
Proteus: A High-Throughput Inference-Serving System
with Accuracy Scaling

Sohaib Ahmad
University of Massachusetts, Amherst

sohaib@cs.umass.edu

Hui Guan
University of Massachusetts, Amherst

huiguan@cs.umass.edu

Brian D. Friedman
Nokia Bell Labs

brian.friedman@nokia-bell-labs.com

Thomas Williams
Nokia Bell Labs

thomas.williams@nokia-bell-
labs.com

Ramesh K. Sitaraman
University of Massachusetts, Amherst

ramesh@cs.umass.edu

Thomas Woo
Nokia Bell Labs

thomas.woo@nokia-bell-labs.com

Abstract
Existing machine learning inference-serving systems largely
rely on hardware scaling by adding more devices or using
more powerful accelerators to handle increasing query de-
mands. However, hardware scaling might not be feasible for
fixed-size edge clusters or private clouds due to their limited
hardware resources. A viable alternate solution is accuracy
scaling, which adapts the accuracy of ML models instead
of hardware resources to handle varying query demands.
This work studies the design of a high-throughput inference-
serving system with accuracy scaling that can meet through-
put requirements while maximizing accuracy. To achieve
the goal, this work proposes to identify the right amount of
accuracy scaling by jointly optimizing three sub-problems:
how to select model variants, how to place them on het-
erogeneous devices, and how to assign query workloads
to each device. It also proposes a new adaptive batching
algorithm to handle variations in query arrival times and
minimize SLO violations. Based on the proposed techniques,
we build an inference-serving system called Proteus and em-
pirically evaluate it on real-world and synthetic traces. We
show that Proteus reduces accuracy drop by up to 3× and
latency timeouts by 2-10× with respect to baseline schemes,
while meeting throughput requirements.

CCS Concepts: • Computer systems organization →
Cloud computing; Neural networks.

Keywords: Inference serving, model serving, machine learn-
ing, autoscaling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0372-0/24/04. . . $15.00
https://doi.org/10.1145/3617232.3624849

ACM Reference Format:
Sohaib Ahmad, Hui Guan, Brian D. Friedman, Thomas Williams,
Ramesh K. Sitaraman, and Thomas Woo. 2024. Proteus: A High-
Throughput Inference-Serving System with Accuracy Scaling. In
29th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 1 (ASPLOS
’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3617232.3624849

1 Introduction
The growing popularity of machine learning (ML) has led to
the development of inference-serving systems1, where cloud
providers execute pre-trained ML models on their infras-
tructure to provide fast and accurate responses to inference
queries. In such a system, the provider guarantees certain
service level objectives (SLOs) to users in terms of latency
deadlines. Meanwhile, the provider wants to maximize their
hardware utilization by increasing throughput in order to
serve as many queries as possible in a short amount of time.
Recent years have seen considerable interest in develop-

ing high-throughput inference-serving systems. Prior work
has focused on enhancing system throughput through tech-
niques such as multi-tenancy [28, 35], batching [8, 9, 36], and
low-level optimizations [14, 42, 46]. While these optimiza-
tions are effective, they primarily rely on hardware scaling,
i.e., adding more devices or using more powerful accelera-
tors, to accommodate higher query demands (in terms of
queries per second or QPS). However, hardware scaling may
not be feasible for private clouds owned by enterprises or
edge clusters due to the limited availability of hardware re-
sources. Purchasing and maintaining more devices to cater
to peak demands can be expensive and cost-ineffective.
To address the limitations of hardware scaling, this pa-

per focuses on an orthogonal perspective, accuracy scaling,
which adapts model accuracy instead of hardware resources
to meet varying query demands. Accuracy scaling is moti-
vated by the fact that ML models can offer varying degrees
of accuracy depending on the time spent computing the an-
swer. Less time spent on computation leads to less accurate

1Inference-serving systems have also been referred to as model-serving
systems in the literature.

318

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA S. Ahmad, H. Guan, B. D. Friedman, T. Willams, R. K. Sitaraman, T. Woo

results but higher throughput. When the demand is high,
an inference-serving system can serve queries using less
accurate model variants to avoid SLO violations. Similarly,
when the demand drops, it can serve queries using more ac-
curate model variants to improve accuracy. These different
accuracy levels are provided by different variants of deep
neural networks (DNNs), which can be created through ex-
isting compression techniques such as quantization [39] and
pruning [6], or as part of the neural network architecture
design. The creation of these variants is complementary to
our work. Throughout the paper, we use the term “model
variants” to refer to DNN models with varying accuracy and
performance profiles.
In this paper, our goal is to build an inference-serving

system on a heterogeneous cluster via accuracy scaling such
that the system can serve varying query demands with high
system accuracy. System accuracy refers to the averaged ac-
curacy of queries that are served by the system. We assume
that every query prefers the most accurate model variant if
resource permits, but is willing to accept lower accuracy in
exchange for timely response when resources are tight. This
assumption is practical in many cases such as recommen-
dation systems and real-time applications where a timely
response can be more critical than an accurate yet sluggish
response, or even worse, dropped requests [13, 23].
To achieve this goal, we need to address two challenges

raised by accuracy scaling when managing resources on an
inference-serving system. The first challenge is to determine
the right amount of accuracy scaling to serve a target query
demandwith high system accuracy. The system can overshoot
the query demand by hosting less accurate model variants
but introduce unnecessary accuracy drops to end-users. On
the other hand, if the system undershoots the target query
demand by hosting more accurate model variants, users will
experience SLO timeouts.

To address the first challenge, our key insight is that identi-
fying the right amount of scaling requires jointly optimizing
three sub-problems when allocating system resources. Miss-
ing any of these sub-problems results in a sub-optimal solu-
tion that leads to high SLO violations and/or high accuracy
loss. The first sub-problem, model selection, aims to choose
the appropriate set of model variants and the number of
replicas for each model variant. As the accuracy-throughput
trade-off for a model variant varies across different device
types, the second sub-problem, model placement, determines
the placement of each selected model variant on a particular
device of a heterogeneous cluster. In addition, an inference-
serving system is usually shared by multiple applications,
each corresponding to a query type. The last sub-problem
query assignment specifies the percentage of queries from
each query type that can be assigned to a model variant
hosted on a particular device.
Based on this insight, we formulate the problem using

a mixed integer linear programming (MILP) framework to

derive the optimal resource allocation given a target query
demand. Since the target query demand changes over time,
it is necessary to keep adjusting the plan accordingly. Ideally,
each query arrival could trigger the MILP solver; however, in
this case, solving the MILP problem would lie in the critical
path of query execution, introducing significant run-time
overhead. This motivates us to decouple the control path that
manages resources from the data path that serves queries.We
trigger the MILP solver in response to macro-scale changes
in query demand over a period of time to ensure that the
system has sufficient capacity to serve incoming queries.
We then rely on per-device query execution to handle the
micro-scale variations in the arrival times of queries.

This raises the second challenge: how to adaptively batch
queries on each device to handle variations in query arrival
times such that SLO violations are minimized? Query execu-
tion on individual devices typically batches multiple infer-
ence queries together to improve throughput. When queries
arrive at a uniform rate, it is easy to determine a fixed batch
size that can maximize throughput without incurring SLO
violations. However, when there is variation in the query
inter-arrival times, batching needs to be adaptive due to two
reasons: (i) the number of queries arriving per second may
change over time, requiring a different batch size, and (ii)
delaying query execution slightly can improve throughput
and absorb micro-scale query arrival variations. We present
a non-work-conserving approach to adaptive batching that
can handle micro-scale query load fluctuations effectively
without requiring any changes to the underlying ML frame-
work. It can delay requests momentarily if it results in higher
throughput and dynamically determines suitable batch sizes
based on the queue status and query latency requirements.

Based on the proposed techniques, we build an inference-
serving system called Proteus2. We evaluate Proteus against
three state-of-the-art inference-serving systems, INFaaS [35],
Sommelier [17], and Clipper [9], using query workloads de-
rived from a real-world Twitter trace and synthetic traces.
Our experiments show that compared to baselines that do not
scale accuracy, Proteus improves system throughput by 60%
and reduces SLO violations by 10× due to accuracy scaling;
and compared to baselines that also scale accuracy, Proteus
minimizes accuracy drop by up to 3.2× and reduces SLO
violations by up to 4.3× because of better resource allocation
and batching algorithms.
Our contributions.We make the following key contri-

butions.
• We present a theoretical framework for resource man-
agement of an inference-serving system that exploits
accuracy scaling to ensure that the system throughput
is sufficient to meet the query demand while maximiz-
ing system accuracy.

2Proteus is named after a Greek god of the same name who had the ability
to change shape and form to avoid capture by the enemy.

319

Proteus: A High-Throughput Inference-Serving System with Accuracy Scaling ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0 10 20 30 40 50 60
System Throughput Capacity (QPS)

76
77
78
79
80
81
82
83
84
85

Sy
st

em
 A

cc
ur

ac
y

(%
)

V100
1080 Ti
CPU

(a)

40 60 80 100 120 140 160
System Throughput Capacity (QPS)

76
77
78
79
80
81
82
83
84
85

Sy
st

em
 A

cc
ur

ac
y

(%
)

Pareto Frontier

(b)
Figure 1. Illustration on how different resource allocation
configurations affect system throughput capacity and accu-
racy. Models are EfficientNet variants and batch size is one.
(a) Accuracy-throughput trade-off on three different devices
for EfficientNet variants. (b) Accuracy-throughput trade-offs
for all possible configurations with five EfficientNet variants
and five devices.

• We propose a proactive adaptive batching algorithm
that can handle query load fluctuations effectively via a
non-work-conserving approach. The algorithm is easy
to implement without requiring modifications to the
underlying ML framework and reduces SLO violations
by up to 4× compared to baselines.

• Wedesign Proteus, a high-throughput inference-serving
system with accuracy scaling. Proteus decouples the
control and data paths of inference-serving to per-
form optimal resource allocation asynchronously from
query serving. To the best of our knowledge, Proteus
is the first system to study accuracy scaling in a cluster
setting.

• We evaluate Proteus on a production system that is
currently used by actual users within a large enterprise
and perform trace-based simulations of the system.We
show that Proteus reduces the accuracy drop by up
to 3.2× and SLO violations by 2.8-10× compared to
state-of-the-art baselines while meeting throughput
requirements.We also show that our simulation results
closely match the results from our production system.

2 Motivation and Challenges
This section first explains themotivation for accuracy scaling
and then elaborates on the main challenges to effectively
capitalize on accuracy scaling to build a high-throughput
inference-serving system with minimal SLO violations.

2.1 Motivation
Many existing inference-serving systems rely on scaling out
to more devices or scaling up to faster devices to handle the
increasing query demands. However, in certain scenarios,
such hardware scaling is not practical. For example, an edge
cloud-based serving system may have a limited number of
devices available, and an enterprisemaymaintain a fixed-size
cluster to serve internal users.

A viable alternative in these cases is accuracy scaling,
which is motivated by the natural trade-off between through-
put and accuracy of inferenceworkloads. This trade-off exists
because models with lower accuracy are usually smaller neu-
ral networks, e.g., having a smaller number of parameters
and layers, etc., therefore requiring less computation, allow-
ing more requests to be served in a given amount of time,
and providing higher throughput. Figure 1a shows the ac-
curacy of EfficientNet variants [40] and their throughput in
queries per second (QPS) on three different types of devices.
The batch size is set to one for simplicity of demonstration.
The figure shows that for a given device type, a model vari-
ant with lower accuracy can achieve higher throughput. An
inference-serving system can replace hosted model variants
with their less accurate counterparts in order to serve an
increasing query load, and later switch to more accurate
model variants once the query load returns to normal.
2.2 Challenges and Opportunities
Building an inference-serving system has two main chal-
lenges as detailed below.

Challenge 1: “Right” amount of accuracy scaling. The
first challenge lies in determining the right amount of ac-
curacy scaling to meet a target query demand. With tradi-
tional hardware scaling, an inference-serving system would
provision the appropriate amount of hardware resources
sufficient to meet a target query demand. Hardware under-
provisioning would lead to performance degradation while
over-provisioning would introduce unnecessary hardware
costs. Similarly, with accuracy scaling, one can under-scale or
over-scale. In one extreme case, the system can always host
the most accurate model variants to maximize accuracy but
will suffer from relatively low throughput and risk high SLO
violation rates. In another extreme, the system can always
host the least accurate model variants to maximize through-
put, but will suffer from unnecessary accuracy drops. The
right amount of accuracy scalingmeans that the system hosts
the right set of model variants on the right devices and as-
signs the right amount of queries to each device. Solving the
above resource allocation problem is complicated because
of the huge configuration space resulting from three factors:
many model variants, heterogeneous devices, and many ap-
plications. Missing any factor would lead to a sub-optimal
allocation, as we show empirically in our evaluation.
Factor 1: Many model variants. A query can be served by

many variants of the same model, resulting in a wide range
of throughput and accuracy. Figure 1a demonstrates this
problem. Even if we consider a single device, e.g., NVIDIA
GTX 1080 Ti, five different selections of EfficientNet variants
result in a 3.3× difference in throughput and around 8%
difference in accuracy. The problem becomes more difficult
when we have a cluster of devices, resulting in an even wider
range of possibilities. With M model variants and N devices,
there are𝑀𝑁 possible configurations, each of them resulting

320

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA S. Ahmad, H. Guan, B. D. Friedman, T. Willams, R. K. Sitaraman, T. Woo

in different system throughput and accuracy. Selecting the
right model variant for each of the devices depends on the
query demands on the system.
Factor 2: Heterogeneous devices.Modern computing clus-

ters typically consist of different types of hardware devices,
such as different types of CPUs and GPUs. This is due to
the fact that enterprises typically upgrade their hardware
incrementally, for example, adding newer and faster GPUs
to their existing fleet of hardware as they become available,
instead of completely replacing old ones. As each model
variant has a different throughput profile across devices, the
configuration space becomes even larger. For a given selec-
tion of model variants, there are 𝑁 !ways to place them on 𝑁

different devices, leading to a much broader set of possibili-
ties for overall system throughput and accuracy. Figure 1b
illustrates the system throughput capacity and accuracy for
all possible mappings between 5 EfficientNet variants and
5 devices. We assume that all devices serve the maximum
number of queries feasible without SLO violations. Out of
all 3125 possible configurations, we are only interested in
those at the Pareto frontier, due to the fact that for a given
throughput requirement, configurations at the Pareto fron-
tier yield the highest possible system accuracy compared
to other configurations. The results imply that identifying
the right amount of accuracy scaling requires co-optimizing
model selection and model placement.
Factor 3: Many applications. The optimization problem is

further complicated by the multi-tenant nature of inference-
serving systems. An inference-serving system usually serves
queries from many applications, each corresponding to a
particular query type. In this case, the model variants that
are selected for each query type and their mapping to devices
further depend on how many and what kind of devices are
allocated to each query type. When the query demand for
any query type changes, the best resource allocation plan to
achieve the highest accuracy also changes.
Opportunities. The above challenge can be formulated as

three sub-problems for resource allocation: model selection,
model placement, and query assignment, that can be jointly
solved using mixed integer linear programming (MILP). We
elaborate on the MILP formulation in Section 4. Solving the
MILP problem takes time, while queries have strict latency
requirements. Triggering the MILP solvers on query arrivals
would place the resource allocation problem on the critical
path of serving queries, adding a significant run-time over-
head to queries’ response time. To avoid the problem, we de-
couple resource allocation from query serving. Resources are
re-allocated when the macro-scale query demand changes to
ensure that the system has enough throughput capacity to
handle incoming queries. As it comes down to each device to
serve individual queries, each device can handle non-uniform
query arrivals with adaptive batching to avoid SLO violations.
This motivates us to design an inference-serving system that

separates the control path that manages resources from the
data path that serves queries (see Section 3).
Challenge 2: Adaptive Batching. Decoupled resource

allocation and query serving rely heavily on adaptive batch-
ing to handle micro-scale fluctuations in query arrival times.
Batching multiple queries together can improve the through-
put of an inference-serving system. However, it can also
increase the waiting time for queries since all queries that
are executed in a batch must finish processing before the
results are returned to the user. If the batch size is increased
beyond a certain point, requests will start to miss their la-
tency SLOs. Since queries arrive non-uniformly, we need to
dynamically adjust batch sizes based on query arrival times
to minimize SLO violations.
Although adaptive batching is studied in prior work, we

find their approaches inefficient. Clipper [9] adapts its batch
size reactively based onwhether the current batch size causes
timeouts. Nexus [36] presents a proactive early dropping ap-
proach but performs poorly when query load fluctuates due
to its work-conserving approach. Lazy Batching [8] requires
significant changes to the underlying ML framework.
Opportunities. We find that a non-work-conserving ap-

proach for adaptive batching is better than awork-conserving
approach in stabilizing the system when query inter-arrivals
are non-uniform. In a work-conserving approach, a worker
immediately executes the next batch of queries after the cur-
rent batch finishes. This approach is adopted by Nexus and
demonstrated to suffer from low throughput and high SLO
violations on bursty workloads in our empirical evaluation
(Section 6.4). In contrast, a non-work-conserving approach
waits as long as possible to accumulate more queries before
executing a batch. Although it may leave the device idle at
times if the load is low, we show that it improves system
throughput and reduces SLO violations. Moreover, we find
that a proactive approach to batch size adaptation incurs
significantly fewer latency SLO timeouts than a reactive
approach, such as Clipper’s, as detailed in Section 6.4.

We present a novel adaptive batching algorithm following
a proactive, non-work-conserving approach without requir-
ing modifications to the ML framework in Section 5.

3 Overview of Proteus
We present Proteus, a high-throughput inference-serving
system that leverages accuracy scaling to handle varying
query demands. This section presents an overview of the
system architecture while Sections 4 and 5 will elaborate on
the core modules of Proteus.

Figure 2 illustrates the overall system architecture of Pro-
teus. It has three major components: Controller, Load Bal-
ancers, and Workers. These components are involved differ-
ently in two types of interactions with the system.
The first type of interaction is for developers to regis-

ter an application and its model variants. The pipeline is
marked with dotted arrows in Figure 2. After the controller

321

Proteus: A High-Throughput Inference-Serving System with Accuracy Scaling ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

W
or
ke
r Adaptive Batching

Hardware Executor

Co
nt
ro
lle
r

Model Registry

Resource Manager
Request Router

Lo
ad
 B
al
an
ce
r

Monitoring
Daemon

User sends
query

Query
response

2 3

2

3

Face Detection Object Recognition

Ap
pl
ic
at
io
n

200ms
deadline

100ms
deadline

1
Register
app/model

Registered1 44

Control path
Data path

Model Profiler

Statistics Collector
De

ve
lo
pe

r

Figure 2. System architecture of Proteus.
receives an application register command, it creates a new
load balancer for that application and sets up workers to
serve queries from that application. Proteus will automati-
cally manage which model variant to use to serve each query
and where to place the model variants. This model-less in-
terface is similar to the recent work, INFaaS [35]. Our core
system design contribution lies in how resources are managed
when serving queries, i.e., the second type of interaction de-
scribed next.
The second type of interaction is for registered applica-

tions to send inference queries and receive query responses.
The data path is marked with solid arrows in Figure 2. A
query from a registered application is directly sent to the
application’s assigned load balancer. The load balancer then
routes the query to an appropriate model variant that is
hosted on a worker machine for query execution. Proteus
responds to the application with the inference results. Since
queries from each application are handled by its specific load
balancer, Proteus avoids a single-point performance bottle-
neck when supporting many applications. The separation
of the controller and load balancer is a design choice that
makes Proteus more flexible and robust, allowing it to per-
form resource allocation without being on the critical path
to inference-serving.
Controller. The controller receives the registration of the
application and model variants and confirms the registration
status. It has four modules: (1) a resource manager that de-
termines the resource allocation strategy including model
selection, placement, and query assignment when the query
demands change, (2) a model registry that handles applica-
tion and model variant registration, (3) a model profiler that
profiles the performance of each model variant on differ-
ent types of devices, and (4) a statistics collector that collects

query demand statistics from all load balancers, used to deter-
mine when to re-allocate resources. If re-allocation is needed,
these statistics are used as inputs to the resource manager
to derive a new optimal resource allocation configuration.
Moreover, the resource manager also consults the model
registry and model profiler to make re-allocation decisions,
in order to identify model variants that can meet demand
with high accuracy. The model profiler is invoked every time
new models are registered, as well as periodically to poll the
inference latency of currently hosted model variants run-
ning on the workers, and stores the profiling information in
an in-memory key-value store, keyed by the 3-tuple (model
variant, device type, batch size) to ensure a𝑂 (1) lookup time.
Load Balancer. A load balancer receives inference queries
from its designated application and responds to them with
model execution results. Load balancers for different reg-
istered applications could be distributed across multiple
machines to avoid network congestion. Each load balancer
includes two modules: (1) a request router that dispatches
queries to model variants hosted on worker machines based
on a query assignment policy, and (2) a monitoring daemon
that monitors query demands at runtime and reports the sta-
tistics to the controller periodically. The query assignment
policy is determined by the controller. If the load balancer
detects a burst of requests or overload on any of its work-
ers, it calls the controller to re-allocate resources. There is
one load balancer for each query type (i.e., application), and
usually multiple workers for each query type.
Workers. Each worker executes its hosted model variant
to serve inference queries assigned by the request router. A
worker includes two modules: (1) an adaptive batching mod-
ule that dynamically determines the suitable batch size to im-
prove throughput while meeting query latency constraints,
and (2) a hardware executor that manages the deployment
and execution of model variants.

We next explain the two core modules, the Resource Man-
ager in Section 4 and Adaptive Batching in Section 5.

4 Resource Management
The Resource Manager identifies the optimal model selec-
tion, model placement, and query assignment solution to
meet a target query demand while maximizing system ac-
curacy by solving an MILP optimization. Depending on the
solution, it could terminate some instances of model vari-
ants currently hosted on devices and start instances of other
model variants. It also propagates a new query assignment
policy to the request routers. Under stable query demand
conditions, the Resource Manager is invoked periodically.
However, if the demand changes rapidly in a short period of
time, the monitoring daemon in the load balancers invokes
the Resource Manager to respond to the burst.

Note that the Resource Manager responds to macro-scale
changes in the workload, measured by the incoming demand
in terms of QPS, whereas the adaptive batching, as explained

322

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA S. Ahmad, H. Guan, B. D. Friedman, T. Willams, R. K. Sitaraman, T. Woo

Constants/subscripts:
𝑞 the 𝑞-th query type. Each type is a registered application.
𝑚 the𝑚-th model variant for a query type
𝑑 the 𝑑-th device
𝐴𝑚 the accuracy of model variant𝑚
𝐵𝑚,𝑞 true if model variant𝑚 serves query type 𝑞; false other-

wise
𝑃𝑑,𝑚,𝑞 the peak throughput capacity of model variant𝑚 on de-

vice 𝑑 serving query type q
Inputs:
𝑠𝑞 throughput in QPS required for the query type 𝑞

Optimization variables:
𝑥𝑑,𝑚 true if model variant𝑚 is hosted on device 𝑑 ; false other-

wise
𝑦𝑑,𝑞 percentage of queries of type 𝑞 routed to device 𝑑
Intermediate variables:
𝑎𝑞 sum of accuracy of all queries of type 𝑞
𝑧𝑑,𝑞 number of queries served by device 𝑑 of query type 𝑞

Table 1. Notation used for the optimization

in Section 5, responds to micro-scale changes in terms of
varying query inter-arrival times.
The resource management problem.We now formulate
the resource management problem with accuracy scaling
using MILP. The objective is to maximize accuracy while
meeting a target serving throughput. We first explain two
optimization variables collectively representing the resource
allocation plan and then define the system serving through-
put and system accuracy based on the two variables. Lastly,
we present the MILP formulation of the resource manage-
ment problem. Table 1 summarizes the notations.
Optimization Variables: Let {𝑥𝑑,𝑚} be Boolean variables

indicating themodel selection and placement policy, together
called model allocation. 𝑥𝑑,𝑚 is True if model variant𝑚 is
hosted on the device 𝑑 . Let {𝑦𝑑,𝑞} be a query assignment
plan where 𝑦𝑑,𝑞 ∈ [0, 1] indicates the percentage of queries
of type 𝑞 routed to device 𝑑 . Each query type corresponds
to one registered application and can only be served by the
registered set of model variants.
The two variables must meet three constraints. First, in

this work, we consider that each device hosts at most one
model variant to avoid interference (Eq. 1). Second, the total
ratio of queries for a given type routed to all devices can
never be larger than one (Eq. 2). Third, a query assignment
must ensure that the model variant hosted on a device sup-
ports the assigned query type (Eq. 3). Let 𝐵𝑚,𝑞 be the Boolean
constant that denotes whether model variant𝑚 can serve
query type 𝑞. We formalize the three constraints as follows:∑︁

𝑚

𝑥𝑑,𝑚 ≤ 1 ∀𝑑 (1)∑︁
𝑑

𝑦𝑑,𝑞 ≤ 1 ∀𝑞 (2)∑︁
𝑚

∑︁
𝑑

𝐵𝑚,𝑞 .𝑥𝑑,𝑚 .𝑦𝑑,𝑞 =
∑︁
𝑑

𝑦𝑑,𝑞 ∀𝑞 (3)

Serving Throughput: Let 𝑧𝑑,𝑞 be the number of queries per
second of query type𝑞 served by the device𝑑 . System serving
throughput is the number of queries served by all devices:∑

𝑑

∑
𝑞 𝑧𝑑,𝑞 . Note that

∑
𝑞 𝑧𝑑,𝑞 cannot be larger than the total

number of queries assigned to device 𝑑 (Eq. 4) or the peak
throughput capacity of that device (Eq. 5). Furthermore, we
require that all incoming demand be served by the system
(Eq. 6). Let 𝑠𝑞 be the number of queries per second (QPS)
for the query type 𝑞. The total number of queries assigned
to device 𝑑 is:

∑
𝑞 𝑦𝑑,𝑞 .𝑠𝑞 . Let 𝑃𝑑,𝑚,𝑞 be the peak throughput

capacity of the model variant𝑚 profiled on device 𝑑 for the
query type 𝑞. The peak throughput of device 𝑑 for query
type 𝑞 is then

∑
𝑚 𝑃𝑑,𝑚,𝑞 .𝑥𝑑,𝑚 . The serving throughput of a

device 𝑑 follows three constraints:∑︁
𝑞

𝑧𝑑,𝑞 ≤
∑︁
𝑞

𝑦𝑑,𝑞 .𝑠𝑞 ∀𝑑 (4)

𝑧𝑑,𝑞 ≤
∑︁
𝑚

𝑃𝑑,𝑚,𝑞 .𝑥𝑑,𝑚 ∀𝑑, 𝑞 (5)∑︁
𝑑

𝑧𝑑,𝑞 = 𝑠𝑞 ∀𝑞 (6)

Effective Accuracy (also called System Accuracy): For each
model variant 𝑚, the number of queries of query type 𝑞

served by it is
∑

𝑑

∑
𝑞 𝑥𝑑,𝑚 .𝑧𝑑,𝑞 .𝑠𝑞 . Let 𝐴𝑚 be the accuracy of

model variant𝑚. We can get the accuracy of all queries of
type 𝑞 as: 𝑎𝑞 =

∑
𝑚 𝐴𝑚 .(∑𝑑 𝑥𝑑,𝑚 .𝑧𝑑,𝑞 .𝑠𝑞)). Effective accuracy

is the average accuracy of all queries served as
∑

𝑞 𝑎𝑞 .
MILP Formulation: The resource management problem

identifies the optimal model selection and placement {𝑥𝑑,𝑚}∗
and the query assignment {𝑦𝑑,𝑞}∗ to maximize effective ac-
curacy

∑
𝑞 𝑎𝑞 while reaching a target serving throughput∑

𝑑

∑
𝑞 𝑧𝑑,𝑞 high enough to serve the incoming queries {𝑠𝑞}.

The problem can be formulated as:

max
{𝑥𝑑,𝑚 },{𝑦𝑑,𝑞 }

∑︁
𝑞

𝑎𝑞 𝑠 .𝑡 . Constraints Eqs. 1-6 (7)

Solving the MILP. The Resource Manager solves the MILP
exactly to identify a global optimal model allocation and
query assignment policy. Note that the time overhead to
solve the MILP does not lie on the critical path of query
serving as the MILP is called asynchronously. We provide
overhead details in Section 6.8. When solving the MILP, 𝑠𝑞
is set to be the demand by default. However, if demand in-
creases beyond a certain point, even using the lowest ac-
curacy model variants for every query type might still not
meet throughput demand. In this case, the MILP solver im-
mediately reports that the constraints are infeasible, and we
solve the MILP again by decreasing 𝑠𝑞 by a small value.
Estimation of throughput capacity. Solving the MILP
problem requires us to estimate each 𝑃𝑑,𝑚,𝑞 , the throughput
capacity of each model variant on a device for a query type.
Increasing the batch size improves the throughput of a model
variant but also increases the processing latency. So we first
estimate the maximum batch size that we can use for each

323

Proteus: A High-Throughput Inference-Serving System with Accuracy Scaling ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

model variant without violating a query’s latency SLO and
then profile the throughput capacity using that batch size.
Specifically, [36] observes that to prevent latency timeouts,
the maximum inference latency for any model cannot ex-
ceed half of its latency SLO since in the worst case, a query
arriving just after a batch starts executing must be executed
with the next batch, so the response time for the query is at
most twice the processing latency. Using this observation,
we calculate the maximum batch size for each (𝑑,𝑚,𝑞) pair
that meets the SLO requirement. Note that in addition to
latency constraints, the maximum batch size is also bounded
by the memory constraint of each device, since larger batch
sizes require more memory. Hence, the maximum allowed
batch size is the minimum of the following: (i) the maximum
batch size that meets SLO, (ii) the maximum batch size that
fits in the memory of 𝑑 .

We use the maximum allowed batch size of each (𝑑,𝑚,𝑞)
pair, along with the profiled latency of model variant 𝑚
on device 𝑑 for query type 𝑞, to calculate the throughput
capacity 𝑃𝑑,𝑚,𝑞 of that pair.

𝑃𝑑,𝑚,𝑞 =
Maximum allowed batch size for 𝑑,𝑚,𝑞

Profiled latency (seconds)

5 Adaptive Batching
While the Resource Manager makes model allocation and
query assignment decisions based on a target serving through-
put, it is the responsibility of each device to serve queries
assigned to it without violating the latency constraints. Adap-
tive batching dynamically determines the optimum batch
size to use based on queue conditions to minimize SLO vio-
lations.

The Proteus adaptive batching algorithm is based on two
key ideas. Firstly, it is a proactive algorithm: it ensures that no
queries in the queue timeout unnecessarily since we proac-
tively start processing the queries just before the first query
in the queue is in danger of violating its latency SLO. Sec-
ondly, it is non-work-conserving: it may leave the device idle
at times if this helps to accumulate more queries before start-
ing batched execution. This allows the algorithm to improve
throughput as much as possible on a given device without
violating latency SLOs. This also helps to smooth out non-
uniform query inter-arrivals in order to handle micro-scale
query demand variations.

Figure 3 illustrates the approach. Suppose that we have 𝑞
queries in the queue and that the first query will expire at
𝑇𝑒𝑥𝑝 (1). To process a batch of𝑞+1 queries, time𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑞+1)
is required.We define𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞+1) = 𝑇𝑒𝑥𝑝 (1)−𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑞+
1), or in other words, the maximum time that we will wait for
the𝑞+1𝑠𝑡 query to arrive. If we have not reached𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞+
1) yet, we can wait for more queries to arrive in the queue
since we are not in danger of violating any query’s latency
SLO. While waiting until𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 1) to fill up the batch,
there can be two possibilities:

Texp(1)

Tprocess(q+1)

Tmax_wait(q+1)

q+1 q+11 2 q

Figure 3. Adaptive batching in Proteus
Case 1: We do not receive any query until 𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 1).
In this case we will start executing the current queries in
the queue with a batch size of 𝑞 at 𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 1), because
if any query arrives after this time and we were to execute
with a batch size of 𝑞 + 1, the first query in the queue would
expire by the time the batch finishes processing.
Case 2: We receive the 𝑞 + 1𝑠𝑡 query before 𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 +
1). In this case, we calculate 𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 2). Note that
𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 2) < 𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 1) since 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑞 + 2) >
𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑞 + 1). If we are already past 𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 2), that
means we cannot wait for the 𝑞 + 2𝑛𝑑 query; otherwise, our
first query will expire, so we execute with a batch size of
𝑞 + 1 which will not result in any timeouts since we execute
before 𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 1). If we are not past 𝑇𝑚𝑎𝑥_𝑤𝑎𝑖𝑡 (𝑞 + 2),
then we wait to accumulate more queries in the queue and
repeat the same procedure with 𝑞′ = 𝑞 + 1.
As we will see in Section 6.4, the proposed batching al-

gorithm outperforms re-active approaches, e.g., Clipper’s
AIMD batching, and even proactive work-conserving ap-
proaches, e.g., Nexus’s early drop batching.

6 Evaluation
This section evaluates the efficacy of Proteus. We begin by
describing the experimental setup common to all experi-
ments (Section 6.1). We provide an end-to-end quantitative
analysis on the performance of Proteus and baselines (Sec-
tion 6.2). We also measure the responsiveness of each of
these approaches to bursty workloads (Section 6.3). We eval-
uate Proteus’s adaptive batching algorithm individually to
Clipper and Nexus’s batching algorithm (Section 6.4). We
then perform an ablation study of Proteus to quantify the
benefit of its individual components (Section 6.5). We also
report the effect of varying latency SLOs (Section 6.6) and the
performance breakdown for different model families (Sec-
tion 6.7). Finally, we quantify the overheads of Proteus’s
decision-making (Section 6.8).
6.1 Experimental Setup
6.1.1 Baselines. We select a spectrum of baselines ranging
from fully static (Clipper), to partially dynamic (Sommelier),
to fully dynamic (INFaaS). We describe each of them below
and implement them in our simulator and cluster system.
Clipper: Clipper is one of the fundamental works in inference-
serving, however, it does not dynamically place models in a
heterogeneous cluster or perform any accuracy scaling. This
baseline pre-loads a static resource allocation at the start of
the experiment.We extend Clipper to use ourMILP to get this

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA S. Ahmad, H. Guan, B. D. Friedman, T. Willams, R. K. Sitaraman, T. Woo

Feature Clipper Sommelier INFaaS Proteus
Model placement Static Static Heuristic MILP
Model selection Static Heuristic Heuristic MILP
Accuracy scaling No Limited3 No4 Yes
Adaptive batching Yes No Yes Yes

Table 2. Comparing Proteus features with baselines

initial allocation. Since Clipper cannot scale, we implement
two versions, one that maximizes throughput by using the
least accurate model variants: Clipper-HT (High Through-
put), and another that maximizes serving accuracy by us-
ing the most accurate model variants: Clipper-HA (High
Accuracy). Clipper uses an additive-increase multiplicate-
decrease (AIMD) heuristic to perform adaptive batching.
We first evaluate Clipper end-to-end with our system and
then separately evaluate its batching algorithm against ours
in Section 6.4. Note that Clipper is also representative of
other static inference-serving systems, such as TensorFlow-
Serving [32] and NVIDIA Triton Inference Server [5] since
none of these systems dynamically adapt the resource al-
location of model variants in a cluster and depend on the
application developer to handle it.
Sommelier: Sommelier can suggest alternate models to
meet throughput requirements for a single server device and
switch out a high accuracy model variant for a low accuracy
variant when high throughput is needed. We refer to Somme-
lier as being partially dynamic as it only works with a single
device and model but does not perform resource allocation at
the cluster level. Moreover, Sommelier does not include adap-
tive batching by default as it is primarily a model repository
that can interface with an inference-serving system and is
not designed as an inference-serving system itself. Therefore
we extend it by using our adaptive batching algorithm and
MILP to get its initial model placement.
INFaaS: INFaaS is the most dynamic baseline we use as it
dynamically changes model selection and model placement.
However, INFaaS does not perform accuracy scaling by de-
fault, since it treats accuracy as a constraint to be met and
minimizes the cost of running instances. In our setting, since
the cost of the cluster is fixed, we tweak INFaaS slightly to
use accuracy drop as its objective to minimize while using
the cost of running instances as a constraint, i.e., it cannot
exceed the fixed size of the cluster. We call this baseline
INFaaS-Accuracy, a version of INFaaS optimized for accuracy
scaling. INFaaS-Accuracy minimizes accuracy drop using the
allocation strategy from INFaaS, thereby maximizing serving
accuracy and giving us a version of INFaaS directly com-
parable to Proteus. Note that INFaaS-Accuracy just swaps
accuracy and cost in INFaaS as its objective and constraint,
respectively.
3Sommelier can suggest alternate models for a single device but does not
perform allocation at the cluster level.
4INFaaS does not perform accuracy scaling by default, however we tweak
it slightly to get a version of INFaaS that can scale accuracy.

Model Family Model Variants
ResNet (classification) [20] 18, 34, 50, 101, 152
DenseNet (classification) [22] 121, 161, 169, 201
ResNest (classification) [47] 14, 26, 50, 269
EfficientNet (classification) [40] b0-b7
MobileNet (classification) [21] 1.0, 0.75, 0.5, 0.25
YOLOv5 (object detection) [25] n, s, m, l, x

BERT (sentiment analysis) [11]

RoBERTa-base, large; [29],
ALBERT-base, large, xlarge,
xxlarge [26]; BERT-base, tiny,
mini, small, medium, large
[41]

T5 (translation) [34] small, base, large, 3b, 11b
GPT-2 (question answering) [33] base, medium, large, xl

Table 3.Model families and their variants used
6.1.2 Model Variants. Our inference-serving system sup-
ports queries belonging to different query types (i.e., ap-
plications). We assume one query type corresponds to one
DNN family (e.g., ResNets). Each query type can be served
by different variants of the same family (e.g., ResNet-18 or
ResNet-34). Table 3 shows the model families and their re-
spective variants that we use in our experiments. We obtain
the pre-trained computer vision model variants from the
ONNX Model Zoo [4] and the GluonCV Model Zoo [16],
and the NLP model variants from the HuggingFace repos-
itory [43]. All the models are converted to ONNX format
before usage. Since our models belong to a wide variety of
inference applications and their performance profiles vary
significantly from one another, setting the same latency SLO
for all of them is not practical. Therefore, we set latency
SLOs similar to [35, 36]: for each model family, we profile its
fastest model variant that can run on a CPUwith the smallest
batch size, and set the latency SLO of the model family to
be 2× of its profiled latency. We explore the sensitivity of
Proteus and the baselines to SLO in Section 6.6. Since the
accuracy of each application is measured using a different
metric, we normalize the accuracy of each model variant by
the accuracy of the most accurate variant in its model family.
This normalized accuracy varies from 80% to 100% for the
variants listed in Table 3.
6.1.3 Workloads. We use a mix of real-world and syn-
thetic workloads to evaluate our system and the baselines.
Real-world trace. Since there exists no public trace of a

production inference-serving system to date, we use a public
trace from Twitter [1] collected over a month-long period.
As noted by previous work [35], the trace is representative of
workloads that an inference-serving system would expect to
see since tweets are likely to be passed through many infer-
ence pipelines before they are published. Moreover, the trace
also contains diurnal patterns and spikes that an inference-
serving system is likely to see over its execution. Since the
queries in the trace are aggregated at the granularity of sec-
onds, we use a Poisson process to determine inter-arrival
times for queries within each second. Like prior work [35],

325

Proteus: A High-Throughput Inference-Serving System with Accuracy Scaling ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

we use a Zipf distribution to divide requests across model
families with an 𝛼 value of 1.001. Finally, we speed up the
trace by a constant factor without modifying the shape of
the trace, and we choose the constant factor such that the
trace can overload our system to test its performance.

Synthetic traces.We generate synthetic traces to stress-test
systems in response to burstiness, both at the macro-scale in
order to evaluate resource allocation, and on the micro-scale
to evaluate adaptive batching. We provide details for both in
Sections 6.3 and 6.4 respectively.

6.1.4 EvaluationMetrics. We compare performance against
baselines using several metrics. (i) Throughput is the number
of queries per second served (QPS). (ii) Effective Accuracy is
the averaged accuracy for all the queries successfully served
by the system. (iii) Maximum Accuracy Drop for an approach
represents the maximum drop in its effective accuracy over
the entire trace. As the accuracy of all models is normal-
ized as mentioned before, we measure the drop from 100%.
(iv) SLO Violation Ratio is the number of latency SLO viola-
tions divided by the total number of queries. Since effective
accuracy measures accuracy only for the queries that are
successfully served by the system, it needs to be looked at in
conjunction with both throughput and SLO violation ratio
to get the full picture of performance.

6.1.5 Implementation. We describe our simulator-based
and cluster-based implementations below.
Simulator-based Implementation.We implement Proteus
in a simulator in ∼6000 lines of Python code. It uses an event
queue and a timer to record the arrival and processing of
inference queries. We use the average profiled latencies of
the model variants as the processing time for the queries. We
show that the results from our simulator match closely with
results from our cluster-based implementation, with a slight
discrepancy mainly due to the variance in processing time of
queries when they run on the actual hardware accelerators
and the networking effects between the hosts. Our simulator
code and workload traces are available on GitHub5.
Cluster-based Implementation.We implement Proteus
on top of an enterprise inference-serving system to test its
performance and feasibility on real-world workloads and
hardware accelerators. The system is used internally by the
enterprise to serve inference queries for its employees who
use it for a wide variety of applications and use cases, rang-
ing from standard image classification and voice recognition
models to complex pipelines for autonomous vehicles and
augmented reality. Note that while we use the software in-
frastructure and the hardware accelerators of the enterprise
in our cluster-based implementation, we do not use any pro-
prietary models or workload traces.
Our inference-serving system consists of a cluster of 20

Intel(R) Xeon(R) Gold 6126 @ 2.60GHz CPU workers, 10

5https://github.com/UMass-LIDS/Proteus

0
200
400
600
800

1000

Th
ro

ug
hp

ut

Demand
Clipper-HA

INFaaS-Accuracy
Clipper-HT

Sommelier
Proteus

0

100

200

300

400

Av
g.

 T
hr

ou
gh

pu
t

80
85
90
95

100

Ef
fe

ct
iv

e
Ac

c.

0
5

10
15
20

M
ax

. A
cc

. D
ro

p

0 4 8 12 16 20 24
Time (min)

0
100
200
300
400
500

SL
O

Vi
ol

at
io

ns

Algorithm
0.0

0.1

0.2

0.3

0.4

SL
O

Vi
ol

at
io

n
Ra

tio

Figure 4. End-to-end performance comparison. Proteus of-
fers the lowest accuracy drop amongst scaling approaches as
well as the lowest SLO violation ratio whilemeeting query de-
mand. Against the non-scaling approach, Proteus improves
throughput by 60% while reducing SLO violations by 10×.

NVIDIA GeForce GTX 1080 Ti GPU workers, and 10 NVIDIA
V100 GPU workers. We use Docker containers [31] to host
the models in our cluster on top of Kubernetes. We extend
Kubernetes with a resource optimizer plugin to implement
our ResourceManager which runs on one of the CPUs. Inside
the Docker containers, we run the models using the ONNX
runtime [10] with the CUDA execution provider for GPUs
and the CPU execution provider for CPUs.

To solve our MILP in the simulator as well as the cluster-
based system, we use the Python interface for Gurobi [18].
We set the invocation period of the MILP to be 30 seconds
as it works well for our evaluation.

6.2 End-to-End Performance Comparison
We first show results from the end-to-end evaluation of Pro-
teus and the baselines on our cluster testbed. Figure 4 shows
the timeseries graphs for demand and throughput, effective
accuracy, and the SLO violations, as well as the averaged
SLO violation ratios across the trace.
We see that Clipper performs the worst amongst all the

approaches. Even though Clipper-HA provides the highest
effective accuracy as it never swaps out high accuracymodels
for low accuracy models, it suffers the highest number of
SLO misses throughout the trace. Moreover, its throughput
also drops significantly at the diurnal peaks during the day.
For instance, during the first peak, its throughput drops to
half of the query demand. On the other hand, Clipper-HT has
significantly lower SLO violations and higher throughput
than Clipper-HA, though it comes at the cost of the lowest
effective accuracy and the maximum accuracy drop (20%).

326

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA S. Ahmad, H. Guan, B. D. Friedman, T. Willams, R. K. Sitaraman, T. Woo

Sommelier performs better than Clipper since it scales
accuracy, but still suffers from a high accuracy drop (16%
at peak) due to its inability to perform model placement
dynamically. INFaaS achieves the lowest maximum accuracy
drop across the baselines (13.7%) as it performs both dynamic
model selection and placement. However, since it uses a
greedy heuristic to do so which is prone to get stuck in local
optima, it suffers from a significant drop in throughput and
increase in SLO violations around peak times. INFaaS has to
use a greedy heuristic because its resource allocation decision
must be made on a query’s arrival. Therefore, it needs a faster
solution than a MILP to identify a new allocation policy in
time. Proteus avoids this problem by removing MILP solvers
from the critical path of serving a query.

We see that Proteus drops the least accuracy while closely
meeting query demands. Its maximum accuracy drop is 4.85%
at the highest peak, which is 2.8× lower than INFaaS and
3.2× lower than Sommelier. We attribute this to its optimal
resource allocation obtained from the MILP. It also experi-
ences the lowest number of SLO violations, 2.8× lower than
Sommelier, 4.3× lower than INFaaS, and more than 10× lower
compared to Clipper. We attribute this to its adaptive batch-
ing algorithm. To understand the performance of Proteus’s
adaptive batching further, we do a deep dive in Section 6.4.

The results from our simulator match the behavior of the
cluster testbed very closely. In particular, we observe an
average difference of 0.12% and 0.82% between the simulator
and the cluster testbed in terms of the effective accuracy and
system throughput respectively. We attribute the decrease
in throughput to background traffic on the cluster, container
startup delays, and other background effects not captured by
the simulator. We also report an average difference of 0.5%
in the SLO violation ratios. We expect this to be due to the
variance in runtimes of queries from the profiled runtimes.

Therefore, we show simulation-based experiments for the
remaining subsections to perform a deep dive into these
results in a time and cost-efficient manner.

6.3 Bursty Workload
We now evaluate Proteus and the baselines on a synthetic
macro-scale bursty workload to evaluate the responsiveness
of resource allocation. We generate the trace by interleav-
ing periods of flat, low query demand with periods of high
query demand, having query inter-arrivals sampled through
a Poisson process to introduce macro-scale bursts. As we are
only interested in studying resource allocation in this ex-
periment, we show timeseries plots in Figure 5 and skip the
summarized SLO violation chart in the interest of space.
We note that INFaaS reacts the fastest to the burst in

demand, due to the fact that its resource allocation lies on
the critical path to inference-serving, so it can detect this
change sooner and change its allocation accordingly.

Proteus first incurs a small number of SLO violations when
the burst starts. The increase in query demand triggers its

0
300
600
900

1200

Th
ro

ug
hp

ut

Demand
Clipper-HA

INFaaS-Accuracy
Clipper-HT

Sommelier
Proteus

80
85
90
95

100

Ef
fe

ct
iv

e
Ac

c.

0 4 8 12 16 20 24
Time (min)

0
100
200
300
400
500

SL
O

Vi
ol

at
io

ns

Figure 5. Responsiveness to bursty workload for Proteus vs.
baselines. Proteus adjusts allocation after an initial spike in
SLO violations, but provides the lowest SLO violations and
accuracy drop once it re-allocates.

Resource Manager to adjust allocation, resulting in the SLO
violations decreasing again as it performs accuracy scaling
to meet this burst. Thus Proteus’s decoupling of resource
allocation from the critical path of inference-serving comes
at the cost of a slightly slower response to sudden changes in
workloads. Once INFaaS and Proteus adjust their respective
allocations in response to the burst, Proteus continues to
have significantly lower SLO violations and higher effective
accuracy.

6.4 Adaptive Batching
Proteus’s adaptive batching dynamically chooses batch sizes
based on the arrival time of queries and queue status on
a device to minimize SLO violations. We compare it with
Clipper’s AIMD batching and Nexus’s [36] early-drop batch-
ing in terms of SLO Violation Ratio. To separate the effect
of batching from resource allocation and query assignment,
we implement each of these batching algorithms on top of
Proteus in order to study them in isolation without other
free variables. Since the batching of INFaaS is tied with its
resource allocation, it cannot be evaluated separately by im-
plementing it on top of Proteus as a module. We study its
batching as part of its resource allocation as in Section 6.2.
We evaluate adaptive batching on three synthetic traces

with query inter-arrivals following uniform, Poisson, and
Gamma (shape 0.05) distributions. The Gamma arrival trace
has highly bursty query inter-arrivals, thus introducingmicro-
scale bursts. We set the incoming load (QPS) to be the same
throughout these traces as we are interested in how the batch-
ing algorithms react to query inter-arrivals, when resource
allocation is unchanged. Note that burstiness in query inter-
arrivals is different from the bursty workload in Figure 6.3,

327

Proteus: A High-Throughput Inference-Serving System with Accuracy Scaling ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Uniform0.00

0.05

0.10

0.15

0.20

SL
O

Vi
ol

at
io

n
Ra

tio

Poisson Gamma

Proteus Proteus w/ Nexus
Batching

Proteus w/ Clipper
Batching

Figure 6. Comparison of Nexus and Clipper batching with
Proteus. All do well on uniform traces, but Proteus reduces
SLO violations by 2-4× on Poisson and Gamma traces.
where the overall demand is bursty but the query inter-
arrivals have a Poisson distribution (macro-scale bursts).

Figure 6 shows the SLO violation ratios using three batch-
ing approaches: (i) Proteus with its original adaptive batch-
ing, (ii) Proteus with Clipper’s AIMD batching, (iii) Proteus
with Nexus’s early-drop batching. We note that all batch-
ing algorithms perform well with uniform arrivals as the
optimal batch size remains same throughout the trace, thus
no adaptive adjustment is required. We see that Nexus ex-
periences about 2-3× higher SLO violations on the Poisson
and Gamma traces. The difference in performance between
Proteus and Nexus batching is due to the work-conserving
nature of Nexus. Nexus dispatches an inference batch to each
device as soon as the previous batch is finished. As the query
inter-arrivals get more and more non-uniform, it is more
advantageous to wait for queries to arrive and a non-work-
conserving approach works better in that case, so Proteus’s
adaptive batching outperforms that of Nexus.

On the other hand, Clipper experiences 3.8-4× higher SLO
violations on the Poisson and Gamma traces. Though it is
very easy to implement as a simple heuristic in any system,
its simplicity comes at the price of poor performance. As
AIMD is reactive, it does consider the current queue length
nor when any of the queries currently in the queue would
expire. It keeps incrementally increasing batch size until it
experiences latency timeouts, at which point it backs off
multiplicatively. While this works for a uniform trace where
the optimal batch size does not change over time, it does not
work well for Poisson or Gamma (bursty) arrivals.
6.5 Ablation Study
We present an ablation study of Proteus in Figure 7 to quan-
tify the performance benefit of each of its components in
isolation.
Proteus w/o MP (Model Placement) places the models on

accelerators initially using the MILP, but does not change
this placement over time. However, it can perform model
selection to do accuracy scaling by changing model variants
without moving them around. This baseline is the same as
the Sommelier baseline in Section 6.2, which suffers from
the largest maximum accuracy drop (16%). Proteus w/o MS
(Model Selection) represents a baseline that performs model
placement and query assignment optimally using the MILP

0
300
600
900

1200
1500

Th
ro

ug
hp

ut

Demand
Proteus w/o MS

Proteus w/o AB
Proteus w/o QA

Proteus w/o MP
Proteus

0
100
200
300
400
500

Av
g.

 T
hr

ou
gh

pu
t

80

85

90

95

100

Ef
fe

ct
iv

e
Ac

c.

0

5

10

15

20

M
ax

. A
cc

. D
ro

p

0 4 8 12 16 20 24
Time (min)

0

100

200

300

400

SL
O

Vi
ol

at
io

ns

Algorithm
0.00

0.05

0.10

0.15

0.20

SL
O

Vi
ol

at
io

n
Ra

tio

Figure 7. Proteus ablation study. Removing model selection
increases SLO violations the most, while removing model
placement degrades effective accuracy most.
and performs adaptive batching, but does not scale accuracy
in response to workload changes. Since it does not drop any
accuracy, its effective accuracy stays at 100% throughout the
experiment, however, it experiences the largest overall SLO
violation ratio at 0.18, due to its inability to adapt to vary-
ing demand by scaling accuracy. Proteus w/o AB (Adaptive
Batching) represents our approach while setting batch size
statically to 1. This approach has the highest absolute num-
ber of SLO violations during the peak as it is unable to batch
a large number of queries together to increase throughput
while meeting SLO, however this decreases when demand
is low since executing with a small batch at low loads does
not backlog the queues. Proteus w/o QA (Query Assignment)
distributes queries uniformly to all devices that host the re-
spective model variants, regardless of their serving capacity.
It also suffers from a high SLO violation ratio of 0.1.
Overall, we note that with respect to SLO violations, re-

moving model selection causes the highest degradation as
the system is not able to scale accuracy to meet the increased
demand (and hence, is forced to drop queries), followed by
adaptive batching, query assignment, and then model place-
ment. In terms of effective accuracy, removing model place-
ment causes the highest degradation, followed by adaptive
batching, query assignment, and then model selection.
6.6 Sensitivity to Latency SLO
We now vary the latency SLO and study its effect on all ap-
proaches, as shown in Figure 8. As mentioned before, our sys-
tem hosts models from diverse tasks that have significantly
different performance profiles from each other. Therefore,
instead of setting the same latency SLO for all of them, we
set the SLO for a query type to be a multiple of the profiled
runtime of fastest model variant that runs on a CPU with a
batch size of 1. We vary this multiple from 1× to 3.5× with

328

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA S. Ahmad, H. Guan, B. D. Friedman, T. Willams, R. K. Sitaraman, T. Woo

1x 1.5x 2x 2.5x 3x 3.5x
SLO

0

100

200

300

400

Av
g.

 T
hr

ou
gh

pu
t (

QP
S)

1x 1.5x 2x 2.5x 3x 3.5x
SLO

0

5

10

15

20

M
ax

. A
cc

ur
ac

y
Dr

op

1x 1.5x 2x 2.5x 3x 3.5x
SLO

0.0

0.2

0.4

0.6

0.8

1.0

SL
O

Vi
ol

at
io

n
Ra

tio

INFaaS-Accuracy
Clipper-HT

Clipper-HA
Sommelier

Proteus

Figure 8. Effect of varying SLOs on Proteus and baselines.

0
100
200
300
400
500

Th
ro

ug
hp

ut

MobileNet
T5
EfficientNet

DenseNet
BERT
ResNet

YOLOv5
ResNest
GPT-2

80

85

90

95

100

Ef
fe

ct
iv

e
Ac

c.

0 4 8 12 16 20 24
Time (min)

0

10

20

30

SL
O

Vi
ol

at
io

ns

Figure 9. Breakdown of Proteus performance w.r.t. model
families.
an interval of 0.5 and study its effect using the real-world
Twitter trace. To show results from a large number of ex-
periments, we show (i) averaged throughput across time,
(ii) maximum accuracy drop across time, (iii) average SLO
violation ratio across time.

Overall, Proteus consistently offers the lowest accuracy
drop across all baselines that perform scaling, and the lowest
SLO violation ratios. As the SLO increases, the SLO violation
ratio decreases, and throughput increases for all baseline
approaches. The maximum accuracy drop decreases for all
approaches except Clipper as it does not dynamically scale
accuracy and thus suffers from high SLO violations. Proteus
can maintain the same high throughput and low SLO viola-
tion ratios across all values of SLO. Its maximum accuracy
drop decreases as SLO values increase, since higher accuracy
model variants with slower runtimes can meet larger SLOs.
6.7 Performance Breakdown
We now present a breakdown of the end-to-end performance
of Proteus with respect to different model families on the
Twitter trace. Figure 9 shows that every model family ex-
periences different throughput as the workload has a Zipf
distribution with respect to model families as described in

Section 6.1. Since Proteus optimizes effective accuracy at the
system level, we note variations across model families. We
first observe that T5 experiences the highest variation across
time, which we attribute to the fact that it has a lower incom-
ing request rate compared to other model families, and hence
carries a lower weight in the overall system effective accu-
racy. We also observe that GPT-2 has the lowest variation
in effective accuracy since it is the most heavyweight model
and cannot fit into most accelerators, hence the system loads
it once in the accelerator with the highest amount of mem-
ory. In terms of SLO violations, we see relatively consistent
behavior across model families, since adaptive batching is
responsible for minimizing SLO violations and it executes
on a per-device level. We discuss the fairness implications
of these results in Section 7.

6.8 Decision Overhead
We measure the overhead of Proteus in two ways: (i) over-
head of the Request Router on the critical path of queries,
(ii) overhead of the Resource Manager. Since the Request
Router lies on the critical path for serving every query, it is
imperative that it should incur only a small delay to route
the queries. Recall that the Request Router stores a routing
table with an entry for each model variant as well as acceler-
ator. We measure the latency of the Request Router to search
this table to be less than 1ms. Note that there is also a space
overhead of this routing table that is 𝑂 (𝐷 ×𝑀 ×𝑄) where
D is the number of server devices, M is the number of model
variants, and Q is the number of query types.

The overhead for solving the MILP inside the Resource
Manager is also important as we need to make allocation
changes quickly in order to be able to adapt to fast workload
changes. We show how the runtime of the MILP scales with
respect to its input parameters in Figure 10. We show the
increase in the average run-time when increasing one of our
input parameters (𝑑,𝑚,𝑞) while keeping the other param-
eters constant. We also show the 95% confidence interval
for each value as an error bar. As our evaluation uses an
invocation period of 30 seconds for the MILP under stable
conditions, we show run-times up to 60 seconds since we
observe that beyond this point, our workload changes sig-
nificantly and the time taken to solve the MILP makes it
infeasible to adapt to workload changes quickly, forcing the
system to rely on heuristic solutions. We note that the MILP
can scale up to 160 devices, 450 model variants, or 17 query
types while being solvable in under 60 seconds.
In our case, we measure the average time to solve our

MILP to be 4.2 seconds. At this speed, the Resource Manager
is able to change the resource allocation quickly without
incurring any significant overhead on the system since it
does not lie on the critical path to inference.

329

Proteus: A High-Throughput Inference-Serving System with Accuracy Scaling ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0 40 80 120 160
Devices (d)

0
10
20
30
40
50
60
70

Ti
m

e
(s

ec
)

0 150 300 450
Model Variants (m)

0
10
20
30
40
50
60
70

Ti
m

e
(s

ec
)

0 3 6 9 12 15 18
Query Types (q)

0
10
20
30
40
50
60
70

Ti
m

e
(s

ec
)

Figure 10. Scalability of MILP with respect to input parame-
ters (𝑑,𝑚,𝑞)
7 Discussion
We now discuss the limitations of our work and potential
future work opportunities.
Varying Input Sizes.We consider models from a wide

variety of domains in this work, such as computer vision and
natural language processing. While computer vision models
typically have fixed-size inputs, many natural language mod-
els can have variable-size inputs and their throughput may
change depending on the size of input passed to themodel for
inference. While our MILP does not consider variable input
sizes of queries when calculating the throughput of a model
variant (𝑃𝑑,𝑚,𝑞), adaptive batching does take into account the
real-time query execution. However, for the scope of this
work, we do not consider the effect of variable-size inputs
on inference-serving and leave it open for future work.

Fairness. We consider accuracy scaling at a system level
in this work. This can mean that despite most requests meet-
ing the latency SLO and throughput requirements, some re-
quests may experience better accuracy than others at times.
This opens the door to fairness as an alternate objective for
optimization in an inference-serving system. However, it is
not straightforward to optimize fairness simultaneously with
accuracy. The system can improve fairness by reallocating
resources from a query type experiencing a low degree of
accuracy drop to a query type experiencing a higher degree
of accuracy drop; however, this would decrease overall effec-
tive accuracy at the system level. Thus, there is a trade-off
between fairness and system-wide effective accuracy, which
remains an interesting direction to explore for future work.
Hardware Scaling. In this work, we present accuracy

scaling as an alternative to hardware scaling for resource-
constrained inference-serving systems. However, accuracy
scaling can also work in tandem with hardware scaling for
systems that have the ability to add hardware resources.
Since hardware scaling involves provisioning and starting
new servers which takes time, accuracy scaling can be used
on a finer-grained timescale to absorb sudden unexpected
bursts of load by dropping accuracy for a short time while
waiting for new servers to be allocated.

8 Related Work
There has beenmuchwork recently on inference-serving sys-
tems. Representative production systems include TensorFlow-
Serving [32], Amazon SageMaker [2], Triton Inference Server [5],
and Azure ML [3]. Research prototypes include Clipper [9],

PRETZEL [27], Clockwork [14], DLIS [37], and INFless [45].
They aim to provide a unified abstraction to the user to
hide details of the underlying ML frameworks, data pre-
processing, and performance optimization. Cocktail [15]
uses model ensembling to improve accuracy and meet la-
tency requirements atminimal cost. Some otherwork focuses
specifically on serving heterogeneous DNNs via GPU spatial
sharing [7, 12], dynamic model placement [38], computation
merging [24], and adaptive scheduling [30]. However, none
of these works perform accuracy scaling to improve system
throughput for resource-constrained inference-serving.

The closest works to Proteus are INFaaS [35, 44], Somme-
lier [17], and Tolerance Tiers [19]. INFaaS [35] presents a
model-less inference-serving system that leverages model
graph optimizers to generate model variants and automates
selection of model variants for each query to minimize cost.
However, it assumes that all model variants generated can
meet the accuracy requirement and thus fails to simulta-
neously optimize for effective accuracy. INFaaS also suffers
from local optimum in model-to-device assignment due to its
heuristic assignment algorithm. Sommelier [17] is a model
repository that can interface with inference-serving systems
to suggest model variants with lower accuracy to handle pe-
riods of high load. Tolerance Tiers [19] allows developers to
trade accuracy off for latency using programming APIs, but
restricts an application to use only one accuracy tier statically
throughout the inference-serving process instead of adapt-
ing accuracy dynamically as a scaling approach. Further,
it doesn’t consider the scenario of serving heterogeneous
DNNs on heterogeneous devices.

9 Conclusion
We presented Proteus, a high-throughput inference-serving
system that leverages accuracy scaling to handle query work-
load variations. We formulated the resource management in
Proteus as a mixed integer linear programming optimization
to adapt to macro-scale variations, and solved it to guaran-
tee the optimal solution. We also proposed a novel adaptive
batching algorithm to improve throughput and absorb micro-
scale variations. We evaluated Proteus on real-world work-
load traces and showed that it outperforms state-of-the-art
baselines in reducing SLO violations and improving system
throughput while dropping minimal accuracy.

Acknowledgments
We thank our shepherd, Peter Pietzuch, and the anonymous
reviewers for their helpful feedback. This material is based
uponwork supported by the National Science Foundation un-
der grants 1763617, 2106299, 2312396, 2220211, and 2224054.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

330

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA S. Ahmad, H. Guan, B. D. Friedman, T. Willams, R. K. Sitaraman, T. Woo

References
[1] 2018. Twitter Streaming Traces. https://archive.org/details/

archiveteam-twitter-stream-2018-04.
[2] 2020. Amazon SageMaker. Build, train, and deploy machine learning

models at scale. https://aws.amazon.com/sagemaker/. Accessed:
2021-06-23.

[3] 2022. Azure Machine Learning. https://azure.microsoft.com/en-us/
services/machine-learning/.

[4] 2022. The ONNX Model Zoo. https://github.com/onnx/models. Ac-
cessed: 2022-06-06.

[5] 2022. Triton Inference Server. https://developer.nvidia.com/nvidia-
triton-inference-server.

[6] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John
Guttag. 2020. What is the State of Neural Network Pruning?. In Pro-
ceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos,
and V. Sze (Eds.), Vol. 2. 129–146. https://proceedings.mlsys.org/paper_
files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf

[7] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. 2021. Multi-model Machine Learning In-
ference Serving with GPU Spatial Partitioning. CoRR abs/2109.01611
(2021). arXiv:2109.01611 https://arxiv.org/abs/2109.01611

[8] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. 2021. Lazy Batching:
An SLA-aware Batching System for CloudMachine Learning Inference.
In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 493–506. https://doi.org/10.1109/HPCA51647.
2021.00049

[9] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX As-
sociation, Boston, MA, 613–627. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/crankshaw

[10] ONNX Runtime developers. 2021. ONNX Runtime. https://
onnxruntime.ai/. Version: 1.8.1.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. CoRR abs/1810.04805 (2018). arXiv:1810.04805
http://arxiv.org/abs/1810.04805

[12] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020.
GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference
Platform. In Proceedings of the 11th ACM Symposium on Cloud Com-
puting (Virtual Event, USA) (SoCC ’20). Association for Computing
Machinery, New York, NY, USA, 492–506. https://doi.org/10.1145/
3419111.3421284

[13] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-Aware
Multi-Tenant On-Device Deep Learning for Continuous Mobile Vi-
sion. In Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking (New Delhi, India) (MobiCom ’18).
Association for Computing Machinery, New York, NY, USA, 115–127.
https://doi.org/10.1145/3241539.3241559

[14] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
Clockwork: Performance Predictability from the Bottom Up. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 443–462. https://www.usenix.org/
conference/osdi20/presentation/gujarati

[15] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-
nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R. Das.
2022. Cocktail: A Multidimensional Optimization for Model Serv-
ing in Cloud. In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22). USENIX Association, Renton, WA,
1041–1057. https://www.usenix.org/conference/nsdi22/presentation/
gunasekaran

[16] Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin Lin, Xingjian
Shi, Chenguang Wang, Junyuan Xie, Sheng Zha, et al. 2020. GluonCV
and GluonNLP: deep learning in computer vision and natural language
processing. J. Mach. Learn. Res. 21, 23 (2020), 1–7.

[17] Peizhen Guo, Bo Hu, andWenjun Hu. 2022. Sommelier: Curating DNN
Models for the Masses. In Proceedings of the 2022 International Confer-
ence on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22).
Association for ComputingMachinery, New York, NY, USA, 1876–1890.
https://doi.org/10.1145/3514221.3526173

[18] Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual.
https://www.gurobi.com

[19] Matthew Halpern, Behzad Boroujerdian, Todd W. Mummert, Evelyn
Duesterwald, and Vijay Janapa Reddi. 2019. One Size Does Not Fit All:
Quantifying and Exposing the Accuracy-Latency Trade-off in Machine
Learning Cloud Service APIs via Tolerance Tiers. CoRR abs/1906.11307
(2019). arXiv:1906.11307 http://arxiv.org/abs/1906.11307

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 770–778. https:
//doi.org/10.1109/CVPR.2016.90

[21] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. CoRR abs/1704.04861 (2017). arXiv:1704.04861
http://arxiv.org/abs/1704.04861

[22] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. 2017. Densely Connected Convolutional Networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 4700–4708.

[23] Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu.
2015. TencentRec: Real-Time Stream Recommendation in Practice
(SIGMOD ’15). Association for Computing Machinery, New York, NY,
USA, 227–238. https://doi.org/10.1145/2723372.2742785

[24] Joo Seong Jeong, Soojeong Kim, Gyeong-In Yu, Yunseong Lee, and
Byung-Gon Chun. 2020. Accelerating Multi-Model Inference by Merg-
ing DNNs of Different Weights. arXiv preprint arXiv:2009.13062 (2020).

[25] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec,
NanoCode012, Yonghye Kwon, Kalen Michael, TaoXie, Jiacong Fang,
imyhxy, Lorna, Zeng Yifu, Colin Wong, Abhiram V, Diego Montes,
ZhiqiangWang, Cristi Fati, Jebastin Nadar, Laughing, UnglvKitDe, Vic-
tor Sonck, tkianai, yxNONG, Piotr Skalski, Adam Hogan, Dhruv Nair,
Max Strobel, and Mrinal Jain. 2022. ultralytics/yolov5: v7.0 - YOLOv5
SOTA Realtime Instance Segmentation. https://doi.org/10.5281/zenodo.
7347926

[26] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT
for Self-supervised Learning of Language Representations. CoRR
abs/1909.11942 (2019). arXiv:1909.11942 http://arxiv.org/abs/1909.
11942

[27] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, Markus Weimer, and Matteo Interlandi. 2018. PRET-
ZEL: Opening the Black Box of Machine Learning Prediction Serving
Systems. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 611–626.
https://www.usenix.org/conference/osdi18/presentation/lee

[28] Matthew LeMay, Shijian Li, and Tian Guo. 2020. PERSEUS: Char-
acterizing Performance and Cost of Multi-Tenant Serving for CNN
Models. In 2020 IEEE International Conference on Cloud Engineering
(IC2E). 66–72. https://doi.org/10.1109/IC2E48712.2020.00014

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy,Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
CoRR abs/1907.11692 (2019). arXiv:1907.11692 http://arxiv.org/abs/
1907.11692

331

Proteus: A High-Throughput Inference-Serving System with Accuracy Scaling ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[30] Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and
Minyi Guo. 2022. VELTAIR: Towards High-Performance Multi-Tenant
Deep Learning Services via Adaptive Compilation and Scheduling. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’22). Association for Computing Machinery,
New York, NY, USA, 388–401. https://doi.org/10.1145/3503222.3507752

[31] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux journal 2014, 239 (2014), 2.

[32] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril
Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
2017. TensorFlow-Serving: Flexible, High-Performance ML Serving.
InWorkshop on ML Systems at NIPS 2017.

[33] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Languagemodels are unsupervisedmultitask
learners. OpenAI blog 1, 8 (2019), 9.

[34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research 21, 140 (2020),
1–67. http://jmlr.org/papers/v21/20-074.html

[35] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. INFaaS: Automated Model-less Inference Serv-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, 397–411. https://www.usenix.org/conference/
atc21/presentation/romero

[36] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association
for Computing Machinery, New York, NY, USA, 322–337. https://doi.
org/10.1145/3341301.3359658

[37] Jonathan Soifer, Jason Li, Mingqin Li, Jeffrey Zhu, Yingnan Li, Yuxiong
He, Elton Zheng, Adi Oltean, Maya Mosyak, Chris Barnes, Thomas Liu,
and Junhua Wang. 2019. Deep Learning Inference Service at Microsoft.
In 2019 USENIX Conference on Operational Machine Learning (OpML
19). USENIX Association, Santa Clara, CA, 15–17. https://www.usenix.
org/conference/opml19/presentation/soifer

[38] Piyush Subedi, Jianwei Hao, In Kee Kim, and Lakshmish Ramaswamy.
2021. AI Multi-Tenancy on Edge: Concurrent Deep Learning Model
Executions and Dynamic Model Placements on Edge Devices. In 2021
IEEE 14th International Conference on Cloud Computing (CLOUD). 31–
42. https://doi.org/10.1109/CLOUD53861.2021.00016

[39] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017.
Efficient processing of deep neural networks: A tutorial and survey.
Proc. IEEE 105, 12 (2017), 2295–2329.

[40] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017.
Efficient Processing of Deep Neural Networks: A Tutorial and Survey.
Proc. IEEE 105, 12 (2017), 2295–2329. https://doi.org/10.1109/JPROC.
2017.2761740

[41] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. Well-Read Students Learn Better: The Impact of Student Ini-
tialization on Knowledge Distillation. CoRR abs/1908.08962 (2019).
arXiv:1908.08962 http://arxiv.org/abs/1908.08962

[42] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-
Jean Wu, David Brooks, and Gu-Yeon Wei. 2021. RecSSD: Near Data
Processing for Solid State Drive Based Recommendation Inference
(ASPLOS ’21). Association for Computing Machinery, New York, NY,
USA, 717–729. https://doi.org/10.1145/3445814.3446763

[43] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf,
Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-
vain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush.
2020. Transformers: State-of-the-Art Natural Language Processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computa-
tional Linguistics, Online, 38–45. https://www.aclweb.org/anthology/
2020.emnlp-demos.6

[44] Neeraja J. Yadwadkar, Francisco Romero, Qian Li, and Christos
Kozyrakis. 2019. A Case for Managed and Model-Less Inference Serv-
ing. In Proceedings of the Workshop on Hot Topics in Operating Systems
(Bertinoro, Italy) (HotOS ’19). Association for Computing Machinery,
New York, NY, USA, 184–191. https://doi.org/10.1145/3317550.3321443

[45] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang
Zhao, Xingzhen Chen, and Keqiu Li. 2022. INFless: A Native Serverless
System for Low-Latency, High-Throughput Inference (ASPLOS ’22).
Association for Computing Machinery, New York, NY, USA, 768–781.
https://doi.org/10.1145/3503222.3507709

[46] Haojie Ye, Sanketh Vedula, Yuhan Chen, Yichen Yang, Alex Bronstein,
Ronald Dreslinski, Trevor Mudge, and Nishil Talati. 2023. GRACE:
A Scalable Graph-Based Approach to Accelerating Recommendation
Model Inference (ASPLOS 2023). Association for ComputingMachinery,
New York, NY, USA, 282–301. https://doi.org/10.1145/3582016.3582029

[47] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin,
Zhi Zhang, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li,
and Alexander Smola. 2022. ResNeSt: Split-Attention Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. 2736–2746.

332

Proteus: A High-Throughput Inference-Serving System with Accuracy Scaling ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A Artifact Appendix for Proteus: A
High-Throughput Inference-Serving
System with Accuracy Scaling

A.1 Abstract
This artifact describes the complete workflow to setup the
simulation experiments for Proteus. We describe how to
obtain the code, and then describe two methods to install the
simulator. We explain how to run the experiments and the
expected results from simulation. Finally, we also publicize
all the workload traces used in our paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Combinatorial optimization using mixed inte-
ger linear programming, adaptive batching.

• Hardware: Docker container for linux_amd64 platform
provided. Source code can be used on any hardware.

• Metrics: Throughput, inference accuracy, latency SLO vio-
lations.

• Output: Log files are output by the simulator which are then
used by the plotting scripts to generate graphs for results.

• Experiments: End-to-end evaluation of Proteus and base-
lines as well as an evaluation of the responsiveness of Proteus
against baselines.

• Howmuchdisk space required (approximately)?: Docker
container requires approximately 1.5GB of disk space.

• How much time is needed to prepare workflow (ap-
proximately)?: 15 minutes.

• How much time is needed to complete experiments
(approximately)?: 1-2 hours depending on hardware plat-
form.

• Publicly available?: Yes. See below for access details.

A.3 Description
A.3.1 How to access. The simulator code and workload
traces can be accessed at https://github.com/UMass-LIDS/
Proteus. It is also accessible at the following DOI: https:
//doi.org/10.5281/zenodo.10428550.

A.3.2 Hardware dependencies. None for the simulator.

A.3.3 Software dependencies. We provide two installa-
tion methods. The first method only requires Docker, while
the second method requires the following:

• Gurobi optimization software
• A Gurobi license
• conda
• A local installation of Python

A.3.4 Data sets. The artifact has two types of datasets:
1. A real-world Twitter workload dataset to test end-to-

end system performance.
2. Several syntheticworkload datasets to test performance

of isolated components as described in the paper

A.3.5 Models. Amix of computer vision models for image
classification and object detection is used, as well as natural

language models for text translation, sentiment analysis, and
question answering. The complete list of all the DNNmodels
and their variants used is given in Table 3 in the paper.

A.4 Installation
We provide two methods of installation:

1. Docker: In order to quickly evaluate Proteus, we pro-
vide a Docker container with usage instructions at
https://github.com/UMass-LIDS/Proteus/blob/main/DOCKER.
md. We recommend this method for artifact evaluation
and quick testing as it does not require obtaining a
Gurobi license. For any other use cases, please use the
second method described below.

2. Local installation: For extensive evaluation and gen-
eral simulator usage, we recommend locally installing
Proteus and obtaining a Gurobi license. The instruc-
tions are provided at https://github.com/UMass-LIDS/
Proteus/blob/main/README.md.

A.5 Experiment workflow
The simulator requires a JSON configuration file as input to
set up the experiment. We have provided several example
configuration files in the config folder of our GitHub repo.
A configuration file describes the workload trace to use, the
resource allocation algorithm, the adaptive batching algo-
rithm, as well as any hyper-parameters (e.g., a 𝛽 value of
1.05 for Proteus is used by default).

Depending on the installation method used, the experi-
ments can be run using either of the following set of instruc-
tions:

1. Docker: Follow instructions at https://github.com/
UMass-LIDS/Proteus/blob/main/DOCKER.md.

2. Local installation: Follow instructions at https://
github.com/UMass-LIDS/Proteus/blob/main/EXAMPLES.
md.

A.6 Evaluation and expected results
The simulator produces log files in the logs folder. These
log files contain snapshots of the system at regular intervals
containing not only aggregated information about user de-
mand, system capacity, requests served/dropped/late, and
accuracy seen by the requests, but they also contain detailed
logs for all system events in logs/per_predictor.
These log files are then ingested by the plotting scripts

provided in the plotting folder to generate two graphs: an
end-to-end evaluation of Proteus against the baselines on the
Twitter trace, similar to the one in Section 6.3, as well as an
evaluation of the responsiveness of Proteus vs. the baselines
on a bursty trace, as in Section 6.4.

A.7 Experiment customization
The experiments can be customized by editing the sample
configuration files in the config folder.

333

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA S. Ahmad, H. Guan, B. D. Friedman, T. Willams, R. K. Sitaraman, T. Woo

The following resource allocation algorithms can be used
in the model_allocation field: ilp for Proteus, infaas_v2
for INFaaS-Accuracy, clipper for Clipper, and sommelier
for Sommelier.
The following batching algorithms can be used in the

batching field: accscale for Proteus adaptive batching,
aimd for Clipper’s AIMD batching, and nexus for Nexus’s
batching algorithm.

A.8 Notes
Please refer to https://github.com/UMass-LIDS/Proteus for
complete reference and instructions.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

334

