Loki: A System for Serving ML Inference Pipelines with Hardware
and Accuracy Scaling

Sohaib Ahmad
University of Massachusetts Amherst
sohaib@cs.umass.edu

ABSTRACT

The rapid adoption of machine learning (ML) has underscored the
importance of serving ML models with high throughput and re-
source efficiency. Traditional approaches to managing increasing
query demands have predominantly focused on hardware scaling,
which involves increasing server count or computing power. How-
ever, this strategy can often be impractical due to limitations in the
available budget or compute resources. As an alternative, accuracy
scaling offers a promising solution by adjusting the accuracy of ML
models to accommodate fluctuating query demands. Yet, existing
accuracy scaling techniques target independent ML models and
tend to underperform while managing inference pipelines. Fur-
thermore, they lack integration with hardware scaling, leading to
potential resource inefficiencies during low-demand periods. To ad-
dress the limitations, this paper introduces Loki, a system designed
for serving inference pipelines effectively with both hardware and
accuracy scaling. Loki incorporates an innovative theoretical frame-
work for optimal resource allocation and an effective query routing
algorithm, aimed at improving system accuracy and minimizing
latency deadline violations. Our empirical evaluation demonstrates
that through accuracy scaling, the effective capacity of a fixed-size
cluster can be enhanced by more than 2.7x compared to relying
solely on hardware scaling. When compared with state-of-the-art
inference-serving systems, Loki achieves up to a 10X reduction in
Service Level Objective (SLO) violations, with minimal compro-
mises on accuracy and while fulfilling throughput demands.

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Com-
puting methodologies — Machine learning.

KEYWORDS

Inference Serving, Model Serving, Inference Pipelines, Machine
Learning, Autoscaling

ACM Reference Format:

Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman. 2024. Loki: A System
for Serving ML Inference Pipelines with Hardware and Accuracy Scaling.
In The 33rd International Symposium on High-Performance Parallel and Dis-
tributed Computing (HPDC °24), June 3-7, 2024, Pisa, Italy. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3625549.3658688

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HPDC °24, June 3-7, 2024, Pisa, Italy

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0413-0/24/06

https://doi.org/10.1145/3625549.3658688

Hui Guan
University of Massachusetts Amherst
huiguan@cs.umass.edu

Ramesh K. Sitaraman
University of Massachusetts Amherst
ramesh@cs.umass.edu

1 INTRODUCTION

The growing popularity of machine learning (ML) has led to the
development of model serving systems!, where pre-trained ML
models are hosted on a cluster of servers to provide fast and accurate
responses to inference queries. Model serving systems typically
guarantee certain Service Level Objectives (SLOs) to users in terms
of latency deadlines and, at the same time, strive to achieve high
throughput and high resource efficiency in order to serve as many
queries as possible in a given amount of time.

As query demand (measured by queries per second or QPS)
usually changes over time, model serving systems need to handle
demand variations gracefully. To accommodate increasing query
demands, conventional methods primarily rely on hardware scaling,
i.e., adding more devices or using more powerful accelerators, to im-
prove system throughput [10, 32]. However, hardware scaling may
not be feasible due to budget constraints or the limited availability
of hardware resources in edge clusters or private clouds.

Accuracy scaling. Accuracy scaling has recently been proposed
as an alternative to hardware scaling [5, 17]. A model serving sys-
tem that uses accuracy scaling adapts model accuracy instead of
hardware resources to gracefully handle query demand variations.
Accuracy scaling is motivated by the fact that ML models can offer
different levels of accuracy depending on the time spent computing
the answer: less time spent on computation leads to less accurate
results but higher throughput. ML models with different accuracy
profiles are called “model variants”, which can be created from
model compression techniques [7, 37], or as part of neural network
architecture designs. When the query demand is high, a model serv-
ing system with accuracy scaling serves queries using less accurate
model variants to avoid SLO violations. When the demand drops,
the system serves queries using more accurate model variants to
improve accuracy.

Accuracy scaling is a particularly effective strategy in scenarios
where query demands are so high that they risk overwhelming
the available servers. In such cases, accuracy scaling ensures that
the system continues to provide timely responses. These prompt
responses that are less accurate are often more critical than slower
more accurate responses, or worse, queries that fail to be processed
at all. Accuracy scaling is especially beneficial for real-time ML
applications, including interactive and cloud-based editing services,
where quick feedback is essential [13, 22].

Accuracy scaling can be strategically combined with hardware
scaling to optimize query handling. During periods of low query
demand, the model serving system can employ hardware scaling to
reduce the number of active servers, thereby optimizing resource
usage. As query demand escalates, the system can shift to accuracy

'We use the terms “model serving” and “inference serving” interchangeably.

https://doi.org/10.1145/3625549.3658688
https://doi.org/10.1145/3625549.3658688

HPDC ’24, June 3-7, 2024, Pisa, Italy

scaling. This transition enables the system to enhance its through-
put capacity (in QPS), accommodating the surge in demand while
still adhering to the SLOs set for user satisfaction.

Limitations of existing approaches. The current approach to
accuracy scaling is primarily tailored for serving individual, inde-
pendent ML models. However, as ML becomes more integrated into
practical applications, the use of inference pipelines is increasingly
common. These pipelines combine multiple ML models to tackle
complex inference tasks and are becoming a standard part of ML in-
ference workloads. For instance, an image generation pipeline such
as Adobe Firefly [4] might sequentially employ a text embedding
model, a diffusion model, and an image super-resolution model to
produce high-resolution images from text prompts. The end-to-end
inference latency of these pipelines must adhere to the specific
SLOs set by the application (e.g., 200ms).

When the existing accuracy scaling method [5] is applied to
inference pipelines, it often leads to suboptimal resource allocation,
resulting in high SLO violation rates and poor response quality.
The core issue with the current accuracy scaling approach lies in its
pipeline-agnostic perspective on resource allocation. It adjusts the
accuracy of ML models and allocates computing resources without
considering the dependencies between the models in the different
tasks of a pipeline. This lack of consideration for the inter-model
relationships can impair the overall effectiveness of resource use in
complex, multi-model inference tasks.

Another limitation of the existing accuracy scaling method is
its lack of integration with hardware scaling. This shortcoming
becomes evident particularly during periods of low query demand.
In such scenarios, instead of scaling down the hardware resources,
current methods continue to utilize all available servers to handle
queries. This approach leads to inefficiencies, as it does not dynam-
ically adjust the server usage based on the actual demand, resulting
in unnecessary resource expenditure and under-utilization of the
server infrastructure.

The Loki system. To address the problem, this paper intro-
duces Loki?, a model serving system designed to handle inference
pipelines effectively using both hardware and accuracy scaling.
The primary objectives of Loki are to maximize the overall system
accuracy and minimize the active server count, while adapting to
fluctuating query demands. System accuracy is defined as the av-
erage accuracy across all queries processed by the system. Loki
operates under the assumption that, given sufficient resources, ev-
ery query would prefer the most accurate model variant. However,
it also recognizes that in situations where resources are constrained,
a timely response with slightly lower accuracy is acceptable.

When query demand is relatively low compared to available
server capacity, Loki optimizes resource usage by reducing the
number of active servers (and thus hardware costs) required to
process queries with the most accurate model variants. Under these
conditions, the system consistently achieves maximum accuracy. In
contrast, as the query demand increases, Loki smoothly transitions
to a pipeline-aware accuracy scaling mode. This mode focuses on
maximizing system accuracy while accommodating the increasing

2Loki is named after a Norse mythology figure who possessed the ability to change
form and appearance, much like our system transitions between hardware and accuracy
scaling.

Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman

100
80
S
<. 60
Q
e
=)
g 404 Hardware Accuracy Accuracy
Scaling Scaling Scaling
201 (Phase 1) (Phase 2) (Phase 3)
0

0 250 500 750 1000 1250 1500 1750
Demand (QPS)

Figure 1: For a traffic analysis pipeline that consists of two
sequential tasks, Loki first accomodates the increase in query
demand by using hardware scaling. When demand increases
further, Loki successively decreases the accuracy of each
task of the pipeline to increase throughput to meet demand.
Phase 2 decreases the 2™ task’s accuracy as it causes smaller
end-to-end accuracy drop.

volume of queries, resulting in all servers actively participating in
query processing.

Functioning of Loki. To illustrate the functioning of Loki, we
hosted a simple two-task traffic analysis ML pipeline on a cluster
of 20 servers. The first task of the pipeline consists of an object
detection model for identifying cars in an image and the second task
classifies the identified car according to its make and model. Loki
managed the resources in the server cluster using both hardware
and accuracy scaling to serve user queries for this pipeline.

Figure 1 illustrates the functioning of Loki as it varied the system
throughput to meet the user demand, ensuring that no queries were
dropped. In phase 1, as demand increased, Loki accommodated the
demand by hardware scaling, while accuracy remained unchanged.
In this phase, Loki increased the number of available servers to meet
the increasing query demand, but continued to use model variants
that yield the highest accuracy. In the second phase at around 560
QPS, it is no longer possible to scale the hardware since the server
limits of the cluster have been reached. In response, Loki decreases
accuracy to serve the increasing demand. Loki recognized that it is
possible to get a larger increase in throughput for a given loss in
end-to-end accuracy of the pipeline by using a less accurate model
for the second task of the pipeline. Consequently, it decreased the
accuracy of the second task to increase throughput, while keeping
the accuracy of the first task at the highest level. As query demand
continued to increase to about 1550 QPS, the system could no longer
decrease the accuracy of task 2 to meet the demand. Therefore, it
entered phase 3 where it starts to decrease the accuracy of task 1
of the pipeline. This allows Loki to support upto 1765 QPS which
is maximum throughput the system can support without dropping
any request.

It should be noted that Loki can support 2.7X more throughput
at the end of phase 2 than a system that does hardware scaling
alone, albeit with a modest drop in accuracy of 13%. Further, Loki
can support up to 3X more throughput at the end of phase 2 than

Loki: A System for Serving ML Inference Pipelines with Hardware and Accuracy Scaling

hardware scaling alone, albeit with a more significant accuracy
drop. In practice, there is usually a minimum level of acceptable
accuracy required for queries, which limits the amount of accuracy
scaling that can be performed.

Our contributions. Our specific contributions follow:

o We design Loki, the first model serving system that integrates
hardware scaling with accuracy scaling to effectively serve
inference pipelines.

o We present a MILP-based theoretical framework for optimal
allocation of resources in a cluster that incorporates perfor-
mance models for the accuracy and throughput of inference
pipelines. Using this framework, Loki periodically decides
which model variants are hosted on which servers to meet
throughput, accuracy, and latency requirements.

e When queries arrive, they need to be routed to the right
sequence of model variants in the pipeline. For this task,
we propose an efficient routing algorithm that intelligently
routes the queries in real-time to maximize system accuracy
and minimize SLO violations.

e We evaluate Loki against two state-of-the-art model serv-
ing systems, one system that performs hardware scaling
but not accuracy scaling [10] and another that performs
accuracy scaling but is pipeline-agnostic [5]. Using query
workloads from synthetic and production traces, we show
that Loki reduces SLO violations by more than 10X compared
to pipeline-agnostic accuracy scaling systems while using
2.7x fewer servers during off-peak times where the demand
is low. Further, Loki increases the effective capacity of the
cluster by more than 2.7x compared to systems that do not
perform accuracy scaling.

2 BACKGROUND AND CHALLENGES

This work is motivated by the importance of serving inference
pipelines and the benefits of accuracy scaling in model serving. We
provide the background and then outline the challenges in building
a pipeline-aware inference serving system.

2.1 Background

Inference pipelines. Inference pipelines integrate multiple ML
tasks together in a dataflow graph to address more complex tasks.
These pipelines can be represented as directed rooted trees, where
each node (or vertex) represents a task, the input, or the output, and
each directed edge of two tasks denotes the flow of data between
them?. The root of the tree is referred to as the source (i.e., the input)
and the leaves of the trees are the sinks (i.e., the outputs). Thus, the
rooted tree consists of multiple source-to-sink paths, where each
of these paths has its own end-to-end accuracy. The end-to-end
accuracy of the pipeline graph is the average of the end-to-end
accuracy of all the source-to-sink paths.

In the execution of an inference pipeline for serving a query
(also called a request*), the ML model for one task generates inter-
mediate outputs that serve as inputs (termed intermediate queries)

3Loki does not support general directed acyclic graphs where an ML model derives in-
put from multiple models. This paper uses the terms “inference pipeline” and “pipeline
graph” interchangeably.

4We use the terms query and request interchangeably in this work.

HPDC ’24, June 3-7, 2024, Pisa, Italy

Car
Classification

Image
Classification

Object
Detection

Facial
Recognition

Image
Captioning

(a) Traffic analysis pipeline (b) Social media pipeline

Figure 2: Examples of inference pipelines

Accuracy (%)
N N NN O 0 0 0 o
N 00 O O H N W A~ v,
[)
[)

~
o

=
o

20 30 40 50 60
Throughput (QPS)

Figure 3: Accuracy-throughput tradeoff for EfficientNet
model variants as profiled on an NVIDIA V100 GPU

for the ML model in the subsequent tasks. Figure 2 illustrates two
representative inference pipelines studied in this paper. The traffic
analysis pipeline can be used to generate traffic analytics on the
video feed from cameras at intersections. The social media pipeline
can be used by platforms such as Twitter and Facebook to detect
objects in the image and generate suggested captions.

Accuracy scaling. Accuracy scaling leverages the fact that
model variants with different compute complexities (e.g., models
from the EfficientNet family [39]) can be used to serve the same
inference task. A model variant that is more lightweight is usu-
ally less accurate, but can be executed faster, resulting in higher
throughput on the same hardware, as shown in Figure 3. The con-
cept of accuracy scaling was first introduced in Proteus [5], a model
serving system designed for handling independent ML models on
a cluster with a fixed number of servers. Accuracy scaling is par-
ticularly effective in managing high query demands with a limited
number of servers. In scenarios where the volume of queries ex-
ceeds the server capacity, accuracy scaling strategically reduces the
accuracy of the models. This reduction is done to ensure that the
system meets the latency deadlines of the queries, thus balancing
the trade-off between accuracy and timely response under heavy
load conditions.

2.2 Challenges

Despite the promise of accuracy scaling, applying it to serve infer-
ence pipelines is challenging due to the complexities introduced by
the inter-dependencies of ML models.

2.2.1 Optimal resource allocation. In this work, a resource alloca-
tion plan includes three key specifications: (1) the choice of model
variants for each task of an inference pipeline, (2) the number of
replicas for each model variant (termed replication factor), and (3)
the maximum batch size that can be used for each model variant.

HPDC ’24, June 3-7, 2024, Pisa, Italy

The maximum batch size corresponds to the maximum time budget
assigned to a task.

In the context of accuracy scaling, an optimal resource allocation
plan maximizes system accuracy while satisfying a target query
demand given a fixed cluster size. The accuracy scaling approach in-
troduced in Proteus [5] is pipeline-agnostic, meaning it adjusts the
accuracy of ML models individually without considering the inter-
dependencies between them. When applied to inference pipelines,
this approach can lead to suboptimal resource allocation, resulting
in poor query response quality and high rates of SLO violations.
These interdependencies present three major issues:

1. Impact of the accuracy of individual models on the end-to-end
accuracy of the pipeline. Choosing model variants for each task
must be made with the knowledge of its impact on the end-to-end
accuracy on the pipeline. When facing increased query demands,
the system should reduce the accuracy of models that minimally
affect the end-to-end pipeline accuracy. For instance, Figure 1 shows
that decreasing accuracy of the second task in the pipeline causes
smaller end-to-end accuracy drop compared to the first task. This
consideration is absent in the existing accuracy scaling methods,
which do not consider the influence of individual models on end-
to-end pipeline accuracy.

2. Throughput bottlenecks. The optimal batch size and replication
factor for each selected model variant depend on the throughput
bottleneck of the inference pipeline. If a given task is not the bot-
tleneck, increasing the batch size or assigning more resources to a
model variant of that task enhances throughput for that task but
does not necessarily improve overall system throughput. More-
over, allocating more resources to the bottleneck task may create
resource shortages for other tasks, potentially creating new bot-
tlenecks. Using a larger batch size at a given task also introduces
longer processing delays for that task, reducing the time available
for other tasks. This is a departure from the scenario addressed
by Proteus, where ML models are independent and throughput
improvements in any model enhance overall system throughput.

3. Workload multiplication effects. The workload of each task
can be influenced by the model variant used in preceding task. For
example, in a pipeline with a face detection model followed by a
face recognition model, the input demand for the recognition model
depends on the output of the detection model. A more accurate
detection model might detect more faces, thereby increasing the
workload for the recognition task. The existing accuracy scaling
approach fails to account for such workload dependencies between
models in resource management.

Our approach. We design performance models that assess how
a resource allocation plan influences system accuracy, latency, and
throughput capacity. These performance models are particularly
crafted to consider the intricate relationships between the models
in a inference pipeline. Utilizing these performance models, we
can frame the resource allocation problem within a Mixed-Integer
Linear Programming (MILP) framework and leverage MILP solvers
to determine the optimal resource allocation plan. Loki periodically
invokes the solver to re-allocate resources to accomondate macro-
scale query demand changes.

Additionally, the performance models enable us to integrate
hardware scaling into the same MILP framework used for accuracy

Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman

01 lB
)

[—— Data path ---» Control path]

Controller

Resource Manager

Load Balancer

Metadata Store

Model Profiler

Pipeline Graph

Figure 4: System Architecture of Loki

scaling, albeit with a distinct optimization goal. In terms of hard-
ware scaling, the ideal resource allocation plan is defined as the one
that minimizes the number of active servers required to process
queries while meeting a target query demand. The optimization for-
mula for this objective is based on our performance model, which
delineates the connection between the system’s latency, through-
put capacity, and the specifics of a resource allocation plan. This
unified approach under the MILP framework allows for a cohesive
treatment of both hardware and accuracy scaling, each with its
unique optimization targets, while maintaining a consistent under-
lying methodology. We present the performance models and our
optimization in Section 4.

2.2.2 Query execution with accuracy scaling. Another challenge
in utilizing accuracy scaling for serving inference pipelines is de-
ciding the optimal execution path for each incoming query. This
decision aims to enhance system accuracy while minimizing vio-
lations of SLO. The MILP formulation used for system accuracy
estimation operates under the assumption that each deployed ML
model functions at its maximum throughput to meet the target
query demand. However, this assumption may not always be valid
due to the dynamic nature of query arrivals during runtime. The
method by which queries are routed and executed can significantly
affect both the quality of their responses and their capacity to ad-
here to predetermined latency deadlines.

Our approach. We present a greedy request routing algorithm
in Section 5 that routes requests in a way that maximizes system
accuracy. To minimize SLO violations, we perform a runtime op-
timization to drop requests that are unlikely to meet their SLOs,
in order to free up resources for requests with higher chances of
meeting their SLOs.

3 SYSTEM ARCHITECTURE OF LOKI

We now present an overview of Loki’s system architecture and
provide more details in Sections 4 and 5. Figure 4 shows the three
key components: Controller, Frontend, and Workers.

Controller. The Controller is responsible for managing the
resources in the system and for routing the queries. It uses the
following sub-components to achieve this.

Loki: A System for Serving ML Inference Pipelines with Hardware and Accuracy Scaling

Resource Manager. The Resource Manager performs resource
allocation periodically in response to the incoming demand to in-
dicate which model variants to host, as well as their replication
factors and maximum batch sizes. It consults the Metadata Store
to get the historical query demand, the pipeline graph, and the
profile of model variants for each task in the graph to perform the
allocation. Once the Resource Manager obtains an allocation plan,
it adjusts the allocation of workers to model variant instances in the
system to reflect the new allocation plan. The Resource Manager
assumes a finite-size cluster for allocation. As long as it can meet
demand using the highest accuracy model variants for each task
in the pipeline, it tries to scale the hardware needed to serve the
demand. If the demand cannot be met even using the entire cluster,
it drops accuracy to meet the increased demand. We explain the
details of the resource allocation algorithm in Section 4.

Load Balancer. The Load Balancer is tasked with routing the
queries through the hosted instances to maximize system accuracy.
It uses the resource allocation plan set up by the Resource Man-
ager as well as the pipeline graph and real-time demand from the
Metadata Store to perform the routing. It sets up routes from the
Frontend to the first-task workers of the pipeline, as well as the
routes between intermediate workers.

Model Profiler. The Controller uses the Model Profiler to profile
the expected processing times of each model variant in the pipeline
with different batch sizes during the initial setup. The profiles are
then stored in the Metadata Store and used by the Resource Manager
every time it performs resource allocation.

Metadata Store. The Metadata Store holds the information re-
quired by the Resource Manager and Load Balancer. It stores the
representation of the pipeline as a graph, the profiled throughput
and accuracy of each model variant, and the profiled end-to-end
accuracy of each source-to-sink path through the graph. During
the initial setup, a pipeline graph, the model variants for each node
in the graph, and the end-to-end pipeline latency requirement are
registered in the Metadata Store.

Frontend. The Frontend accepts queries from the client and for-
wards them to the respective workers. The query is then forwarded
by those workers to intermediate workers in the pipeline, and the
workers at the last task of the pipeline return the results to the
Frontend which then returns the results to the client. The Frontend
also records the incoming demand into the system and reports it to
the Controller which stores it in the Metadata Store.

Workers. The workers host the model variants and execute
inference queries. Each worker has a queue that it uses to form
batches. As the worker executes queries, it records the number of
subsequent requests generated for downstream tasks in terms of
a multiplicative factor on the incoming number of requests and
reports it to the Controller using heartbeat messages.

Query Processing. Clients interact with Loki in the follow-
ing way. Client sends a query to the Frontend of Loki ((1)). The
Frontend routes the query to one of first-task workers ((2)). The
first-task worker passes the intermediate query (or queries) to one
(or more) second-task worker ((3)) and so on. The last-task worker
(or workers) pass the inference results to the Frontend ((3)). The
Frontend aggregates the results and returns them to the client ((5)).

We now provide details of the two core modules: the Resource
Manager and the Load Balancer in Sections 4 and 5 respectively.

HPDC ’24, June 3-7, 2024, Pisa, Italy

4 RESOURCE MANAGER

The Resource Manager is tasked with allocating resources in the
system to meet the incoming demand. It uses the incoming demand
as input and outputs the resource allocation plan that describes
the model variants to host as well as the replication factor and the
maximum batch size that can be used for each model variant by
performing the following two steps.

(1) Hardware scaling. The Resource Manager first tries to
serve the incoming demand with the minimum number of
workers by using the most accurate model variants for each
task in the pipeline. If this is not possible, it executes the
accuracy scaling step below.

(2) Accuracy scaling. If the Resource Manager is unable to
meet demand by using the entire cluster with the most ac-
curate model variants, it tries to determine the minimum
amount of system accuracy to sacrifice in order to meet the
demand. This enables the Resource Manager to increase the
throughput capacity of the cluster, allowing it to serve a
greater demand compared to using hardware scaling alone.

Each of the above steps is modeled as a mixed-integer linear
program (MILP) as described below. The MILPs are solved by the
Resource Manager to get the resource allocation plan.

4.1 MILPs for hardware and accuracy scaling

We now formulate the resource allocation problem as a mixed in-
teger linear programming (MILP) optimization. We first elaborate
the input and the output of the optimization problem and then
introduce the performance models that quantify the relationship
between a resource allocation plan and system accuracy, latency,
and throughput. Table 1 summarizes the notation used in the opti-
mization.

Inputs. We are given as input the pipeline graph consisting
of a set of tasks T and a set of directed edges E where an edge
e = (i, j) € E denotes an edge from the ith task #; to the jt task tj.
The pipeline graph is a directed rooted tree with the source node
(t1) as the root which does not have any incoming edges. We are
also given the incoming demand of the system, D, that arrives at
the root. Let r(i, k) represent the multiplicative factor of the kth
model variant of task t; € T.

Output. The output is the resource allocation plan, defined by
the two optimization variables: x(i, k) and y(i, k), representing the
number of instances to host for the k™ model variant of task t; € T
along with the maximum batch size to use for it, respectively.

Meeting the system throughput demand. To model how an
allocation plan affects the system throughput, we need to introduce
two concepts: augmented graph, and intermediate query demand.

Augmented graph. The augmented graph aims to represent all
possible materializations of a pipeline graph using different combi-
nations of model variants for each task. We construct an augmented
graph from the given pipeline graph in the following way: For ev-
ery vertex i in the pipeline graph that represents the ith task t;, we
create vertices (i, k) in the augmented graph representing the k'
model variant of task ¢;. We add a directed edge from a vertex (i, k)
to (j, k’) in the augmented graph if (i, j) is an edge in the pipeline
graph, for all k, k’.

HPDC ’24, June 3-7, 2024, Pisa, Italy

Subscripts

T the set of tasks

t; the i task in the pipeline, t; € T

Vi the set of model variants for the ith task

vir the k™ model variant for the it task, v;x € V;

E the set of edges between tasks in the pipeline graph

P the set of all root-to-sink paths in the augmented graph
B the set of allowed batch sizes
b batch size, b € B

Inputs
D incoming demand (QPS)
S number of workers in the cluster

L latency SLO of the pipeline
r(i,k) multiplicative factor for the ™ model variant of i task
q(i, k, b) profiled throughput (QPS) for the k™ model variant of the
ih task with batch size b
A(vig) profiled accuracy of the k™ model variant of the i" task
A(p) end-to-end profiled accuracy of path p
Optimization variables

x(i,k) number of instances for the k™ model variant of the i
task
y(i,k) maximum batch size to use for the k™M model variant of
the i task
Intermediate variables
c(p) ratio of queries supported through path p
I(p) 1if there is any traffic through the path p; 0 otherwise
1G.5) the processing latency of the k™ model variant of the ith
? task with the configured batch size
I(p) end-to-end latency through path p

Table 1: Notation for MILP

Intermediate query demand. The Resource Manager not only
needs to host enough model instances to serve the incoming queries
at the first task of the pipeline, but it also needs to consider the
intermediate queries generated by the initial tasks to host model
instances for the downstream tasks in the pipeline. For example, an
object detection model in the traffic analysis pipeline may detect
10 cars in an image, creating 10 intermediate queries to be served
by the car classification model. Therefore, it needs estimates of the
multiplicative factor for each model variant. The Resource Manager
uses the estimate of incoming demand into the system as well as
the profiled multiplicative factor of each model variant to estimate
the intermediate query demand.

We next model the requirement that model variants chosen
for a task need to meet the task’s intermediate query demand in
Constraint 2. For every model variant v; 5., we want to ensure that it
has enough resources to serve all requests arriving at it. To get the
number of requests arriving at v; ;, we need to consider all paths
that contain it. Let Plf .. be the set of all paths p that start at a vertex
that corresponds to the root and end in vertex (i, k) that represents
model variant v; ;. For p € Pi/,k’ let m(p, i, k) represent the number
of requests derived from a single request entering path p that reach
0; k.- Thus, the following holds.

mp.ik)y = [] r@.K) 1)
(i’,k")ep

Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman

We now ensure that v; ;. has enough resources to serve all re-
quests going through it. Let P be the set of all paths in the aug-
mented graph that start at a vertex that corresponds to the root
and end at a vertex that corresponds to a sink. Let P; ;. be the set
of all paths p € P that include vertex (i, k) that represents model
variant v; ;.. As the total number of requests per second entering
the pipeline is D and c(p) is the ratio of these requests that we
route through the path p, the number of requests that arrive at v; j
after multiplication are 3 ,ep,, D - ¢(p) - m(p, i, k). Then, to ensure
v; k. has enough resources to serve all the requests going through it,
we add the following constraint.

Z D-c(p) -m(p,i,k) < x(i,k)-q(i,k,y(i,k)) Vo, €Vy,Vt; €T
pEPi)k
2

We require that the number of workers used may not exceed the
total available workers in the cluster.

Z x(i,k) < S ®3)
ik
Meeting the latency SLO. We now model how a resource alloca-
tion plan affects the end-to-end pipeline latency, which is bounded
by the SLO requirements of queries. The maximum batch size is
bounded by the latency requirements of requests and also the largest
batch size feasible on a specific device. We configure the maximum
batch size using one of the batch sizes from the set of allowed
batch sizes (Constraint 4). The processing latency of a model vari-
ant depends on the maximum batch size configured for it and the
throughput of the model using that batch size (Constraint 5).

y(i,k) € B Yo € ViVt €T (4)
y(i. k)
q(i. k,y(i, k)

We define the end-to-end processing latency through a path p
as following.

I(i,k) = Yo € ViVt €T 5)

ipy=> Wik VpeP (6)
(ik)ep

As we need to meet the end-to-end latency SLO of the pipeline,

we need to ensure that the processing latency through each path

serving any query is less than the SLO.

I(p)-1(p) < L

To account for the waiting time of queries in the queue, we divide
the SLO by two. This is motivated by an observation from prior
work [5, 36]: a query that arrives right after a batch starts execut-
ing needs to wait for the current batch to finish, before starting
execution with the next batch and thus may have to wait twice the
amount of processing time of a batch. Based on this, we divide the
SLO by two, assuming that the query’s waiting time in the queue
is as long as the query’s execution time.

Modeling the system accuracy. As mentioned in Section 2.2.1,
the model variants chosen at each task of the pipeline affect the

VpeP (7)

Loki: A System for Serving ML Inference Pipelines with Hardware and Accuracy Scaling

end-to-end accuracy. Therefore, to capture this accuracy, we profile
the end-to-end accuracy of every path p € P as A(p). Given that
the optimization configures the ratio of requests through the path
p to be c(p), the system accuracy is X ,ep c(p) -A(p).

The MILP optimization. We now present the MILP optimiza-
tion for both hardware and accuracy scaling based on the above-
mentioned performance models.

Step 1: Hardware scaling. We first try to serve demand using
the most accurate model variant for each task. To achieve this,
we constrain the number of hosted instances for all other model
variants to be 0. Let us denote the most accurate model variant for
the task t; as:

max

Y

= arg maxA(v; k)

v;kEV;

Vt; eT (8)

Then we can denote the set of all other model variants as:

Vi = {vik € VilA(o) < A(]")} vieT (9

We can now define the constraint to disallow less accurate model
variants as following.

x(i,k) =0 Vo € ViVt €T (10)

In this case, the optimization objective is to minimize the number
of workers used to serve the demand.

min Z x(i,k) s.t. Constraints 1-10 hold (11)
ik

It is important to note that it may not be possible to serve demand
with the highest accuracy model variants by using even the entire
cluster. In this case, the above optimization will immediately detect
the constraints to be infeasible, and we resort to accuracy scaling.
Step 2: Accuracy scaling. The optimization objective for accuracy
scaling is to maximize the system accuracy, which is the average
accuracy experienced by all queries served by the system. The sys-
tem accuracy is measured by multiplying the end-to-end accuracy

of each path by the ratio of queries flowing through it.

max Z c(p) A(p) s.t. Constraints 1-7 hold (12)
peEP

4.2 Solving the MILP

As the Resource Manager is invoked periodically to respond to
long-term changes in demand, it can tolerate a higher runtime
from considering a large number of paths through the pipeline, as
long as it yields an optimal solution at the end. For the purpose
of our experiments, we use a 10-second invocation interval for
the Resource Manager. We show in Section 6.5 that the runtime
overhead of the MILP is low enough to allow it to adapt reasonably
quickly to this invocation frequency. Additionally, the Resource
Manager may reallocate resources if it detects a significant change
in the demand between its periodic invocations. To estimate the
demand to serve, we use an exponentially weighted moving average
on the recent demand history.

HPDC ’24, June 3-7, 2024, Pisa, Italy

Latency budgets for tasks. The batch sizes set by the MILP
not only serve as guidance for the workers to form batches during
execution, they also allow us to set latency budgets for each task.
Since the optimization ensures that the execution latency through
every path falls under the SLO using the configured batch sizes, we
use the execution time of a model variant with the configured batch
size as the latency budget for its task. These latency budgets are
useful during query execution to make sure requests are on track
to meet their SLOs as they move through the tasks in the pipeline.
In case they fall behind, we can use the latency budgets to perform
early dropping of requests as we detail in Section 5.2.

Communication latency. It is important to consider the com-
munication latency between workers since the end-to-end execu-
tion latency of a query depends on the communication latency
between the workers that serve that particular query. As we con-
sider all servers to be in the same cluster, we assume communication
latency between any pair of servers to be homogeneous. Therefore,
during resource allocation, we subtract the product of the total
number of servers in the path with this communication latency
from the latency SLO of the pipeline.

Estimating multiplicative factors. As mentioned before, each
request generates multiple requests for downstream tasks in the
pipeline. We refer to the number of outgoing requests generated
for each incoming request as the multiplicative factor. We note
that every model variant can have a different multiplicative factor,
for example, extending the example from above, a lower accuracy
object detection model such as YOLOv5n may detect fewer cars
in an image compared to a higher accuracy model variant such
as YOLOv5x. Each model variant hosted at a worker records the
multiplicative factors it observes when serving queries and reports
them to the Controller through heartbeat messages. The Controller
aggregates these for each model variant to be used by the Resource
Manager.

5 LOAD BALANCER

The Load Balancer produces the routing tables that enable each
query to be routed through a sequence of model variants in real-
time to maximize system accuracy and reduce SLO violations. To
achieve this, it takes as input the resource allocation plan produced
by the Resource Manager, the pipeline graph, and the recent demand
history from the Metadata Store, and outputs routing tables for both
the Frontend and workers.

The Load Balancer is a centralized component and periodically
updates the routing tables of workers, while the workers use their
respective routing tables during real-time execution to find down-
stream workers for intermediate requests. We present our algorithm
in this section and explore the overhead of the Load Balancer in
Section 6.5.

5.1 Request Routing

We now present our request routing algorithm, MOSTACCURATE-
FirsT (Algorithm 1). The algorithm works in the following way:
Starting from the root node of the pipeline graph, it takes the
incoming QPS of the node and assigns model variants to it in non-
increasing order of their profiled single-model accuracies. As each

HPDC ’24, June 3-7, 2024, Pisa, Italy

model variant can have a different multiplicative factor, the outgo-
ing requests for this node are calculated by multiplying the requests
assigned to each model variant by the multiplicative factor of that
variant. The outgoing requests are sent to the children nodes, and
we recursively repeat the same procedure on each of the children.
MoSTACCURATEFIRST generates routing tables based on estimated
demand and updates the routing tables of all the workers and the
Frontend.

Algorithm 1

1: procedure MosTACCURATEFIRST(pipelineGraph, worker meta-
data)

2. sortedGraph «— ToroLoGICALSORT(pipelineGraph)

3: routingTables < ¢

4. for task in sortedGraph do

5. workers « sort(task.workers) » By single-model accuracy

6: for worker in workers do

7 workerTable « ¢

8 for child in task.children do

9 outgoing <« workerincoming

* *

task.multFactor

child.branchRatio
10: totalChildDemand <« outgoing
11 childWorkers « sort(child.workers)
12: for cWorker in childWorkers do
13: if cWorker.capacity > 0 & outgoing > 0 then
14: routed «<— min(outgoing, cWorker.capacity)
15: routingProbability « routed / totalChildDemand
16: workerTable.addEntry(cWorker, routingProbability)
17: outgoing « outgoing — routed
18: cWorker.capacity «— cWorker.capacity — routed
19: cWorker.incoming <« cWorker.incoming + routed
20: routingTables[worker] «— workerTable

21: return routingTables

The Load Balancer runs the MosTACCURATEFIRsT algorithm ev-
ery time the Resource Manager changes the resource allocation
plan. It also runs periodically between successive invocations of the
Resource Manager. On each execution, the MOSTACCURATEFIRST
algorithm produces routing tables for every worker and pushes
the routing tables to the respective workers. The workers then use
their routing tables during real-time query execution to find down-
stream workers to forward intermediate queries. Since we saturate
workers for each node in non-increasing order of their single-model
accuracies, we may have some workers for each node with left-
over capacity. We make a list of these workers along with their
leftover capacities and propagate this list to their upstream workers.
The upstream workers can use this list to perform Opportunistic
Rerouting, a technique we describe in Section 5.2.

As the end-to-end pipeline accuracy is a monotonic function of
single-model accuracies, and MoSTACCURATEFIRST ensures that
each node in every source-to-sink path in the pipeline graph gets
the highest single-model accuracy for a given QPS, this means
MosTACCURATEFIRST maximizes the end-to-end pipeline accuracy.

Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman

5.2 Early dropping with opportunistic rerouting

The Resource Manager and Load Balancer assess the recent demand
history of the system to allocate resources and set up routing for
future requests. However, real-time demand can deviate from these
estimates. Moreover, the estimates are made at the granularity
of seconds, while request arrivals and multiplicative factors may
fluctuate at smaller timescales between these estimates. Due to these
reasons, there is a possibility that some requests may exceed their
SLOs despite provisioning the system to prevent SLO violations.
In such instances, it may be more effective to preemptively drop
a request if we can anticipate that it is likely to miss its SLO. This
decision can only be made at runtime during query execution at
individual workers. We refer to this process as early dropping, and
it can mitigate SLO violations by freeing up resources for requests
that are expected to meet their SLOs.

Since requests undergo execution sequentially through the tasks
within the pipeline, we use the latency budget of each task to
estimate whether a request is on track to meet its SLO. Recall that
we set the latency budget of each task by using the batch sizes set
by the Resource Manager for each hosted model variant.

We consider two naive mechanisms to perform early dropping
using the allocated latency budgets for the pipeline tasks:

(1) Per-task dropping. When a request finishes execution at a
given task, we note the total time spent by the request at the
task, i.e., the processing time of the request as well as the
time it spent waiting in the queue. If this time exceeds the
latency budget assigned for the given task, we estimate that
the request is likely to miss its end-to-end SLO since the SLO
is divided into latency budgets for individual tasks by the
Resource Manager. Therefore, one possible mechanism is to
drop the request early on in order to free up resources for
requests that are more likely to meet their end-to-end SLOs.
Per-task dropping tracks the request at every task during its
execution and drops it if it misses the latency budget for any
task along the path. However, it is important to note that
this approach might be overly aggressive, as a request that
exceeds its latency budget for an earlier task may still have
the potential to meet the end-to-end SLO by compensating
at a subsequent task.

(2) Last-task dropping. This mechanism does not drop any
request up until the last task, even if it exceeds its per-task
latency budget at earlier tasks. When the request reaches the
last task and its leftover latency budget is smaller than the
expected processing time, the request is then dropped. While
this approach is more conservative than per-task dropping,
it carries the risk of tying up resources at upstream tasks for
requests that may ultimately be dropped later.

Opportunistic rerouting. To strike a balance between the
above-mentioned extreme approaches, we introduce a novel mech-
anism for early dropping termed Opportunistic Rerouting. This ap-
proach involves intelligently redirecting requests that are running
behind if there is a chance for them to meet their latency SLOs.

Opportunistic rerouting navigates the tradeoff between being
overly aggressive or conservative. The key idea is that if a request
exceeds its latency budget at any given task, we try to find a faster
alternative path for the subsequent task in order to make up for it.

Loki: A System for Serving ML Inference Pipelines with Hardware and Accuracy Scaling

We accomplish this as follows. Suppose a request exceeds the
latency budget for the given task by x amount of time, indicating
the time we need to make up. Once the request completes its ex-
ecution at the given worker, we identify the downstream worker
to forward the request using the routing table, following our stan-
dard procedure. Let us denote the profiled execution time of this
downstream worker as y. To compensate for the x time deficit, we
need to find a downstream worker capable of executing within
y — x time to offset the exceeded budget for this task. As mentioned
in Section 5.1, the Load Balancer propagates a backup table to all
workers, listing downstream workers with leftover capacities. We
scan this table for a worker whose profiled execution time is at
most y — x. If there are multiple such workers, we select the one
with the highest accuracy. If there is still a tie, we break it randomly.
If no such worker can be found, we drop the request. Note that this
entire process takes place in real-time at individual workers during
query execution.

Opportunistic rerouting reduces SLO violations by preemptively
saving requests from missing their SLOs and trading off accuracy
for SLO fulfillment. We compare opportunistic rerouting with the
naive early dropping techniques mentioned above to study its per-
formance benefits in Section 6.3.

6 EMPIRICAL EVALUATION

We now present our prototype implementation, experimental setup,
and our empirical results.

6.1 Experimental setup

Implementation: We implement Loki in ~8K lines of Python code®.
We use ONNX runtime [12] with the CUDA execution provider to
host the host the models on GPUs for efficient inference. We use
Gurobi [18] to solve our MILP optimization. Our cluster consists of
20 NVIDIA GTX 1080 Ti GPU workers.

We extend the discrete-event simulator from [5] to evaluate our
system on a wide range of system parameters. This approach aligns
with established practices in the field, as DNN inference is known
for its high determinism [14, 44]. Previous works (e.g., [5, 29]),
typically conduct a core set of experiments on an actual cluster and
then compare the results obtained obtained from the cluster with
those from simulation to demonstrate the quantitative differences.
They then utilize simulation to investigate the impact of a wide
range of parameters on the performance of the system. In line with
this methodology, we also use our simulator to explore a broad
range of parameters and their effects on our system’s performance.

Pipelines: We consider two types of pipelines in our evaluation,
both shown in Figure 2:

o Traffic analysis. It first detects the objects in the video frames
and then runs fine-tuned car classification or facial recogni-
tion models on the detected car and person objects, respec-
tively. We use YOLOV5 [24] as the object detection model,
EfficientNet [38] for car classification, and VGG [8] for facial
recognition.

e Social media. The social media pipeline detects objects in
images and generates suggested captions for the images. It

50ur code is available at https://github.com/UMass-LIDS/Loki

HPDC ’24, June 3-7, 2024, Pisa, Italy

uses ResNet [20] for image classification and CLIP-ViT [31]
for image captioning.

We use a total of 32 model variants in our evaluation across the
two pipelines. We normalize the accuracy of each model variant in
a model family by the accuracy of its most accurate variant.

Datasets: We use two input datasets.

o Traffic data. We use a single day from the Microsoft Azure
functions trace [35] for query arrivals to drive load for the
traffic analysis pipeline. We use shape-preserving transfor-
mations to scale the trace in a way that it matches the capac-
ity of our cluster. Since this trace only contains aggregated
information of request arrivals but no request content, we
use images from the Bellevue traffic dataset [6] as the request
content to perform inference and generate intermediate re-
quests for subsequent tasks.

o Social media. We use the Twitter trace [1] used by prior
inference serving systems [5, 33] to drive load for the social
media pipeline. However, as the Twitter trace also contains
only aggregated information about request arrivals but not
request content, we use images from the MS-COCO captions
dataset [9] as the content for the requests.

Evaluation metrics: We define metrics to evaluate our system.

(1) System accuracy is the average accuracy experienced by all
requests served by the system.

(2) Cluster utilization indicates the ratio of workers used at any
given time to the total number of workers in the cluster.

(3) SLO violation ratio indicates the ratio of requests that miss
their SLOs.

Note that a request could miss its SLO in two ways: (i) it finishes
past its SLO, (ii) it gets dropped preemptively by the system. In
both cases, the system is unable to fulfill the request

Baselines for comparison: We compare Loki, the first sys-
tem capable of performing pipeline-aware hardware and accuracy
scaling, against two approaches.

o InferLine [10] is a pipeline-aware, but accuracy-agnostic in-
ference serving system. It can perform hardware scaling but
requires the clients to specify a single model variant to use
for each task in the pipeline and does not support switching
between model variants.

e Proteus [5] is an inference serving system that can scale
accuracy for single models but is pipeline-agnostic. We set it
up to serve inference pipelines by letting it handle each task
in the pipeline independently, i.e., it scales accuracy for each
task independently since it is unaware of the dependencies
between them.

6.2 Performance comparison

We present an end-to-end comparison of the system performance
of Loki against the baselines on the two representative pipelines.
Traffic analysis pipeline. We first study the end-to-end perfor-
mance of the traffic analysis pipeline. Figure 5 shows the timeseries
of the trace demand, the system accuracy for each approach, the
percentage of workers used in the cluster, and the SLO violation
ratio. For this experiment, we use an end-to-end pipeline latency

https://github.com/UMass-LIDS/Loki

HPDC ’24, June 3-7, 2024, Pisa, Italy

SLO of 250ms. We explore the sensitivity of the system to different
SLO values in Section 6.4.

We show the point when Loki shifts between hardware scaling
and accuracy scaling with the help of the dotted vertical lines.
InferLine offers low SLO violations during the hardware scaling
phase, but since it is not capable of performing accuracy scaling, its
SLO violations shoot up during that time and it is not able to meet
the increased demand. Therefore, compared to InferLine which
performs hardware scaling alone, Loki effectively increases the
capacity of the cluster by 2.5%.

Proteus consistently suffers from high SLO violations due to
the fact that it is not pipeline-aware and manages each task in the
pipeline graph independently. Therefore, Proteus is not able to iden-
tify the dependencies between the tasks to match the throughput
of different tasks, leading to the creation of throughput bottle-
necks. Therefore, Loki reduces SLO violations by 10X compared to
a pipeline-unaware accuracy scaling approach such as Proteus.

As Loki performs accuracy scaling in a pipeline-aware manner,
it is also able to achieve higher system accuracy than Proteus since
the latter may drop accuracy for a task that may lead to a higher
drop in end-to-end accuracy, while Loki uses the knowledge of
end-to-end accuracies to drop minimal accuracy.

Lastly, during off-peak times, Loki can leverage hardware scaling
to reduce cost and energy by allowing the system to shut down
servers that are not needed. Compared to Proteus which uses the en-
tire cluster throughout since it does not perform hardware scaling,
Loki reduces the number of servers needed to serve the demand,
and consequently server cost, by up to 2.67x.

To summarize, Loki offers consistently lower SLO violations due
to its pipeline-aware resource allocation. It increases the effective
capacity of the cluster by 2.5X in this experiment, and can shut off
servers to save cost and energy during off-peak times.

Validating the simulator. We conduct this experiment on our
simulator as well to validate it and observe an average difference
of 1.2% in accuracy, 1.8% in the SLO violation ratios, and 1.5% in
the number of servers used. We note that the simulation results are
close to the prototype results, and the differences are produced due
to various factors such as small variances in model execution times
and unexpected network delays. However, due to the deterministic
nature of ML inference and this small difference, we use our simu-
lator to conduct the remaining experiments in order to evaluate the
system under a wide range of conditions and parameters. For the
rest of this Section, we present results from our simulation unless
otherwise noted.

Social media pipeline. We now present the end-to-end per-
formance comparison on the social media pipeline in Figure 6. As
before, we show the incoming demand into the system, the system
accuracy offered by the different approaches, cluster utilization,
and SLO violation ratio.

We observe similar trends as in the traffic analysis pipeline. When
demand increases to the point where hardware scaling is not able
to meet it, the SLO violations of InferLine shoot up to more than 5x
of Loki. During this time, Loki is able to meet demand by sacrificing
~10% accuracy.

During off-peak times, Loki again uses about 2.67x less servers
than Proteus which does not perform any hardware scaling. Loki
also drops up to 20% less accuracy than Proteus due to the ability of

Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman

—— Proteus InferLine —— Loki

& 400 -
o
S 3004 }2~5X

100

;\3 M

> % WWW
>

@ 80

3

[}

1}

<

100
[

75

50

?

System

Cluster
Utilization (%)

0 - T

SLO Violation
Ratio
o
N
N

i T N N N S N N
100 150 200 250 300 350
Time (seconds)

N“\-’WW T
50

0

Figure 5: End-to-end comparison on the traffic analysis
pipeline. Dotted vertical lines show transition between hard-
ware and accuracy scaling. Loki achieves an increase of 2.5x
in effective capacity compared to InferLine that performs
hardware scaling alone and reduces SLO violations by up to
10X compared to Proteus that performs pipeline-unaware
accuracy scaling.

the former to identify pipeline dependencies and their effect on end-
to-end accuracy of the pipeline. Proteus continues to suffer from
high violations again due to being pipeline-unaware. Loki increases
the effective capacity of the cluster by 2.7x in this experiment.

6.3 Ablation study of the load balancer

We now take a deep dive into the request routing performed by
the Load Balancer to understand where the performance benefits
come from. Figure 7 shows the benefit achieved from the use of
early dropping and opportunistic rerouting by comparing it against
simpler versions as follows.

(1) No early dropping: This is the simplest version which does
not perform any early dropping and follows the original
routing plan.

(2) Last-task dropping: This version drops requests if they are
expected to miss their SLOs, but only at the last task of the
pipeline.

(3) Per-task early dropping: This version performs early dropping
of requests at each task if they miss the assigned latency
budget of that task.

(4) Early dropping with opportunistic rerouting: This is the full-
fledged version of our approach that we use in our end-to-
end implementation. It first tries to re-route requests through
faster paths if they are expected to miss their SLO using the
assigned path, and drops them if this is not possible.

Loki: A System for Serving ML Inference Pipelines with Hardware and Accuracy Scaling

—— Proteus InferLine — Loki
E 1250
& 1000
g 7501 2.7x
© 500
§ 250 P~
o TN~

System
Accuracy (%
o0 O
o o

Cluster
Utilization (%)
w
o

'm-ww

SLO Violation
Ratio

o O o

orR N

50 100 150 200 250 300
Time (seconds)

Figure 6: End-to-end comparison on the social media pipeline.
Dotted vertical lines show transition between hardware and
accuracy scaling. Loki achieves an increase of 2.7X in effective
capacity compared to hardware scaling alone and reduces
SLO violations by up to 10X compared to pipeline-unaware
accuracy scaling.

] g?oizz:xg I Per-Task Early Dropping
- Early Dropping w/
= E?Z;;?ﬁg = Opportunistic Rerouting
© 0.06
-
& 0.051
c)
S 0.04
© 0.031 \
o
= 0.02
S 0.011
(0]
0.00-

Figure 7: Ablation study of the load balancer shows that op-
portunistic rerouting has the most impact on SLO violations.

We observe that the version without any early dropping suf-
fers from the highest SLO violations as it can waste resources on
requests that are not on target to meet their SLOs, hence delay-
ing and potentially timing out other requests as well. Last-task
dropping improves SLO violations slightly by dropping requests if
they are expected to miss SLOs, but since it only does this at the
last task, it can be overly conservative in doing so and still suffers
from high SLO violations. We observe that per-task early dropping
improves performance further by dropping requests at each task if
they are expected to miss the latency budget for the respective task.

HPDC ’24, June 3-7, 2024, Pisa, Italy

Avg. System Accuracy (%)
S
2
Max. Acc. Drop (%)

Avg. SLO Violation Ratio

©

&

°
o

200 250 300 350 400 200 250 300 350 400 200 250 300 350 400
Pipeline SLO (msec) Pipeline SLO (msec) Pipeline SLO (msec)

Figure 8: Effect of varying SLOs on Loki

However, this approach may drop requests too aggressively since a
request that misses its latency budget for an earlier task may still
potentially catch up at a later task.

Our approach, which opportunistically reroutes requests that are
falling back to faster paths, minimizes SLO violations the most. If
such rerouting is not possible, it means that the request has no way
of meeting its SLO even if routed through the fastest path available.
In this case, it drops the requests as a last resort in order to free
up resources for other requests that may have a better chance of
meeting their SLOs.

6.4 Effect of SLOs on system performance

We study the effect of varying the latency SLOs for the traffic
analysis pipeline on the performance of Loki. To summarize the
results from a large number of experiments, Figure 8 shows the
following key metrics: (i) the average system accuracy across the
entire experiment, (ii) the maximum accuracy drop, and (iii) the
average SLO violation ratio. The maximum accuracy drop is the
degradation in system accuracy from its highest possible value at
peak demand.

We observe a general trend that performance improves sharply
with initial increments of 50 milliseconds, but there are diminishing
improvements in performance as we use larger values of SLO. This
is because the optimization can use several knobs to meet tighter
SLOs: (i) creating more replicas of model instances, (ii) decreasing
the batch size of models in the path to lower end-to-end latency, and
(iii) lowering accuracy by changing the model variant. Note that
the Resource Manager can only increase the replication factor up
to the point where the entire cluster is allocated, and the minimum
batch size it can use is 1. Starting from 400 milliseconds, as the
latency SLO gets tighter, the system can first respond by using
these knobs without sacrificing any accuracy. However, when the
system faces even tighter latency SLOs, once it exhausts these
options, the system is compelled to resort to accuracy scaling to
meet SLOs. This results in a decrease in overall system accuracy
and leads to SLO violations due to the overhead associated with
swapping model variants.

Below 200 milliseconds, the system cannot serve the demand
even with the maximum degree of hardware and accuracy scaling
because the sum of processing latencies across the entire pipeline
of even the lowest accuracy model variants with a batch size of 1
exceeds this value of SLO.

6.5 Runtime performance

We now explore the runtime performance of both the core compo-
nents of our system: the Resource Manager and Load Balancer.

HPDC ’24, June 3-7, 2024, Pisa, Italy

Resource Manager. Given that the Resource Manager considers
all paths through the pipeline and yields an optimal solution by
solving an MILP, it is expected to run orders of magnitude slower
than the Load Balancer. We measure the average runtime of the
MILP to be ~500 milliseconds. As the Resource Manager is invoked
periodically to adapt to long-term fluctuations in demand and does
not lie on the critical path of query execution, the observed runtime
allows for a reasonably swift adaptation of resource allocation in
response to changing demands.

Load Balancer As the Load Balancer reacts to run-time changes
in demand, it needs to respond much faster than the Resource
Manager. In our experiments, we measure the average runtime of
the load balancer to be ~0.15 milliseconds. We attribute the fast
runtime of the Load Balancer to the efficiency of our request routing
algorithm presented in Section 5.1.

7 RELATED WORK

Inference serving is quickly becoming a hot topic of research. Rep-
resentative production systems include TensorFlow-Serving [30],
NVIDIA Triton Inference Server [3] and Amazon SageMaker [2].
Inference serving has also been extensively studied through re-
search prototypes as well, such as Clipper [11], INFless [45], and
PRETZEL [25]. These systems aim to provide a unified abstraction
to the user to hide details of the underlying ML frameworks, data
pre-processing, and performance optimization. Unlike these sys-
tems that require users to manage DNN models, Loki automatically
configures the suitable DNN models to execute on GPU clusters.

The closest works to Loki are Proteus [5] and InferLine [10]. Pro-
teus presents an inference serving system that can scale accuracy
for single models but is pipeline-agnostic. It scales accuracy for
each task in the pipeline independently since it is unaware of the
dependencies between them. InferLine is a pipeline-aware infer-
ence serving system that minimizes the cost of inference serving
by scaling the hardware in response to changes in demand.

INFaaS [33], Sommelier [17], and Tolerance Tiers [19] are also
related as they also consider model variants with different accuracy-
latency profiles in model serving systems. INFaaS [33] presents a
model-less inference serving system that automates the selection
of model variants for each query to minimize cost while meeting
accuracy and latency requirements. Unlike Loki that explicitly op-
timizes accuracy as an objective, it treats accuracy as a constraint
and focuses on hardware scaling to handle variable demands. Som-
melier [17] is a model repository that can interface with inference
serving systems to suggest model variants with lower accuracy to
handle increases in load. Tolerance Tiers [19] allows developers to
tradeoff accuracy for latency through programming APIs. However,
it imposes a fundamental limitation on applications, compelling
them to adhere to a single accuracy tier statically throughout the en-
tire inference serving process, lacking the flexibility to dynamically
adjust accuracy as part of a scaling approach.

Many inference serving systems try to optimize the cost of serv-
ing while meeting certain performance constraints. Kairos [28] is
one such system that aims to minimize the cost of inference serv-
ing using heterogeneous cloud resources. MArk [46] and Scrooge
[21] also try to minimize the cost of inference serving while trying

Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman

to meet latency SLOs. iGniter [43] is an interference-aware infer-
ence serving system that minimizes serving cost. Cocktail [16] uses
model ensembling to improve accuracy and meet latency require-
ments using minimal cost. Loki instead optimizes both cost and
accuracy by unifying accuracy scaling and hardware scaling.

Some model serving systems propose techniques that can be
combined with accuracy and hardware scaling to improve system
throughput. Rafiki [41] is an analytics serving system that uses
model ensembling during inference to improve accuracy at the cost
of latency. PERSEUS [26] studies the performance and cost trade-
offs associated with multi-tenant model serving. Morphling [40]
presents an algorithmic framework to minimize the cost of search-
ing through possible configurations when setting up inference
services. Clover [27] is an inference serving system that explores
the tradeoff between carbon emissions and accuracy. DeepPlan
[23] minimizes inference latency by exploiting recent advances in
GPU technology to reduce the model loading latencies. SHEPHERD
[48] and Clockwork [15] aim to minimize the tail latency of model
serving by eliminating sources of unpredictability in the system.

There has been alot of work specifically related to video analytics
pipelines. VideoStorm [47] was the first work to explore the latency-
accuracy tradeoft for the resource provisioning of video analytics
applications that use DNNs. Llama [34] is a serverless framework
for auto-tuning video analytics pipelines. Nexus [36] is another
framework for serving video analytics pipelines on GPU clusters. In
comparison, Loki is a system that is applicable to generic inference
pipelines that can be represented as directed rooted trees (defined
in Section 2.1).

Recent work also explores serving large language models (LLMs),
such as AlpaServe [29] and Tabi [42]. LLM serving is different from
traditional inference serving in the sense that it often requires
partitioning the model to be served by multiple servers. Loki does
not feature optimizations tailored to LLMs but can cater to inference
pipelines with LLMs.

8 CONCLUSION

In conclusion, our work addresses the pressing need for efficient
and cost-effective deployment of machine learning (ML) inference
at the edge. By recognizing the challenge posed by limited edge
resources and the computational demands of ML models, we in-
troduce Loki, a system for resource provisioning of ML inference
pipelines. Central to Loki is the concept of hardware and accuracy
scaling, which dynamically adjusts accuracy levels to manage re-
source constraints when needed, thereby enhancing the effective
capacity of edge clusters and minimizing resource usage during the
off-peak. Our experimental results demonstrate that Loki signifi-
cantly outperforms existing inference serving systems by reducing
Service Level Objective (SLO) violations by up to 10X and increas-
ing the effective capacity by up to 2.7x while sacrificing minimal
accuracy and meeting throughput targets.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Founda-
tion under grants CNS-1763617, CNS-1901137, CNS-2106463, CNS-
2312396, CNS-2338512, CNS-2224054, and DMS-2220211.

Loki: A System for Serving ML Inference Pipelines with Hardware and Accuracy Scaling

REFERENCES

(1]

[7

[

&

[9

=

[10]

[11

[12]

=
&

[14

[15]

[16]

[17]

(18

[19]

[20]

[21

2018. Twitter Streaming Traces. https://archive.org/details/archiveteam- twitter-
stream-2018-04.

2020. Amazon SageMaker. Build, train, and deploy machine learning models at
scale. https://aws.amazon.com/sagemaker/. Accessed: 2021-06-23.

2022. Triton Inference Server. https://developer.nvidia.com/nvidia-triton-
inference-server.

Adobe. 2024. Adobe Firefly. https://www.adobe.com/products/firefly html
Sohaib Ahmad, Hui Guan, Brian D. Friedman, Thomas Williams, Ramesh K. Sitara-
man, and Thomas Woo. 2024. Proteus: A High-Throughput Inference-Serving
System with Accuracy Scaling (ASPLOS "24). Association for Computing Machin-
ery, New York, NY, USA, 318-334. https://doi.org/10.1145/3617232.3624849
Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Yuan-
chao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica.
2022. Ekya: Continuous Learning of Video Analytics Models on Edge Com-
pute Servers. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 119-135. https:
//www.usenix.org/conference/nsdi22/presentation/bhardwaj

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag.
2020. What is the state of neural network pruning? Proceedings of machine
learning and systems 2 (2020), 129-146.

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014.
Return of the devil in the details: Delving deep into convolutional nets. arXiv
preprint arXiv:1405.3531 (2014).

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta,
Piotr Dollar, and C. Lawrence Zitnick. 2015. Microsoft COCO Captions: Data
Collection and Evaluation Server. CoRR abs/1504.00325 (2015). arXiv:1504.00325
http://arxiv.org/abs/1504.00325

Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica, Joseph
Gonzalez, and Alexey Tumanov. 2020. InferLine: latency-aware provisioning
and scaling for prediction serving pipelines. In Proceedings of the 11th ACM
Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20). Association for
Computing Machinery, New York, NY, USA, 477-491. https://doi.org/10.1145/
3419111.3421285

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). USENIX Association, Boston, MA, 613-627. https://www.
usenix.org/conference/nsdil7/technical-sessions/presentation/crankshaw
ONNX Runtime developers. 2021. ONNX Runtime. https://onnxruntime.ai/.
Version: 1.11.0.

Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-Aware Multi-
Tenant On-Device Deep Learning for Continuous Mobile Vision. In Proceedings
of the 24th Annual International Conference on Mobile Computing and Networking
(New Delhi, India) (MobiCom °18). Association for Computing Machinery, New
York, NY, USA, 115-127. https://doi.org/10.1145/3241539.3241559

Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley, and Bjérn B.
Brandenburg. 2017. Swayam: distributed autoscaling to meet SLAs of machine
learning inference services with resource efficiency. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (Las Vegas, Nevada) (Middleware ’17).
Association for Computing Machinery, New York, NY, USA, 109-120. https:
//doi.org/10.1145/3135974.3135993

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving {DNNs} like Clockwork: Per-
formance Predictability from the Bottom Up. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 443-462.

Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thinakaran, Bikash
Sharma, Mahmut Taylan Kandemir, and Chita R. Das. 2022. Cocktail: A Multi-
dimensional Optimization for Model Serving in Cloud. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 22). USENIX Asso-
ciation, Renton, WA, 1041-1057. https://www.usenix.org/conference/nsdi22/
presentation/gunasekaran

Peizhen Guo, Bo Hu, and Wenjun Hu. 2022. Sommelier: Curating DNN Models
for the Masses. In Proceedings of the 2022 International Conference on Management
of Data. 1876-1890.

Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

Matthew Halpern, Behzad Boroujerdian, Todd Mummert, Evelyn Duesterwald,
and Vijay Janapa Reddi. 2019. One size does not fit all: Quantifying and exposing
the accuracy-latency trade-off in machine learning cloud service apis via tolerance
tiers. arXiv preprint arXiv:1906.11307 (2019).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Yitao Hu, Rajrup Ghosh, and Ramesh Govindan. 2021. Scrooge: A Cost-Effective
Deep Learning Inference System. In Proceedings of the ACM Symposium on Cloud
Computing (Seattle, WA, USA) (SoCC °21). Association for Computing Machinery,

[22

[23

[24

~
2

[26

[27

[28

[29

[30

@
=

(32

[33

[34

(35]

[36

[37

[38

[39

[40

HPDC ’24, June 3-7, 2024, Pisa, Italy

New York, NY, USA, 624-638. https://doi.org/10.1145/3472883.3486993
Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu. 2015. TencentRec:
Real-Time Stream Recommendation in Practice (SIGMOD ’15). Association for
Computing Machinery, New York, NY, USA, 227-238. https://doi.org/10.1145/
2723372.2742785

Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn. 2023. Fast and Efficient
Model Serving Using Multi-GPUs with Direct-Host-Access. In Proceedings of
the Eighteenth European Conference on Computer Systems (Rome, Italy) (Eu-
roSys ’23). Association for Computing Machinery, New York, NY, USA, 249-265.
https://doi.org/10.1145/3552326.3567508
Glenn Jocher. 2020. YOLOvS5 by Ultralytics.
3908559

Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambrogio,
Markus Weimer, and Matteo Interlandi. 2018. {PRETZEL }: Opening the black box
of machine learning prediction serving systems. In 13th { USENIX} Symposium
on Operating Systems Design and Implementation ({ OSDI} 18). 611-626.
Matthew LeMay, Shijian Li, and Tian Guo. 2020. Perseus: Characterizing perfor-
mance and cost of multi-tenant serving for cnn models. In 2020 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 66-72.

Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Clover:
Toward Sustainable Al with Carbon-Aware Machine Learning Inference Service
(SC °23). Association for Computing Machinery, New York, NY, USA, Article 20,
15 pages. https://doi.org/10.1145/3581784.3607034

Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Kairos:
Building Cost-Efficient Machine Learning Inference Systems with Heterogeneous
Cloud Resources. In Proceedings of the 32nd International Symposium on High-
Performance Parallel and Distributed Computing (Orlando, FL, USA) (HPDC °23).
Association for Computing Machinery, New York, NY, USA, 3-16. https://doi.
org/10.1145/3588195.3592997

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin
Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez, and Ion
Stoica. 2023. AlpaServe: Statistical Multiplexing with Model Parallelism for
Deep Learning Serving. In 17th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 23). USENIX Association, Boston, MA, 663-679.
https://www.usenix.org/conference/osdi23/presentation/li- zhouhan
Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril Gorovoy,
Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar. 2017. TensorFlow-
Serving: Flexible, High-Performance ML Serving. In Workshop on ML Systems at
NIPS 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. arXiv:2103.00020 [cs.CV]

Francisco Romero, Qian Li, Neeraja] Yadwadkar, and Christos Kozyrakis. 2019.
INFaaS: A Model-less and Managed Inference Serving System. arXiv preprint
arXiv:1905.13348 (2019).

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.
{INFaaS}: Automated Model-less Inference Serving. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 397-411.

Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video
Analytics Pipelines. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC ’21). Association for Computing Machinery, New York,
NY, USA, 1-17. https://doi.org/10.1145/3472883.3486972

Mohammad Shahrad, Rodrigo Fonseca, Iiiigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 205-218.

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU
cluster engine for accelerating DNN-based video analysis. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,
322-337. https://doi.org/10.1145/3341301.3359658

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient
processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 12
(2017), 2295-2329.

Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105-6114.

Mingxing Tan and Quoc V. Le. 2020. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. arXiv:1905.11946 [cs.LG]

Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian
He, and Liping Zhang. 2021. Morphling: Fast, Near-Optimal Auto-Configuration
for Cloud-Native Model Serving. In Proceedings of the ACM Symposium on Cloud
Computing (Seattle, WA, USA) (SoCC °21). Association for Computing Machinery,

https://doi.org/10.5281/zenodo.

 https://archive.org/details/archiveteam-twitter-stream-2018-04
 https://archive.org/details/archiveteam-twitter-stream-2018-04
https://aws.amazon.com/sagemaker/
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://www.adobe.com/products/firefly.html
https://doi.org/10.1145/3617232.3624849
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://arxiv.org/abs/1504.00325
http://arxiv.org/abs/1504.00325
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3419111.3421285
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://onnxruntime.ai/
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3135974.3135993
https://doi.org/10.1145/3135974.3135993
https://www.usenix.org/conference/nsdi22/presentation/gunasekaran
https://www.usenix.org/conference/nsdi22/presentation/gunasekaran
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/3472883.3486993
https://doi.org/10.1145/2723372.2742785
https://doi.org/10.1145/2723372.2742785
https://doi.org/10.1145/3552326.3567508
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.1145/3581784.3607034
https://doi.org/10.1145/3588195.3592997
https://doi.org/10.1145/3588195.3592997
https://www.usenix.org/conference/osdi23/presentation/li-zhouhan
https://arxiv.org/abs/2103.00020
https://doi.org/10.1145/3472883.3486972
https://doi.org/10.1145/3341301.3359658
https://arxiv.org/abs/1905.11946

HPDC ’24, June 3-7, 2024, Pisa, Italy

New York, NY, USA, 639-653. https://doi.org/10.1145/3472883.3486987

Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck Khim
Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Rafiki: machine learning
as an analytics service system. Proc. VLDB Endow. 12, 2 (oct 2018), 128-140.
https://doi.org/10.14778/3282495.3282499

Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. 2023. Tabi: An Efficient
Multi-Level Inference System for Large Language Models. In Proceedings of the
Eighteenth European Conference on Computer Systems (Rome, Italy) (EuroSys '23).
Association for Computing Machinery, New York, NY, USA, 233-248. https:
//doi.org/10.1145/3552326.3587438

Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou, and Fangming
Liu. 2023. iGniter: Interference-Aware GPU Resource Provisioning for Predictable
DNN Inference in the Cloud. IEEE Transactions on Parallel and Distributed Systems
34, 3 (2023), 812-827. https://doi.org/10.1109/TPDS.2022.3232715

Feng Yan, Olatunji Ruwase, Yuxiong He, and Evgenia Smirni. 2016. SERF: Efficient
Scheduling for Fast Deep Neural Network Serving via Judicious Parallelism. In SC
’16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 300-311. https://doi.org/10.1109/SC.2016.25

Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman

[45] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,

Xingzhen Chen, and Keqiu Li. 2022. INFless: a native serverless system for low-
latency, high-throughput inference. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (Lausanne, Switzerland) (ASPLOS °22). Association for Computing Ma-
chinery, New York, NY, USA, 768-781. https://doi.org/10.1145/3503222.3507709
Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. {MArk}:
Exploiting Cloud Services for {Cost-Effective },{SLO-Aware} Machine Learning
Inference Serving. In 2019 USENIX Annual Technical Conference (USENIX ATC
19). 1049-1062.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 377-392. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/zhang

Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. 2023. SHEP-
HERD: Serving DNNs in the Wild. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association, Boston, MA,
787-808. https://www.usenix.org/conference/nsdi23/presentation/zhang-hong

https://doi.org/10.1145/3472883.3486987
https://doi.org/10.14778/3282495.3282499
https://doi.org/10.1145/3552326.3587438
https://doi.org/10.1145/3552326.3587438
https://doi.org/10.1109/TPDS.2022.3232715
https://doi.org/10.1109/SC.2016.25
https://doi.org/10.1145/3503222.3507709
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Background
	2.2 Challenges

	3 System Architecture of Loki
	4 Resource Manager
	4.1 MILPs for hardware and accuracy scaling
	4.2 Solving the MILP

	5 Load Balancer
	5.1 Request Routing
	5.2 Early dropping with opportunistic rerouting

	6 Empirical Evaluation
	6.1 Experimental setup
	6.2 Performance comparison
	6.3 Ablation study of the load balancer
	6.4 Effect of SLOs on system performance
	6.5 Runtime performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

