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Abstract—When we quantify the effectiveness of a test suite
by its mutation coverage, we are in fact equating test suite
effectiveness with fault detection: to the extent that mutations
are faithful proxies of actual faults, it is sensible to consider
that the effectiveness of a test suite to kill mutants reflects its
ability to detect faults. But there is another way to measure
the effectiveness of a test suite: by its ability to expose the
failures of an incorrect program (or, equivalently, its ability to
give us confidence in the correctness of a correct program).
The relationship between failures and faults is tenuous at best:
a fault is the adjudged or hypothesized cause of a failure.
Whereas a failure is an observable, verifiable, certifiable effect,
a fault is someone’s hypothesis about the possible cause of the
observed effect. The same failure may be attributed to more
than one fault or combination of faults. In this paper we raise
two questions: is the ability to detect faults the same as the
ability to reveal failures? If not, which is the better measure
of test suite effectiveness? We do not give definite answers
to these questions, but we use empirical data to challenge
some assumptions and show why these questions are worth
answering.

Keywords—software testing; test suite effectiveness; mutation
coverage; semantic coverage; detecting faults; exposing fail-
ures.

1. DETECTING FAULTS VS. REVEALING FAILURES

Users do not see errors in software,
they see failures in execution.
Mills et al. [44]

1.1 Defining Failures and Faults

In this paper we adopt the terminology of Avizienis et al [9],
and apply it specifically to software: a fault is a syntactic
feature of a program that precludes it from being correct with
respect to a given specification; an error at a particular step
in the execution of the program is a state of the program’s
execution that differs from the intended (correct) state at that
step; a failure of the program for a particular input with respect
to some specification is the observation that the program’s
output for the given input violates the specification. Hence, a
fault is an attribute of the program’s source code, an error is an
attribute of the program’s state during execution, and a failure
is an attribute of the program’s behavior. When a fault causes
an error, we say that the fault is sensitized; when an error in
some execution state causes errors in subsequent states, we

say that the error has been propagated; else we say that the
error has been masked. When the error is propagated all the
way to the final state, it causes a failure.

Given a program and a specification, a failure of the program
is the event whereby the behavior of the program for a
particular input violates the specification. To the extent that
the specification is precise, the occurrence of a failure is an
observable, verifiable, repeatable (if the program is determin-
istic) event. By contrast, a fault in a program is not easy to
define: In [34], [9], [33], [35] Laprie et al. define a fault
as the “adjudged or hypothesized cause of an error”; this
definition is vague, first because adjudging and hypothesizing
are highly subjective human endeavors, which cannot be used
as a basis for a definition; and second because the concept of
error is itself insufficiently defined, as it depends on a detailed
characterization of correct system states at each stage of a
computation, which is usually unavailable. According to the
IEEE Standard IEEE Std 7-4.3.2-2003 [1], a software fault is
”An incorrect step, process or data definition in a computer
program”. This definition is also inadequate, since it merely
replaces an undefined concept (fault) by another (correctness/
incorrectness), but most of all because it assumes that we have
an independent specification for what is a correct step, process
or data definition at every location in the program. In fairness,
we acknowledge that defining software faults is fraught with
difficulties:

o Discretionary determination. Usually we determine that a
program part is faulty because we think we know what the
designer intended to achieve in that particular part, and we
find that the program does not fulfill the designer’s intent;
clearly, this determination is only as good as our assumption
about the designer’s intent.

o Contingent determination. The same faulty behavior of a
software product may be repaired in more than one way,
possibly involving more than one part; hence the determi-
nation that one part is a fault is typically contingent upon
the assumption that other parts are not in question.

o Tentative determination. If a program has only one fault,
then we can characterize the fault by the fact that once it is
repaired, the program becomes correct; but since programs
typically have several faults, we have to assume that once
we repair a fault, the program does not become (absolutely)
correct, it just becomes (relatively) more-correct than it was
initially. Hence, the definition of a fault ought to be based
on some concept of relative correctness.



o Fault Bookkeeping. In [30], [31], Khaireddine et al. distin-
guish between three measures of faultiness of a program:
fault density (the number of faults in a program), fault
multiplicity (the number of program mutations that represent
a unitary fault) and fault depth (the minimal number of
fault repairs that separate a program from correctness).
Khaireddine et al. argue that the most important measure
of faultiness if not fault density but fault depth. When a
program has N faults and we repair one of them, we do
not necessarily end up with (IV — 1) faults; the number of
faults remaining in the program depends on which fault was
repaired and how it was repaired.

1.2 Measuring Test Suite Effectiveness

Whereas we can all agree that faults cause failures, we find
that while failures are easy to define formally as observable,
verifiable, certifiable effects, faults are the adjudged or hy-
pothesized causes of the observed effects. The relationship
between the observed effects and the hypothesized causes is a
tenuous relation, since it is based on human judgement and a
wide range of implicit assumptions (about the programmer’s
intent, about which program parts are assumed correct, about
what makes a program more-correct, etc). Given the mission
to quantify the effectiveness of test suites, we consider two
possible approaches:

o Test Suite Effectiveness as the Ability to Detect Faults.
o Test Suite Effectiveness as the Ability to Reveal Failures.

This duality raises two questions:

o First: Are these two attributes correlated? If test suite T
is better than test suite 7" in terms of fault detection, how
likely is it to be also better in terms of ability to reveal
failures.

o Second: If they are not, which attribute is a better measure
of test suite effectiveness?

In this paper we do not give definite answers to either
question but we provide some empirical evidence to the effect
that the answer to the first question is negative, and some
analytical arguments to the effect that the answer to the second
question favors the ability to reveal failures over the ability to
detect faults. Most of all, we argue that these questions are
worth investigating, and are worth exploring to draw practical
lessons.

1.3 Related Work

To the best of our knowledge, most existing metrics of test
suite effectiveness focus on faults, and equate effectiveness
with ability to detect faults. Consequently, test suite effective-
ness has traditionally been measured by a test suite’s ability
to achieve coverage, including syntactic coverage (statements,
branches, conditions, paths, etc) [32], [22], [13], [40], [3], [37],
[26], [21], [55], [24] and mutation coverage [52], [2], [8], [17],
[50], [46], [19], [29], [14], [56]. Because mutants may act as
proxies for actual faults [29], mutation coverage has often been
used as a reference to assess alternative measures of coverage
[20], [36], [57], [47], [54], [28]. We argue in this paper that

while mutation coverage is a better measure of effectiveness
than syntactic coverage metrics, it has ample issues of its own.

1.4 Agenda

In the next section we present some elementary mathematical
background that we use in section 3 to discuss the concept
of semantic coverage, which we adopt as a measure of a
test suite’s effectiveness to reveal failures; in section 4 we
introduce the operator of mutation tally, and discuss why we
use it as a measure of a test suite’s ability to detect faults.
In section 5 we present an experiment in which we take a
benchmark program, generate twenty test suites thereof, then:

o We evaluate their semantic coverage under six distinct
circumstances,

o We evaluate their mutation tally under four distinct mutant
generation policies,

and we consider to what extent mutation tally and semantic

coverage rank the test suites in the same way. The design of

the experiment is discussed in 5, its results are given in raw

form in section 6, and analyzed in section 7. In the conclusion

we summarize our results, critique them, and sketch directions

of further research.

2. RELATIONAL MATHEMATICS FOR CORRECTNESS

The goal of this section is to introduce some mathemati-
cal notations that we use throughout the paper, and to use
these mathematics to introduce two properties that pertain
to software testing, namely absolute correctness and relative
correctness. Absolute correctness is important because it is the
property we test programs against; and relative correctness is
important because it gives meaning to the task of fault repair
(aka debugging) since repairing a fault makes the program
more-correct than it was (while it may still be incorrect, due
to the presence of other faults).

2.1 Definitions and Notations

In this paper, we use relations and functions [12] to capture
program specifications and program semantics. We can model
the semanticss of a program by means of a function from
inputs to outputs, or as a function from initial states to
final states. For the sake of simplicity, and without loss of
generality, we adopt the latter model, because it involves
homogeneous functions and relations, and yields a simpler
algebra. We represent sets by C-like variable declarations, and
we generally denote sets (referred to as program spaces) by
S, elements of S (referred to as program states) by lower case
s, specifications (binary relations on S) by R and programs
(functions on S) by P. We denote the domain of a relation R
by dom(R). Because we model programs and specifications
by homogeneous relations / functions, we talk about initial
states and final states, rather than inputs and outputs.

Among the operations on relations, we consider the set the-
oretic operations of union, intersection, and complement; we
also consider the prerestriction of a relation R on set S to a
subset A of S as the relation denoted by

aAR={(s,5)|s € AN (s,8) € R}.



A specification R on space .S includes all the initial state /
final state pairs that the specifier considers correct; hence the
domain of a specification R (dom(R)) includes all the initial
states for which candidate programs must make provisions
(i.e. generate a final state). When a program P on space S
is executed on initial state s, it may terminate normally after
a finite number of steps in a final state s’; we then say that
P converges for initial state s. Alternatively, it may fail to
terminate (due to an infinite loop), or it may attempt an illegal
operation, such as a division by zero, an array reference out
of bounds, a reference to a nil pointer, an arithmetic overflow,
etc; we then say that it diverges for initial state s. Given a
program P on space S, the function of P, which we denote
by the same symbol, is the set of pairs of states (s, s") such that
if execution of P starts at state s, it converges and yields state
s’. From this definition, it stems that the domain of program
P (dom(P)) is the set of initial states s such that execution
of P on s converges.

We define an ordering relation between specifications whose
interpretation is that one relation captures more stringent
requirements, hence is harder to satisfy.

Definition 1: Given two relations R and R’ on space S, we
say that R’ refines R if and only if:

dom(R) C dom(R') Agomirn B C R.

(R\

This definition is equivalent, modulo differences of notation, to
traditional definitions of refinement, which equate refinement
with weaker preconditions and stronger postconditions [25],
[45], [11], [18], [49], [10].

2.2 Partial and Total Correctness

The distinction between partial correctness and total correct-
ness has long been a feature of the study of correctness
verification [39], [23], [45], but not considered in testing.
Yet, testing a program for partial correctness is different
from testing it for total correctness. We can cite at least two
arguments to this effect:

o If a program P is executed on some initial state s and
it fails to converge, then the conclusion we draw depends
on the correctness property we are testing it against: if we
are testing P for total correctness we conclude that P fails
the test, hence is incorrect; if we are testing it for partial
correctness we conclude that the choice of s is incorrect,
and choose another initial state.

« The main purpose of test data selection is to generate a finite
and small test suite 7' to represent a potentially infinite set
of initial states: if we are testing P for total correctness with
respect to R, the set we are trying to represent is dom(R);
for partial correctness, that set is (dom(R) N dom(P)).

Hence the distinction between partial correctness and total
correctness is relevant for software testing, even though it has
not traditionally been given much consideration. We adopt the
following definitions for total and partial correctness.

Definition 2: Due to [43]. Program P on space S is said to
totally correct with respect to specification R on S if and only

if:
dom(R) = dom(R N P).

Definition 3: Due to [42]. Program P on space S is said to be
partially correct with respect to specification R on S if and
only if:

dom(R) Ndom(P) = dom(R N P).

Khaireddine et al. show in [31] that these definitions are equiv-
alent, modulo differences of notation, to traditional definitions
of total and partial correctness [39], [16], [27], [23].

2.3 Detector Sets and Relative Correctness

The concepts of detector sets and relative (partial or total)
correctness are useful for our purposes, as we use them to
check the validity of our definition of semantic coverage.
Given a program P on space S and a specification R on S,
the detector set of P with respect to R is the set of initial
states that disprove the correctness of P with respect to R.
Given that there are two standards of correctness, there are
two versions of differentiator sets.

Definition 4: Due to [41]. Given a program P on space S and
a specification R on S:

o The detector set for total correctness of program P with
respect to R is denoted by ©1 (R, P) and defined by:

Or(R, P) = dom(R) Ndom(R N P).

o The detector set for partial correctness of program P with
respect to R is denoted by © p(R, P) and defined by:

Op(R, P) = dom(R) Ndom(P) Ndom(RN P).

Intuitive interpretation: the term dom(R N P) represents the
set of initial states for which program P delivers a final
state that satisfies specification R; we call it the competence
domain of program P with respect to specification R. For
total correctness, dom(R) represents all the initial states for
which P must behave according to R; in other words, dom(R)
represents all the initial states that must be in dom(R N P);
hence the initial states that disprove the total correctness of
P with respect to R are all the elements of dom(R) that are
outside dom(RN P). A similar justification may be presented
for the detector set of partial correctness. When we want to
talk about a detector set but we do not wish to specify whether
we refer to total correctness or partial correctness, we use the
notation O(R, P).

Refer to Figure 1; the green area represents the competence
domain of P with respect to R, i.e. the set of inputs for which
P satisfies specification R; the detector set for total correctness
in colored in red, and the detector set of partial correctness
is colored in orange. Since total correctness is a stronger
property than partial correctness, it is easier to disprove total
correctness than partial correctness; hence the detector set for
total correctness (red) is a superset of the detector set for
partial correctness (orange).

The following Propositions stem readily from the definitions
(hence will be given without proof), and are perfectly easy to
understand intuitively.



dom(RNP) dom(P)

Figure 1. Detector Sets for Partial Correctness (orange) and
Total Correctness (red+orange)

Proposition 1: A program P on space S is totally correct with
respect to a specification R on S if and only if the detector
set of P for total correctness with respect to R is empty.
Proposition 2: A program P on space S is partially correct
with respect to a specification R on S if and only if the
detector set of P for partial correctness with respect to R
is empty.

Whereas absolute (partial or total) correctness is a bipartite
property between a program and a specification, relative
(partial or total) correctness is a tripartite property between
two programs, say P and P’, and a specification, say R.
Definition 5: Due to [15]. Given a specification R on space S
and two programs P and P’ on S, we say that P’ is more-
totally-correct than P with respect to R if and only if:

dom(RN P) C dom(RN P").

Using detector sets, we can readily infer the following Propo-
sition.

Proposition 3: Given a specification R on space S and two
programs P and P’ on S, P’ is more-totally-correct than P
with respect to R if and only if the detector set of P’ for total
correctness with respect to I? is a subset of the detector set of
P for total correctness with respect to R.

It is perfectly intuitive to consider that a program that has a
smaller (by set inclusion) detector set is more-totally-correct
(closer to being totally correct) than a program that has a
larger detector set; ultimately, when the detector set of a
program becomes so small that it is empty, the program
is (absolutely) correct. We extend this definition to partial
correctness, whence we obtain the simple characterization of
absolute correctness and relative correctness given in Table 1.

3. SEMANTIC COVERAGE: REVEALING FAILURES

In order to investigate the relationship between the ability to
detect faults and the ability to reveal failures, we must devise
means to quantify each of these attributes. In this section, we
consider the latter, and we refer to it as the semantic coverage
of a test suite.

| | Partial Correctness | Total Correctness |

Absolute

Correctness

P correct writ R | ©p(R, P) =0 Or(R,P)=1

Relative

Correctness Op(R, P') Or(R, P')

P’ more-correct | € -

than P wrt R Op(R,P) Or(R,P)
TABLE T

DEFINITIONS OF CORRECTNESS

3.1 Definitions

Whereas traditional coverage metrics treat the effectiveness of
a test suite as an attribute of the test suite and the program
under test, we must recognize that whether a test suite is able
to reveal the failure of a program does also depend on the
standard of correctness that we are testing the program against
(total or partial), and on the specification with respect to which
correctness is tested. In order for a test suite to reveal all the
failures of a program, it must be a superset of its detector set.
What precludes a test suite 7' from revealing all the failures
of a program is the set of initial states that are in the detector
set but are not in 7":

O(R,P)NT.

The smaller this set, the better the test suite 71" is; if we want
a metric that increases with the quality of 7' rather than to
decrease, we take the complement of this expression. Whence
the following definition.

Definition 6: Due to [4]. Given a specification R on space S
and a program P on S, the semantic coverage of a test suite
T is denoted by I'p r(T) and defined by:

Lpr(T)=TUBO(PR).

This definition represents, in effect, two distinct definitions,
depending on whether we are interested to test P for partial
correctnes or total correctness:

e Fartial Correctness. The semantic coverage of test suite T’

for program P relative to partial correctness with respect to
specification R is denoted by I‘?“RR (T') and defined by:

IH(T)=TU6p(PR),

e Total Correctness. The semantic coverage of test suite 7T’
for program P relative to total correctness with respect to
specification R is denoted by I' 257 (T') and defined by:

IEQN(T) =T UOr(P,R),

To gain an intuitive feel for this formula, consider under
what condition it is minimal (the empty set) and under what
condition it is maximal (set S in its entirety).



Figure 2. Semantic Coverage of Test 1" for Program P with
respect to R (shades of green)

e I'ppr(T) = 0. The semantic coverage of a test T for
program P with respect to specification R is empty if and
only if 7" is empty and the complement of the detector set
of P with respect to R is empty; in such a case the detector
set of P with respect to R is all of S. In other words, even
though any element of S exposes a failure of P with respect
to R, T' does not reveal that P is incorrect since it is empty.

e I'ppr(T) = S. If the union of two sets equals S, the

complement of each set is a subset of the other set. Whence:
O(P,R) C T. In other words, T contains all the tests that
reveal the failure of P with respect to R. This is clearly the
attribute of an ideal test suite.
As a special case, if P is correct with respect to R, then
the semantic coverage of any test suite 7" with respect to P
and R is S (if there are no failures to reveal, then any test
suite reveals all the failures).

Refer to Figure 2; the semantic coverage of test suite 7' for

program P with respect to specification R is the area colored

(both shades of) green. The (partially hidden) red rectangle

represents the detector set of P with respect to R; the dark

green area represents the complement of this set, i.e. in fact
all the test data that need not be exercised; the light green area

represents test suite 7'.

3.2 Criteria for Semantic Coverage

The semantic coverage of a test suite 1" for a standard of

correctness (partial or total) of a program P with respect to

a specification R depends on four factors: 7', P, R and the

standard of correctness. In this section we discuss how one

would want a measure of test suite effectiveness to vary as

a function of each of these parameters, then we show that

semantic coverage does meet the selected criteria. We start

with citing and justifying the criteria.

e Monotonicity with respect to T. Of course we want the
effectiveness of a test suite to be monotonic with respect to
T if we replace T' by a superset, we get a higher semantic
coverage.

o Monotonicity with respect to R. Specifications are ordered
by refinement (re: Definition 1), whereby a more-refined

specification represents a more stringent requirement. We
argue that it is easier to test a program for correctness
against a specification R than against a specification R’
that refines R; indeed, a more-refined specification involves
a larger input domain (hence a larger set to cover) and
stronger output conditions (hence more conditions to ver-
ify). Whence we expect that the same test suite 7' have
lower semantic coverage for more-refined specifications: i.e.
semantic coverage ought to decrease when R grows more-
refined.

o Monotonicity with respect to P. If and only if program P’
is more-correct than program P, the detector set of P’ is a
subset of the detector set of P, which means that we have
fewer failures of P’ to reveal than failures of P. Hence the
semantic coverage of a test suite 7' ought to be higher for
a more-correct program.

o Monotonicity with respect to the standard of correctness.
Total correctness is a stronger property than partial correct-
ness, hence it is more difficult to test a program for total
correctness than for partial correctness. Consequently, the
same test suite 7' ought to have a lower semantic coverage
for total correctness than for partial correctness (the same
tool would be less effective against a more difficult task
than an easier task).

We present below Propositions to the effect that semantic

coverage satisfies all these monotonicity properties; these are

due to [4], and are given without proof.

Proposition 4: Monotonicity with respect to T. Given a pro-

gram P on space S and a specification R on S, and given two

subsets 7" and 7" of S, if T'C T" then:

RS (T) C TR (1),
IRANT) C TR,

Proposition 5: Monotonicity with respect to the standard of
Correctness. Given a program P on space S, a specification
R on S, and test suite " (subset of S), the semantic coverage
of T for partial correctness of P with respect to R is greater
than or equal to the semantic coverage for total correctness of
P with respect to R:

EQT(T) € DRA(T).

Proposition 6: Monotonicity with respect to relative correct-
ness of P. Given a specification R on space S and two
programs P and P’ on S, and a subset T of S. If P’ is
more-totally-correct (resp. more-partially-correct) than P with
respect to R then:

TROA(T) S TR ()
Tl 5(T) STl B (T).

Proposition 7: Monotonicity with respect to Refinement of R.
Given a program P on space S and two specifications R and
R’ on S, and a subset T of S. If R’ refines R then:

P2h () < TEOAD)

Tl p)(T) € Tl (7).



3.3 Intuitive Interpretation

To give the reader some intuition about what the semantic
coverage of a test suite represents, and why it is a sensible
measure of test suite effectiveness, we expand its formula
and justify its various components. We start with the semantic
coverage for total correctness:

I'p(T) =T UOr(R,P),

where
Or(R, P) = dom(R) Ndom(R N P).

Replacing ©7 (R, P) by its formula and applying DeMorgan’s
laws, we find:

U p(T) = T Udom(R) Udom(RN P).
The semantic coverage of 7' for total correctness of P with
respect to R is the union of three terms:

o T': clearly a bigger T' is more effective than a smaller 7T'.

e dom(R): A smaller domain of R means fewer inputs to test
/ to worry about.

e dom(R N P): A larger competence domain means fewer
failures to reveal.

Likewise, a decompsotion of the formula of semantic coverage
for partial correctness yields:

P{3 5 (T) = T Udom(R) U dom(P) U dom(R N P).

Hence for partial correctness we have one extra term in the
formula of semantic coverage:

e dom(P): From the standpoint of partial correctness, a pro-
gram is tested (held accountable) only wherever it termi-
nates / converges; the smaller the set of inputs where the
program converges, the higher the semantic coverage.

4. MUTATION TALLY: DETECTING FAULTS

In the previous section we introduce semantic coverage as
the attribute we use to quantify a test suite’s ability to reveal
program failures; in this section we briefly discuss how we
quantify a test suite’s ability to detect faults. To the extent
that mutations are faithful proxies of actual faults [48], [46],
[71, [8], [29], [6], [28], it is sensible to use mutation coverage
as a measure of a test suite’s ability to detect faults. In this
section we briefly discuss alternative measures of mutation
coverage, and justify why we select mutation tally, which is
the set of mutants killed by a test suite.

« RMS: Raw Mutation Score. The raw mutation score of a test
suite in a mutation experiment is the ratio of killed mutants
over generated mutants. The same value of RMS means
vastly different things depending on whether the surviving
mutants are equivalent to the base program or not; hence
we dismiss RMS for this experiment.

e PMS: Prorated Mutation Score. The prorated mutation
score of a test suite is the raio of killed mutants over the set
of killable (i.e. non-equivalent) mutants. The same value of
PMS means vastly different things depending on whether the
killed mutants are all semantically distinct, all semantically

equivalent, or partitioned into a large number of equivalence
classes; hence we dismiss PMS for this experiment.

o EMS: Equivalence-Based Mutation Score. The equivalence-
based mutation score of a test suite is the ratio of the
number of equivalence classes killed by the test suite over
the total number of equivalence classes of the killable
mutants. Because EMS takes numeric values, it defines
a total ordering between test suites, but the property of
being a more effective test suite is a partial ordering (not
all pairs of test suites can be compared for effectiveness).
Representing a partial ordering by a total ordering creates
a built-in potential for loss of precision; hence we dismiss
EMS for this experiment.

o MT: Mutation Tally. The mutation tally of a test suite for
a mutation experiment is merely the set of mutants that are
killed by the test suite; we denote the mutation tally of test
suite T by u(T). We order mutation tallies by inclusion:
in the context of a mutation experiment, a test suite 7' is
considered more-effective than a test suite 7" if and only
if all the mutants killed by 7" are killed by T. We adopt
MT as the measure of mutation coverage we use in this
experiment; we use it to represent the effectiveness of a
test suite to detect faults, on the grounds that mutants can
be considered as proxies for actual faults.

5. EMPIRICAL STUDY
5.1 The Benchmark Program and Tests

Now that we have decided how to quantify a test suite’s ability
to reveal failures (through semantic coverage) and a test suite’s
ability to detect faults (through mutation tally), we resolve to
explore to what extent these two attributes are related. To this
effect, we run the following experiment:

o Sample Program, P. The sample program that we use for
this experiment is a method called createNumber () of
the Java class NumberUtils. java, from the commons
benchmark (commons-lang3-3.13.0-src)'. The size
of the selected method is 170 LOC.

e Base Test Suite, Ty. We consider the test
that comes with the selected program:
NumberUtilsTest.java. This class includes
tests.

o Test Suites T4, T, ... Too. To generate these test suites, we
run the following script, where rand () returns random
numbers between 0.0 (inclusive) and 1.0 (exclusive):
threshold 0.2;
for (int i=1; 1i<=20; i++)

{print ("test suite t",1i);

int size=0;

for (int j=1; j<=107; Jj++)

{if (rand()<=threshold)
{print (3j); size++;}
("size of test suite t",
i,": ", size);}
threshold = threshold + 0.03;}

Our expectation is to obtain 20 test suites 77...T59 whose
sizes range between approximately 0.2 x 107 and 0.77 x 107.

class
class

107

print

"https://commons.apache.org/proper/commons—lang/



To |Th |To | T3 | Ty | T5 | Te | T7 | Tz | To | T1o

Ty | The | Thz | Tha | Tis | Tue | Th7 | Tis | T19 | T2o

107 | 25 | 31 | 22|22 |36 |46 | 44 | 40 | 53 | 49

65 | 56 | 67 | 69 | 76 | 77 | 82 | 78 | 86 | 86

TABLE IT
SIZES OF THE RANDOMLY GENERATED TEST SUITES

Table II shows the sizes of the test suites derived from this
algorithm.

5.2 The Semantic Coverage

The semantic coverage of test suites 77...75¢ depends not only
on the program and the test suites, but also on two additional
factors: what correctness standard we are considering (partial,
total) and what specification we are testing the program
against. We have generated three specifications, R, R, R3
derived as follows: We consider the 107 elements of 7y and
run the base program on this data. Then we scan the list of
(input,output) pairs generated by the program, and generate
the specifications according to the following rules:

o R;: We alter each fifth output, so that P fails for each fifth
input with respect to R2;.

e Ry: We alter each seventh output, so that P fails for each
seventh input with respect to Ro.

o Rj3: We alter each eleventh output, so that P fails for each
eleventh input with respect to Rs.

In addition, we extend the domains of R;, Ro and R3 beyond
the domain of P, so as to make P fail to converge for some
elements in the domains of the specifications; this is important
to distinguish between partial correctness and total correctness.
For each specification, we compute the semantic coverage of
test suites 77... T for partial correctness and total correctness;
this yields a total of six measures of semantic coverage.

5.3 The Mutation Tally

We use the mutant generator LittleDarwin [51], [53], and we
consider its mutation operators:

o ROR: Relational Operator Replacement.

o AORB: Arithmetic Operator Replacement Binary.

e AORU: Arithmetic Operator Replacement Unary.

e ArORS: Arithmetic Operator Replacement Shortcut.
e AsORS: Assignment Operator Replacement Shortcut.
e COD: Conditional Operator Delection.

e COR: Conditional Operator Replacement.

From these seven operators, we form four mutant generation
policies as shown in Figure 3:

e Policy 1: ROR, AsORS, ArORS. This policy produces 61
mutants.

e Policy 2: COD, COR, AORB. This policy produces 58
mutants.

e Policy 3: ArORS, AsORS, AORU, COD, COR. This policy
produces 61 mutants.

e Policy 4: ArORS, AsORS, AORB, AORU, COD, COR,
ROR. This policy produces 133 mutants.

Policy 4

Policy 3

Policy 1 Policy 2

ArORS COD

ROR AORU AORB

AsORS COR

N /

Figure 3. Mutant Generation Policies

6. EXPERIMENTAL DATA

6.1 Semantic Coverage: Exposing Failures

For each specification (R;, Rs, R3) and each standard of
correctness (partial, total), we compute the semantic coverage
of each test suite (717...T59) and we check inclusion relations
between them (I'p g, (T;) C I'p g, (T})). For each specifica-
tion and standard of correctness, this yields a graph whose
nodes represent the test suites. The six graphs are shown in
Table III.

One can make several observations from these graphs. As a
preamble, we must specify that when an arrow goes from node
T; to node T}, it means that 7); has higher semantic coverage
than 7; (i.e. is better at revealing program failures).

o The first observation we can make about these graphs is
that test suites with higher indices tend to have higher
semantic coverage; this is due, of course, to how these were
generated, to range in size from about 0.2x 107 to 0.77x 107
(of course, bigger test suites tend to be better).

« The second observation can be made by comparing graphs
for the same specification: the graphs for partial correctness
and total correctness with respect to the same specification
are different, which means that whether a test suite is better
than another depends on whether we are testing the program
for partial correctness or for total correctness. It appears that
for each specification, the graph for total correctness is a
subgraph of the graph for partial correctness, which means
if a test suite is better than another for total correctness, it
is necessarily better for partial correctness.

o The third observation can be made by comparing graphs
across specifications: for the same standard of correctness
(say, e.g. total) whether a test suite is better than another
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TABLE III
ORDERING TEST SUITES BY SEMANTIC COVERAGE

depends heavily on the specification against which the
program is being tested for correctness. While this may
seem obvious, it may mean that assessing test suite effec-
tiveness by considering only the program and the test suite
may be missing an important / influential parameter: the
specification.

o The fourth observation is that the graphs become increas-
ingly denser as we have fewer and fewer failures to report
(each fifth input, vs each seventh input, vs each eleventh
input). Conversely, the more failures we have to report, the
fewer comparative relations exist between test suites.

6.2 Mutation Tally: Detecting Faults

For each mutant generation policy (Policy 1 ... Policy 4), we
compute the mutation tally of each test suite (1(71)....4(T20))
and we rank test suite according to the inclusion relation-
ships between their mutation tallies (u(7;) C p(Tj)). Table
IV shows the graphs that represent these ordering relations
between the test suites. Some observation can be made on
these graphs, from a cursory analysis:

o For the same reason as above, test suites with higher
index tend to have higher mutation tallies, because they are
generally larger sets.

« This experiment bears out an observation made in [5] to the
effect that mutation coverage varies significantly according
to the mutant generation policy: the same test suite can have
widely varying mutation scores depending on the mutant
generation policy.

o As an exception, the graphs for Policies 3 and 4 are very
similar even though they use use different sets of mutation
operators and are based on vastly different mutant sets (61
mutants vs 133 mutants).

6.3 Detecting Faults vs Revealing Failures

Table V captures the pairwise relationships between the six
measures of semantic coverage and the four measures of
mutation tally. Each entry of this table represents the Jaccard
index of the corresponding graphs, which is the ratio of the
number of arcs that the two graphs have in common over the
total number of arcs in the two graphs.

7. OBSERVATIONS AND ANALYSIS

In this section we analyze the results shown in Table V, by
considering in turn, the interrelations between measures of
mutation tally, then the interrelations between measures of
semantic coverage, then relationships between mutation tally
and semantic coverage.

7.1 Mutation Tally vs Mutation Tally

If we focus on the top left triangle of Table V, we find that
the Jaccard index betweeen the graphs derived from different
mutant generation policies vary between 0.40 and 0.50, with
the exception of Policy 3 vs Policy 4, which is 0.95. This is
consistent with findings of other experiments, where we find
that the Jaccard index that stems from different policies of
the same tool fall in the range of 0.40 to 0.50, whereas the
Jaccard index of different mutant generation tools can be as
low as zero or even negative [5].

7.2 Semantic Coverage vs Semantic Coverage

In this section we focus on the lower right triangle of Table
V. The Jaccard index of the graphs for partial correctness and
total correctness with respect to the same specification are
fairly high: 0.529 for R, 0.525 for Ry and 0.647 for R3. In
all other cases, when they deal with different specifications, the
indices are fairly low, ranging between 0.05 and 0.30. These
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TABLE IV
ORDERING TEST SUITES BY MUTATION TALLY

| || Policy 1 | Policy 2 | Policy 3 | Policy 4 || PR1 | TR1 | PR2 | TR2 | PR3 | TR3 |
Policy 1 1.0000 | 0.4162 0.4028 0.4113 || 0.0822 | 0.0638 | 0.1602 | 0.1096 | 0.3294 | 0.2327
Policy 2 1.0000 | 0.5401 0.4793 || 0.1219 | 0.0655 | 0.2385 | 0.1360 | 0.3290 | 0.1973
Policy 3 1.0000 | 0.9508 || 0.1642 | 0.1290 | 0.2169 | 0.2059 | 0.2807 | 0.2083
Policy 4 1.0000 (| 0.1538 | 0.1356 | 0.2099 | 0.1970 | 0.2882 | 0.2150
PR1 1.0000 | 0.5294 | 0.1875 | 0.2258 | 0.1333 | 0.1250
TR1 1.0000 | 0.1667 | 0.3043 | 0.0562 | 0.0847
PR2 1.0000 | 0.5250 | 0.1261 | 0.1046
TR2 1.0000 | 0.0928 | 0.1343
PR3 1.0000 | 0.6471
TR3 1.0000
TABLE V

JACCARD INDEX OF MUTATION TALLY (POLICY 1... POLICY 4) VS. SEMANTIC COVERAGE (PR1...TR3)

low values reflect the important role that specifications play
in determining whether a test suite is effective in revealing
program failures; this in turn, means that the effectiveness of
a test suite cannot be considered as an attribute of the program
alone, but must also involve an analysis of the specification
with respect to which correctness is tested. The low values of
these Jaccard indices reflect to what extent we stand to lose
precision when we overlook specifications.

7.3 Mutation Tally vs Semantic Coverage

In this section we focus on the top right rectangle of Table
V, defined by rows (Policy 1 to Policy 4) and columns (PRI
to TR3). The Jaccard indices in this rectangle range between
0.06 and 0.32; the average value in this rectangle is 0.186; in
other words, if we consider how test suites are ranked by their
ability to detect faults and how they are ranked by their ability
to reveal failures, the two criteria concur on only only 18.6%
of their findings.

But we observe another interesting phenomenon: For each
Policy and for each standard of correctness (partial, vs total),
the Jaccard index increases monotonically as we transition
from R; to R to R3; as we recall, Ry, R> and Rj3 differ
by how often the program P fails to comply to them: for

each fifth input, for each seventh input, and for each eleventh
input, respectively. This seems to indicate that mutation tally
(ability to detect faults) and semantic coverage (ability to
reveal failures) are more tightly coupled for lower failure rates
than for higher failure rates. These results are illustrated in
Table VI, which plots the Jaccard index of the mutation tally
graph and the semantic coverage graph for partial and total
correctness with respect to R;, Re and R3 for each mutant
generation policy, as a function of the failure rate.

7.4 Discussion

The contrast between failures and faults is essentially a con-
trast between observable, verifiable effects and hypothesized,
speculative causes. The same observed effect (failure) may be
attributed to a wide range of possible causes (faults) and may
be remedied by a wide range of possible fixes (fault repairs).
This contrast may be interpreted to mean that if we want
to quantify the effectiveness of test suites in a meaningful,
measurable way, we may be better off defining it in terms of
failures rather than faults.

There is another reason why, theoretically, it may be more
sensible to focus on failures rather than faults: ultimately,
the reliability and operational quality of a software product



pertains not to how many faults it has (fault density) but rather
how often it fails (failure rate, or its inverse, inter-failure span).
Even though failures are the result of faults, the statistical
correlation between failure rate and fault density is very weak,
as the impact of faults on failures varies very widely in
practice: a fault in an obscure part of the code that is visited
only under very exceptional circumstances does not have the
same impact on reliability as a fault that is part of routine
code that gets invoked at each call. In [44] Mills et al. report
on empirical studies of IBM software projects where they find
that the impact of faults on failure rates varies from 18 months
between failures to 5000 years between failures; more than
half the faults have failure rates of 1500 years between failures;
specifically, they find that one may remove 60 percent of faults
in a software product and enhance its reliability by a mere 3%.
In other words, from the standpoint of reliability, faults are not
created equal: some have a much greater impact on reliability
than others, hence from the standpoint of a tester, are much
more worthy of attention.
To illustrate the contrast between focusing on faults and
focusing on failures, consider the hypothetical case where
we have three faults in a program, say f1, f2, f3. We
consider two test suites, say 7' and 7", and we assume that
T detects f1 and f2 while 7" detects f3. In terms of fault
detection, T is better than T’ because it detects twice as many
faults. But imagine, for the sake of argument, that f1 and
f2 cause the program to fail, on average, once every 1000
executions, whereas f3 causes the program to fail once every
10 executions. From the standpoint of failure rate (reliability),
it is better to repair f3 than to repair f1 and f2; hence
test suite 77 is better than 7, since it alerts us to a more
consequential fault. When we focus on exposing failures rather
than detecting faults, the failures that occur more often will
naturally arise more frequently, hence leading us to repair high
impact faults before (or instead of, if the test budget is limited)
low impact faults.

Hence it seems that the ability to expose failures is a better

measure of test suite effectiveness than the ability to detect

faults, but we qualify this conclusion with an important caveat:

There are really two broad families of test processes, with

different goals:

o Tests Which Focus on Fault Detection. These include unit
tests and integration tests, which are carried out under the
purview of the system designers and are geared towards
finding and repairing faults.

o Tests Which Focus on Black Box Behavior. These include
acceptance tests and reliability tests [44], [38] which are
carried out by third parties and are geared towards ensuring
the absence (or infrequency) of failures.

It is possible that these different families of tests mandate

different criteria for judging test suite effectiveness.

7.5 Threats to the Validity of Our Results

The results presented in this paper are based on six experi-
ments to compute the semantic coverage of test suites, and
four experiments to compute the mutation tally the same test

suites; hence these results are valid only to the extent that
this limited experiment is statistically significant. But the main
purpose of our paper is not to deliver definite results as much
as it is to shake some assumptions and raise some questions
about current practice in test suite assessment.

8. CONCLUSION

In this paper we consider two alternative means to quantify
the effectiveness of a test suite: By the test suite’s ability to
detect faults, or by its ability to expose failures. This choice
raises two questions: Are these two attributes correlated? If
not, which better reflects the effectiveness of a test suite?

To answer the first question, we have resolved to adopt means
to represent these two attributes: we represent a test suite’s
ability to detect faults by its mutation tally, and we represent
a test suite’s ability to expose failures by its semantic coverage.
Then we run an experiment in which we consider a sample
benchmark program, we generate twenty test suites thereof,
we compute the mutant tally and the semantic coverage of
each of the twenty test suites, then we check to what extent
the two measures are compatible with each other. We find that
there is little concordance between the rankings of test suites
by mutation tally and by semantic coverage. We also find that
mutation tally has greater correlation with semantic coverage
for partial correctness than for total correctness, and that it has
greater correlation with semantic coverage when the program
has lower failure rates, i.e. higher reliability.

To answer the second question, we argue that failures are more
definite observations, hence are more adequate as a basis for
formal definitions. Also, we argue that in most contexts, failure
rate is more meaningful than fault density, and faults have
widely varying impacts on the failure rate. We also observe
that different test processes have different goals, hence may
be subject to different criteria for test suite effectiveness.
Our prospects for future research involve broadening the scope
of our experiments, further exploring the relationship between
fault delection and failure exposure, and investgating means to
estimate the semantic coverage of a test suite by approximate
means, since its precise calculation is complex and impractical.
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