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Abstract

This paper considers the formation flying of multiple quadrotors with a desired orientation and a leader. In the formation

flying control, it is assumed that the desired formation is time-varying and there are the system uncertainty and the information

uncertainty. In order to deal with different uncertainties, a backstepping-based approach is proposed for the controller design. In

the proposed approach, different types of uncertainties are considered in different steps. By integrating adaptive/robust control

results and Laplacian algebraic theory, distributed robust adaptive control laws are proposed such that the formation errors

exponentially converge to zero and the attitude of each quadrotor exponentially converges to the desired value. Simulation

results show the effectiveness of the proposed algorithms.

Keywords Quadrotor · Distributed control · Cooperative control · Leader–follower control · Formation control

1 Introduction

Formation flying of multiple quadrotors has been studied

recently due to its wide applications in civil and military

applications, such as surveillance, area exploration, target

search, accident rescue tasks, and many other applications.

The capacity of vertical taking-off and landing makes quadro-

tors superior to other unmanned aerial vehicles. Compared

with a single quadrotor, the formation of multiple quadro-

tors can perform more difficult tasks and provides better

performance. However, the underactuated nature of a single

quadrotor makes the cooperative control of multiple quadro-

tors challenging.

Formation control of multiple quadrotors is to coordi-

nate a group of quadrotors to achieve a desired spatial

geometric pattern. In the past decades, several classical

approaches have been proposed for multi-agent systems,

which include the behavioral approach, the virtual structure

approach, the leader-follower approach, and the graph the-

oretical approach. In the leader-following approach [1,2],

some agents are designated as leaders and the others are

designated as followers. The leaders track the predefined tra-

jectories and the followers track the state of their neighbors
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according to given schemes. In the behavioral approach [3–

5], the control action for each agent is defined by a weighted

average of the control corresponding to each desired behav-

ior for the agent. In the virtual structure approach [6–8], the

entire formation is treated as a single rigid body. The vir-

tual structure moves along a desired trajectory and with a

desired attitude. In the graph theoretical approach [9–12],

each agent is considered as a node and the communication

between agents is defined by a graph. The control law is

designed with the aid of the difference of neighbors’ infor-

mation.

Formation control of multiple unmanned aerial vehicles

(UAVs) has been studied extensively. In [13,14], the dynam-

ics of each vehicle is simplified as a linear system and the

formation control is studied based on multiple linear sys-

tems. In [15–17], the formation control was studied based

on the translational and rotational motions with linearized

or simplified models. Noting that a UAV is a multiple-input

multiple-output system with highly nonlinear and strongly

coupled dynamics and has 6 degrees of freedom (6-DOF),

formation control of multiple UAV was studied based on

6-DOF dynamics in [18–21]. In [19,20], formation control

of multiple UAVs was studied based on the 6-DOF model

with disturbances and robust distributed control laws were

proposed. In [21], distributed formation control of multi-

ple UAVs was studied based on a nonsmooth backstepping

design and consensus techniques for the 6-DOF models.
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The formation controllers in the literature mentioned

above ensure that the states of a UAV asymptotically con-

verge to a desired formation as time goes to infinity. In

practical applications, finite-time distributed controllers are

preferred because they ensure that the states of a UAV con-

verge to a desired formation within a finite time and the

closed-loop systems have better disturbance rejection per-

formance. In [22], formation control of multiple UAVs with

nonparametric uncertainties was studied. Finite-time con-

trollers were proposed with the aid of finite-time distributed

observers. In [16], finite-time distributed controllers were

proposed based on the linearized models without uncertainty

with the aid of the properties of homogeneous systems. In

[16,22], the attitudes of UAVs are defined by Euler angles. To

make the attitude control laws nonsingular, the Euler angles

are limited to some intervals.

Although there are many results on formation control of

multiple UAVs, how to improve the control performance is

still challenging in the presence of uncertainty and coupling

among neighboring UAVs. Motivating by the research work

mentioned above and the work in [23–25], in this paper we

study the formation control of multiple UAVs with parametric

and nonparametric uncertainties and propose new distributed

control laws such that the formation errors exponentially con-

verge to zero and the attitude of each UAV exponentially

converges to a desired attitude. In order to solve the formation

control problem, a multi-step backstepping-based approach

is proposed and distributed exponential control laws are

designed. The proposed approach includes six steps. In the

first step an auxiliary system for each quadrotor is introduced

to estimate the parametric and nonparametric uncertainties

in the dynamics of each quadrotor. In the second step, dis-

tributed kinematic controllers are proposed for the translation

with the aid of the graph theory and the formation problem

is solved without the information whether the leader’s infor-

mation is available to a quadrotor or not. In the third step,

distributed dynamic controllers for the translation and the

desired attitude for each quadrotor are designed based on the

backstepping technique. In the fourth step, the force input

and the desired attitude for each quadrotor are calculated.

In the fifth step, a distributed kinematic controller for the

attitude control of each quadrotor is proposed with the aid

of the graph theory. In the last step, a dynamic controller

for the attitude of each quadrotor is proposed with the aid

of the backstepping technique. In the proposed approach,

the uncertainties in the dynamics and the uncertainty of the

leader’s information are considered separately in different

steps. With the aid of this multi-step approach, distributed

robust adaptive controllers are proposed such that multiple

quadrotors exponentially converge to a desired formation and

the Y-axis of each quadrotor exponentially converges to the

desired direction. Compared to the results in literature, the

contributions of this paper are as follows.

" This paper solves the formation control problem of multi-

ple quadrotors in a more general setting. In the considered

problem, the formation is time-varying and there are

both parametric uncertainty and nonparametric uncer-

tainty in the dynamics of each quadrotor. Furthermore,

the communications among quadrotors are directional,

which means that the information exchange between two

quadrotors is one-way instead of two-way.

" A new systematic multi-step controller design approach

is proposed for the formation control problem by inte-

grating the uncertainty decomposition technique and the

backstepping technique. In this approach, different types

of uncertainties are dealt with in different steps. The dif-

ficulty of the controller design is greatly reduced.

" The proposed control laws ensure that a group of quadro-

tors exponentially converge to a desired formation with a

desired orientation, which means that the proposed con-

trol systems have better performance in convergence and

disturbance rejection. Moreover, the proposed controllers

are distributed. No global information is required in the

controllers.

The remaining part of this paper is organized as follows. In

Sect. 2, the considered problem is defined and some prelimi-

nary results are presented. In Sect. 3, a multi-step approach is

proposed and distributed controllers are derived. In Sect. 4,

simulation results are presented. The last section concludes

this paper.

2 Problem statement and preliminaries

2.1 Problem statement

Consider m quadrotors. Under some assumptions, the kine-

matics and dynamics of j-th quadrotor are defined by

Ûp j = v j (1)

Ûv j = 2ge3 + 1

m j

f j R j e3 + d1 j (2)

ÛR j = RS(Ë j ) (3)

J j ÛË j = S(J jË j )Ë j + Ç j + d2 j (4)

where p j and v j are the position and the velocity of the mass

center in the inertia frame, respectively, g is the gravitational

acceleration, e3 = [0, 0, 1]¦, f j * = is the total thrust,

R j = [b1 j , b2 j , b3 j ] is the rotation matrix of the body frame

with respect to the inertia frame, Ë j is the angular velocity of

the quadrotor in its body frame, J j is the inertia moment of the

quadrotor, d1 j and d2 j denote nonparametric uncertainty and

disturbance, S(¿) for ¿ = [¿1, ¿2, ¿3]¦ is a skew-symmetric
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matrix defined by

S(¿) =

£

£

0 2¿3 ¿2

¿3 0 2¿1

2¿2 ¿1 0

§

§ ,

and Ç j = [Ç1 j , Ç2 j , Ç3 j ]¦ is the torque input of the system.

For multiple quadrotors, there are information flows

between them with the aid of sensors or wireless communica-

tion. Consider each quadrotor as a node. The communication

between quadrotors is defined by a directed graph G =
{A, E} where A is the node set and E is the edge set. If

there is an edge ei j in E it means that the information of node

i is available to node j . Node i is called a neighbor of node j

if the information of node i is available to node j . All neigh-

bors of node j form a node set which is called the neighbor

set of node j and is denoted by N j . A directed path from

node i to node j is a sequence of sets of edges that connect

node i to node j by following their directions. Node i is said

to be reachable to node j if there exists a directed path from

node i to node j . Node i is said globally reachable if node i

is reachable for every other node in A.

In this paper, we assume there are m follower quadrotors

and one leader quadrotor. The leader quadrotor is operated by

a human operator and does not receive any information from

the follower quadrotors. Without loss of generality, the leader

quadrotor is labeled as node 0. The follower quadrotors are

labeled by 1, 2, …, m. The communication between m + 1

quadrotors is defined by an augmented directed graph Ga =
{Aa, Ea} where Aa = A * {0} and Ea is a union of E and

the edges from node 0 to the followers.

For m follower quadrotors and a leader quadrotor, a

desired formation can be defined by (m +1) vectors h j * R3

which may be constant vectors or time-varying vectors. We

say (m + 1) quadrotors are in the desired formation if

pi 2 p j = hi 2 h j

for any 0 f i, j f m. We say m + 1 quadrotors come into

the desired formation if

lim
t³>

[(pi 2 hi ) 2 (p j 2 h j )] = 0

for any 0 f i, j f m.

In the dynamics (1–4), the parametric uncertainty (i.e.,

m j and J j ) and nonparametric uncertainty (i.e., d1 j and d2 j )

are called the system uncertainty. For each quadrotor, it is

unknown whether the leader quadrotor is a neighbor or not.

We say there is information uncertainty for each quadrotor.

In this paper, we consider the following control problem.

2.1.1 Formation flying with a leader

For a leader quadrotor and m follower quadrotors, it is

assumed that m j , J j , d1 j , and d2 j are unknown for 1 f
j f m. It is given a desired formation defined by h j for

0 f j f m, the control problem is to design distributed state

feedback controllers f j and Ç j using its own information and

its neighbors’ information such that

lim
t³>

[(p j (t) 2 h j (t)) 2 (pi (t) 2 hi (t)]
exp.= 0 (5)

lim
t³>

(b2 j (t) 2 b2,0(t))
exp.= 0 (6)

where
exp.= means “exponentially converges to”.

In the defined problem, (5) means that the (m +1) quadro-

tors come into the desired formation and (6) means that the

Y -axes of the body frames of m + 1 quadrotors are parallel

as time goes to infinity.

In order to solve the defined problem, the following

assumptions are made.

Assumption 1 The mass m j of quadrotor j is an unknown

constant and m j f m j f m̄ j where m j and m̄ j are known

constants.

Assumption 2 d1 j and d2 j are continuous functions of the

system state and the time and are bounded.

Assumption 3 The communication graph Ga is a directed

graph and the node 0 is globally reachable.

Assumption 4 b2,0(t) is smooth. Ûb2,0 and b̈2,0 are bounded.

b¦
2,0(t)b3,0(t) = 0 for any time where b3,0(t) = p̈0(t)+ge3

‖ p̈0(t)+ge3‖2
.

Assumption 1 is reasonable in practice because the mass of

a quadrotor is always bounded by some constant. Since d1

and d2 are friction and disturbance, it is reasonable to assume

that they are bounded in Assumption 2.

Assumption 4 is due to the motion of the quadrotor in

(1–2). In Assumption 4, b3,0 is obtained as follows. If the

quadrotor moves along the desired trajectory, by (1–2) one

has

R0e3 = f ( p̈0 + ge3)

m
= p̈0 + ge3

‖ p̈0 + ge3‖2
.

Since m j and f j are not zero and R0e3 is an unit vector, b3,0

should be the third column of R0.

2.2 Kinematics of rotation using quaternion

The attitude of j-th quadrotor can be defined by an unit

quaternion q j =
[

· j , ë
¦
j

]¦
where · j * = and ë j * =3. The

relation between q j and the rotation matrix R j is defined by

R j = R(q j ) = I + 2· j S(ë j ) + 2S2(ë j ).
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Noting that for any rotation matrix R, there are exactly two

unit quaternions, ±q, such that R = R(q) = R(2q).

For j-th quadrotor, (3) can be written as

Ûq j = 1

2
A(q j )Ë j (7)

where

A(q j ) =
[ 2ë¦

j

· j I + S(ë j )

]

. (8)

2.3 Notations and preliminary results

Let L> denote bounded functions and L2 denote square inte-

grable functions.

For x * =, we define the function

Ç(x) = x:
x2 + e22»t

(9)

where » > 0. If x = [x1, . . . , xl ]¦ * =l , Ç(x) is defined as

Ç(x) = [Ç(x1), . . . , Ç(xl)]¦.

It can be proved that

x¦Ç(x) g
l

∑

i=1

|xi | 2 le2»t .

The results in the following lemma are useful.

Lemma 1 Consider m+1 agents, where agent 0 is the leader

agent and agent j is a follower agent for 1 f j f m. The

state of the agent j is x j . The communication among agents

is defined by a direct graph Ga and it is assumed that the

state x0 is globally reachable to all other agents.

(1) If Ûx0 = 0 and the state of agent j for 1 f j f m is

defined by

Ûx j = 2
∑

i*N a
j

a j i (x j 2 xi ) + u j

then the system with input u and state Þx has the

input-to-state stability (ISS) property [26], where u =
[u¦

1 , . . . , u¦
m]¦ and Þx = [x¦

1 2 x¦
0 , . . . , x¦

m 2 x¦
0 ]¦.

Moreover, if u exponentially converges to zero Þx also

exponentially converges to zero.

(2) If maxt*[0,>) | Ûx0(t)| f ¿ and the state of agent j for

1 f j f m is defined by

Ûx j = 2
∑

i*N a
j

a j i (x j 2 xi ) 2 ¿Ç

»

¿

¿

∑

i*N a
j

a j i (x j 2 xi )

¿

¿

£
+ u j

then the system with input u and state Þx has the ISS prop-

erty, where u and Þx are defined in item 1. Moreover, if

u exponentially converges to zero Þx also exponentially

converges to zero.

(3) If maxt*[0,>) | Ûx0(t)| f ¿0 and the state of agent j for

1 f j f m is defined by

Ûx j = 2
∑

i*N a
j

a j i (x j 2 xi ) 2 ¿ jÇ

»

¿

¿

∑

i*N a
j

a j i (x j 2 xi )

¿

¿

£

+u j

Û¿ j = 2
∑

i*N a
j

a j i (¿ j 2 ¿i )

then limt³>(¿ j 2 ¿0)
exp.= 0 and the system with input

u and state Þx has the ISS property, where u and Þx are

defined in item 1. Moreover, if u exponentially converges

to zero Þx also exponentially converges to zero.

The lemma can be proved based on the results of properties

of Laplacian matrices and ISS properties and is omitted here.

3 Controller design

The presence of the system uncertainty and the information

uncertainty makes the distributed controller design extremely

hard when the communication graph is directed. In order to

solve the defined problem, we propose the following multi-

step controller design approach in which different types of

uncertainty are dealt with in different steps.

Step 1: In the dynamics of the translation (1–2), m j is an

unknown constant and d1 j is an unknown time-varying func-

tion. We use a two-layer neural network to learn d1 j . Based

on the universal approximation property of neural networks

[27], there is a basis matrix Ç1 j and an optimal weighted

vector »1 j with appropriate dimensions such that

d1 j = Ç1 j»1 j + ë1 j (10)

where ë1 j is the approximation error vector and ‖ë1 j‖ f ·1 j .

In order to deal with the system uncertainty, an auxiliary

system for j-th quadrotor (1 f j f m) is introduced as

follows.

Ûz1 j = z2 j + L1 j (p j 2 z1 j ) (11)

Ûz2 j = 2ge3 + ³ j f j R j e3 + Ç1 j
Æ»1 j + L2 j (v j 2 z2 j )

+(p j 2 z1 j ) + ·1 jÇ(e»t (v j 2 z2 j )) (12)

where », L1 j (> ») and L2 j (> ») are positive constants,

» > », ³ j is an estimate of 1
m j

, and Æ»1 j is an estimate of
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»1 j and will be designed later. Let e1 j = e»t (p j 2 z1 j ) and

e2 j = e»t (v j 2 z2 j ), then

Ûe1 j = e2 j 2 (L1 j 2 »)e1 j

Ûe2 j =
(

1

m j

2 ³ j

)

e»t f j R j e3 + e»tÇ1 j (»1 j 2 Æ»1 j )

+ e»të1 j 2 e1 j 2 (L2 j 2 »)e2 j 2 ·1 j e
»tÇ(e2 j )

To make e1 j converge to zero, we choose a Lyapunov

function candidate

V1 j = 1

2
e¦

1 j e1 j + 1

2
e¦

2 j e2 j +
³ 21

1 j

2

(

1

m j

2 ³ j

)2

+
³ 21

2 j

2
(»1 j 2 Æ»1 j )

¦(»1 j 2 Æ»1 j )

where ³1 j and ³2 j are positive constants. The derivative of

V1 j is

ÛV1 j = 2e¦
1 j (L1 j 2 »)e1 j + e¦

2 j

(

1

m j

2 ³ j

)

e»t f j R j e3

+ e¦
2 j e

»tÇ1 j (»1 j 2 Æ»1 j ) + e¦
2 j e

»të1 j

2e¦
2 j (L2 j 2 »)e2 j 2 ³ 21

1 j

(

1

m j

2 ³ j

)

Û³ j

2 ³ 21
2 j (»1 j 2 Æ»1 j )

¦ ÛÆ» j 2 e¦
2 j·1 j e

»tÇ(e2 j )

We choose

Û³ j = Proj� j
[³1 j e

¦
2 j e

»t f j R j e3] (13)

ÛÆ»1 j = ³2 j e
»tÇ¦

1 j e2 j (14)

where Proj� j
denotes the projection to � j =

[

1
m̄ j

, 1
m j

]

[28], then

ÛV1 j = 2e¦
1 j (L1 j 2 »)e1 j + e¦

2 j e
»të1 j 2 e¦

2 j (L2 j 2 »)e2 j

2 · j e
¦
2 j e

»tÇ(e2 j )

f 2e¦
1 j L1 j e1 j 2 e¦

2 j L2 j e2 j + 3·1 j e
2(»2»)t . (15)

Lemma 2 For the systems in (1–2) and the auxiliary system

in (11–12) with update laws in (13–14), the estimates ³ j and

Æ»1 j are bounded and

lim
t³>

(p j 2 z1 j )
exp.= 0 (16)

lim
t³>

(v j 2 z2 j )
exp.= 0. (17)

Proof For the Lyapunov function V1 j , we have (15). Inte-

grating both sides of (15), we have

V1 j (t) f V1 j (0) + 3· j

» 2 »
2 3·1 j

» 2 »
e2(»2»)t < >

So, V1 j * L>. By the definition of V1 j , ³ j , Æ» j , e1 j and e2 j

are bounded. Noting the definitions of e1 j and e2 j , z1 j and

z2 j exponentially converge to zero. So, (16–17) are satisfied.

³¶

For the leader quadrotor, an auxiliary system is not

required. For convenience, we define

z10 = p0, z20 = v0.

Step 2: Noting that p1 j 2 z1 j exponentially converges to

zero, (5) is satisfied if

lim
t³>

[(z1 j 2 h j ) 2 (z1i 2 hi )]
exp.= 0, 0 f i, j f m. (18)

We assume that z2 j is a virtual control input and design it for

the system in (11–12) such that (18) is satisfied.

Let

Þz1 j = z1 j 2 h j 2 (z10 2 h0),

Þz2 j = z2 j 2 Ûh j 2 (z20 2 Ûh0)

for 0 f j f m, then

ÛÞz1 j = Þz2 j + L1 j (p j 2 z1 j ), 1 f j f m (19)

If Þz2 j is a virtual input, the system in (19) can be considered

as a linear system with an additional term. We choose the

virtual control for Þz2 j as

³1 j = 2
∑

i*N a
j

a j i (Þz1 j

2 Þz1i ) 2 L1 j (p j 2 z1 j )

= 2
∑

i*N a
j

a j i (z1 j 2 h j 2 z1i

+ hi ) 2 L1 j (p j 2 z1 j ), 1 f j f m (20)

where a j i > 0. With the aid of the virtual control ³1 j , we

have

ÛÞz1 j = 2
∑

i*N a
j

a j i (Þz1 j 2 Þz1i ) + Þz2 j 2 ³1 j . (21)

For the systems in (21), the following results can be proved

with the aid of Lemma 1 and its proof is omitted.
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Lemma 3 For the systems in (21), under Assumption 1, if

Þz2 j 2 ³1 j exponentially converges to zero for 1 f j f m,

then Þz1 j exponentially converges to zero for 1 f j f m.

In this step, it is unknown whether the leader’s informa-

tion is available to a quadrotor or not. However, with the

aid of neighbors’ information, the positions of all quadrotors

converge to the desired position of the leader quadrotor if

Þz1 j = ³1 j .

Step 3: Let z̄2 j = Þz2 j 2 ³1 j for 1 f j f m, we have

Û̄z2 j = 2ge3 + ³ j f j R j e3 + Ç1 j
Æ»1 j + L2 j (v j 2 z2 j )

+ (p j 2 z1 j ) + ·1 jÇ(e»t (v j 2 z2 j )) 2 Û³1 j 2 ḧ j

2Ûz20 + ḧ0 (22)

where b j i > 0.
We assume that f j R j e3 is a virtual control input and

design it such that z̄2 j is bounded and converges to zero.
In order to make the system (22) be the form of the systems
in item 3 of Lemma 1, the virtual control for f j R j e3 is
chosen as

³2 j = ge3 2 Ç1 j
Æ»1 j 2 L2 j (v j 2 z2 j ) 2 (p j 2 z1 j ) 2 · j Ç(e»t (v j 2 z2 j ))

+Û³1 j + ḧ j 2
∑

i*N a
j

b j i (z̄2 j 2 z̄2i ) + ¿ j , z̄20 = 0 (23)

Û¿ j = 2
∑

i*N a
j

b j i (¿ j 2 ¿i ) 2 Ã1 j Ç

»

¿

¿

∑

i*N a
j

b j i (¿ j 2 ¿i )

¿

¿

£
(24)

ÛÃ1 j = 2
∑

i*N a
j

b j i (Ã1 j 2 Ã1i ) (25)

where ¿0 = Ûz20 2 ḧ0 and Ã1,0 = maxt*[0,>) |z̈20(t) 2 ḧ0|.
For the systems in (24–25), by Lemma 1 (item 3 with u j =

0) Ã1 j exponentially converges to Ã1,0 and ¿ j exponentially

converges to ¿0 for 1 f j f m.
With the aid of the virtual control ³2 j , we have

Û̄z2 j = 2
∑

i*N a
j

b j i (z̄2 j 2 z̄2i ) + ¿ j 2 Ûz20 + ḧ0 + ³ j f j R j e3 2 ³2 j (26)

With the aid of Lemma 1, the system with input (¿1 2 Ûz20 +
ḧ0 +³1 f1 R1e3 2³21, . . . , ¿m 2Ûz20 +³m fm Rme3 2³2m) and

state (z̄21, . . . , z̄2m) has ISS property. Since ¿ j 2 Ûz20 + ḧ0

exponentially converges to zero for 1 f j f m, z̄2 j expo-

nentially converges to zero if ³ j f j R j e3 2³1 j exponentially

converges to zero for 1 f j f m.

Step 4: We find f j and the desired orientation Rd
j for j-th

quadrotor. Let

f j Rd
j e3 = ³2 j (27)

where Rd
j = [bd

1 j , bd
2 j , bd

3 j ], then

f j = ‖³2 j‖ (28)

bd
3 j = ³2 j

‖³2 j‖
. (29)

In (29), bd
3 j is not defined if ³2 j = 0. In this case, we define

bd
3 j as follows

bd
3 j = Û³2 j

‖ Û³2 j‖
.

To define bd
1 j and bd

2 j , the information b2,0 is required.

However, b2,0 is not available for all quadrotors. We propose

the following distributed observer for j-th quadrotor.

Ûr j = 2
∑

i*N e
j

a j i (r j 2 ri ) 2 Ã2 jÇ

»

¿

¿

∑

i*N e
j

a j i (r j 2 ri )

¿

¿

£
(30)

ÛÃ2 j = 2
∑

i*N e
j

a j i (Ã2 j 2 Ã2i ) (31)

where r0 = b2,0 and Ã20 = maxt*[0,>) | Ûb2,0(t)|.
For the systems in (30–31), under Assumption 1, by

Lemma 1 limt³>(r j 2 b2,0)
exp.= 0 and limt³>(Ã2 j 2

Ã2,0)
exp.= 0 for 1 f j f m.

We choose

r̄ j = r j 2 r¦
j bd

3 j b
d
3 j (32)

bd
2 j = r̄ j

‖r̄ j‖
(33)

bd
1 j = bd

2 j × bd
3 j . (34)

The desired attitude of R j is chosen as

Rd
j =

[

bd
1 j , bd

2 j , bd
3 j

]

(35)

and the desired quaternion qd
j = [·d

j , (ë
d
j )

¦]¦ of q j is calcu-

lated by the equations (166–168) in [29] which are omitted

here. The desired angular velocity is calculated by

Ëd
j = 2A(qd

j )
¦ dqd

j

dt
. (36)

Step 5: Since q j is not a control input, q j cannot be qd
j . Let

the difference between q j and qd
j be

Þq j = (qd
j )

21 · q j = [ Þ· j , Þë¦
j ]¦, (37)
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Fig. 1 Configuration of a

quadrotor

Noting that

f j R j e3 2 ³2 j = f j R j e3 2 f j Rd
j e3 = f j Rd

j (
ÞR j 2 I )e3

= f j Rd
j ( Þ·I3 + S(Þë j ))S(e3)Þë j

we have

Û̄z2 j = 2
∑

i*N a
j

b j i (z̄2 j 2 z̄2i ) + ¿ j 2 Ûz20 + f j Rd
j ( Þ·I3

+S(Þë j ))S(e3). (38)

For the systems in (38), the following results can be proved

with the aid of Lemma 1 and the proof is omitted.

Lemma 4 For the systems in (38), under Assumption 1, if Þq j

exponentially converges to an identity quaternion for 1 f
j f m, then z̄2 j exponentially converges to zero for 1 f j f
m.

The derivative of Þq j is

ÛÞq j = 1

2
A( Þq j )(Ë j 2 ÞR¦

j Ëd
j ) (39)

where ÞR j = (Rd
j )

¦ R j .

Fig. 2 Communication graph between VTOL vehicles

We choose a Lyapunov function candidate

V2 j = 2(1 2 Þ· j ) = Þë¦
j Þë j

+(1 2 Þ· j )
2 (40)

The derivative of V2 j is

ÛV2 j = Þë¦
j (Ë j 2 ÞR¦

j Ëd
j )

123



1566 S. Ahmed, W. Dong

Fig. 3 Desired formation

To make Þq j converge to an identity quaternion, a virtual con-

troller ¿ j for Ë j can be chosen as

¿ j = 2k1 j Þë j + ÞR¦
j Ëd

j (41)

where k1 j is a positive constant. Then,

ÛV2 j = 2k1 j Þë¦
j Þë j + Þë¦

j (Ë j 2 ¿ j ).

Step 6: Since Ë j is not a real control input, one cannot let

Ë j be ¿ j . Define

ÞË j = Ë j 2 ¿ j ,

then,

ÛÞq j = 1

2
A( Þ· j , Þë j )(2k3 Þë j + ÞË j ) (42)

J j
ÛÞË j = S(J jË j )Ë j + Ç j 2 J j Û¿ j + d2 j

= Ç j 2 (S(Ë j )u(Ë j ) + u( Û¿ j ))a j + d2 j (43)

whereu(Ë j ) = diag([Ë¦
j , Ë¦

j , Ë¦
j ]) and a j = [J 1

j , J 2
j , J 3

j ]¦
where J i

j is the i-th row of J j .

A neural network is applied to approximate d2 j . Let Ç2 j

be a collection of basis vectors, there exists an optimal vector

»2 j such that

d2 j = Ç2 j»2 j + ë2 j (44)

where ë2 j is the approximation error vector and ‖ë2 j‖ f ·2 j .

To design a control law such that (5–6) are satisfied, we

choose a Lyapunov function candidate

V3 j = V2 j + 1

2
e2»t ÞË¦

j J j ÞË j +
³ 21

3 j

2
(a j 2 Æa j )

¦(a j 2 Æa j )

+
³ 21

4 j

2
(»2 j 2 Æ»2 j )

¦(»2 j 2 Æ»2 j )

where ³3 j and ³4 j are positive constants, Æa j is an estimate

of a j , and Æ»2 j is an estimate of »2 j . The derivative of V3 j is

ÛV3 j = 2k1 j Þë¦
j Þë j + Þë¦

j ÞË j + e2»t ÞË¦
j (Ç j 2 (S(Ë j )u(Ë j )

+ u( Û¿ j 2 » ÞË j ))a j + Ç2 j»2 j + ë2 j )

2³ 21
3 j (a j 2 Æa j )

¦ ÛÆa j 2 ³ 21
4 j (»2 j 2 Æ»2 j )

¦ ÛÆ»2 j .

The control law Ç j and the update laws Æa j and Æ»2 j are chosen

as follows:

Ç j = 2k2 j ÞË j 2 e22»t Þë j + (S(Ë j )u(Ë j )

+u( Û¿ j ) 2 » ÞË j ) Æa j 2 Ç2 j
Æ»2 j 2 ·2 jÇ(e»t ÞË j ) (45)

ÛÆa j = 2³3 j e
2»t (S(Ë j )u(Ë j ) + u( Û¿ j ) 2 » ÞË j )

¦ ÞË j (46)

ÛÆ»2 j = ³4 j e
2»tÇ¦

2 j ÞË j (47)

where k2 j is a positive constant. Then,

ÛV3 j = 2k1 j Þë¦
j Þë j 2 k2 j e

2»t ÞË¦
j ÞË j 2 ·2 j e

2»t ÞË¦
j Ç(e»t ÞË j )

+e»t ÞË¦
j ë2 j

f 2k1 j Þë¦
j Þë j 2 k2 j e

2»t ÞË¦
j ÞË j + 3·2 j e

2(»2»)t . (48)

Based on the above controller design procedure, we have

the following results.

Theorem 1 For a leader quadrotor and m follower quadro-

tors in (1–4), it is given a desired formation defined by h j for

0 f j f m. Under Assumptions 1–3, the distributed control

inputs ( f j , Ç j ) in (28) and (45) ensure that (5–6) are satisfied

and (³ j , Æa j , Æ»1 j , Æ»2 j ) are bounded.

Proof Integrating both sides of (48), it can be shown that

V3 j * L>. So, Þë j * L>, e»t ÞË j * L>, Æa j * L>, and

Æ» j * L>. So, ÞË j is bounded and exponentially converges to

zero. Integrating both sides of (48), it can also be shown that

Þë j * L2. By Lemma 1 in [30], Þë j converges to zero. So, Þq j

converges to an identity quaternion for 1 f j f m.

Next, we show Þq j exponentially converges to an identity

quaternion for 1 f j f m. With the aid of V2 j , we have

ÛV2 j f 2k1 j

2
Þë¦

j Þë j + k1 j

2
‖ ÞË j‖2

= 2k1 j

2
V2 j + k1 j

8
V 2

2 j + k1 j

2
‖ ÞË j‖2
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Fig. 4 Time response of

p j 2 z1 j for 1 f j f 4
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Fig. 5 Time response of

v j 2 z2 j for 1 f j f 4
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Fig. 6 Time response of

p j 2 h j 2 (p0 2 h0) for

1 f j f 4
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Fig. 7 Time response of

b2 j 2 b20 for 1 f j f 4
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Fig. 8 Time response of ³ j for

1 f j f 4
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Fig. 9 Time response of ai j for

1 f j f 4 and 1 f i f 3
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Since Þ· j converges to one, there exists a finite time T such

that V2 j is less than one. After time T ,

ÛV2 j f 2k1 j

2
V2 j + k1 j

8
V2 j + k1 j

2
‖ ÞË j‖2

= 23k1 j

8
V2 j + k1 j

2
‖ ÞË j‖2

Noting ÞË j exponentially converges to zero, it can be shown

that V2 j exponentially converges to zero with the aid of the

comparison lemma in [26]. So, Þq j exponentially converges to

an identity quaternion for 1 f j f m after a finite time. With

the aid of Lemma 4, z̄2 j exponentially converges to zero after

a finite time for 1 f j f m. By Lemma 3, Þz1 j exponentially

converges to zero after a finite time for 1 f j f m. With the

aid of the definition of Þz1 j , (18) holds. So, (5) is satisfied. (6)

is satisfied because Þq j exponentially converges to an identity

quaternion after a finite time. ³¶

In the controller design procedure, the uncertainty in the

dynamics of each quadrotor and the uncertain knowledge

of the leader’s information are dealt with in different steps.

We call this design procedure the uncertainty decomposition

approach.

In Theorem 1, in order to make the quadrotors come into

the desired formation exponentially the control laws and the

adaptive update laws contain the term e»t . If we choose a

weight function carefully, it is possible to make the quadro-

tors come into the desired formation within a finite time.

They are omitted due to space limitation.

4 Simulation results

The proposed results can be applied to design distributed

controllers for formation flying of multiple quadrotors. Con-

sidered five quadrotors. The configuration of each quadrotor

is shown in Fig. 1. The dynamics of quadrotor j can be writ-

ten as (1–4), where the total thrust f j and the generalized

moment vector Ç j are generated by the four rotors. For sim-

plicity, we ignore the dynamics of each rotor and consider

f j and Ç j as control inputs. In the simulation, it is assumed

that m j = 1kg and inertia tensor J j = diag([1, 1, 1])kg m2.

In the controller design, m j and J j are not exactly known.

However, it is known that m j * [0.8, 1.2]kg, i.e., m̄ = 1.2kg

and m = 0.8kg.

In the simulation, it is assumed that the trajectory p0 and

b2,0 of the leader VTOL vehicle are

p0(t) =
[

100 cos t
20

, 100 sin t
20

, 10 2 10 exp(20.1t)
]¦

b2,0 =
[

sin
Ã t

360
, cos

Ã t

360
, 0

]¦
.

The communication directed graph is shown in Fig. 2. It is

can be verified that node 0 is globally reachable.

The desired formation for quadrotors is shown in Fig. 3,

where h0 = [0, 0, 0]¦, h1 = [0, 5, 0]¦, h2 = [25, 0, 0]¦,

h3 = [0,25, 0]¦, and h4 = [5, 0, 0]¦.

Distributed control laws can be designed with the aid of

the procedure in the last section. The simulation was done for

one group of control parameters. Figures 4, 5 show the time

response of p j 2 z1 j and v j 2 z2 j , respectively. It is shown

that z1 j and z2 j are good estimates of p j and v j , respectively.

Figure 6 shows the time response of p j 2 h j 2 (p0 2 h0)

for 1 f j f 4. It is shown that the VTOL vehicles come

into the desired formation and follow the leader quadrotor.

The time response of b2 j 2 b20 is shown in Fig. 7, which

shows that the Y-axis of the body frame of each quadrotor

converges to the desired direction. The estimate ³ j of 1/m j

for 1 f q j f 4 are shown in Fig. 8. The time response of Æai j

for 1 f j f 4 and 1 f i f 3 are shown in Fig. 9. They are

bounded and confirm the claims in the theorem. The above

simulation results show the effectiveness of the results in

Theorem 1.

5 Conclusion

This paper considered the formation flying of multiple

quadrotors with a desired attitude in the presence of paramet-

ric and nonparametric uncertainty. With the aid of the back-

stepping technique, a multi-step controller design approach

has been proposed. With the aid of the proposed approach,

distributed robust adaptive controllers were proposed such

that the formation tracking errors and the attitude track-

ing errors exponentially converge to zero. Simulation results

show the effectiveness of the proposed controllers for forma-

tion flying of five quadrotors.
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