
Detecting Faults vs. Revealing Failures: Exploring the Missing Link

Amani Ayad1,∗, Samia AlBlwi2, and Ali Mili2

1Kean University, Union NJ, USA
2NJIT, Newark NJ, USA

amanayad@kean.edu, sma225@njit.edu, mili@njit.edu

*corresponding author

Abstract—When we quantify the effectiveness of a test suite

by its mutation coverage, we are in fact equating test suite

effectiveness with fault detection: to the extent that mutations

are faithful proxies of actual faults, it is sensible to consider

that the effectiveness of a test suite to kill mutants reflects its

ability to detect faults. But there is another way to measure

the effectiveness of a test suite: by its ability to expose the

failures of an incorrect program (or, equivalently, its ability to

give us confidence in the correctness of a correct program).

The relationship between failures and faults is tenuous at best:

a fault is the adjudged or hypothesized cause of a failure.

Whereas a failure is an observable, verifiable, certifiable effect,

a fault is someone’s hypothesis about the possible cause of the

observed effect. The same failure may be attributed to more

than one fault or combination of faults. In this paper we raise

two questions: is the ability to detect faults the same as the

ability to reveal failures? If not, which is the better measure

of test suite effectiveness? We do not give definite answers

to these questions, but we use empirical data to challenge

some assumptions and show why these questions are worth

answering.

Keywords–software testing; test suite effectiveness; mutation

coverage; semantic coverage; detecting faults; exposing fail-

ures.

1. DETECTING FAULTS VS. REVEALING FAILURES

Users do not see errors in software,

they see failures in execution.

Mills et al. [44]

1.1 Defining Failures and Faults

In this paper we adopt the terminology of Avizienis et al [9],

and apply it specifically to software: a fault is a syntactic

feature of a program that precludes it from being correct with

respect to a given specification; an error at a particular step

in the execution of the program is a state of the program’s

execution that differs from the intended (correct) state at that

step; a failure of the program for a particular input with respect

to some specification is the observation that the program’s

output for the given input violates the specification. Hence, a

fault is an attribute of the program’s source code, an error is an

attribute of the program’s state during execution, and a failure

is an attribute of the program’s behavior. When a fault causes

an error, we say that the fault is sensitized; when an error in

some execution state causes errors in subsequent states, we

say that the error has been propagated; else we say that the

error has been masked. When the error is propagated all the

way to the final state, it causes a failure.

Given a program and a specification, a failure of the program

is the event whereby the behavior of the program for a

particular input violates the specification. To the extent that

the specification is precise, the occurrence of a failure is an

observable, verifiable, repeatable (if the program is determin-

istic) event. By contrast, a fault in a program is not easy to

define: In [34], [9], [33], [35] Laprie et al. define a fault

as the ”adjudged or hypothesized cause of an error”; this

definition is vague, first because adjudging and hypothesizing

are highly subjective human endeavors, which cannot be used

as a basis for a definition; and second because the concept of

error is itself insufficiently defined, as it depends on a detailed

characterization of correct system states at each stage of a

computation, which is usually unavailable. According to the

IEEE Standard IEEE Std 7-4.3.2-2003 [1], a software fault is

”An incorrect step, process or data definition in a computer

program”. This definition is also inadequate, since it merely

replaces an undefined concept (fault) by another (correctness/

incorrectness), but most of all because it assumes that we have

an independent specification for what is a correct step, process

or data definition at every location in the program. In fairness,

we acknowledge that defining software faults is fraught with

difficulties:

• Discretionary determination. Usually we determine that a

program part is faulty because we think we know what the

designer intended to achieve in that particular part, and we

find that the program does not fulfill the designer’s intent;

clearly, this determination is only as good as our assumption

about the designer’s intent.

• Contingent determination. The same faulty behavior of a

software product may be repaired in more than one way,

possibly involving more than one part; hence the determi-

nation that one part is a fault is typically contingent upon

the assumption that other parts are not in question.

• Tentative determination. If a program has only one fault,

then we can characterize the fault by the fact that once it is

repaired, the program becomes correct; but since programs

typically have several faults, we have to assume that once

we repair a fault, the program does not become (absolutely)

correct, it just becomes (relatively) more-correct than it was

initially. Hence, the definition of a fault ought to be based

on some concept of relative correctness.



• Fault Bookkeeping. In [30], [31], Khaireddine et al. distin-

guish between three measures of faultiness of a program:

fault density (the number of faults in a program), fault

multiplicity (the number of program mutations that represent

a unitary fault) and fault depth (the minimal number of

fault repairs that separate a program from correctness).

Khaireddine et al. argue that the most important measure

of faultiness if not fault density but fault depth. When a

program has N faults and we repair one of them, we do

not necessarily end up with (N − 1) faults; the number of

faults remaining in the program depends on which fault was

repaired and how it was repaired.

1.2 Measuring Test Suite Effectiveness

Whereas we can all agree that faults cause failures, we find

that while failures are easy to define formally as observable,

verifiable, certifiable effects, faults are the adjudged or hy-

pothesized causes of the observed effects. The relationship

between the observed effects and the hypothesized causes is a

tenuous relation, since it is based on human judgement and a

wide range of implicit assumptions (about the programmer’s

intent, about which program parts are assumed correct, about

what makes a program more-correct, etc). Given the mission

to quantify the effectiveness of test suites, we consider two

possible approaches:

• Test Suite Effectiveness as the Ability to Detect Faults.

• Test Suite Effectiveness as the Ability to Reveal Failures.

This duality raises two questions:

• First: Are these two attributes correlated? If test suite T

is better than test suite T ′ in terms of fault detection, how

likely is it to be also better in terms of ability to reveal

failures.

• Second: If they are not, which attribute is a better measure

of test suite effectiveness?

In this paper we do not give definite answers to either

question but we provide some empirical evidence to the effect

that the answer to the first question is negative, and some

analytical arguments to the effect that the answer to the second

question favors the ability to reveal failures over the ability to

detect faults. Most of all, we argue that these questions are

worth investigating, and are worth exploring to draw practical

lessons.

1.3 Related Work

To the best of our knowledge, most existing metrics of test

suite effectiveness focus on faults, and equate effectiveness

with ability to detect faults. Consequently, test suite effective-

ness has traditionally been measured by a test suite’s ability

to achieve coverage, including syntactic coverage (statements,

branches, conditions, paths, etc) [32], [22], [13], [40], [3], [37],

[26], [21], [55], [24] and mutation coverage [52], [2], [8], [17],

[50], [46], [19], [29], [14], [56]. Because mutants may act as

proxies for actual faults [29], mutation coverage has often been

used as a reference to assess alternative measures of coverage

[20], [36], [57], [47], [54], [28]. We argue in this paper that

while mutation coverage is a better measure of effectiveness

than syntactic coverage metrics, it has ample issues of its own.

1.4 Agenda

In the next section we present some elementary mathematical

background that we use in section 3 to discuss the concept

of semantic coverage, which we adopt as a measure of a

test suite’s effectiveness to reveal failures; in section 4 we

introduce the operator of mutation tally, and discuss why we

use it as a measure of a test suite’s ability to detect faults.

In section 5 we present an experiment in which we take a

benchmark program, generate twenty test suites thereof, then:

• We evaluate their semantic coverage under six distinct

circumstances,

• We evaluate their mutation tally under four distinct mutant

generation policies,

and we consider to what extent mutation tally and semantic

coverage rank the test suites in the same way. The design of

the experiment is discussed in 5, its results are given in raw

form in section 6, and analyzed in section 7. In the conclusion

we summarize our results, critique them, and sketch directions

of further research.

2. RELATIONAL MATHEMATICS FOR CORRECTNESS

The goal of this section is to introduce some mathemati-

cal notations that we use throughout the paper, and to use

these mathematics to introduce two properties that pertain

to software testing, namely absolute correctness and relative

correctness. Absolute correctness is important because it is the

property we test programs against; and relative correctness is

important because it gives meaning to the task of fault repair

(aka debugging) since repairing a fault makes the program

more-correct than it was (while it may still be incorrect, due

to the presence of other faults).

2.1 Definitions and Notations

In this paper, we use relations and functions [12] to capture

program specifications and program semantics. We can model

the semanticss of a program by means of a function from

inputs to outputs, or as a function from initial states to

final states. For the sake of simplicity, and without loss of

generality, we adopt the latter model, because it involves

homogeneous functions and relations, and yields a simpler

algebra. We represent sets by C-like variable declarations, and

we generally denote sets (referred to as program spaces) by

S, elements of S (referred to as program states) by lower case

s, specifications (binary relations on S) by R and programs

(functions on S) by P . We denote the domain of a relation R

by dom(R). Because we model programs and specifications

by homogeneous relations / functions, we talk about initial

states and final states, rather than inputs and outputs.

Among the operations on relations, we consider the set the-

oretic operations of union, intersection, and complement; we

also consider the prerestriction of a relation R on set S to a

subset A of S as the relation denoted by

A\R = {(s, s′)|s ∈ A ∧ (s, s′) ∈ R}.



A specification R on space S includes all the initial state /

final state pairs that the specifier considers correct; hence the

domain of a specification R (dom(R)) includes all the initial

states for which candidate programs must make provisions

(i.e. generate a final state). When a program P on space S

is executed on initial state s, it may terminate normally after

a finite number of steps in a final state s′; we then say that

P converges for initial state s. Alternatively, it may fail to

terminate (due to an infinite loop), or it may attempt an illegal

operation, such as a division by zero, an array reference out

of bounds, a reference to a nil pointer, an arithmetic overflow,

etc; we then say that it diverges for initial state s. Given a

program P on space S, the function of P , which we denote

by the same symbol, is the set of pairs of states (s, s′) such that

if execution of P starts at state s, it converges and yields state

s′. From this definition, it stems that the domain of program

P (dom(P )) is the set of initial states s such that execution

of P on s converges.

We define an ordering relation between specifications whose

interpretation is that one relation captures more stringent

requirements, hence is harder to satisfy.

Definition 1: Given two relations R and R′ on space S, we

say that R′ refines R if and only if:

dom(R) ⊆ dom(R′) ∧dom(R)\ R
′ ⊆ R.

This definition is equivalent, modulo differences of notation, to

traditional definitions of refinement, which equate refinement

with weaker preconditions and stronger postconditions [25],

[45], [11], [18], [49], [10].

2.2 Partial and Total Correctness

The distinction between partial correctness and total correct-

ness has long been a feature of the study of correctness

verification [39], [23], [45], but not considered in testing.

Yet, testing a program for partial correctness is different

from testing it for total correctness. We can cite at least two

arguments to this effect:

• If a program P is executed on some initial state s and

it fails to converge, then the conclusion we draw depends

on the correctness property we are testing it against: if we

are testing P for total correctness we conclude that P fails

the test, hence is incorrect; if we are testing it for partial

correctness we conclude that the choice of s is incorrect,

and choose another initial state.

• The main purpose of test data selection is to generate a finite

and small test suite T to represent a potentially infinite set

of initial states: if we are testing P for total correctness with

respect to R, the set we are trying to represent is dom(R);
for partial correctness, that set is (dom(R) ∩ dom(P )).

Hence the distinction between partial correctness and total

correctness is relevant for software testing, even though it has

not traditionally been given much consideration. We adopt the

following definitions for total and partial correctness.

Definition 2: Due to [43]. Program P on space S is said to

totally correct with respect to specification R on S if and only

if:

dom(R) = dom(R ∩ P ).

Definition 3: Due to [42]. Program P on space S is said to be

partially correct with respect to specification R on S if and

only if:

dom(R) ∩ dom(P ) = dom(R ∩ P ).

Khaireddine et al. show in [31] that these definitions are equiv-

alent, modulo differences of notation, to traditional definitions

of total and partial correctness [39], [16], [27], [23].

2.3 Detector Sets and Relative Correctness

The concepts of detector sets and relative (partial or total)

correctness are useful for our purposes, as we use them to

check the validity of our definition of semantic coverage.

Given a program P on space S and a specification R on S,

the detector set of P with respect to R is the set of initial

states that disprove the correctness of P with respect to R.

Given that there are two standards of correctness, there are

two versions of differentiator sets.

Definition 4: Due to [41]. Given a program P on space S and

a specification R on S:

• The detector set for total correctness of program P with

respect to R is denoted by ΘT (R,P ) and defined by:

ΘT (R,P ) = dom(R) ∩ dom(R ∩ P ).

• The detector set for partial correctness of program P with

respect to R is denoted by ΘP (R,P ) and defined by:

ΘP (R,P ) = dom(R) ∩ dom(P ) ∩ dom(R ∩ P ).

Intuitive interpretation: the term dom(R ∩ P ) represents the

set of initial states for which program P delivers a final

state that satisfies specification R; we call it the competence

domain of program P with respect to specification R. For

total correctness, dom(R) represents all the initial states for

which P must behave according to R; in other words, dom(R)
represents all the initial states that must be in dom(R ∩ P );
hence the initial states that disprove the total correctness of

P with respect to R are all the elements of dom(R) that are

outside dom(R∩P ). A similar justification may be presented

for the detector set of partial correctness. When we want to

talk about a detector set but we do not wish to specify whether

we refer to total correctness or partial correctness, we use the

notation Θ(R,P ).
Refer to Figure 1; the green area represents the competence

domain of P with respect to R, i.e. the set of inputs for which

P satisfies specification R; the detector set for total correctness

in colored in red, and the detector set of partial correctness

is colored in orange. Since total correctness is a stronger

property than partial correctness, it is easier to disprove total

correctness than partial correctness; hence the detector set for

total correctness (red) is a superset of the detector set for

partial correctness (orange).

The following Propositions stem readily from the definitions

(hence will be given without proof), and are perfectly easy to

understand intuitively.



Figure 1. Detector Sets for Partial Correctness (orange) and

Total Correctness (red+orange)

Proposition 1: A program P on space S is totally correct with

respect to a specification R on S if and only if the detector

set of P for total correctness with respect to R is empty.

Proposition 2: A program P on space S is partially correct

with respect to a specification R on S if and only if the

detector set of P for partial correctness with respect to R

is empty.

Whereas absolute (partial or total) correctness is a bipartite

property between a program and a specification, relative

(partial or total) correctness is a tripartite property between

two programs, say P and P ′, and a specification, say R.

Definition 5: Due to [15]. Given a specification R on space S

and two programs P and P ′ on S, we say that P ′ is more-

totally-correct than P with respect to R if and only if:

dom(R ∩ P ) ⊆ dom(R ∩ P ′).

Using detector sets, we can readily infer the following Propo-

sition.

Proposition 3: Given a specification R on space S and two

programs P and P ′ on S, P ′ is more-totally-correct than P

with respect to R if and only if the detector set of P ′ for total

correctness with respect to R is a subset of the detector set of

P for total correctness with respect to R.

It is perfectly intuitive to consider that a program that has a

smaller (by set inclusion) detector set is more-totally-correct

(closer to being totally correct) than a program that has a

larger detector set; ultimately, when the detector set of a

program becomes so small that it is empty, the program

is (absolutely) correct. We extend this definition to partial

correctness, whence we obtain the simple characterization of

absolute correctness and relative correctness given in Table I.

3. SEMANTIC COVERAGE: REVEALING FAILURES

In order to investigate the relationship between the ability to

detect faults and the ability to reveal failures, we must devise

means to quantify each of these attributes. In this section, we

consider the latter, and we refer to it as the semantic coverage

of a test suite.

Partial Correctness Total Correctness

Absolute
Correctness
P correct wrt R ΘP (R,P ) = ∅ ΘT (R,P ) = ∅

Relative
Correctness
P ′ more-correct
than P wrt R

ΘP (R,P ′)
⊆
ΘP (R,P )

ΘT (R,P ′)
⊆
ΘT (R,P )

TABLE I
DEFINITIONS OF CORRECTNESS

3.1 Definitions

Whereas traditional coverage metrics treat the effectiveness of

a test suite as an attribute of the test suite and the program

under test, we must recognize that whether a test suite is able

to reveal the failure of a program does also depend on the

standard of correctness that we are testing the program against

(total or partial), and on the specification with respect to which

correctness is tested. In order for a test suite to reveal all the

failures of a program, it must be a superset of its detector set.

What precludes a test suite T from revealing all the failures

of a program is the set of initial states that are in the detector

set but are not in T :

Θ(R,P ) ∩ T .

The smaller this set, the better the test suite T is; if we want

a metric that increases with the quality of T rather than to

decrease, we take the complement of this expression. Whence

the following definition.

Definition 6: Due to [4]. Given a specification R on space S

and a program P on S, the semantic coverage of a test suite

T is denoted by ΓP,R(T ) and defined by:

ΓP,R(T ) = T ∪Θ(P,R).

This definition represents, in effect, two distinct definitions,

depending on whether we are interested to test P for partial

correctnes or total correctness:

• Partial Correctness. The semantic coverage of test suite T

for program P relative to partial correctness with respect to

specification R is denoted by ΓPAR
P,R (T ) and defined by:

ΓPAR

P,R (T ) = T ∪ΘP (P,R),

• Total Correctness. The semantic coverage of test suite T

for program P relative to total correctness with respect to

specification R is denoted by ΓTOT
P,R (T ) and defined by:

ΓTOT

P,R (T ) = T ∪ΘT (P,R),

To gain an intuitive feel for this formula, consider under

what condition it is minimal (the empty set) and under what

condition it is maximal (set S in its entirety).



Figure 2. Semantic Coverage of Test T for Program P with

respect to R (shades of green)

• ΓP,R(T ) = ∅. The semantic coverage of a test T for

program P with respect to specification R is empty if and

only if T is empty and the complement of the detector set

of P with respect to R is empty; in such a case the detector

set of P with respect to R is all of S. In other words, even

though any element of S exposes a failure of P with respect

to R, T does not reveal that P is incorrect since it is empty.

• ΓP,R(T ) = S. If the union of two sets equals S, the

complement of each set is a subset of the other set. Whence:

Θ(P,R) ⊆ T . In other words, T contains all the tests that

reveal the failure of P with respect to R. This is clearly the

attribute of an ideal test suite.

As a special case, if P is correct with respect to R, then

the semantic coverage of any test suite T with respect to P

and R is S (if there are no failures to reveal, then any test

suite reveals all the failures).

Refer to Figure 2; the semantic coverage of test suite T for

program P with respect to specification R is the area colored

(both shades of) green. The (partially hidden) red rectangle

represents the detector set of P with respect to R; the dark

green area represents the complement of this set, i.e. in fact

all the test data that need not be exercised; the light green area

represents test suite T .

3.2 Criteria for Semantic Coverage

The semantic coverage of a test suite T for a standard of

correctness (partial or total) of a program P with respect to

a specification R depends on four factors: T , P , R and the

standard of correctness. In this section we discuss how one

would want a measure of test suite effectiveness to vary as

a function of each of these parameters, then we show that

semantic coverage does meet the selected criteria. We start

with citing and justifying the criteria.

• Monotonicity with respect to T . Of course we want the

effectiveness of a test suite to be monotonic with respect to

T : if we replace T by a superset, we get a higher semantic

coverage.

• Monotonicity with respect to R. Specifications are ordered

by refinement (re: Definition 1), whereby a more-refined

specification represents a more stringent requirement. We

argue that it is easier to test a program for correctness

against a specification R than against a specification R′

that refines R; indeed, a more-refined specification involves

a larger input domain (hence a larger set to cover) and

stronger output conditions (hence more conditions to ver-

ify). Whence we expect that the same test suite T have

lower semantic coverage for more-refined specifications: i.e.

semantic coverage ought to decrease when R grows more-

refined.

• Monotonicity with respect to P . If and only if program P ′

is more-correct than program P , the detector set of P ′ is a

subset of the detector set of P , which means that we have

fewer failures of P ′ to reveal than failures of P . Hence the

semantic coverage of a test suite T ought to be higher for

a more-correct program.

• Monotonicity with respect to the standard of correctness.

Total correctness is a stronger property than partial correct-

ness, hence it is more difficult to test a program for total

correctness than for partial correctness. Consequently, the

same test suite T ought to have a lower semantic coverage

for total correctness than for partial correctness (the same

tool would be less effective against a more difficult task

than an easier task).

We present below Propositions to the effect that semantic

coverage satisfies all these monotonicity properties; these are

due to [4], and are given without proof.

Proposition 4: Monotonicity with respect to T . Given a pro-

gram P on space S and a specification R on S, and given two

subsets T and T ′ of S, if T ⊆ T ′ then:

ΓTOT

R,P (T ) ⊆ ΓTOT

R,P (T ′),

ΓPAR

R,P (T ) ⊆ ΓPAR

R,P (T ′).

Proposition 5: Monotonicity with respect to the standard of

Correctness. Given a program P on space S, a specification

R on S, and test suite T (subset of S), the semantic coverage

of T for partial correctness of P with respect to R is greater

than or equal to the semantic coverage for total correctness of

P with respect to R:

ΓTOT

R,P (T ) ⊆ ΓPAR

R,P (T ).

Proposition 6: Monotonicity with respect to relative correct-

ness of P . Given a specification R on space S and two

programs P and P ′ on S, and a subset T of S. If P ′ is

more-totally-correct (resp. more-partially-correct) than P with

respect to R then:

ΓTOT

[R,P ](T ) ⊆ ΓTOT

[R,P ′](T ).

ΓPAR

[R,P ](T ) ⊆ ΓPAR

[R,P ′](T ).

Proposition 7: Monotonicity with respect to Refinement of R.

Given a program P on space S and two specifications R and

R′ on S, and a subset T of S. If R′ refines R then:

ΓTOT

[R′,P ](T ) ⊆ ΓTOT

[R,P ](T ).

ΓPAR

[R′,P ](T ) ⊆ ΓPAR

[R,P ](T ).



3.3 Intuitive Interpretation

To give the reader some intuition about what the semantic

coverage of a test suite represents, and why it is a sensible

measure of test suite effectiveness, we expand its formula

and justify its various components. We start with the semantic

coverage for total correctness:

ΓTOT

[R,P ](T ) = T ∪ΘT (R,P ),

where

ΘT (R,P ) = dom(R) ∩ dom(R ∩ P ).

Replacing ΘT (R,P ) by its formula and applying DeMorgan’s

laws, we find:

ΓTOT

[R,P ](T ) = T ∪ dom(R) ∪ dom(R ∩ P ).

The semantic coverage of T for total correctness of P with

respect to R is the union of three terms:

• T : clearly a bigger T is more effective than a smaller T .

• dom(R): A smaller domain of R means fewer inputs to test

/ to worry about.

• dom(R ∩ P ): A larger competence domain means fewer

failures to reveal.

Likewise, a decompsotion of the formula of semantic coverage

for partial correctness yields:

ΓPAR

[R,P ](T ) = T ∪ dom(R) ∪ dom(P ) ∪ dom(R ∩ P ).

Hence for partial correctness we have one extra term in the

formula of semantic coverage:

• dom(P ): From the standpoint of partial correctness, a pro-

gram is tested (held accountable) only wherever it termi-

nates / converges; the smaller the set of inputs where the

program converges, the higher the semantic coverage.

4. MUTATION TALLY: DETECTING FAULTS

In the previous section we introduce semantic coverage as

the attribute we use to quantify a test suite’s ability to reveal

program failures; in this section we briefly discuss how we

quantify a test suite’s ability to detect faults. To the extent

that mutations are faithful proxies of actual faults [48], [46],

[7], [8], [29], [6], [28], it is sensible to use mutation coverage

as a measure of a test suite’s ability to detect faults. In this

section we briefly discuss alternative measures of mutation

coverage, and justify why we select mutation tally, which is

the set of mutants killed by a test suite.

• RMS: Raw Mutation Score. The raw mutation score of a test

suite in a mutation experiment is the ratio of killed mutants

over generated mutants. The same value of RMS means

vastly different things depending on whether the surviving

mutants are equivalent to the base program or not; hence

we dismiss RMS for this experiment.

• PMS: Prorated Mutation Score. The prorated mutation

score of a test suite is the raio of killed mutants over the set

of killable (i.e. non-equivalent) mutants. The same value of

PMS means vastly different things depending on whether the

killed mutants are all semantically distinct, all semantically

equivalent, or partitioned into a large number of equivalence

classes; hence we dismiss PMS for this experiment.

• EMS: Equivalence-Based Mutation Score. The equivalence-

based mutation score of a test suite is the ratio of the

number of equivalence classes killed by the test suite over

the total number of equivalence classes of the killable

mutants. Because EMS takes numeric values, it defines

a total ordering between test suites, but the property of

being a more effective test suite is a partial ordering (not

all pairs of test suites can be compared for effectiveness).

Representing a partial ordering by a total ordering creates

a built-in potential for loss of precision; hence we dismiss

EMS for this experiment.

• MT: Mutation Tally. The mutation tally of a test suite for

a mutation experiment is merely the set of mutants that are

killed by the test suite; we denote the mutation tally of test

suite T by µ(T ). We order mutation tallies by inclusion:

in the context of a mutation experiment, a test suite T is

considered more-effective than a test suite T ′ if and only

if all the mutants killed by T ′ are killed by T . We adopt

MT as the measure of mutation coverage we use in this

experiment; we use it to represent the effectiveness of a

test suite to detect faults, on the grounds that mutants can

be considered as proxies for actual faults.

5. EMPIRICAL STUDY

5.1 The Benchmark Program and Tests

Now that we have decided how to quantify a test suite’s ability

to reveal failures (through semantic coverage) and a test suite’s

ability to detect faults (through mutation tally), we resolve to

explore to what extent these two attributes are related. To this

effect, we run the following experiment:

• Sample Program, P . The sample program that we use for

this experiment is a method called createNumber() of

the Java class NumberUtils.java, from the commons

benchmark (commons-lang3-3.13.0-src)1. The size

of the selected method is 170 LOC.

• Base Test Suite, T0. We consider the test class

that comes with the selected program: class

NumberUtilsTest.java. This class includes 107

tests.
• Test Suites T1, T2, ... T20. To generate these test suites, we

run the following script, where rand() returns random
numbers between 0.0 (inclusive) and 1.0 (exclusive):

threshold = 0.2;

for (int i=1; i<=20; i++)

{print ("test suite t",i);

int size=0;

for (int j=1; j<=107; j++)

{if (rand()<=threshold)

{print (j); size++;}

print ("size of test suite t",

i,": ", size);}

threshold = threshold + 0.03;}

Our expectation is to obtain 20 test suites T1...T20 whose

sizes range between approximately 0.2×107 and 0.77×107.

1https://commons.apache.org/proper/commons-lang/



T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

107 25 31 22 22 36 46 44 40 53 49 65 56 67 69 76 77 82 78 86 86
TABLE II

SIZES OF THE RANDOMLY GENERATED TEST SUITES

Table II shows the sizes of the test suites derived from this

algorithm.

5.2 The Semantic Coverage

The semantic coverage of test suites T1...T20 depends not only

on the program and the test suites, but also on two additional

factors: what correctness standard we are considering (partial,

total) and what specification we are testing the program

against. We have generated three specifications, R1, R2, R3

derived as follows: We consider the 107 elements of T0 and

run the base program on this data. Then we scan the list of

(input,output) pairs generated by the program, and generate

the specifications according to the following rules:

• R1: We alter each fifth output, so that P fails for each fifth

input with respect to R1.

• R2: We alter each seventh output, so that P fails for each

seventh input with respect to R2.

• R3: We alter each eleventh output, so that P fails for each

eleventh input with respect to R3.

In addition, we extend the domains of R1, R2 and R3 beyond

the domain of P , so as to make P fail to converge for some

elements in the domains of the specifications; this is important

to distinguish between partial correctness and total correctness.

For each specification, we compute the semantic coverage of

test suites T1...T20 for partial correctness and total correctness;

this yields a total of six measures of semantic coverage.

5.3 The Mutation Tally

We use the mutant generator LittleDarwin [51], [53], and we

consider its mutation operators:

• ROR: Relational Operator Replacement.

• AORB: Arithmetic Operator Replacement Binary.

• AORU: Arithmetic Operator Replacement Unary.

• ArORS: Arithmetic Operator Replacement Shortcut.

• AsORS: Assignment Operator Replacement Shortcut.

• COD: Conditional Operator Delection.

• COR: Conditional Operator Replacement.

From these seven operators, we form four mutant generation

policies as shown in Figure 3:

• Policy 1: ROR, AsORS, ArORS. This policy produces 61

mutants.

• Policy 2: COD, COR, AORB. This policy produces 58

mutants.

• Policy 3: ArORS, AsORS, AORU, COD, COR. This policy

produces 61 mutants.

• Policy 4: ArORS, AsORS, AORB, AORU, COD, COR,

ROR. This policy produces 133 mutants.

ROR

AsORS

ArORS

AORU

COR

COD

AORB

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

Policy 1 Policy 2
Policy 3

Policy 4

Figure 3. Mutant Generation Policies

6. EXPERIMENTAL DATA

6.1 Semantic Coverage: Exposing Failures

For each specification (R1, R2, R3) and each standard of

correctness (partial, total), we compute the semantic coverage

of each test suite (T1...T20) and we check inclusion relations

between them (ΓP,Rn
(Ti) ⊆ ΓP,Rn

(Tj)). For each specifica-

tion and standard of correctness, this yields a graph whose

nodes represent the test suites. The six graphs are shown in

Table III.

One can make several observations from these graphs. As a

preamble, we must specify that when an arrow goes from node

Ti to node Tj , it means that Tj has higher semantic coverage

than Ti (i.e. is better at revealing program failures).

• The first observation we can make about these graphs is

that test suites with higher indices tend to have higher

semantic coverage; this is due, of course, to how these were

generated, to range in size from about 0.2×107 to 0.77×107

(of course, bigger test suites tend to be better).

• The second observation can be made by comparing graphs

for the same specification: the graphs for partial correctness

and total correctness with respect to the same specification

are different, which means that whether a test suite is better

than another depends on whether we are testing the program

for partial correctness or for total correctness. It appears that

for each specification, the graph for total correctness is a

subgraph of the graph for partial correctness, which means

if a test suite is better than another for total correctness, it

is necessarily better for partial correctness.

• The third observation can be made by comparing graphs

across specifications: for the same standard of correctness

(say, e.g. total) whether a test suite is better than another



Spec Partial Correctness Total Correctness

R1

T3

T12 T14 T16 T17 T18

T19

T20

T4

T15

T5 T6 T8 T10

T3

T12 T14T16 T17 T18 T19 T20

T5 T6

R2

T2

T8T9

T11 T14T15

T17

T3

T5T7

T12 T13

T16T18

T19 T20

T4

T6T10 T2

T15

T3

T5 T7T8 T9 T11T12T13

T14

T16

T17

T18

T19

T20

T4

R3

T2

T1 T14 T15T17

T19

T20

T3

T18

T4

T5

T6

T7T8

T9T10

T11 T12

T13

T16

T2

T15

T20

T3

T18

T19

T4

T1

T5T6

T7

T8

T9 T10

T11T12 T13 T14

T16

T17

TABLE III
ORDERING TEST SUITES BY SEMANTIC COVERAGE

depends heavily on the specification against which the

program is being tested for correctness. While this may

seem obvious, it may mean that assessing test suite effec-

tiveness by considering only the program and the test suite

may be missing an important / influential parameter: the

specification.

• The fourth observation is that the graphs become increas-

ingly denser as we have fewer and fewer failures to report

(each fifth input, vs each seventh input, vs each eleventh

input). Conversely, the more failures we have to report, the

fewer comparative relations exist between test suites.

6.2 Mutation Tally: Detecting Faults

For each mutant generation policy (Policy 1 ... Policy 4), we

compute the mutation tally of each test suite (µ(T1)...µ(T20))
and we rank test suite according to the inclusion relation-

ships between their mutation tallies (µ(Ti) ⊆ µ(Tj)). Table

IV shows the graphs that represent these ordering relations

between the test suites. Some observation can be made on

these graphs, from a cursory analysis:

• For the same reason as above, test suites with higher

index tend to have higher mutation tallies, because they are

generally larger sets.

• This experiment bears out an observation made in [5] to the

effect that mutation coverage varies significantly according

to the mutant generation policy: the same test suite can have

widely varying mutation scores depending on the mutant

generation policy.

• As an exception, the graphs for Policies 3 and 4 are very

similar even though they use use different sets of mutation

operators and are based on vastly different mutant sets (61

mutants vs 133 mutants).

6.3 Detecting Faults vs Revealing Failures

Table V captures the pairwise relationships between the six

measures of semantic coverage and the four measures of

mutation tally. Each entry of this table represents the Jaccard

index of the corresponding graphs, which is the ratio of the

number of arcs that the two graphs have in common over the

total number of arcs in the two graphs.

7. OBSERVATIONS AND ANALYSIS

In this section we analyze the results shown in Table V, by

considering in turn, the interrelations between measures of

mutation tally, then the interrelations between measures of

semantic coverage, then relationships between mutation tally

and semantic coverage.

7.1 Mutation Tally vs Mutation Tally

If we focus on the top left triangle of Table V, we find that

the Jaccard index betweeen the graphs derived from different

mutant generation policies vary between 0.40 and 0.50, with

the exception of Policy 3 vs Policy 4, which is 0.95. This is

consistent with findings of other experiments, where we find

that the Jaccard index that stems from different policies of

the same tool fall in the range of 0.40 to 0.50, whereas the

Jaccard index of different mutant generation tools can be as

low as zero or even negative [5].

7.2 Semantic Coverage vs Semantic Coverage

In this section we focus on the lower right triangle of Table

V. The Jaccard index of the graphs for partial correctness and

total correctness with respect to the same specification are

fairly high: 0.529 for R1, 0.525 for R2 and 0.647 for R3. In

all other cases, when they deal with different specifications, the

indices are fairly low, ranging between 0.05 and 0.30. These



Policy 1 Policy 2
T1

T6

T7

T11

T12

T13

T14

T15

T16

T17

T19

T20

T2

T3

T4 T9

T18

T5

T8T10

T1

T4

T14

T15

T17

T19

T2

T7 T11

T12

T13 T16

T20

T3

T6

T18

T5

T8T9

T10

Policy 3 Policy 4

T1

T15

T19

T2

T12 T14T16

T20

T3

T4 T6T7 T11

T13

T17

T18

T5

T8T9

T10

T1

T15

T19

T2

T12T14 T16

T20

T3

T4T6 T11

T13

T17

T18

T5

T8

T7

T9

T10

TABLE IV
ORDERING TEST SUITES BY MUTATION TALLY

Policy 1 Policy 2 Policy 3 Policy 4 PR1 TR1 PR2 TR2 PR3 TR3

Policy 1 1.0000 0.4162 0.4028 0.4113 0.0822 0.0638 0.1602 0.1096 0.3294 0.2327

Policy 2 1.0000 0.5401 0.4793 0.1219 0.0655 0.2385 0.1360 0.3290 0.1973

Policy 3 1.0000 0.9508 0.1642 0.1290 0.2169 0.2059 0.2807 0.2083

Policy 4 1.0000 0.1538 0.1356 0.2099 0.1970 0.2882 0.2150

PR1 1.0000 0.5294 0.1875 0.2258 0.1333 0.1250

TR1 1.0000 0.1667 0.3043 0.0562 0.0847

PR2 1.0000 0.5250 0.1261 0.1046

TR2 1.0000 0.0928 0.1343

PR3 1.0000 0.6471

TR3 1.0000
TABLE V

JACCARD INDEX OF MUTATION TALLY (POLICY 1... POLICY 4) VS. SEMANTIC COVERAGE (PR1...TR3)

low values reflect the important role that specifications play

in determining whether a test suite is effective in revealing

program failures; this in turn, means that the effectiveness of

a test suite cannot be considered as an attribute of the program

alone, but must also involve an analysis of the specification

with respect to which correctness is tested. The low values of

these Jaccard indices reflect to what extent we stand to lose

precision when we overlook specifications.

7.3 Mutation Tally vs Semantic Coverage

In this section we focus on the top right rectangle of Table

V, defined by rows (Policy 1 to Policy 4) and columns (PR1

to TR3). The Jaccard indices in this rectangle range between

0.06 and 0.32; the average value in this rectangle is 0.186; in

other words, if we consider how test suites are ranked by their

ability to detect faults and how they are ranked by their ability

to reveal failures, the two criteria concur on only only 18.6%

of their findings.

But we observe another interesting phenomenon: For each

Policy and for each standard of correctness (partial, vs total),

the Jaccard index increases monotonically as we transition

from R1 to R2 to R3; as we recall, R1, R2 and R3 differ

by how often the program P fails to comply to them: for

each fifth input, for each seventh input, and for each eleventh

input, respectively. This seems to indicate that mutation tally

(ability to detect faults) and semantic coverage (ability to

reveal failures) are more tightly coupled for lower failure rates

than for higher failure rates. These results are illustrated in

Table VI, which plots the Jaccard index of the mutation tally

graph and the semantic coverage graph for partial and total

correctness with respect to R1, R2 and R3 for each mutant

generation policy, as a function of the failure rate.

7.4 Discussion

The contrast between failures and faults is essentially a con-

trast between observable, verifiable effects and hypothesized,

speculative causes. The same observed effect (failure) may be

attributed to a wide range of possible causes (faults) and may

be remedied by a wide range of possible fixes (fault repairs).

This contrast may be interpreted to mean that if we want

to quantify the effectiveness of test suites in a meaningful,

measurable way, we may be better off defining it in terms of

failures rather than faults.

There is another reason why, theoretically, it may be more

sensible to focus on failures rather than faults: ultimately,

the reliability and operational quality of a software product



pertains not to how many faults it has (fault density) but rather

how often it fails (failure rate, or its inverse, inter-failure span).

Even though failures are the result of faults, the statistical

correlation between failure rate and fault density is very weak,

as the impact of faults on failures varies very widely in

practice: a fault in an obscure part of the code that is visited

only under very exceptional circumstances does not have the

same impact on reliability as a fault that is part of routine

code that gets invoked at each call. In [44] Mills et al. report

on empirical studies of IBM software projects where they find

that the impact of faults on failure rates varies from 18 months

between failures to 5000 years between failures; more than

half the faults have failure rates of 1500 years between failures;

specifically, they find that one may remove 60 percent of faults

in a software product and enhance its reliability by a mere 3%.

In other words, from the standpoint of reliability, faults are not

created equal: some have a much greater impact on reliability

than others, hence from the standpoint of a tester, are much

more worthy of attention.

To illustrate the contrast between focusing on faults and

focusing on failures, consider the hypothetical case where

we have three faults in a program, say f1, f2, f3. We

consider two test suites, say T and T ′, and we assume that

T detects f1 and f2 while T ′ detects f3. In terms of fault

detection, T is better than T ′ because it detects twice as many

faults. But imagine, for the sake of argument, that f1 and

f2 cause the program to fail, on average, once every 1000

executions, whereas f3 causes the program to fail once every

10 executions. From the standpoint of failure rate (reliability),

it is better to repair f3 than to repair f1 and f2; hence

test suite T ′ is better than T , since it alerts us to a more

consequential fault. When we focus on exposing failures rather

than detecting faults, the failures that occur more often will

naturally arise more frequently, hence leading us to repair high

impact faults before (or instead of, if the test budget is limited)

low impact faults.

Hence it seems that the ability to expose failures is a better

measure of test suite effectiveness than the ability to detect

faults, but we qualify this conclusion with an important caveat:

There are really two broad families of test processes, with

different goals:

• Tests Which Focus on Fault Detection. These include unit

tests and integration tests, which are carried out under the

purview of the system designers and are geared towards

finding and repairing faults.

• Tests Which Focus on Black Box Behavior. These include

acceptance tests and reliability tests [44], [38] which are

carried out by third parties and are geared towards ensuring

the absence (or infrequency) of failures.

It is possible that these different families of tests mandate

different criteria for judging test suite effectiveness.

7.5 Threats to the Validity of Our Results

The results presented in this paper are based on six experi-

ments to compute the semantic coverage of test suites, and

four experiments to compute the mutation tally the same test

suites; hence these results are valid only to the extent that

this limited experiment is statistically significant. But the main

purpose of our paper is not to deliver definite results as much

as it is to shake some assumptions and raise some questions

about current practice in test suite assessment.

8. CONCLUSION

In this paper we consider two alternative means to quantify

the effectiveness of a test suite: By the test suite’s ability to

detect faults, or by its ability to expose failures. This choice

raises two questions: Are these two attributes correlated? If

not, which better reflects the effectiveness of a test suite?

To answer the first question, we have resolved to adopt means

to represent these two attributes: we represent a test suite’s

ability to detect faults by its mutation tally, and we represent

a test suite’s ability to expose failures by its semantic coverage.

Then we run an experiment in which we consider a sample

benchmark program, we generate twenty test suites thereof,

we compute the mutant tally and the semantic coverage of

each of the twenty test suites, then we check to what extent

the two measures are compatible with each other. We find that

there is little concordance between the rankings of test suites

by mutation tally and by semantic coverage. We also find that

mutation tally has greater correlation with semantic coverage

for partial correctness than for total correctness, and that it has

greater correlation with semantic coverage when the program

has lower failure rates, i.e. higher reliability.

To answer the second question, we argue that failures are more

definite observations, hence are more adequate as a basis for

formal definitions. Also, we argue that in most contexts, failure

rate is more meaningful than fault density, and faults have

widely varying impacts on the failure rate. We also observe

that different test processes have different goals, hence may

be subject to different criteria for test suite effectiveness.

Our prospects for future research involve broadening the scope

of our experiments, further exploring the relationship between

fault delection and failure exposure, and investgating means to

estimate the semantic coverage of a test suite by approximate

means, since its precise calculation is complex and impractical.

Acknowledgements

The authors are very grateful to the anonymous reviewers

for their thoughtful, insightful comments, which have greatly

improved the content and presentation of this paper. This work

is partially supported by NSF grant DGE 2043104.

REFERENCES

[1] IEEE Std 7-4.3.2-2003. Ieee standard criteria for digital

computers in safety systems of nuclear power generating

stations. Technical report, The Institute of Electrical and

Electronics Engineers, 2003.

[2] Kalle Aaltonen, Petri Ihantola, and Otto Seppala. Muta-

tion analysis vs. code coverage in automated assessment

of students’ testing skills. In Companion to the 25th

Annual ACM SIGPLAN Conference on OOPSLA, pages

153–160, Reno, NV, 10 2010.



Jaccard Index (µ(T ) vs. ΓR,P (T ))

Failure Rate

0.1

0.2

0.3

0.05 0.10 0.15 0.20✲

✻ P

P

P

T

T

T

Jaccard Index (µ(T ) vs. ΓR,P (T ))

Failure Rate

0.1

0.2

0.3

0.05 0.10 0.15 0.20✲

✻ P

P

P

T

T

T

Jaccard Index (µ(T ) vs. ΓR,P (T ))

Failure Rate

0.1

0.2

0.3

0.05 0.10 0.15 0.20✲

✻
P

P

P

T T

T

Jaccard Index (µ(T ) vs. ΓR,P (T ))

Failure Rate

0.1

0.2

0.3

0.05 0.10 0.15 0.20✲

✻
P

P

P

T
T

T

Policy 1 Policy 2 Policy 3 Policy 4
TABLE VI

JACCARD INDEX VS FAILURE RATE

[3] Alireza Aghamohammadi, Seyed-Hassan Mirian-

Hosseinabadi, and Sajad Jalali. Statement frequency

coverage: A code coverage criterion for assessing

test suite effectiveness. Information and Software

Technology, 129:106426, 2021.

[4] Samia AlBlwi, Amani Ayad, and Ali Mili. A measure

of semantic coverage. In Proceedings, ICSOFT 2023,

Rome, Italy, July 2023.

[5] Samia AlBlwi, Amani Ayad, and Ali Mili. Mutation cov-

erage is not strongly correlated with mutation coverage.

In Proceedings, IEEE Conference on Automated Software

Testing, Lisbon, Portugal, April 2024.

[6] James Andrews, Lionel Briand, and Yvan Labiche. Is

mutation an appropriate tool for testing experiments?

pages 402–411, 01 2005.

[7] James Andrews, Lionel Briand, Yvan Labiche, and Akbar

Siami Namin. Using mutation analysis for assessing and

comparing testing coverage criteria. Software Engineer-

ing, IEEE Transactions on, 32:608–624, 09 2006.

[8] James H Andrews, Lionel C Briand, Yvan Labiche,

and Akbar Siami Namin. Using mutation analysis for

assessing and comparing testing coverage criteria. IEEE

Transactions on Software Engineering, 32(8):608–624,

2006.

[9] Algirdas Avizienis, Jean Claude Laprie, Brian Randell,

and Carl E Landwehr. Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 1(1):11–33, 2004.

[10] R.J. Back and J. von Wright. Refinement Calculus: A

Systematic Introduction. Graduate Texts in Computer

Science. Springer Verlag, 1998.

[11] R. Banach and M. Poppleton. Retrenchment, refinement

and simulation. In ZB: Formal Specifications and Devel-

opment in Z and B, Lecture Notes in Computer Science,

pages 304–323. Springer, December 2000.

[12] Chris Brink, Wolfram Kahl, and Gunther Schmidt. Re-

lational Methods in Computer Science. Advances in

Computer Science. Springer Verlag, Berlin, Germany,

1997.

[13] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.

Klee: unassisted and automatic generation of high-

coverage tests for complex systems programs. In OSDI,

volume 8, pages 209–224, 2008.

[14] Xavier Devroey, Gille Perrouin, Maxime Cordy, Mike

Papadakis, Axel LeGay, and Pierre Yves Schoebbens. A

variability perspective of mutation analysis. In Proceed-

ings, International Symposium on Foundations of Soft-

ware Engineering, pages 841–844, HongKong, China,

November 2014.

[15] Nafi Diallo, Wided Ghardallou, and Ali Mili. Correctness

and relative correctness. In Proceedings, 37th Interna-

tional Conference on Software Engineering, NIER track,

Firenze, Italy, May 20–22 2015.

[16] E.W. Dijkstra. A Discipline of Programming. Prentice

Hall, 1976.

[17] Hyunsook Do and Gregg Rothermel. On the use of

mutation faults in empirical assessment of test case

prioritization techniques. IEEE Transactions on Software

Engineering, 32(9), 2006.

[18] Geoffrey Dromey. Program development by inductive

stepwise refinement. Technical Report Working Paper

83-11, University of Wollongong, Australia, 1983.

[19] Bouchaib Falah and Soukaina Hamimoune. Mutation

testing techniques: A comparative study. 11 2016.

[20] Phyllis Frankl, Stewart Weiss, and Cang Hu. All-uses

versus mutation testing: An experimental comparison of

effectiveness. Journal of Systems and Software, 38, 08

2000.

[21] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan

Sharma, Mohammad Amin Alipour, and Darko Mari-

nov. Guidelines for coverage-based comparisons of non-

adequate test suites. ACM Transactions on Software

Engineering and Methodology (TOSEM), 24(4):1–33,

2015.

[22] Rahul Gopinath, Carlos Jensen, and Alex Groce. Code

coverage for suite evaluation by developers. 05 2014.

[23] David Gries. The Science of Programming. Springer

Verlag, 1981.

[24] Kelly J Hayhurst. A practical tutorial on modified

condition/decision coverage. DIANE Publishing, 2001.

[25] E.C.R. Hehner. A Practical Theory of Programming.

Springer-Verlag, 1993.



[26] Hadi Hemmati. How effective are code coverage criteria?

In 2015 IEEE International Conference on Software

Quality, Reliability and Security, pages 151–156. IEEE,

2015.

[27] C.A.R. Hoare. An axiomatic basis for computer pro-

gramming. Communications of the ACM, 12(10):576–

583, October 1969.

[28] Laura Inozemtseva and Reid Holmes. Coverage is not

strongly correlated with test suite effectiveness. 05 2014.

[29] Rene Just, D. Jalali, L. Inozemtseva, M.D. Ernst,

R. Holmes, and G. Fraser. Are mutants a valid substitute

for real faults in software testing? In Proceedings, FSE,

2014.

[30] Besma Khaireddine and Ali Mili. Quantifying faultiness:

What does it mean to have n faults? In Proceedings,

FormaliSE 2021, ICSE 2021 colocated conference, May

2021.

[31] Besma Khaireddine, Aleksandr Zakharchenko, Matias

Martinez, and Ali Mili. Toward a theory of program

repair. Acta Informatica, 60:209–255, March 2023.

[32] Oded Lachish, Eitan Marcus, Shmuel Ur, and Avi Ziv.

Hole analysis for functional coverage data. In Proceed-

ings of the 39th annual Design Automation Conference,

pages 807–812, 2002.

[33] Jean Claude Laprie. Dependability: Basic Concepts and

Terminology: in English, French, German, Italian and

Japanese. Springer Verlag, Heidelberg, 1991.

[34] Jean Claude Laprie. Dependability —its attributes,

impairments and means. In Predictably Dependable

Computing Systems, pages 1–19. Springer Verlag, 1995.

[35] Jean Claude Laprie. Dependable computing: Concepts,

challenges, directions. In Proceedings, COMPSAC, 2004.

[36] Nan Li, Upsorn Praphamontripong, and Jeff Offutt.

An experimental comparison of four unit test criteria:

Mutation, edge-pair, all-uses and prime path coverage.

In IEEE International Conference on Software Testing,

Verification, and Validation Workshops, ICSTW 2009,

pages 220 – 229, 05 2009.

[37] Raghu Lingampally, Atul Gupta, and Pankaj Jalote. A

multipurpose code coverage tool for java. In 2007

40th Annual Hawaii International Conference on System

Sciences (HICSS’07), pages 261b–261b. IEEE, 2007.

[38] R.C. Linger. Cleanroom software engineering for zero-

defect software. In Proceedings, 15th Hawaii Interna-

tional Conference on Software Engineering, Baltimore,

MD, May 1993.

[39] Zohar Manna. A Mathematical Theory of Computation.

McGraw-Hill, 1974.

[40] Aditya P. Mathur. Foundations of Software Testing.

Pearson, 2014.

[41] Ali Mili. Differentiators and detectors. Information

Processing Letters, 169, 2021.

[42] Ali Mili and Fairouz Tchier. Software Testing: Opera-

tions and Concepts. John Wiley and Sons, 2015.

[43] Harlan D. Mills, Victor R. Basili, John D. Gannon, and

Dick R. Hamlet. Structured Programming: A Mathemat-

ical Approach. Allyn and Bacon, Boston, Ma, 1986.

[44] H.D. Mills, M. Dyer, and R.C. Linger. Cleanroom

software engineering. IEEE Software, 4(5):19–25, 1987.

[45] Carroll C. Morgan. Programming from Specifications,

Second Edition. International Series in Computer Sci-

ences. Prentice Hall, London, UK, 1998.

[46] A. Namin, J. Andrews, and D. Murdoch. Sufficient

mutation operators for measuring test effectiveness. In

Proceedings, ICSE 2008, pages 351–360, 2008.

[47] Akbar Siami Namin and Sahitya Kakarla. The use of

mutation in testing experiments and its sensitivity to

external threats. In Proceedings, ISSTA, 2011.

[48] Roberto Natella, Domenico Cotroneo, Joao Duraes, and

Henrique Madeira. On fault representativeness of soft-

ware fault injection. IEEE Transactions on Software

Enginering, 39(1):80–96, January 2011.

[49] J.N. Oliveira and C.J. Rodrigues. Pointfree factorization

of operation refinement. In Lecture Notes in Computer

Science, number 4085, pages 236–251. Springer Verlag,

2006.

[50] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia,

Yves Le Traon, and Mark Harman. Mutation testing

advances: An analysis and survey. In Advances in

Computers. 2019.

[51] Ali Parsai and Serge Demeyer. Dynamic mutant sub-

sumption analysis using littledarwin. In Proceedings, A-

TEST 2017, Paderborn, Germany, September 4-5 2017.

[52] Ali Parsai and Serge Demeyer. Comparing mutation

coverage against branch coverage in an industrial setting.

International Journal on Software Tools for Technology

Transfer, 22:1–24, 08 2020.

[53] Ali Parsai, Alessandro Murgia, and Serge Demeyer. Lit-

tledarwin: A feature-rich and extensible mutation testing

framework for large and complex java systems. In FSEN

2017, Foundations of Software Engineering, 2016.

[54] Donghuan Shin and Doo Hwan Bae. A theoretical frame-

work for understanding mutation-based testing methods.

In Proceedings, ICST 2016, Chicago, IL, April 2016.

[55] Khashayar Etemadi Someoliayi, Sajad Jalali, Mostafa

Mahdieh, and Seyed-Hassan Mirian-Hosseinabadi. Pro-

gram state coverage: a test coverage metric based on

executed program states. In 2019 IEEE 26th Interna-

tional Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 584–588. IEEE, 2019.

[56] David Tengeri, Laszlo Vidacs, Arpad Beszedes, Judit

Jasz, Gergo Balogh, Bela Vancsics, and Tibor Gyimothy.

Relating code coverage, mutation score and test suite

reducibility to defect density. In Proceedings, 2016

IEEE 9th International Conference on Software Testing,

Verification and Validation Workshops, pages 174–179,

04 2016.

[57] Q Zhu, A. Panichella, and A. Zaidman. A systematic

literature review of how mutation testing supports test

activities. PeeJ Preprint, (e2483v1):1–57, 2016.


