+, T} g }

6: § ¢ S-LUCB (client 4, {x} 1, } 5, - , 2} ;- }) with lazy update

7. 1f% > (1+ C) then

8: Sync(s, server, clients 7) for each s € [0:5]

9: end if

10: end for

5.2 Performance Analysis

Theorem 5.1. For any 0 < § < 1, if we run Algorithm 3 with C = 1/M?, then with probability
at least 1 — 0, the regret of the algorithm is bounded as Ry < O (\/dzi]\fl Ti> =0 (\/ dT).

Moreover; the corresponding communication cost is bounded by O(dM? log dlog T).

Remark 1. The minimax lower bound of the expected regret for linear contextual bandits with
K adversarial actions is Q(v/dT), given in Chu et al. (2011). Theorem 5.1 indicates that Async-
FedSupLinUCB achieves order-optimal regret (up to polylog term) with O(dM? log d logT') commu-
nication cost. To the best of our knowledge, this is the first algorithm that achieves the (near) optimal
regret in federated linear bandits with finite adversarial actions.

Remark 2. Without any communication, each client would execute SupLinUCB (Chu et al., 2011) for
T; rounds locally, and each client can achieve regret of order O(+/dT;). Therefore, the total regret of

M clients is upper bound by Ry < Zi\il VdT; polylog(T) < \/dM Zi\il T; polylog(T), where
the last inequality becomes equality when T; = T}, Vi,j € [M]. Compared with conducting M
independent SupLinUCB algorithms locally, Async-FedSupLinUCB yields an average per-client gain
of 1/v/ M, demonstrating that communications in the federated system can speed up local linear
bandits decision-making at clients.

Remark 3. Most previous federated linear bandits consider the infinite action setting, based on the
LinUCB principle (Abbasi-Yadkori et al., 2011). Async-FedSupLinUCB considers a finite adversarial
action setting and has a v/d reduction on the regret bound. Fed-PE proposed in Huang et al. (2021)
also considers the finite action setting. However, their action sets are fixed. We generalize their
formulation and take into account a more challenging scenario, where the finite action set can be
chosen adversarially. The regret order is the same as Fed-PE (ignoring the ploylog term), indicating



that it is the finite actions as opposed to fixed actions that fundamentally leads to the \/d regret
improvement in the federated linear bandits setting.

Communication cost analysis of FedSupLinUCB. We sketch the proof for the communication cost
bound in Theorem 5.1 in the following, while deferring the detailed proofs for the regret and the
communication cost to Appendix C.

We first study the communication cost triggered by some layer s. Denote by A} the gram matrix
in the server aggregated by the gram matrices uploaded by all clients up to round ¢. Define 7T;, ; =
min{t € [T]|det(A;%) > 2"}, for each n > 0. We then divide rounds into epochs {7}, s, Tr,s +
1,--- ,min(Tp41,s — 1,T)} for each n > 0. The number of communications triggered by layer
s within any epoch can be upper bounded by 2(M + 1/C) (see Lemma C.1), and the number of
non-empty epochs is at most dlog(1 + 7'/d) by Lemma A.1. Since there are S = [log d] layers and
synchronization among all layers is performed once communication is triggered by any layer (Line 8
in Algorithm 3), the total communication cost is thus upper-bounded by O(d(M + 1/C)logdlogT).
Plugging C' = 1/M? proves the result.

We note that although choosing a larger C' would trigger fewer communications, the final choice of
C=1/M 2 takes into consideration both the regret and the communication cost, i.e., to achieve a
small communication cost while maintaining an order-optimal regret.

6 Synchronous FedSupLinUCB

In the synchronous setting, all clients are active and make decisions at each round. Though it can
be viewed as a special case of the asynchronous scenario (clients are active and pulling arms in
a round-robin manner), the information update is broadcast to all clients. In other words, the key
difference from the asynchronous scenario besides that all clients are active at each round is that when
a client meets the communication criterion, all clients will upload local information to the server and
download the updated matrices. This leads to a higher communication cost per communication round,
but in this synchronous scenario, knowing all clients are participating allows the communicated
information to be well utilized by other clients. This is in sharp contrast to the asynchronous setting,
where if many other clients are active in the current round, uploading local information to the clients
seems unworthy. To mitigate the total communication cost, we use a more refined communication
criterion to enable time-independent communication cost.

6.1 The Algorithm

The Sync-FedSupLinUCB algorithm allows each client to make decisions by the S-LUCB subroutine.
Note that the decision-making is based on all available local information instead of the lazy update
in the Async-FedSupLinUCB algorithm. The communication criterion involves the count of rounds
since the last communication, which forces the communication to prevent the local data from being
obsolete. Some layers may trigger the communication criterion either because the local client has
gathered enough new data or due to having no communication with the server for too long. We
categorize these layers in the CommLayers and synchronize all the clients with the server.

6.2 Performance Analysis

Theorem 6.1. Forany 0 < § < 1, if we run Algorithm 4 with D = T°d12°]gWTC, with probability at least

1 — 6, the regret of the algorithm is bounded as Ry < O(\/dMT,) where T, is the total per-client
arm pulls. Moreover, the corresponding communication cost is bounded by O (v d? M3 log d).

Remark 4. Theorem 6.1 demonstrates Sync-FedSupLinUCB also achieves the minimax regret lower
bound while the communication cost is independent of T,.. It is particularly beneficial for large
T.. Especially, the number of total rounds in the synchronous scenario is 7' = MT,, while in the

. M
asynchronous setting, we have 7' = 3 _." , T; rounds.

Communication cost analysis of Sync-FedSupLinUCB. We sketch the proof for the communi-
cation cost bound in Theorem 6.1 below, while deferring the detailed proofs for the regret and the
communication cost to Appendix D.



Algorithm 4 Sync-FedSupLinUCB

1: Imitialization: T, D, S = [logd], tj,,, < 0,Vs € [0 : S], CommLayers < 0.

20 {AS I, 0" <~ 0] s€[0:S5]} > Server initialization
3 {AL I, AAL DL, AV «+— 0| se[0:5],i € [M]} > Clients initialization
4: fort=1,2,--- T, do

5 fori=1,2,--- , M do

6: Client 7, = i is active, and observes K contexts {xf |, 2} o, - , %} g }

7 5 <—S-LUCB (client i, {a} , 2} 5, - 75”%,1(})

8: if (t — 5. ,) log %7?)“ > D then

9: Add s to CommLaye;s

10: end if

11: end for

12: end for

13: for s € CommLayers do

14: Sync(s, server, clients [M]); t7. ., < t, CommLayers <— ()

15: end for

We call the chunk of consecutive rounds without communicating information in layer s (except the

last round) an epoch. Information in layer s is collected locally by each client and synchronized
at the end of the epoch, following which the next epoch starts. Denoted by Agfé the synchronized

gram matrix at the end of the p-th epoch. For any value § > 0, there are at most [%} epochs

that contain more than 3 rounds by pigeonhole principle. If the p-th epoch contains less than

all
3 rounds, then log< det (A7)

—~m2/ ) 5 D based on the communication criterion and the fact that
dCt(AZ,l, s) B

all
2;;1 log % < Rs = O(dlog(T,)) (see Equation (6)). The number of epochs containing
rounds fewer than £ is at most O( [DR—/SB] ). Noting that D = %‘I&TC), the total number of epochs

for layer s is at most [ ] + [E:87 = O(y/Lefe) = O(Vd3 M) by taking 8 = LL=. The total
communication cost is thus upper bounded by O(SM+vd* M) = O(log(d)vd3M3).

7 Extensions of FedSupLinUCB

In this section, we extend the FedSupLinUCB algorithm to address two distinct settings in federated
systems: scenarios characterized by heterogeneous variances, and those affected by adversarial
corruptions.

7.1 Federated Heteroscedastic Linear Bandits

We have so far focused on the federated linear bandits with 1-sub-Gaussian reward noises. In this
section, we adapt Async-FedSupLinUCB to the case where the reward noises have heterogeneous
variances, which extends the heteroscedastic linear bandits as studied in Zhou et al. (2021); Zhou
and Gu (2022) to the asynchronous federated setting, where one client is active at a time. Specifically,
the reward noises {¢; }+c[r) are independent with |¢;| < R,E[e;] = 0 and E[¢7] < o7, where oy is
known to the active client.

We propose a variance-adaptive Asyc-FedSupLinUCB and analyze its regret and the communication
cost in the theorem below, with the algorithm and the proof details in Appendix E due to space
constraint. The regret is significantly less than that of the Async-FedSupLinUCB when the variances
{o?} are small.

Theorem 7.1. Forany 0 < § < 1, if we run the variance-adaptive Async-FedSupLinUCB algorithm
in Appendix E with C = 1/M?, with probability at least 1 — 0, the regret is bounded as Ry <

O(y/d Zle 02), and the communication cost is bounded by O(dM?log® T).



7.2 Federated Linear Bandits with Corruption

We further explore asynchronous federated linear bandits with adversarial corruptions, where an
adversary inserts a corruption ¢, to the reward r, of the active client at round ¢. The total corruption
is bounded by Zle le:] < Cp. We incorporate the idea of linear bandits with adversarial corruption
studied in He et al. (2022b) to the proposed FedSupLinUCB framework and propose the Robust
Async-FedSupLinUCB algorithm, with details in Appendix F. Robust Async-FedSupLinUCB can
achieve the optimal minimax regret (matching the lower bound in He et al. (2022b)) while incurring
a low communication cost.

Theorem 7.2. For any 0 < § < 1, if we run the Robust Async-FedSupLinUCB algorithm in
Appendix F with C = 1/M?, with probability at least 1 — 6, the regret is bounded as Ry <
O(VdT + dC,), and the communication cost is bounded by O(dM?log dlogT).

8 Experiments

We have experimentally evaluated FedSupLinUCB in the asynchronous and synchronous settings on
both synthetic and real-world datasets. We report the results in this section.

8.1 Experiment Results Using Synthetic Dataset

We simulate the federated linear bandits environment specified in Section 3. With 7' = 40000,
M = 20, d = 25, A = 20, contexts are uniformly randomly sampled from an /5 unit sphere, and
reward 1y o = 9Txt7a + €;, where €; is Gaussian distributed with zero mean and variance o = 0.01.
It should be noted that while M clients participate in each round in the synchronous scenario, only
one client is active in the asynchronous case. In the plots, the z-axis coordinate denotes the number
of arm pulls, which flattens the actions in the synchronous setting.

.....
nnnnn

G s000 10000 15000 20000 25000 0 250 %00 750 1000 1250 1500 1750 2000
Number of arm puling Number of arm pulin o

(a) Regret: arrival patterns.  (b) Communication: arrival pat-  (C) Regret: client numbers.  (d) Regret vs communications.
terns.

Figure 1: Experimental results with the synthetic dataset.

Arrival pattern. We first investigate the impact of different arrival patterns (the sequence
of activating clients): (1) Random, which randomly allocates T/M arm pulls in [T] for
each client. (2) Round-robin, ie. [1,2,3,---,M,1,2,3,---M,---]. (3) Click-leave, i.c.
[1,1,---,2,2,--+,--- .M, M,---]. The regret and the communication cost of these three arrival
patterns in the synthetic experiment are reported in Figure 1(a) and Figure 1(b), respectively. We
note that although the upper bound analysis in our proof is for the worst-case instance, the numerical
results suggest that different arrival patterns result in diverse regret performances. Round-robin and
random patterns are more challenging since both local bandit learning and each client’s policy updates
happen relatively slowly. The click-leave pattern, which is the closest to the centralized setting,
achieves the best regret. In addition, compared with Async-FedSupLinUCB , Sync-FedSupLinUCB
achieves better cumulative regrets with a higher communication cost.

Amount of clients.  The per-client cumulative regret as a function of 7, = T/M with dif-
ferent amounts of clients is plotted in Figure 1(c). In comparison to the baseline SupLinUCB,
FedSupLinUCB algorithms achieve better regret via communication between clients and the server.
We can see from the experiment that FedSupLinUCB significantly reduces the per-client regret com-
pared with SupLinUCB, and achieves a better regret as )M increases in both asynchronous and
synchronous settings.



Trade-off between regrets and communications. We evaluate the tradeoff between communication
and regret by running FedSupLinUCB with different communication threshold values C' and D in
asynchronous and synchronous settings respectively. The results are reported in Figure 1(d), where
each scattered dot represents the communication cost and the cumulative regret that FedSupLinUCB
has achieved with a given threshold value at round 7" = 40000. We see a clear tradeoff between the
regret and the communication. More importantly, Sync-FedSupLinUCB achieves a better tradeoff
than Async-FedSupLinUCB.

8.2 Experiment Results Using Real-world Dataset

We further investigate how efficiently the federated linear bandits algorithm performs in a more
realistic and difficult environment. We have carried out experiments utilizing the real-world recom-
mendation dataset MovieLens 20M (Harper and Konstan, 2015). Following the steps in Li and Wang
(2022b), we first filter the data by maintaining users with above 2500 movie ratings and treating
rating points greater than 3 as positive, ending up with N = 37 users and 121934 total movie rating
interactions. Then, we follow the process described in Cesa-Bianchi et al. (2013) to generate the
contexts set, using the TF-IDF feature d = 25 and the arm set K = 20. We plot the per-client
normalized rewards of the FedSupLinUCB algorithm with different client numbers M in synchronous
and asynchronous cases respectively. Note that the per-client cumulative rewards here are normalized
by a random strategy. From Figure 2(a) and Figure 2(b), we can see that in both synchronous and
asynchronous experiments, FedSupLinUCB has better rewards than SupLinUCB, and the advantage
becomes more significant as the number of users increases.

Normalized reward
Normalized reward

—— SupLinUCB

5 clients async
—— 10 clients async
—— 20 clients async

—— SuplLinUCB
B 5 clients sync
—— 10 clients sync
—— 20 clients sync

0 1000 2000 3000

Number of arm pulling

4000 5000

(a) Async-FedSupLinUCB.

2000 3000
Number of arm pulling

1000

4000 5000

(b) Sync-FedSupLinUCB.

Figure 2: Experimental results with the real-world MovieLens-20M dataset.

9 Conclusion

‘We studied federated linear bandits with finite adversarial actions, a model that has not been investi-
gated before. We proposed FedSupLinUCB that extends the SupLinUCB and OFUL principles to
the federated setting in both asynchronous and synchronous scenarios, and analyzed their regret and
communication cost, respectively. The theoretical results proved that FedSupLinUCB is capable of
approaching the minimal regret lower bound (up to polylog terms) while only incurring sublinear
communication costs, suggesting that it is the finite actions that fundamentally determines the regret
behavior in the federated linear bandits setting. Furthermore, we examined the extensions of the
algorithm design to the variance-adaptive and adversarial corruption scenarios.

Acknowledgments and Disclosure of Funding

The work of LF and CS was supported in part by the U.S. National Science Foundation (NSF) under
grants 2143559, 2029978, and 2132700.

10



References

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. (2011). Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397-422.

Cesa-Bianchi, N., Gentile, C., and Zappella, G. (2013). A gang of bandits. Advances in neural
information processing systems, 26.

Chu, W,, Li, L., Reyzin, L., and Schapire, R. (2011). Contextual bandits with linear payoff functions.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 208-214. JMLR Workshop and Conference Proceedings.

Dani, V., Hayes, T. P., and Kakade, S. M. (2008). Stochastic linear optimization under bandit feedback.
21st Annual Conference on Learning Theory, pages 355-366.

Dubey, A. and Pentland, A. (2020). Differentially-private federated linear bandits. Advances in
Neural Information Processing Systems, 33:6003-6014.

Han, Y., Zhou, Z., Zhou, Z., Blanchet, J., Glynn, P. W, and Ye, Y. (2020). Sequential batch learning
in finite-action linear contextual bandits. arXiv preprint arXiv:2004.06321.

Harper, F. M. and Konstan, J. A. (2015). The MovieLens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4):1-19.

He, J., Wang, T., Min, Y., and Gu, Q. (2022a). A simple and provably efficient algorithm for
asynchronous federated contextual linear bandits. arXiv preprint arXiv:2207.03106.

He, J., Zhou, D., Zhang, T., and Gu, Q. (2022b). Nearly optimal algorithms for linear contextual
bandits with adversarial corruptions. Advances in neural information processing systems.

Huang, R., Wu, W., Yang, J., and Shen, C. (2021). Federated linear contextual bandits. Advances in
Neural Information Processing Systems, 34:27057-27068.

Lattimore, T. and Szepesvdri, C. (2020). Bandit algorithms. Cambridge University Press.

Li, C. and Wang, H. (2022a). Asynchronous upper confidence bound algorithms for federated linear
bandits. In International Conference on Artificial Intelligence and Statistics, pages 6529-6553.
PMLR.

Li, C. and Wang, H. (2022b). Communication efficient federated learning for generalized linear
bandits. arXiv preprint arXiv:2202.01087.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide
web, pages 661-670.

Li, T., Song, L., and Fragouli, C. (2020). Federated recommendation system via differential privacy.
In 2020 IEEE International Symposium on Information Theory (ISIT), pages 2592-2597. IEEE.

Li, Y., Wang, Y., and Zhou, Y. (2019). Nearly minimax-optimal regret for linearly parameterized
bandits. In Conference on Learning Theory, pages 2173-2174. PMLR.

McMabhan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Proc. AISTATS, pages 1273-1282,
Fort Lauderdale, FL, USA.

Ruan, Y., Yang, J., and Zhou, Y. (2021). Linear bandits with limited adaptivity and learning
distributional optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 74-87.

Salgia, S. and Zhao, Q. (2023). Distributed linear bandits under communication constraints. In
International Conference on Machine Learning, pages 29845-29875. PMLR.

11



Shi, C., Shen, C., and Yang, J. (2021). Federated multi-armed bandits with personalization. In
International Conference on Artificial Intelligence and Statistics, pages 2917-2925. PMLR.

Wang, Y., Hu, J., Chen, X., and Wang, L. (2019). Distributed bandit learning: Near-optimal regret
with efficient communication. In International Conference on Learning Representations.

Zhou, D. and Gu, Q. (2022). Computationally efficient horizon-free reinforcement learning for linear
mixture mdps. arXiv preprint arXiv:2205.11507.

Zhou, D., Gu, Q., and Szepesvari, C. (2021). Nearly minimax optimal reinforcement learning for
linear mixture markov decision processes. In Conference on Learning Theory, pages 4532-4576.
PMLR.

12



