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Abstract

This paper considers the formation flying of multiple quadrotors with a desired orientation and a leader. In the formation
flying control, it is assumed that the desired formation is time-varying and there are the system uncertainty and the information
uncertainty. In order to deal with different uncertainties, a backstepping-based approach is proposed for the controller design. In
the proposed approach, different types of uncertainties are considered in different steps. By integrating adaptive/robust control
results and Laplacian algebraic theory, distributed robust adaptive control laws are proposed such that the formation errors
exponentially converge to zero and the attitude of each quadrotor exponentially converges to the desired value. Simulation

results show the effectiveness of the proposed algorithms.
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1 Introduction

Formation flying of multiple quadrotors has been studied
recently due to its wide applications in civil and military
applications, such as surveillance, area exploration, target
search, accident rescue tasks, and many other applications.
The capacity of vertical taking-off and landing makes quadro-
tors superior to other unmanned aerial vehicles. Compared
with a single quadrotor, the formation of multiple quadro-
tors can perform more difficult tasks and provides better
performance. However, the underactuated nature of a single
quadrotor makes the cooperative control of multiple quadro-
tors challenging.

Formation control of multiple quadrotors is to coordi-
nate a group of quadrotors to achieve a desired spatial
geometric pattern. In the past decades, several classical
approaches have been proposed for multi-agent systems,
which include the behavioral approach, the virtual structure
approach, the leader-follower approach, and the graph the-
oretical approach. In the leader-following approach [1,2],
some agents are designated as leaders and the others are
designated as followers. The leaders track the predefined tra-
jectories and the followers track the state of their neighbors
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according to given schemes. In the behavioral approach [3—
5], the control action for each agent is defined by a weighted
average of the control corresponding to each desired behav-
ior for the agent. In the virtual structure approach [6-8], the
entire formation is treated as a single rigid body. The vir-
tual structure moves along a desired trajectory and with a
desired attitude. In the graph theoretical approach [9-12],
each agent is considered as a node and the communication
between agents is defined by a graph. The control law is
designed with the aid of the difference of neighbors’ infor-
mation.

Formation control of multiple unmanned aerial vehicles
(UAV5s) has been studied extensively. In [13,14], the dynam-
ics of each vehicle is simplified as a linear system and the
formation control is studied based on multiple linear sys-
tems. In [15-17], the formation control was studied based
on the translational and rotational motions with linearized
or simplified models. Noting that a UAV is a multiple-input
multiple-output system with highly nonlinear and strongly
coupled dynamics and has 6 degrees of freedom (6-DOF),
formation control of multiple UAV was studied based on
6-DOF dynamics in [18-21]. In [19,20], formation control
of multiple UAVs was studied based on the 6-DOF model
with disturbances and robust distributed control laws were
proposed. In [21], distributed formation control of multi-
ple UAVs was studied based on a nonsmooth backstepping
design and consensus techniques for the 6-DOF models.
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The formation controllers in the literature mentioned
above ensure that the states of a UAV asymptotically con-
verge to a desired formation as time goes to infinity. In
practical applications, finite-time distributed controllers are
preferred because they ensure that the states of a UAV con-
verge to a desired formation within a finite time and the
closed-loop systems have better disturbance rejection per-
formance. In [22], formation control of multiple UAVs with
nonparametric uncertainties was studied. Finite-time con-
trollers were proposed with the aid of finite-time distributed
observers. In [16], finite-time distributed controllers were
proposed based on the linearized models without uncertainty
with the aid of the properties of homogeneous systems. In
[16,22], the attitudes of UAVs are defined by Euler angles. To
make the attitude control laws nonsingular, the Euler angles
are limited to some intervals.

Although there are many results on formation control of
multiple UAVs, how to improve the control performance is
still challenging in the presence of uncertainty and coupling
among neighboring UAVs. Motivating by the research work
mentioned above and the work in [23-25], in this paper we
study the formation control of multiple UAVs with parametric
and nonparametric uncertainties and propose new distributed
control laws such that the formation errors exponentially con-
verge to zero and the attitude of each UAV exponentially
converges to a desired attitude. In order to solve the formation
control problem, a multi-step backstepping-based approach
is proposed and distributed exponential control laws are
designed. The proposed approach includes six steps. In the
first step an auxiliary system for each quadrotor is introduced
to estimate the parametric and nonparametric uncertainties
in the dynamics of each quadrotor. In the second step, dis-
tributed kinematic controllers are proposed for the translation
with the aid of the graph theory and the formation problem
is solved without the information whether the leader’s infor-
mation is available to a quadrotor or not. In the third step,
distributed dynamic controllers for the translation and the
desired attitude for each quadrotor are designed based on the
backstepping technique. In the fourth step, the force input
and the desired attitude for each quadrotor are calculated.
In the fifth step, a distributed kinematic controller for the
attitude control of each quadrotor is proposed with the aid
of the graph theory. In the last step, a dynamic controller
for the attitude of each quadrotor is proposed with the aid
of the backstepping technique. In the proposed approach,
the uncertainties in the dynamics and the uncertainty of the
leader’s information are considered separately in different
steps. With the aid of this multi-step approach, distributed
robust adaptive controllers are proposed such that multiple
quadrotors exponentially converge to a desired formation and
the Y-axis of each quadrotor exponentially converges to the
desired direction. Compared to the results in literature, the
contributions of this paper are as follows.

@ Springer

e This paper solves the formation control problem of multi-
ple quadrotors in a more general setting. In the considered
problem, the formation is time-varying and there are
both parametric uncertainty and nonparametric uncer-
tainty in the dynamics of each quadrotor. Furthermore,
the communications among quadrotors are directional,
which means that the information exchange between two
quadrotors is one-way instead of two-way.

e A new systematic multi-step controller design approach
is proposed for the formation control problem by inte-
grating the uncertainty decomposition technique and the
backstepping technique. In this approach, different types
of uncertainties are dealt with in different steps. The dif-
ficulty of the controller design is greatly reduced.

e The proposed control laws ensure that a group of quadro-
tors exponentially converge to a desired formation with a
desired orientation, which means that the proposed con-
trol systems have better performance in convergence and
disturbance rejection. Moreover, the proposed controllers
are distributed. No global information is required in the
controllers.

The remaining part of this paper is organized as follows. In
Sect. 2, the considered problem is defined and some prelimi-
nary results are presented. In Sect. 3, a multi-step approach is
proposed and distributed controllers are derived. In Sect.4,
simulation results are presented. The last section concludes
this paper.

2 Problem statement and preliminaries

2.1 Problem statement

Consider m quadrotors. Under some assumptions, the kine-
matics and dynamics of j-th quadrotor are defined by

pj=vj )]
. 1
Vj = —ge3 + —fiRjes +dij 2)
m;
R;j = RS(w)) (3)
Jjwj =SUjwj)w; +1; +doj “4)

where p; and v; are the position and the velocity of the mass
center in the inertia frame, respectively, g is the gravitational
acceleration, e3 = [0, 0, 17, fi € N is the total thrust,
R; = [b1}, byj, b3;] is the rotation matrix of the body frame
with respect to the inertia frame, w; is the angular velocity of
the quadrotor inits body frame, J; is the inertia moment of the
quadrotor, d; ; and d> ; denote nonparametric uncertainty and
disturbance, S(£) for & = [£], &, £&] " is a skew-symmetric
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matrix defined by
0 —& &
SE)=| & 0 =& |,
& & 0

and t; = [11;, T2, 13]-]—r is the torque input of the system.

For multiple quadrotors, there are information flows
between them with the aid of sensors or wireless communica-
tion. Consider each quadrotor as a node. The communication
between quadrotors is defined by a directed graph G =
{A, £} where A is the node set and & is the edge set. If
there is an edge ¢;; in £ it means that the information of node
i is available to node j. Node i is called a neighbor of node j
if the information of node i is available to node j. All neigh-
bors of node j form a node set which is called the neighbor
set of node j and is denoted by Nj. A directed path from
node i to node j is a sequence of sets of edges that connect
node i to node j by following their directions. Node i is said
to be reachable to node j if there exists a directed path from
node i to node j. Node i is said globally reachable if node i
is reachable for every other node in A.

In this paper, we assume there are m follower quadrotors
and one leader quadrotor. The leader quadrotor is operated by
a human operator and does not receive any information from
the follower quadrotors. Without loss of generality, the leader
quadrotor is labeled as node 0. The follower quadrotors are
labeled by 1, 2, ..., m. The communication between m + 1
quadrotors is defined by an augmented directed graph G¢ =
{A%, £%} where A = A U {0} and £ is a union of £ and
the edges from node O to the followers.

For m follower quadrotors and a leader quadrotor, a
desired formation can be defined by (m + 1) vectors i; € R?
which may be constant vectors or time-varying vectors. We
say (m + 1) quadrotors are in the desired formation if

pi—pj=hi—h;j

forany 0 < i, j < m. We say m + 1 quadrotors come into
the desired formation if

tl_i)rgo[([?i —h)—(pj —hj)]=0

forany 0 <i, j <m.
In the dynamics (1-4), the parametric uncertainty (i.e.,
m j and J;) and nonparametric uncertainty (i.e., d;; and d> ;)
are called the system uncertainty. For each quadrotor, it is
unknown whether the leader quadrotor is a neighbor or not.
We say there is information uncertainty for each quadrotor.
In this paper, we consider the following control problem.

2.1.1 Formation flying with a leader

For a leader quadrotor and m follower quadrotors, it is
assumed that m;, Jj, dyj, and dp; are unknown for 1 <
J < m. It is given a desired formation defined by A ; for
0 < j < m, the control problem is to design distributed state
feedback controllers f; and 7; using its own information and
its neighbors’ information such that

Jim [(pj(0) = hj () = (pi () = hi (O] =70 5)
Jim (b (1) = ba,o(1) =0 ©)

where 2" means “exponentially converges to”.

In the defined problem, (5) means that the (m + 1) quadro-
tors come into the desired formation and (6) means that the
Y-axes of the body frames of m + 1 quadrotors are parallel
as time goes to infinity.

In order to solve the defined problem, the following
assumptions are made.

Assumption 1 The mass m; of quadrotor j is an unknown
constant and m j=mj < m; where m j and m ; are known
constants.

Assumption 2 d;; and d»; are continuous functions of the
system state and the time and are bounded.

Assumption 3 The communication graph G* is a directed
graph and the node 0 is globally reachable.

Assumption 4 b; o(t) is smooth. [)2’0 and 52,0 are bounded.

b] o(£)b3,0(t) = 0 for any time where b o (1) = Ay L

Assumption 1 is reasonable in practice because the mass of
a quadrotor is always bounded by some constant. Since d
and d, are friction and disturbance, it is reasonable to assume
that they are bounded in Assumption 2.

Assumption 4 is due to the motion of the quadrotor in
(1-2). In Assumption 4, b3 o is obtained as follows. If the
quadrotor moves along the desired trajectory, by (1-2) one
has

_ f(Po+ge3)  Po+ges

Roes = — .
m I po + gesll2

Since m j and f; are not zero and Roej is an unit vector, b3 o
should be the third column of Ry.

2.2 Kinematics of rotation using quaternion

The attitude of j-th quadrotor can be defined by an unit

T
quaternion g; = [nj, EJT] where n; € Rande; € 3. The

relation between ¢; and the rotation matrix R; is defined by

R; =R(q;j) = I +21;S(e;) +25%(e;).
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Noting that for any rotation matrix R, there are exactly two
unit quaternions, £¢, such that R = R(g) = R(—¢q).
For j-th quadrotor, (3) can be written as

1

qj = EA(CIj)CUj @)

where

Agp =] 9 ®)
] nil+ S ]

2.3 Notations and preliminary results

Let L denote bounded functions and £, denote square inte-
grable functions.
For x € 9N, we define the function

X

X(X) - /x2 + e—2kt

where k > 0. If x =[x, ..

©)

Lx]T e, x(x) is defined as

X)) =[x, .o x Gl

It can be proved that

I
2T x0) =Y il —le

i=1
The results in the following lemma are useful.

Lemma 1 Consider m+ 1 agents, where agent O is the leader
agent and agent j is a follower agent for 1 < j < m. The
state of the agent j is x j. The communication among agents
is defined by a direct graph G* and it is assumed that the
state xq is globally reachable to all other agents.

(1) If xo = 0 and the state of agent j for 1 < j < m is
defined by

Xj=— E aj,-(xj —xi)—i—uj
ieN?

then the system with input u and state X has the
input-to-state stability (ISS) property [26], where u =
[u—l'—,...,u;]—r and X = [xi'— — x(—)r,...,xn—'; — x(—)r]T.
Moreover, if u exponentially converges to zero X also
exponentially converges to zero.

(2) If max;c[o,00) [X0(t)| < v and the state of agent j for
1 < j < mis defined by

> ajitey—xi) | +uj
ieNy

Xj=— Y ajilxj—x)—vx
ieNy

@ Springer

then the system with input u and state X has the ISS prop-
erty, where u and x are defined in item 1. Moreover, if
u exponentially converges to zero X also exponentially
converges to zero.

(3) If max,c(0,00) |X0(t)| < vo and the state of agent j for
1 < j < mis defined by

Z aji(xj —x;)

i e./\fj?’

Xj=- Z aji(xj —xi) —vjx
By
+uj
bj=— Y aji(v;—w)
ieN?
J
then lim; o (vj — Vo) 0 and the system with input
u and state X has the ISS property, where u and x are

defined in item 1. Moreover, if u exponentially converges
to zero X also exponentially converges to zero.

The lemma can be proved based on the results of properties
of Laplacian matrices and ISS properties and is omitted here.

3 Controller design

The presence of the system uncertainty and the information
uncertainty makes the distributed controller design extremely
hard when the communication graph is directed. In order to
solve the defined problem, we propose the following multi-
step controller design approach in which different types of
uncertainty are dealt with in different steps.

Step 1: In the dynamics of the translation (1-2), m; is an
unknown constant and 1 j is an unknown time-varying func-
tion. We use a two-layer neural network to learn d; ;. Based
on the universal approximation property of neural networks
[27], there is a basis matrix ¢;; and an optimal weighted
vector 61 ; with appropriate dimensions such that
dij = ¢1j01) + € (10)
where €1 is the approximation error vector and ||e ;|| < &1;.

In order to deal with the system uncertainty, an auxiliary
system for j-th quadrotor (1 < j < m) is introduced as
follows.

21j =225 +Lij(p; —z15) (11)
j = —ge3+ BifiRjes + d1i01; + Loj(vj — 22))
+(pj — 21)) + 81 x (€ (vj — 225)) (12)

where A, L1; (> A) and Ly; (> A) are positive constants,

k > A, Bj is an estimate of %, and 0;; is an estimate of
J
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01 and will be designed later. Let e ; = eM (pj — z1;) and
e = e“(vj — 22), then

erj =exj — (L1j — Mey;
S — L_. At £ P At g D, .
ej = " /3] e f]Rje3+e ¢1](91] 91])
J
+ eMerj —erj — (Laj — Meaj — 81j€™ x(e2))

To make e1; converge to zero, we choose a Lyapunov
function candidate

1 T 1 T V]j 1
Vij = Eeljelj+§ezje2j+_2 ;—,Bj
J
_1

Voi ~ ~
+ TJ(QU -0 O1; - 61)

where y1; and y,; are positive constants. The derivative of
Vijis

. 1
Vij = —e;rj(Llj - )»)61./' + 6;]- <m— - ,3/) e“ijjey,
J

+

62Tj6M¢1j(91j — 01+ eszemélj
T nya ;
—ej(Loj = Mezj = vy | = =B | Bi
j

- )/2;1(91,' - élj)Téj - ezjalje“)((é?j)

We choose
5 . T it
Bj = Proja;lvije,je” fiR;es] (13)
01j = 2" d] 02 (14)
where Projg; denotes the projection to Q; = [ﬁ%, mi]
ALY

[28], then
Vlj = —e;rj(Llj —Meyj + e;je)‘telj — e;—j(sz —Aey;

— Sje;rje)‘tx(ezj)

< —elTlejelj —eszLQJ‘EZj +331je_('(_)”)l. (15)

Lemma 2 For the systems in (1-2) and the auxiliary system
in (11-12) with update laws in (13—14), the estimates B and
él j are bounded and

. L . 6)27.

tlggo(l?] 21j) = 0 (16)
lim (v; —z2;) = 0. (17)
=00

Proof For the Lyapunov function Vi, we have (15). Inte-
grating both sides of (15), we have

38, . 381 o~ (k=M1

Vii(t) < Vi;(0
l/()_ 1'/()+K—A C— A

<0

S0, Vi; € Loo. By the definition of V1, B/, 0;, e1; and ey,
are bounded. Noting the definitions of e;; and e}, z1; and
72 exponentially converge to zero. So, (16—17) are satisfied.

O

For the leader quadrotor, an auxiliary system is not
required. For convenience, we define

210 = Po, 220 = V0.

Step 2: Noting that p;; — z;; exponentially converges to
zero, (5) is satisfied if

exp.

lim [(z1; —hj) —(z1ii —h)] =0, 0<i,j <m. (I8)
11— 00

We assume that z5; is a virtual control input and design it for
the system in (11-12) such that (18) is satisfied.
Let

Z1j =21 — hj — (210 — ho),
22j = 225 — hj — (220 — ho)

for 0 < j < m, then
=%+ Lij(pj—zj), 1<j<m (19)

If 2> is a virtual input, the system in (19) can be considered
as a linear system with an additional term. We choose the
virtual control for Z»; as

aj=— Y aiGi;

By
—z1) — L1j(pj — z1j)

=— Y ajizij—hj—2zi
ieNy

+h)—Lij(pj—z1j), 1<j<m (20)

where aj; > 0. With the aid of the virtual control a;;, we
have

Zj=— Z aji(Z1j —z1) + 225 — a1 2D
ie./\/’j‘?

For the systems in (21), the following results can be proved
with the aid of Lemma 1 and its proof is omitted.
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Lemma 3 For the systems in (21), under Assumption I, if
Z2j — a1 exponentially converges to zero for 1 < j < m,
then zj exponentially converges to zero for 1 < j < m.

In this step, it is unknown whether the leader’s informa-
tion is available to a quadrotor or not. However, with the
aid of neighbors’ information, the positions of all quadrotors
converge to the desired position of the leader quadrotor if
Z1j = aij.

Step 3: Letzp; =22; —ayj for1 < j < m, we have

Zaj = —ge3s+ B fiRjes + 1,01 + sz(v] —22))
+(Pj—21])+51])((e (UJ_ZZJ)) —/’l

—200 + ho (22)

where b;; > 0.

We assume that f;Rje3 is a virtual control input and
design it such that z5; is bounded and converges to zero.
In order to make the system (22) be the form of the systems
in item 3 of Lemma 1, the virtual control for f;R;es is
chosen as

o = ge3 _¢ljélj — sz(vj —sz') — (Pj —le) —SjX(eM(vj _ZZj))
‘ayj+hi— Y bjiGaj —22) +&j. Z20=0 (23)
ieN¢
J
= Y b —E) —piix | Y b —&) (24)
zeN“ ieN}l
prj=— Y bjilp1j — p1i) (25)
ie./\/;-’

where & = 220 — /o and p1,0 = max;c[0,00) 1720(t) — hol.
For the systems in (24-25), by Lemma 1 (item 3 withu ; =
0) p1; exponentially converges to p1,0 and &; exponentially

converges to & for 1 < j < m.
With the aid of the virtual control a, we have

Y bji(z

; a
eN¢
1 Nj

—Z)+& — 0+ ho+BjfiRjez —azj (26)

2j ==

With the aid of Lemma 1, the system with input (§; — 220 +
ho+Bi fiRiez—an1, ..., Em— 220+ B fn Rmes —ctom) and
state (Z21, ..., Zom) has ISS property. Since &; — 220 + ho
exponentially converges to zero for 1 < j < m, z2; expo-
nentially converges to zero if 8; f; Rje3 — o1 j exponentially
converges to zero for 1 < j <m.

Step 4: We find f; and the desired orientation R;’ for j-th
quadrotor. Let

fiRfes = ay; 27)

@ Springer

where Rd [blj,bgj,bglj],then
fi = llenjl (28)
an
5= el @
In (29), bgj is not defined if az; = 0. In this case, we define

bg ; as follows

d _ %
3= T e
T laoyl
To define bfl ; and bgj, the information by ¢ is required.
However, b;  is not available for all quadrotors. We propose
the following distributed observer for j-th quadrotor.

Fp=- Z aji(rj —rp)

lENE

— P2 X Z aji(rj —ri) (30)
ze/\/"

p2j =— Y aji(p2j — pai) 31)

ieNy

where ro = b2 o and p2g = max;¢[o,00) |b20(l)|
For the systems in (30— 31) under Assumption 1, by

Lemma 1 limyo0(rj — b, 0) © 0 and lim;— 00 (02j —

pzo) Of0r1<]<m
‘We choose
Fj=rj—r]b;bs; (32)
f.

by = — (33)

2 E

d d d
bljzszxb3j. (34)
The desired attitude of R; is chosen as

4= [0 08,08, (35)

and the desired quaternion q [n (Gd Y17 of g j 1s calcu-
lated by the equations (166— 168) 1n [29] which are omitted

here. The desired angular velocity is calculated by

d

dq
d d\T J
w; = 2A(qj) T (36)

Step 5: Since g is not a control input, g; cannot be q;i. Let
the difference between ¢g; and q;i be

=@H ' ®@aq; =171, (37)
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Fig.1 Configuration of a
quadrotor

7 s

Rotor 1

Rotor 2

Noting that

fiRjes —aaj = fiRjes — fiR%es = fiRI(R; — Des
= fiRY(ils + S(¢)))S(e3)¢;

we have
Zj=— Z bji(z2j — 72i) +&j — 220 + ijf(ﬁla
N
+S(€j))S(e3). (38)

For the systems in (38), the following results can be proved
with the aid of Lemma 1 and the proof is omitted.

Lemma4 For the systems in (38), under Assumption 1, if G ;
exponentially converges to an identity quaternion for 1 <
J < m, then 2o ; exponentially converges to zero for 1 < j <
m.

The derivative of g is
I =
4j = 5A@)(; — Rj o) (39)

where ﬁj = (R?)TRJ'.

Mass center

Ze

I j Ye Rotor 3
‘ Xe

Oe

Fig.2 Communication graph between VTOL vehicles

We choose a Lyapunov function candidate

Vaj =2(1—iij) =&/ ¢

+(1 —7)° (40)
The derivative of V5; is
sz = E;r(a)] — RT&)?)

@ Springer
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3

Fig.3 Desired formation

To make g ; converge to an identity quaternion, a virtual con-
troller u; for w; can be chosen as

wj=—kijéj + R} o (41)

where ky; is a positive constant. Then,

sz = —kljnggj +g}r(a)j — Kj).

Step 6: Since w; is not a real control input, one cannot let
w; be ;. Define

then,
B 1 L.
qj = EA(nj»fj)(_lQGj +@j) (42)
Jjéi)j =S(Jjwjwj+1;— Jjn; +doj
=7 — (S(w)l(w;) +T'(ij)a; + daj 43)

where () = diag([w], o, [ Danda; = [J}, J7, J71T
where J; is the i-th row of J;.

A neural network is applied to approximate d; ;. Let ¢y
be a collection of basis vectors, there exists an optimal vector
6> such that

drj = ¢njbhj + € (44)

where €, is the approximation error vector and |le2; || < &2;.

@ Springer

To design a control law such that (5-6) are satisfied, we
choose a Lyapunov function candidate

—1
1 - - V3 A A
Vij = Vo + EeZMw}—J'a)}' + —2J (aj — aj)T(aj —aj)
-1

Yai ~ ~
+T-’(92,- —6:)) (62 — 02))

where y3; and y4; are positive constants, d; is an estimate
of aj, and ég ;j 1 an estimate of 6, ;. The derivative of V3; is
Vaj = —kijé} éj + & @) +Ma] (tj — (ST (w))
+ T(ij —rdj))aj + ¢2j62; + €2))
—1 A TA -1 A NTA
—v3; (aj—aj) aj—y,; (02; —62j) 6.

The control law 7; and the update laws @; and 6, ; are chosen
as follows:

T = —kzjd)j — 6_2)”15./ + (S(w,-)l"(a)j)
(1)) — A@j)aj — ¢njba; — Sajx (€M) (45)

aj = —y3;M (ST (@) + T (1)) —2d)) @) (46)

éZj = )/4]'62)\’(1);;67)]‘ (47)

where kj is a positive constant. Then,

201 ~T ~ 2 ~T o M~
;) —&je a)jx(e ;)

YAV - 1T SN
V3; = kljeje] kyje j

MA~T
+e w; €

< —kijE] éj —kpjeM D] D) +38;¢ KTV (48)
Based on the above controller design procedure, we have

the following results.

Theorem 1 For a leader quadrotor and m follower quadro-
tors in (1-4), it is given a desired formation defined by h ; for
0 < j < m. Under Assumptions 1-3, the distributed control
inputs (fj, t;) in(28) and (45) ensure that (5-6) are satisfied
and (B}, a;, élj, ézj) are bounded.

Proof Integrating both sides of (48), it can be shown that
Vi3j € L. So, Ej € Lo, e)‘ld)j € Lo, &j € Lo, and
6 i € L. S0, @; is bounded and exponentially converges to
zero. Integrating both sides of (48), it can also be shown that
€j € Lo. By Lemma 1 in [30], €; converges to zero. So, g;
converges to an identity quaternion for 1 < j < m.

Next, we show g; exponentially converges to an identity
quaternion for 1 < j < m. With the aid of V;;, we have

. kij ..  kij, .
Vaj < —TJEJ-TEJ' + T]”wj“2
ki kij o kijo.oo
= itV el
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Fig.4 Time response of 3 . . . . .
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Fig.6 Time response of
pj —hj — (po — ho) for
I'<j<4

Fig.7 Time response of
sz—bz()forl <j<4
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Fig.8 Time response of 8; for
1<j<4

Fig.9 Time response of a;; for
l<j<4andl1<i <3
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Since 7; converges to one, there exists a finite time 7' such
that V;; is less than one. After time 7',

ki ki kij o o
= 5 2j+?V2j+—||a)j||
3k1j klj
=-""y,. _J
g Ut

A

\%¥;
~ 12
;I

Noting @; exponentially converges to zero, it can be shown
that V5; exponentially converges to zero with the aid of the
comparison lemma in [26]. So, g ; exponentially converges to
an identity quaternion for 1 < j < m after a finite time. With
the aid of Lemma 4, 7, ; exponentially converges to zero after
a finite time for 1 < j < m. By Lemma 3, Z;; exponentially
converges to zero after a finite time for 1 < j < m. With the
aid of the definition of Z1 ;, (18) holds. So, (5) is satisfied. (6)
is satisfied because g ; exponentially converges to an identity
quaternion after a finite time. O

In the controller design procedure, the uncertainty in the
dynamics of each quadrotor and the uncertain knowledge
of the leader’s information are dealt with in different steps.
We call this design procedure the uncertainty decomposition
approach.

In Theorem 1, in order to make the quadrotors come into
the desired formation exponentially the control laws and the
adaptive update laws contain the term e*’. If we choose a
weight function carefully, it is possible to make the quadro-
tors come into the desired formation within a finite time.
They are omitted due to space limitation.

4 Simulation results

The proposed results can be applied to design distributed
controllers for formation flying of multiple quadrotors. Con-
sidered five quadrotors. The configuration of each quadrotor
is shown in Fig. 1. The dynamics of quadrotor j can be writ-
ten as (1-4), where the total thrust f; and the generalized
moment vector T; are generated by the four rotors. For sim-
plicity, we ignore the dynamics of each rotor and consider
fj and ; as control inputs. In the simulation, it is assumed
that m; = 1kg and inertia tensor J; = diag([1, 1, 1])kg m?.
In the controller design, m; and J; are not exactly known.
However, itis known thatm ; € [0.8, 1.2]kg,i.e.,m = 1.2kg
and m = 0.8kg.

In the simulation, it is assumed that the trajectory po and
by ¢ of the leader VTOL vehicle are

po(t) = [ 100 cos 45, 100sin £, 10 — 10exp(—0.11) ]

o ont a7
brog = |[sin —,cos —, 0| .
’ 360 360

@ Springer

The communication directed graph is shown in Fig.2. It is
can be verified that node 0 is globally reachable.

The desired formation for quadrotors is shown in Fig. 3,
where hg = [0,0,0]7, by =[0,5,0]", h, = [-5,0,0]",
h3 =10, —5,0]T, and hs = [5,0,0]".

Distributed control laws can be designed with the aid of
the procedure in the last section. The simulation was done for
one group of control parameters. Figures4, 5 show the time
response of p; — z1; and v; — z3;, respectively. It is shown
that z1 ; and z;; are good estimates of p; and v;, respectively.
Figure 6 shows the time response of p; — h; — (po — ho)
for 1 < j < 4.1t is shown that the VTOL vehicles come
into the desired formation and follow the leader quadrotor.
The time response of byj — by is shown in Fig.7, which
shows that the Y-axis of the body frame of each quadrotor
converges to the desired direction. The estimate 8; of 1/m ;
for 1 < ¢j < 4 are shown in Fig. 8. The time response of @; i
for1 < j <4and1 <i < 3 are shown in Fig.9. They are
bounded and confirm the claims in the theorem. The above
simulation results show the effectiveness of the results in
Theorem 1.

5 Conclusion

This paper considered the formation flying of multiple
quadrotors with a desired attitude in the presence of paramet-
ric and nonparametric uncertainty. With the aid of the back-
stepping technique, a multi-step controller design approach
has been proposed. With the aid of the proposed approach,
distributed robust adaptive controllers were proposed such
that the formation tracking errors and the attitude track-
ing errors exponentially converge to zero. Simulation results
show the effectiveness of the proposed controllers for forma-
tion flying of five quadrotors.
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