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Abstract

We propose an unsupervised tree boosting algorithm for inferring the underlying sampling
distribution of an i.i.d. sample based on fitting additive tree ensembles in a manner analo-
gous to supervised tree boosting. Integral to the algorithm is a new notion of “addition” on
probability distributions that leads to a coherent notion of “residualization”, i.e., subtract-
ing a probability distribution from an observation to remove the distributional structure
from the sampling distribution of the latter. We show that these notions arise naturally
for univariate distributions through cumulative distribution function (CDF) transforms
and compositions due to several “group-like” properties of univariate CDFs. While the
traditional multivariate CDF does not preserve these properties, a new definition of mul-
tivariate CDF can restore these properties, thereby allowing the notions of “addition” and
“residualization” to be formulated for multivariate settings as well. This then gives rise
to the unsupervised boosting algorithm based on forward-stagewise fitting of an additive
tree ensemble, which sequentially reduces the Kullback-Leibler divergence from the truth.
The algorithm allows analytic evaluation of the fitted density and outputs a generative
model that can be readily sampled from. We enhance the algorithm with scale-dependent
shrinkage and a two-stage strategy that separately fits the marginals and the copula. The
algorithm then performs competitively with state-of-the-art deep-learning approaches in
multivariate density estimation on multiple benchmark data sets.

Keywords: generative models, normalizing flows, additive models, density estimation,
ensemble methods, recursive partitioning

1. Introduction

In supervised learning such as classification and regression, boosting is acknowledged as
one of the most powerful algorithms. It is acclaimed for the ability to overcome the curse
of dimensionality and achieve a desirable balance in the bias-variance trade-o↵. The most
popular boosting algorithms can be thought of as sequentially fitting an additive ensemble
of weak learners, often in the form of regression or classification trees (e.g., Friedman,
2001; Hastie et al., 2009). The success of tree boosting in supervised problems suggests
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that a similar strategy might also prevail in unsupervised problems, where the ultimate
objective involves learning the structures of some unknown probability distribution based
on a collection of training data from that distribution.

Our aim in this paper is to formulate a new additive tree model framework for probability
distributions along with an unsupervised boosting algorithm that inherits the strength of
the supervised boosting. Our approach is motivated by the observation that some highly
e↵ective supervised tree boosting algorithms are fitted in each iteration based on a set
of residuals rather than the original observations, thereby substantially simplifying the
optimization task in each iteration. To realize this strategy in the unsupervised context, we
introduce a notion of addition specialized for probability measures which leads to a natural
concept of the residual of an observation after “subtracting” a probability measure from it.
It should be clarified that in the unsupervised setting, the natural operation of addition—
such as through taking weighted averages—does not work, as it is not straightforward to
find such an embedding that renders a conceptually and computationally simple notion of
“residualization” of an observation, which removes a fitted measure from the underlying
sampling distribution.

The notions of “addition” and “residualization” for probability distributions are for-
mulated in terms of cumulative distribution function (CDF) transforms and compositions.
We start from the case of univariate distributions, for which the addition of two measures
can be defined simply in terms of a composition of their CDFs whereas the residual of an
observation from subtracting a measure is simply the application of the corresponding CDF
transform to that observation. In generalizing this notion of addition to multivariate dis-
tributions on Rd with d > 1, however, the classical notion of the multivariate CDF, which
maps Rd to the interval (0, 1] is unsatisfactory, as easily seen, for example, by the fact that
one can neither define a composition of two such CDFs nor define residuals that still lie in
Rd. More fundamentally, multivariate CDFs do not preserve a set of “group-like” properties
of 1D CDFs that underlie the notion of addition and residualization. Interestingly, it can
be shown that a proper notion of the CDF for multivariate distributions, which maps Rd to
Rd, does exist for probability measures defined on tree-partition structures (tree measures),
and it naturally generalizes the notions of addition and residuals to multivariate settings.

Based on these notions, we introduce an unsupervised tree boosting algorithm for learn-
ing probability measures based on forward-stagewise (FS) fitting of an additive tree en-
semble. Our algorithm in each iteration completes two operations that resemble those in
supervised boosting: (i) computing the current residuals by subtracting the fitted measure
at the current iteration from the observations and (ii) fitting a tree-based weak learner on
the residuals and adding the estimated distribution to the current fit. The algorithm enables
straightforward analytical evaluation of the probability density of the fitted distribution and
produces a generative model for the fitted measure that can be directly sampled from.

Because the notion of addition on probability measures in our boosting framework takes
the form of function compositions, one can also view our approach as a normalizing flow
(NF) (see i.e., Papamakarios, 2019; Papamakarios et al., 2021; Kobyzev et al., 2020). In
NF approaches, one seeks to find a sequence of transformations that moves the observed
distribution into a baseline distribution such as a uniform or a Gaussian. Most notably,
Inouye and Ravikumar (2018) introduced a tree-based NF method through composing a
class of transforms that are essentially equivalent to the generalized CDF transforms we
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introduce. As such, their NF algorithm—called “tree density destructors” is in essence the
same as our boosting algorithm aside from the di↵erence in the choice of the base learner,
the strategies in regularization, and the other boosting-inspired specification strategies.
These di↵erent practical choices we make—which are largely motivated from the boosting
perspective—do lead to substantial di↵erences in empirical performance and computational
e�ciency, as we will demonstrate in our numerical experiments. Besides, formulating the
algorithm from the boosting perspective also allows us to provide a more rigorous theoretical
grounding for the algorithm. Therefore, our main contribution is not in the novelty of
the algorithm itself, but in connecting boosting and NF in both theory and practice. In
summary, our contributions are:

1. Reformulation of tree-based NFs as tree boosting. We introduce a formal notion of
addition on probability measures that leads to the group structure on (generalized)
CDF transforms, based on which we show that tree-based NFs can be understood as
iterative fitting of an additive ensemble of probability measures in a manner analo-
gous to iterative fitting of weak learners to residuals under classical tree boosting for
supervised problems.

2. Theoretical justification. The boosting formulation allows us to justify the iterative
algorithm formally from a decision-theoretic perspective in terms of sequential mini-
mization of the Kullback-Leibler (KL) divergence between the model and the unknown
true measure. In addition, analogous to supervised tree boosting (Breiman, 2004), we
show that the unsupervised tree ensemble is “highly expressive” in the sense that a
wide class of distributions can be represented or well approximated by a finite combi-
nation of highly constrained (or “weak”) tree-based density models.

3. Methodological improvement. The boosting formulation allows us to design and incor-
porate methodological techniques—inspired by techniques originally developed for su-
pervised boosting. These include guidelines for choosing the number of trees, setting
the appropriate level of shrinkage/regularization, and choosing/specifying the base
learner. We provide a comprehensive empirical evaluation of our proposed boosting
algorithm by comparing it with the density destructor (Inouye and Ravikumar, 2018)
and other state-of-the-art NF algorithms such as Masked Autoregressive Flow (MAF)
(Papamakarios et al., 2017) using simulation examples and benchmark data sets. The
results suggest that our new algorithm substantially improves performance over tree
density destructors and is competitive with the state-of-the-art deep-learning based
NF algorithms at a substantially smaller computation cost. The decision-theoretic
formulation also leads to a natural measure of variable importance based on the re-
spective contribution of each dimension in reducing the overall KL divergence, which
provides additional insights into the relevance of each dimension in characterizing the
underlying distribution and allows e↵ective variable screening.

We note that boosting for unsupervised learning has been considered by Ridgeway
(2002); Rosset and Segal (2002); Cui et al. (2021). These previous attempts however aim
at constructing an ensemble in the form of a weighted average of probability measures and
fit such ensembles through gradient boosting (Mason et al., 1999) under various loss func-
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tions. These unsupervised gradient boosting algorithms have yet to be demonstrated to be
computationally e�cient or to perform well in high-dimensional continuous sample spaces.

All proofs are given in Appendices A and B.

2. Method

In this section, we start by defining notions of addition and residuals for one-dimensional
settings and then generalize them for multivariate distributions to introduce the new tree
boosting algorithm.

2.1 CDF-based Addition and Residualization for Univariate Distributions

Without loss of generality, let (0, 1] represent the one-dimensional sample space. For ease of
exploration, we shall assume that the distributions are absolutely continuous on the sample
space with respect to the Lebesgue measure and have full support.

We first make an observation that if a random variable X ⇠ G, its sampling distribution,
then G(X) ⇠ Unif(0, 1], where G denotes the CDF of G. (Throughout we will use bold
font letters to indicate the CDFs of the corresponding distributions.) As such, the CDF
transform “removes” the distributional structure of G from the sampling distribution of X.
Thus one can think of r = G(X) as a “residual”. Moreover, Unif(0,1] serves as the notion
of “zero”, whose CDF is the identity map, in the space of probability distributions as it is
the remaining distribution after “subtracting” the true sampling distribution G from X.

Next we define a notion of “adding” two distributions G and H that is consistent with
the above notion of “subtraction” or “residualization”. Specifically, the addition of G1

and G2, denoted as “G1 � G2”, should satisfy the property that if X ⇠ G1 � G2, then
r
(1) = G1(X) ⇠ G2. In other words, if the sampling distribution of X is the “sum” of
G1 and G2, then taking the “residual” of X with respect to G1 should result in a random
variable distributed as G2. Such a notion of addition indeed exists:

G1 �G2 is the distribution whose CDF is G2 �G1

where “�” denotes function composition. Note that this notion of addition is not commu-
tative. That is, G1 � G2 6= G2 � G1. Fortunately, as we will see, the operation of fitting
an additive ensemble as in supervised boosting requires only a non-abelian group structure,
which does not require the commutativeness of the underlying addition. As such, the loss of
commutativeness will pose no di�culty in our construction of additive tree models and later
an unsupervised boosting algorithm based on the new notions of addition and residuals.

By iteratively applying such an addition, one can define the “sum” of k(� 1) probability
measures G1, . . . , Gk. Specifically, the sum of G1, . . . , Gk,

G1 � · · ·�Gk is the distribution whose CDF is Gk � · · · �G1.

The following property provides the basis for sequential addition and residualization, anal-
ogous to those in supervised boosting.

Proposition 1. If G1, . . . , Gk have full support on (0, 1], (i.e., when the CDFs G1, . . . ,Gk

are strictly increasing), then for any i = 1, 2, . . . , k � 1

X ⇠ G1 � · · ·�Gk if and only if r
(i) = Gi � · · · �G1(X) ⇠ Gi+1 � · · ·�Gk.
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Boosting for regression Boosting for probability measures
Addition h1 + · · ·+ hk G1 � · · ·�Gk

Residual y �
Pk�1

l=1 hl(x) Gk�1 � · · · �G1(x)
Zero 0 Uniform distribution on (0, 1]d

Table 1: Key concepts in boosting

Proposition 1 then implies that such residualization can be applied sequentially. That
is, if r(k) is the residual of x after subtracting G1 � · · ·�Gk, then r

(0) = x, and for k � 1

r
(k) = Gk(r

(k�1)) = Gk �Gk�1(r
(k�2)) · · · = Gk �Gk�1 � · · · �G1(r

(0)). (1)

The “additivity” induced by the composition of CDFs also induces an additivity on the
corresponding log-likelihood. Specifically, suppose gi = dGi/dµ is the probability density
function (pdf) of Gi for i = 1, 2, . . . , k with respect to Lebesgue measure µ. Then the
density of the ensemble measure Fk := G1 � · · ·�Gk, fk = dFk/dµ, satisfies

fk(x) =
kY

i=1

gi(r
(i�1)) or log fk(x) =

kX

i=1

log gi(r
(i�1)).

Table 1 summarizes the corresponding notions of addition, residuals, and zero in su-
pervised boosting (in particular regression) and those in our unsupervised formulation.
With these new notions, we are ready to introduce a boosting algorithm for learning one-
dimensional distributions. However, the more interesting application involves multivariate
(in fact high-dimensional) distributions. As such, we first generalize these notions to mul-
tivariate cases and then introduce a multivariate version of our boosting algorithm that
contains the (less interesting) univariate scenario as a special case.

2.2 Generalization to Multivariate Distributions

The above notions of addition and residuals do not find direct counterparts for multivariate
measures if one uses the traditional definition of CDFs for multivariate distributions. In
particular, because the traditional CDF is a mapping from (0, 1]d to (0, 1] instead of (0, 1]d,
we cannot even take the composition of the CDFs or compute the residuals, which should
remain in the same space as the original observations. Beyond the minimal requirement
that the appropriate notion of “CDF” should map from (0, 1]d to (0, 1]d, it must also enjoy
several group-like properties of univariate CDF’s.

We summarize four such properties that the “CDF” must satisfy to allow the definition
of addition and residualization to carry over into the multivariate setting:

(C1) G is a mapping from (0, 1]d to (0, 1]d.

(C2) G is uniquely determined by G.

(C3) If X ⇠ G, then G(X) ⇠ Unif((0, 1]d), the “zero”.
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(C4) If X ⇠ G1 �G2, the distribution is uniquely determined by its “CDF” G2 �G1, then
G1(X) ⇠ G2.

Remark: (C1) and (C2) are needed for defining addition in terms of compositions. (C3)
and (C4) are needed for the proper notion of residuals.

For the purpose of constructing a tree additive ensemble model and a boosting algorithm,
one type of “CDFs” that satisfy these conditions is particularly useful as it is very easy to
compute for probability distributions with piecewise constant densities defined on leaves of a
recursive dyadic partitioning of the sample space. As one can imagine, e�cient computation
of the “CDFs” for tree-based models is critical as they will be computed many times during
the fitting to an additive ensemble.

2.2.1 Characterizing probability measures on a recursive dyadic partition
tree

Next we describe the construction of this generalized notion of multivariate CDFs, which
we call the “tree-CDF”, due to its connection to recursive bifurcating partition trees. We
start by introducing some additional notation related to recursive dyadic partitions.

A recursive dyadic partition of depth R is a sequence of nested dyadic partitions
A1

,A2
, . . . ,AR on the sample space ⌦. The first partition A1 only includes ⌦, and for

k = 2, . . . , R, the partition Ak consists of all the sets generated by dividing each A 2 Ak�1

into two children Al and Ar, where Al [ Ar = A and Al \ Ar = ;. (Throughout, we
use subscripts l and r to indicate left and right children respectively.) We can denote the
recursive partition using a tree T = [R

k=1Ak. As such, we refer to the sets in the partitions
as “nodes”. We call the collection of nodes in AR the “terminal” nodes or “leaves” of T and
denote it by L(T ); the nodes in other levels are the “non-leaf” nodes or “interior” nodes,
which we denote by N (T ) = T\L(T ).

We consider partition trees with axis-aligned partition lines. In this case, a node A 2 T

is of the following rectangular form

A = (a1, b1]⇥ · · ·⇥ (ad, bd]. (2)

For a non-leaf node A 2 N (T ), the children Al and Ar are generated by dividing A in one
of the d dimensions, say j

⇤,

Al = (a1, b1]⇥ · · · (aj⇤ , cj⇤ ]⇥ · · · (ad, bd] and Ar = (a1, b1]⇥ · · · (cj⇤ , bj⇤ ]⇥ · · · (ad, bd].
(3)

In the following, for each partition tree T , we let PT be the class of probability measures
that are conditionally uniform on the leaves of T and have full support on ⌦. That is,

PT =
n
G : G has full support on (0, 1]d and G(· | A) = µ(· | A) for every A 2 L(T )

o
,

where µ is the uniform distribution, and G(·|A) and µ(·|A) are the corresponding conditional
distributions on A.

To generalize the CDF transform from univariate to multivariate cases, first we note an
interesting multi-scale decomposition of the univariate CDF—a univariate CDF transform
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Figure 1: Visualization of the tree-based decomposition of a univariate CDF into three local
moves. The dotted lines indicate G(Al | A)/µ(Al | A) or G(Ar | A)/µ(Ar | A) on
each node A.

G for any distribution G 2 PT on an observation x can actually be computed sequentially in
a fine-to-coarse fashion along the branch in the partition tree T in which x falls. Specifically,
suppose T has depth R, then for x 2 (0, 1], let {Ak}Rk=1 be a sequence of nodes in T such
that Ak 2 Ak and

x 2 AR ⇢ AR�1 ⇢ · · · ⇢ A1 = (0, 1].

The CDF transform G(x) can be decomposed into the composition of a sequence of “local
move functions”

G(x) = GA1 � · · · �GAR�1(x), (4)

where for any A = (a, b] 2 N (T ) with two children Al = (a, c] and Ar = (c, b], the mapping
GA : A ! A is (up to a normalizing constant µ(A)) the CDF of a dyadic piecewise
constant density equal to G(Al|A)/µ(Al) on Al and G(Ar|A)/µ(Ar) on Ar. More precisely,
GA : A ! A is given by

GA(x)� a

x� a
=

G(Al|A)
µ(Al|A)

for x 2 Al and
b�GA(x)

b� x
=

G(Ar|A)
µ(Ar|A)

for x 2 Ar.

Note that the conditional measures and the input and output of GA have the following
relationship

G(Al|A) > µ(Al|A) , G(Ar|A) < µ(Ar|A) , GA(x) > x,

G(Al|A) < µ(Al|A) , G(Ar|A) > µ(Ar|A) , GA(x) < x.

We call GA a “local move” function because it moves a point in A in the direction of the
child node with less (conditional) probability mass than the (conditional) uniform measure
as illustrated in Figure 1. The amount of movement on A is proportional to the probability
mass di↵erential between the two children of A in G relative to µ.

If we think of applying the univariate CDF transform as “subtracting” the information
contained in a probability measure from an observation, the decomposition in Equation 4

7



Awaya and Ma

Figure 2: Top: Visualization of the local move functions in each level under R = 3. The
nodes with the darker color have higher conditional probabilities relative to the
uniform measure. Bottom: An example of GA with j

⇤ = 2. The input and the
output of GA are indicated by ⇥ and �, respectively.

indicates that such subtraction can be done sequentially through the local moves, each
subtracting a piece of information regarding the measure from the observation. This per-
spective leads to a generalization of the CDF transform for the multivariate case as we
describe below.

For a point x = (x1, . . . , xd) 2 ⌦ = (0, 1]d, again let T be a recursive dyadic partition
tree of depth R on the sample space ⌦, and {Ak}Rk=1 the sequence of nodes in T that
contains x as before. Then we define a mapping G : (0, 1]d ! (0, 1]d in terms of a sequence
of fine-to-coarse local moves along that branch in T . Specifically, for a node A 2 N (T ) as
in Equation 2 with children Al and Ar attained from dividing A in the j

⇤th dimension as
described in Equation 3, we define a local move mapping GA : A ! A such that for any
x 2 A, GA(x) = (GA,1(x), . . . ,GA,d(x)) where GA,j(x) = x for all j 6= j

⇤, and

GA,j⇤(x)� aj⇤

xj⇤ � aj⇤
=

G(Al|A)
µ(Al|A)

for x 2 Al and
bj⇤ �GA,j⇤(x)

bj⇤ � xj⇤
=

G(Ar|A)

µ(Ar|A)
for x 2 Ar.

As illustrated in Figure 2, similar to the univariate case, the local move mapping is nothing
but (up to a normalizing constant µ(A)) the CDF of a dyadic piecewise constant density
on A, except that now in the multivariate setting there are a total of d directions in which
such a dyadic split can take place. As a transform, it moves x in the direction of the child
node with less probability mass relative to the uniform measure.
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As before, we now define a mapping G : (0, 1]d ! (0, 1]d, called a “tree-CDF”, as the
composition of these local move functions. That is,

G(x) = GA1 � · · · �GAR�1(x).

G is injective from (0, 1]d to (0, 1]d for any G with full support on (0, 1]d. Additionally,
because GA is surjective for every A, G is also surjective. One can also show that G is
measurable. Hence we have the following proposition that establishes Condition (C1) for
tree-CDFs, which is essential to defining the addition of multivariate distributions in terms
of tree-CDF compositions.

Proposition 2. The tree-CDF mapping G : (0, 1]d 7! (0, 1]d is bijective and measurable for
any G 2 PT .

The next two theorems show that our construction of G satisfies Conditions (C2) and
(C3) as well. That is, G uniquely determines G, and applying the G mapping to an observa-
tion e↵ectively “subtracts” the distributional structure in G from the sampling distribution
of that observation.

Theorem 1. A measure G 2 PT for some partition tree T can be determined by the tree-
CDF mapping G as follows

G(B) = µ({G(x) : x 2 B}) for all B 2 B(⌦).

Remark: Theorem 1 establishes (C2) and implies that G uniquely determines G, regardless
of the tree based on which G is defined. However, G is tree-specific, that is, to uniquely
determine G we need a pair of the measure G and the finite tree T .

Theorem 2. If X ⇠ G 2 PT , then G(X) ⇠ Unif((0, 1]d). Conversely, if U ⇠ Unif((0, 1]d),
then G�1(U) ⇠ G.

Remark: Theorem 2 establishes (C3) and shows that if one can compute the inverse map
G�1 then one essentially has a generative model, which allows generating samples from G

based on “inverse-CDF” sampling. More details on this will be given in Section 2.3.

2.2.2 Addition and residualization for multivariate settings

Let G1, . . . , Gk be a collection of probability measures such that Gl 2 PTl for l = 1, 2, . . . , k,
and let G1, . . . ,Gk be the corresponding tree-CDFs. As a generalization to the univariate
case, next we define addition of distributions by composing their tree-CDFs. We first show
that such a composition indeed pins down a unique probability measure.

Lemma 1. For Gl 2 PTl (l = 1, 2, . . . , k), the mapping Fk : B(⌦) 7! (0, 1] defined as

Fk(B) = µ({Gk � · · · �G1(x) : x 2 B}) for B 2 B(⌦). (5)

is a probability measure.
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Now we can define the sum of k distributions, G1 � · · · � Gk, as the measure Fk given
in Equation 5. This definition of addition contains the univariate case presented earlier as
a special case. We note that the addition implicitly involves the tree structures T1, . . . , Tk.
This dependency on the trees, however, is suppressed in the “�” notation for simplicity
without causing confusion.

Next we turn to the notion of residuals and generalize Proposition 1 to multivariate
distributions, which establishes Condition (C4) for tree-CDFs.

Proposition 3. Let G1, . . . , Gk be a collection of probability measures such that Gl 2 PTl

for l = 1, 2, . . . , k. Then

X ⇠ G1 � · · ·�Gk if and only if r
(i) = Gi � · · · �G1(X) ⇠ Gi+1 � · · ·�Gk

for any i = 1, 2, . . . , k � 1.

Remark: This proposition implies Condition (C4) by setting k = 2 and i = 1.
Moreover, the sequential update of the residuals given in Equation 1 remains valid. The

only di↵erence is that now the residualization in each step depends on an implicit partition
tree structure, encapsulated in the corresponding tree-CDF.

2.3 Unsupervised Boosting based on Forward-stagewise (FS) Fitting

Equipped with the new notions of addition and residuals, we are ready to generalize our
unsupervised boosting algorithm to the multivariate setting based on forward-stagewise
(FS) fitting. Suppose we have an i.i.d. sample x1, . . . , xn from an unknown distribution F ,
which we model as an additive ensemble of K probability measures

F = G1 � · · ·�GK (6)

where each Gk is modeled as a member in PTk for some (unknown) Tk. We compute the
residuals step-by-step and at the kth step, fit Gk to the current residuals. The fit at the
kth step produces an estimate for Gk and a partition tree Tk, which are used to define the
tree-CDF in the next step for updating the residuals. The algorithm is summarized below.

Initialization
Set r(0) = (x1, . . . , xn).

Forward-stagewise fitting
Repeat the following steps for k = 1, . . . ,K:

1. Fit a weak learner that produces a pair of outputs (Gk, Tk) to the residualized
observations r(k�1), where Tk is an inferred partition tree andGk is the tree-CDF
for a measure Gk 2 PTk .

2. Update the residuals r(k) = (r(k)1 , . . . , r
(k)
n ), where r

(k)
i = Gk(r

(k�1)
i ).
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The output of the boosting algorithm in terms of the collection of pairs (Gk, Tk) for
k = 1, 2, . . . ,K contains all of the information from the data regarding the underlying
distribution. (In fact the Gk’s alone contain all the relevant information, but the Tk’s are
indispensable for e↵ectively representing and storing the Gk’s.)

Next we demonstrate two ways to extract such information. In particular, we show (i)
how to compute the density function of the fitted measure F at any point in the sample
space analytically, and (ii) how to use the resulting generative model to draw Monte Carlo
samples from the fitted measure F based on “inverse-CDF” sampling.

2.3.1 Evaluating the Density Function of F .

Density estimation is a common objective in learning multivariate distributions. The next
proposition generalizes the additive decomposition of the log-likelihood for the univariate
case and provides a recipe for evaluating the density for the fitted measure F analytically
based on the output of the FS algorithm.

Proposition 4. For any x 2 (0, 1]d, the density f = dF/dµ for F of the additive form in
Equation 6 is given as follows

f(x) =
KY

k=1

gk(r
(k�1)) or log f(x) =

KX

k=1

log gk(r
(k�1)),

where gk = dGk/dµ is the density of Gk, r
(k�1) = Gk�1 � · · · � G1(x), is the residual

for x after subtracting G1 � · · · � Gk�1, and in particular r
(0) = x. In other words, the

density f(x) is exactly the product of the fitted density of each weak learner evaluated at the
corresponding sequence of residuals.

2.3.2 A generative model for F .

It turns out that one can use the classical idea of inverse-CDF sampling to construct a
generative model for F as a result of Theorem 2. Specifically, we can generate samples from
F by first generating U ⇠ Unif((0, 1]d) and then computing the following transform

F�1(U) := G�1
1 � · · · �G�1

K (U), (7)

where G�1
k is the corresponding inverse for the tree-CDF Gk for k = 1, 2, . . . ,K. To

implement the sampler, we next obtain the analytic form of the inverse of a tree-CDF.
Recall that in Section 2.2.1 we showed that a tree-CDF G for a measure G 2 PT can

be expressed as the composition of a sequence of local move mappings GA : A ! A along
each subbranch of T . The inverse of the local move mapping GA can be expressed as
G�1

A (y) = (G�1
A,1(y), . . . ,G

�1
A,d(y)) for any y = (y1, . . . , yd) 2 A, where

G�1
A,j(yj) =

(
yj (j 6= j

⇤),

G
0�1
A,j

⇣
yj�aj
bj�aj

⌘
(j = j

⇤),

and

G
0�1
A,j (zj) =

(
aj +

cj�aj
G(Al|A)zj if yj  aj +G(Al | A)(bj � aj),

cj +
bj�cj

G(Ar|A) {zj �G(Al | A)} if yj > aj +G(Al | A)(bj � aj).
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With the inverse local move function G�1
A available for all A 2 N (T ), we can obtain the

explicit form for the inverse tree-CDF G�1 as

G�1(y) = G(R�1) � · · · �G(1)(y),

where for k = 1, . . . , R� 1,

G(k)(y) =
X

A2Ak

G�1
A (y)1A(y).

2.4 Decision-theoretic Considerations

In this subsection we show that our boosting algorithm can be interpreted as fitting the
additive model in Equation 6 by sequentially reducing the Kullback-Leibler divergence.

Let F
⇤ be the true sampling distribution for the observations and f

⇤ = dF
⇤
/dµ its

density function. Again, let F = G1 � · · ·�GK be the additive model for the distribution
and f = dF/dµ its density. We consider the entropy loss, i.e., the Kullback-Leibler (KL)
divergence between F

⇤ and F defined as

KL(F ⇤||F ) =

Z
log

f
⇤

f
dF

⇤
. (8)

The next lemma states that the entropy loss in Equation 8 can be decomposed into K

components (ignoring a constant) each of which only depends on Gk.

Lemma 2. The Kullback-Leibler divergence can be written as

KL(F ⇤||F ) =

Z
log f⇤

dF
⇤ �

KX

k=1

{KL(F̃k||µ)�KL(F̃k||Gk)}. (9)

where F̃k is the true distribution of the residualized observation after subtracting G1, G2, . . . , Gk�1.
That is, F̃k is the true distribution of r(k�1) = Gk�1 � · · · �G1(X), where X ⇠ F

⇤.

Remark: Note that because X ⇠ F
⇤, we have F̃1 = F

⇤, and for k = 2, . . . ,K, F̃k is in the
following form

F̃k(B) = F
⇤(G�1

1 � · · · �G�1
k�1(B)) for all B 2 B((0, 1]d).

The first term on the right-hand side of Equation (9) is a constant. The summand in the
second term is positive as long as the measure Gk is closer to F̃k than the uniform measure
µ in terms of KL divergence. Hence, unless F̃k = µ, the entropy loss could be reduced by
adding an additional measure Gk that is closer to F̃k than µ. In this way, fitting a measure
Gk to the residuals r(k) in the kth step of our boosting algorithm can be understood as an
operation to sequentially reduce the KL divergence. Next we turn from the above insight at
the population level to the practical strategy at the finite-sample level for fitting F based on
n i.i.d. observations {xi}ni=1 from F

⇤. First note that minimizing the divergence KL(F ⇤||F )
is equivalent to maximizing the average log-density

R
log fdF ⇤. Thus with a finite sample,

we aim to maximize the sample (average) log-density of the training data, that is,

1

n

nX

i=1

log f(xi).

12
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It follows from Proposition 4 that the log-density can also be decomposed into the sum of
K components, which we call “improvements”.

Lemma 3. The sample average log-density can be written as

1

n

nX

i=1

log f(xi) =
KX

k=1

D
(n)
k (Gk),

where for k = 1, 2, . . . ,K, the improvement D(n)
k (Gk) is

D
(n)
k (Gk) =

1

n

nX

i=1

log gk(r
(k�1)
i ) with r

(k�1)
i = Gk�1 � · · · �G1(xi).

Accordingly, the next proposition characterizes the “optimal” pair (Gk, Tk) that maxi-

mizes D(n)
k (Gk).

Proposition 5. A pair of (Gk, Tk) maximizes D
(n)
k (Gk) if and only if

Tk 2 arg max
T2T

X

A2L(T )

F̃
(n)
k (A) log

F̃
(n)
k (A)

µ(A)
, (10)

and

Gk(A) = F̃
(n)
k (A) for all A 2 L(Tk), (11)

where F̃
(n)
k is the empirical measure of the residuals r(k�1) = {r(k�1)

i }ni=1. That is,

F̃
(n)
k (B) =

1

n

nX

i=1

�B(r
(k�1)
i ) for B 2 B((0, 1]d).

Remark 1: The summation in Equation 10 represents the KL divergence between two dis-

crete probability measures with masses given by {F̃ (n)
k (A)}A2L(T ) and {µ(A)}A2L(T ) respec-

tively. Equation 10 implies that the “optimal” tree Tk should allow maximal di↵erentiation
in KL divergence between the induced discretizations of F̃ (n) and µ on its leaves. This
proposition o↵ers practical guidance on how to choose a good weak learner, which will be
detailed in Section 2.7.1.

Remark 2: As suggested in Lemma 3, the loss is reduced at each step as long as the improve-

ment D(n)
k (Gk) is positive, and the improvement is maximized by the measure described in

Proposition 5. However, employing the “optimal” base learner in fitting Gk as prescribed
in Proposition 5 will generally lead to over-fitting. As in supervised boosting (Hastie et al.,
2009), additional regularization is necessary to reduce the variance of the weak learner, and
this can be achieved in analogy to supervised boosting through shrinkage toward the “zero”,
here the uniform distribution. As will be detailed in Section 2.7.2, one can still ensure the
improvement is positive when shrinkage is incorporated in an appropriate way.
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2.5 Group structure of tree-CDFs

In the previous sections we have defined the new operation for adding two distributions, and
discussed the “group-like” structure on probability measures it induces. Here we formalize
this notion by showing that the collection of tree-CDFs indeed forms a group.

Proposition 6. Let G be a set of tree-CDFs defined as follows

G = {G | G is a tree-CDF of G 2 PT for a finite tree T} .

Then, G generates a group under the composition �. Specifically, the identity map—which
corresponds to the uniform distribution—is the identity in the group. G is closed under �
and each element has an inverse in G.

This group structure is an example of the group-theoretic structure Inouye and Raviku-
mar (2018) introduced to the family of density destructor transformations, though they did
not show in the particular case of tree density destructors the group structure exists. Also
note that this group is not abelian, because � is not commutative. This is distinct from the
usual group structure defined on the class of tree regressions in supervised settings, as the
usual notion of addition is commutative. Boosting based on forward-stepwise fitting of an
additive ensemble of elements in G does not require the group to be abelian.

2.6 Connection to Gradient Boosting

Many of the existing boosting algorithms can be regarded as iterative optimization of loss
functions with gradient descent (Mason et al., 1999; Friedman, 2001). In this subsection
we discuss our new boosting from this perspective and clarify the di↵erence from existing
gradient boosting methods.

First we note that as in gradient boosting, our new algorithm can be seen as fitting
a linear additive expansion. As shown in Proposition 4, for the ensemble measure F =
G1 � · · · � GK , the log-density of the ensemble measure f = dF/dµ evaluated at the
observation xi (i = 1, . . . , n) can be decomposed as follows:

log f(xi) =
KX

k=1

log gk(r
(k�1)
i ),

where gk = dgk/dµ is the density of Gk and r
(k�1)
i = Gk�1 · · ·�G1(xi) is the residual. From

this expression we can see that log f bears resemblance to a “linear additive model” with
which we estimate the log-density function log f⇤ of the unknown measure F

⇤. The fitting
of this estimate to the data is evaluated with the sum of the log densities

L(log f) =
nX

i=1

� log f(xi).

Note that Rosset and Segal (2002) also proposes an additive model for density estimation
with the same objective function, but their model is a weighted sum of density functions

so is di↵erent from our model. We also note that the input of log gk is the residual r(k�1)
i
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instead of xi itself due to the definition of our new addition rule that involves transformation
with the tree-CDFs.

Suppose that we want to update log f , a current estimate of log f⇤, by adding a new
density function log g, where g is the density function of the new tree measure G, to improve
the fitting. The standard approach in the gradient boosting is evaluating a gradient at the
current estimate and approximating its negative with the new function (Mason et al., 1999;
Friedman, 2001). In our case, the gradient is constant: for all i,


@L

@ log f(x)

�

log f(x)=log f(xi)

= �1.

Approximating its negative, 1, with the new function log g is not reasonable. However, this
result implies that we can maximize the improvement in the loss function by maximizing

the sum of the log-densities evaluated at the current residuals {r(K�1)
i }ni=1,

nX

i=1

log g(r(K�1)
i ),

or equivalently their average, which is exactly what our proposed boosting algorithm itera-
tively does to fit the ensemble measure (see Section 2.4). Therefore, while our new boosting
method constructs the ensemble measure in a di↵erent way from standard gradient boosting,
one can still justify our algorithm as a sequential optimization of the average log densities.

2.7 Practical Considerations

In this subsection we describe several practical considerations in implementing and applying
the boosting algorithm. While they might first appear as technical details, we have found
that they are critical in achieving competitive performance and thus worth elaborating on.
Several of these considerations are drawn from similar approaches in supervised boosting.

2.7.1 Choice of a Weak Learner

Searching over all possible trees to solve Equation 10 in each step of the FS algorithm is
computationally prohibitive. Nevertheless, Proposition 5 provides hints on how to choose
good weak learners that improve the KL divergence e�ciently over the iterations. The
simplest possible choice of a weak learner, as is often implemented in supervised boosting is
to implement a top-down greedy tree learning algorithm that maximizes Equation 10 one
split at a time, as is done in fitting classification and regression trees (CART) (Hastie et al.,
2009).

In our numerical examples and software, we adopt a weak learner based on a simplified
version of an unsupervised (Bayesian) CART model for probability distributions proposed
in Awaya and Ma (2024). Fitting this weak learner uses a stochastic one-step look-ahead
strategy to choose splitting decisions on each tree node, which generally produces a closer
approximation to the “optimal” tree splits than greedy tree algorithms. See Theorem 4.1 in
Awaya and Ma (2024) for an asymptotic justification—as the sample size grows, it produces
trees that satisfy Proposition 5 with probability increasing to 1. Additional details about
the weak learner can be found in Appendix C.
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It is worth emphasizing that because we are only building “weak” learners that extract
a small fraction of the distributional structure in each iteration, one does not need to be
precisely “optimal” in each iteration. More importantly than being “optimal”, the weak
learner should facilitate the appropriate shrinkage to avoid overfitting, which we elaborate
in the next subsection.

2.7.2 Regularization through Scale-specific Shrinkage

Just as in supervised boosting, simply adopting the solution for Equation 10 (either exact
or approximate) as the fit for Gk in each iteration will typically lead to overfitting even
when the complexity of the tree Tk is restricted to be small. In particular, the fitted
density tends to have spikes at or near the training points. To avoid such overfitting, it is
necessary to regularize or penalize the non-smoothness in the fit for each Gk. This can be
achieved through shrinkage toward “zero”, or the uniform measure µ, thereby discounting

the influence of the residuals (or its empirical measure F̃
(n)
k ) on fitting Gk. In supervised

boosting it is typical to introduce a learning rate c0 2 (0, 1] that controls how much shrinkage
toward zero is applied in each iteration. In the current context, this traditional strategy
would correspond to setting

Gk = (1� c0)µ+ c0F̃
(n)
k .

We found that in practice one can further improve upon this shrinkage strategy by
allowing di↵erent levels of shrinkage at di↵erent scales. The intuition is that depending on
the smoothness of the underlying function, overfitting can be more (or less) likely to happen
in learning local details of the distribution and thus one may benefit from enforcing a level
of shrinkage that increases (or not) with the depth in the tree Tk. Following this intuition,
we specify a scale-dependent learning rate as follows

c(A) = c0 · (1� log2 vol(A))��
,

where A is a node in Tk, vol(A) is a volume of A. Then the shrinkage toward the uniform
can be specified on each node A 2 N (Tk) in terms of the conditional probability on the
children of A

Gk(Al | A) = (1� c(A))µ(Al | A) + c(A)F̃ (n)
k (Al | A) for A 2 N (Tk),

Gk(· | A) = µ(· | A) for A 2 L(Tk),
(12)

where Al and Ar are the children nodes of A in Tk, F̃
(n)
k (Al | A) = F̃

(n)
k (Al)/F̃

(n)
k (A) if

F̃
(n)
k (A) > 0 and F̃

(n)
k (Al | A) = µ(Al | A) otherwise.

The node-specific learning rate c(A) controls how strongly one “pulls” the empirical
measure F̃

(n) toward the uniform measure µ at the corresponding scale of A. It is specified
with two tuning parameters c0 2 (0, 1] and � � 0. The parameter c0 controls the global level
of shrinkage, and when � > 0 we introduce stronger shrinkage for small nodes, imposing
stronger penalty on local spikes. When � = 0, this shrinkage reduces to the standard single
learning rate specification described above. In practice, we recommend setting these tuning
parameters by cross-validation.

Our next proposition shows that with shrinkage, the sample average log-density is
steadily improved in each step of the FS algorithm until the residual distribution becomes
the uniform measure.
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Proposition 7. For any finite tree Tk, under the definition of Gk given in Equation 12,

the improvement satisfies D
(n)
k (Gk) � 0 if c(A) 2 (0, 1] for all A 2 L(Tk) unless F̃

(n)
k (A) is

indistinguishable from the uniform distribution on the tree Tk, that is, F̃
(n)
k (A) = µ(A) for

all A 2 L(Tk).

2.7.3 Evaluating Variable Importance

As in supervised learning, it is often desirable to evaluate the contribution of each dimension
to the approximation of the unknown measure F

⇤. Thus we provide a way to quantify
variable importance in a conceptually similar manner to what is often used in supervised
boosting (see Hastie et al., 2009). We note that Ram and Gray (2011) also introduced
a notion of the variable importance in density trees. While their definition is based on
improvement in the L2 loss, ours is based on the KL divergence, which is consistent with
our earlier decision-theoretic discussion.

Specifically, because our boosting algorithm reduces the KL divergence from the un-
known measure F

⇤, a natural way of quantifying the importance of a variable is adding up
the decrease in the KL divergence due to splitting a tree node in the corresponding dimen-
sion. Lemma 3 shows that this quantity can be expressed as the sum of the improvements

D
(n)
k (Gk). In particular, the improvement D

(n)
k (Gk) can be further decomposed over the

splits of the tree Tk as follows

D
(n)
k (Gk) =

X

A2N (T )

F̃
(n)
k (A)

⇢
F̃

(n)
k (Al | A) log

Gk(Al | A)
µ(Al | A)

+ F̃
(n)
k (Ar | A) log

Gk(Ar | A)
µ(Ar | A)

�
,

where the empirical measure F̃
(n)
k is as defined in Proposition 5. Note that the summation

inside of the brackets can be written as

KL(F̃ (n)
k (Al | A)||µ(Al | A))�KL(F̃ (n)

k (Al | A)||Gk(Al | A)),

where KL(p||q) = p log(p/q)+(1�p) log[(1�p)/(1�q)], and it quantifies the extent to which
splitting Amakes Gk closer to the distribution of the residuals. Based on the decomposition,
a natural definition of the total contribution of dividing in the jth dimension is

IGk,j =
X

A2Nj(T )

F̃
(n)
k (A)

⇢
F̃

(n)
k (Al | A) log

Gk(Al | A)

µ(Al | A)
+ F̃

(n)
k (Ar | A) log

Gk(Ar | A)

µ(Ar | A)

�
,

where Nj(T ) represents the collection of all nodes in T that are split in the jth dimension.
Finally we can define the importance of the jth variable in the additive measure F =
G1 � · · ·�GK by summing over the variable importance across the Gk’s:

Ij =
KX

k=1

IGk,j .

2.7.4 Fitting the Margins and the Copula Separately and Addressing
Technical Ties

In the density estimation literature, Lu et al. (2013) suggested a two-stage strategy for
estimating multivariate densities using tree-based models, which separately fits the marginal
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distributions and then the dependence (or copula). From our experience, this strategy can
often substantially improve the fit of our unsupervised boosting algorithm.

This two-stage strategy is easy to realize in our algorithm. In the first stage, for each
of the dimensions, one can adopt weak learners that are constrained to involving tree-
CDFs based on partitions along that single dimension. Computing the residuals with tree-
CDFs defined on such a tree only removes the marginal distributions from the observations.
“Subtracting” all of the marginal distributions from the original observations results in a
sample of residuals representing the remaining distribution with uniform marginals (i.e.,
the corresponding copula). Then in the second stage, the single-dimension constraint on
the partition trees is removed, and tree-CDFs are then fitted to the copula. The final fit is
simply the sum, in terms of tree-CDF compositions, of all of the marginals and the copula.

A related practical consideration regards tied values in the training data. (Ties in the
margins occur much more frequently than ties that occur simultaneously in all margins
and thus the issue is particularly relevant during the fitting of the marginal distributions
in this two-stage strategy.) When tied values occur, either from the actual data generative
mechanism or due to technical reasons such as rounding, the additive tree model itself will
only assume that it is due to the actual data generative mechanism and therefore there must
be positive probability mass at those tied values, leading to spikes of estimated densities at
those values. In practice, if the data generative mechanism is assumed to be continuous and
the ties are due to technical reasons such as rounding, one can avoid this issue with a simple
preprocessing step for the training data that “smooths out” those spikes by adding small
perturbations before fitting the model. We have found a simple strategy to be e↵ective—
when there are ties in the training data at the same value x and the adjacent values are
x� and x+ (x� < x < x+), we add uniform perturbation to the training data at x on the
support (�(x� x�)/2, (x+ � x)/2).

2.7.5 Choosing the number of trees

Following similar strategies for supervised tree boosting, we generally set the learning rate
(c0) relatively small—e.g., 0.1 or 0.01—and incorporate a large number of trees (e.g., hun-
dreds to thousands). While our algorithm is generally robust to overspecification in the
number of trees, it is still beneficial—for avoiding excessive computation—to adopt an
adaptive stopping strategy, which terminates the boosting algorithm when substantive im-
provement from additional trees is no longer expected. We adopt a simple strategy to
achieve this. In each iteration of the algorithm, we use a portion of the data, for example,
90% of the current residuals, to fit the next weak learner, and use the rest of the data to
evaluate this tree measure by computing the average log densities. We use this quantity to
measure the improvement in the fit. If the average improvement given by, for example, the
most recent 50 trees is non-positive, we terminate the algorithm. This adaptive strategy
is e↵ective in all of our numerical experiments—it did not noticeably impact predictive
performance while substantially reducing computing time.

2.8 Expressive Power of Additive Tree Ensembles

One interesting question is what kind of probability measures can be well approximated by
the ensemble when relatively simple (e.g., shallow) tree-based weak learners are combined.
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This is often referred to as the “expressive power” of the model in the machine learning
literature, or the “support” of the model in the statistical literature. The expressive power
for several normalizing flows have been analyzed (Huang et al., 2018; Jaini et al., 2019; Kong
and Chaudhuri, 2020), and the large support property of linear combinations of classification
trees has been established in Breiman (2004). We show next that a similar property holds
for our unsupervised tree ensemble under the following set of conditions.

Assumption 1. For k = 1, 2, ...,K, the pair of the tree Tk and the measure Gk that forms
a component of the tree ensemble satisfies the following conditions:

1. The tree Tk can be any finite tree formed by the dyadic splitting rule described in
Equation 2 and Equation 3. That is, it incorporates an axis-aligned splitting rule with
flexible split points.

2. Each Tk has at least d+ 1 leaf nodes, where d is the dimension of the sample space.

3. The measure Gk can be any conditionally uniform measure on Tk, namely, for every
non-terminal node A 2 N (Tk), the conditional probability Gk(Al | A) can be any value
in (0, 1).

Most notable in the assumption is the second condition, which is in sharp contrast to
theories on single tree-based density models in the statistical literature. For instance, a
popular tree-based density model, the Pólya tree (PT) model is shown to have the large
support under the assumption that a single tree has infinite depth (Lavine, 1992; Ghosal
and Van der Vaart, 2017). This is not surprising in the context of additive trees, how-
ever, since Proposition 2 of Breiman (2004) for supervised boosting essentially requires the
same condition. With additive ensembles, we can combine small trees to express general
continuous distributions, as formally stated in the next theorem.

Theorem 3. Let F ⇤ be a probability measure that has a bounded density function. Then,
under Assumption 1, for any ✏ > 0, there exists a tree ensemble with a finite number of
tree measures, G1� · · ·�GK , that approximates F ⇤ in terms of the KL divergence with this
precision, i.e.,

KL(F ⇤||G1 � · · ·�GK) < ✏.

2.9 Connection to Normalizing Flows

Under our definition of additive tree ensembles, the unknown distribution of the observation
is modeled as the transformation of the uniform distribution that takes the form

T1 � · · · �TK(U), U ⇠ Unif((0, 1]d),

where Tk = G�1
k . Given this expression, we can find a connection between our new boost-

ing and the normalizing flow (NF) methods, a class of machine learning algorithms used
for density estimation. For comprehensive reviews of the NF, see Papamakarios (2019),
Papamakarios et al. (2021), and Kobyzev et al. (2020). In NF methods, one approximates
the observation’s distribution with the transformation of known distributions such as the
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uniform and the Gaussian, and the transformation is represented as a composition of multi-
ple functions. From this viewpoint, our boosting method can be considered an NF method
in which we use the inverse tree-CDFs G�1

k as base transformations.
In NF methods, the estimated log-density is written in the form of the log-determinant

of a flow transformation (Papamakarios et al., 2021). In our case, the log-determinant is
identical to the sum of the log-densities that appears in our ensemble formulation. To see
this, let FK be a composition of tree CDFs Fk = GK � · · · � G1, which corresponds to
the ensemble measure written as F = G1 � · · · � GK by Theorem 1. We can rewrite the
log-determinant using the density function of the tree measures gk = dGk/dµ as follows

log detF(x) =
KX

k=1

log detGk(r
(k�1)) =

KX

k=1

log gk(r
(k�1)),

where r
(k�1) = Gk�1 � · · · �G1(x). The first equality follows from the chain rule, and the

second from the fact that |detGk(x)| = gk(x) (almost everywhere). The last expression is
the sum of the log-densities in our boosting algorithm (see Proposition 4).

From an algorithmic perspective, some NF methods are similar to our boosting algo-
rithm in that they employ an iterative fitting approach. That is, they sequentially transform
the observations to make the distribution closer to the known distributions, as we sequen-
tially residualize the observations with Gk’s. In particular, Inouye and Ravikumar (2018)
introduces an NF method called “density destructors”, which “substracts” information from
i.i.d. samples until they become uniform samples. Notably, one particular type of density
destructors—the “tree density destructors”—is defined based on subtracting a tree-based
transforms, which is equivalent to our concept of tree-CDF transform. The sequential
training on the residuals is feasible due to the underlying group structure over the tree-
CDF transforms. It substantially reduces the computational cost compared to methods
that require stochastic gradient descent for training.

For most NF models, there tends to be a trade-o↵ between the ease in evaluating the
fitted density or generating samples from the fitted distribution and that in achieving large
expressive power (Papamakarios et al., 2021). It is worth noting that density evaluation
and simulation given the fitted additive model are both straightforward to implement under
the proposed ensemble model because these tasks only require transforming inputs with the
tree-CDF and its inverse function respectively, both of which are available in closed forms.
The computational cost of these tasks is O(RK) and in practice, the cost is much smaller
because the node splitting is often terminated in shallow levels on much of the sample
space. At the same time, the proposed additive tree ensemble is capable of expressing or
approximating general continuous distributions as shown in Section 2.8.

3. Numerical Experiments

We conduct numerical experiments to demonstrate and evaluate our method. We start
with a set of simulations under several representative forms of density functions in a 48-
dimensional sample space, through which we examine the impact of the tuning parameters—
namely, the learning rate which controls global shrinkage, the scale-specific shrinkage param-
eter which tunes the shrinkage on tree nodes of di↵erent sizes, and the number of trees—as
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well as that of the two-stage strategy on the performance of the algorithm. In addition,
we compare the predictive performance of our method with a state-of-the-art single-tree
learner as well as the closely related tree density destructor (Inouye and Ravikumar, 2018).
Throughout, the performance of various methods is evaluated by the predictive score, i.e.,
the average fitted log-density on a testing set.

We then provide a comparative study based on several popular benchmark data sets
that pitches our method against several state-of-the-art NF methods including both deep-
learning based NFs and the tree density destructor. Finally we demonstrate the computa-
tion of variable importance in both artificial data sets and the MNIST handwritten digits
data (LeCun et al., 1998).

Unless otherwise noted, we adopt the two-stage strategy and the adaptive stopping
discussed in Section 2.7.4 and in Section 2.7.5, respectively, and set the maximum number
of trees for the first stage (estimation of the marginal distributions) to 100 per dimension
and for the second stage (estimation of the dependence structures) to 5,000 unless otherwise
stated. The evaluation of the computational cost is done in a single-core AMD EPYC 7002
(2.50GHz) environment.

3.1 Simulation Study in 48D Sample Spaces

We consider three simulation scenarios in a 48-dimensional sample space. The true densities
are illustrated in Figure 3. We set the sample size n of both training and testing data sets
to 10,000. (Additional details on the data generating process are provided in Appendix D.)

We evaluate the performance under two types of experimental settings. In the first ex-
periment, we set the value of c0, the global shrinkage parameter, to 0.01, 0.1 and 0.99 while
setting �, the scale-specific shrinkage parameter, to 0. Also in this experiment we do not
adopt either the two-stage strategy or the adaptive stopping. All these choices are made in
order to highlight the e↵ect of changing c0 and the number of trees. The predictive perfor-
mance of the considered methods is visualized in the first row of Figure 4. For completeness,
we also report the predictive score for a state-of-the-art single-tree learner (which is essen-
tially a less regularized version of the base learner in our boosting algorithm) to illustrate
the dramatic improvement in the performance through fitting an additive ensemble. We
can see that our boosting algorithm substantially outperforms the single-tree method in all
scenarios, and that the lower learning rate (c0) generally results in better predictive scores
while requiring a larger number of trees. In fact, when c0 is small (0.01), the number of
trees needed for optimal performance can be as large as 4000 to 5000.

In the second experiment, we compare the performance under di↵erent � (the scale-
specific shrinkage parameter) and evaluate the e↵ect of introducing the two-stage strategy.
In this experiment � is set to 0.0, 0.5, . . . , 2.0, and c0 is fixed to 0.1. The results are reported
in the second row of Figure 4. Overall one can see that (i) a penalty for small nodes via a
positive � leads to improved fit as long as � is not too large (i.e., � 1); and (ii) the two-stage
strategy can further improve the fit.

In addition, we also provide a comparison with the deep density destructor (DDD) (In-
ouye and Ravikumar, 2018) using the code available at https://github.com/davidinouye/
destructive-deep-learning, in terms of predictive scores and computation cost. For the
DDD algorithm, we use the random tree destructor to fit tree measures to the residuals,
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Figure 3: The true marginal densities with respect to X1 and X2.

which is a favorable choice in the numerical experiment provided in Inouye and Ravikumar
(2018), and we set the shrinkage parameter (↵) to 0.2%, 2%, and 20% of the sample size
(20, 200, 2000) following Inouye and Ravikumar (2018). The results are provided in Fig-
ure 5. Our algorithm substantially outperforms the DDD and the amount of computational
time needed to achieve desirable performance is substantially less under our method. This
comparison demonstrates the practical improvement from connecting the tree-based NF
approach to boosting and adopting specifications inspired by supervised boosting.

3.2 Performance Comparison on Benchmark Data

We evaluate the performance of our boosting algorithm using seven popular benchmark data
sets recorded in the University of California, Irvine (UCI) machine learning repository (Dua
and Gra↵, 2017). We preprocessed the four data sets (“POWER”, “GAS”, “HEPMASS”,
and “MINIBOONE”) following Papamakarios et al. (2017) with the code provided at https:
//github.com/gpapamak/maf and the three data sets (“AReM”, “CASP”, and “BANK”)
with the code provided at https://zenodo.org/record/4560982#.Yh4k_OiZOCo. We fit
the densities and evaluate the predictive scores using the provided code.

We compare our approach with three normalizing flow (NF) methods using deep neural
networks to construct transforms, which represent the state-of-the-art for density estimation
in machine learning: MADE (Germain et al., 2015), Real NVP (Dinh et al., 2017), MAF
(Papamakarios et al., 2017), and DDD (Inouye and Ravikumar, 2018). For MADE, Real
NVP and MAF, the predictive scores are referenced from Papamakarios et al. (2017) and
Liu et al. (2021), where the detailed settings of the NF models are also provided. For DDD,
we evaluate the performance under three possible values of the shrinkage parameter (↵),
0.2%, 2%, and 20% of the sample size, and show the best predictive scores. For our boosting
algorithm, (c0, �) is set to (0.1, 0.0) and (0.1, 0.5).

A comparison of the predictive scores for our boosting algorithm and the other NF
methods is provided in Table 2, where our method is labeled as “boostPM” (which stands
for “boosting probability measures”). Our unsupervised tree boosting is overall competi-
tive with the NF methods and even shows the best predictive performance for two data sets
(“POWER” and “AReM”). Appendix E also provides a visual comparison of the training
data sets and replicated data sets simulated from the fitted generative model, and it con-
firms that the distributional structures are successfully captured. It should be noted that
among the considered methods, ours is the only one that is not based on neural networks but
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Figure 4: Comparison between the single tree method and the boosting method. The first
row presents the predictive performance of the single tree method and the boost-
ing under di↵erent c0 (global learning rate) and fixed � = 0.0 (scale-specific
shrinkage parameter). The second row compares the predictive scores under dif-
ferent � values when c0 = 0.1. The predictive scores are averages taken under 30
data sets generated with di↵erent random seeds.

is a combination of the tree-based learners, and therefore requires only a tiny fraction of the
computational cost to train. Table 3 presents the computation time on the four large data
sets measured in the same single-core environment and shows that our method is substan-
tially faster to train in large n settings. Additional tables are provided in Appendix E which
show that the predictive performance of our boosting algorithm is stable under di↵erent
random seeds (Table 4). In Appendix E, we also present data generated from the fitted tree
ensemble following Section 2.3.2 and compare those to the original training data (Figures 8
through 10). The simulated data closely imitates the original training data. Moreover, we
report the computation cost for Monte Carlo sampling from the fitted generative model,
which is very small compared to the cost of training (Table 5).
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Figure 5: The comparison between the boosting algorithm and the DDD (First row: predic-
tive scores, second row: computation time) based on 30 di↵erent data sets. The
points correspond to the means, and the intervals are made by adding/subtracting
the standard deviations.

3.3 Evaluating Variable Importance

Next we demonstrate the use of the variable importance measure introduced in Section 2.7.3.
We first carry out an experiment using artificial 10-dimensional distributions of (X1, . . . , X10)
with sample size n = 10, 000 under the following scenarios:

Scenario(1): Xj ⇠ Beta(21�j
, 21�j) for j = 1, . . . , 10.
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POWER GAS HEPMASS MINIBOONE
MADE 0.40 (0.01) 8.47 (0.02) �15.15 (0.02) �12.27 (0.47)

RealNVP 0.17 (0.01) 8.33 (0.14) -18.71 (0.02) -13.55 (0.49)
MAF 0.30 (0.01) 10.08 (0.02) �17.39 (0.02) �11.68 (0.44)
DDD -1.91 (0.03) -4.40 (0.31) -28.47 (0.03) -54.78 (1.03)

BoostPM (0.0) 1.20 (0.01) 9.56 (0.02) -20.16 (0.02) -20.38 (0.46)
BoostPM (0.5) 1.12 (0.01) 9.42 (0.02) -19.43 (0.02) -17.28 (0.47)

AReM CASP BANK
MADE 6.00 (0.11) 21.82(0.23) 14.97 (0.53)

RealNVP 9.52 (0.18) 26.81 (0.15) 26.33 (0.22)
MAF 9.49 (0.17) 27.61 (0.13) 20.09 (0.20)
DDD 5.73 (0.16) 7.77 (0.19) 9.33 (0.19)

BoostPM(0.0) 12.28 (0.16) 21.84 (0.15) 36.47 (0.17)
BoostPM(0.5) 12.10 (0.15) 22.23 (0.15) 36.34 (0.17)

Table 2: Comparison of the predictive scores (MADE, RealNVP, MAF, DDD, and the pro-
posed algorithm BoostPM with � = 0.0 and 0.5). The means of the estimated
log-densities are provided along with the standard errors in parentheses. The two
top-performing methods for each data set are indicated in bold font.

POWER GAS HEPMASS MINIBOONE
n 1,659,917 852,174 315,123 29,556
d 6 8 21 43

MADE 3.4 19.3 8.9 0.90
RealNVP 43.7 24.1 60.8 1.4
MAF 15.4 77.5 34.0 0.80

BoostPM(0.0) 0.61 0.75 0.92 0.40
BoostPM(0.5) 2.3 2.1 2.3 1.0

Table 3: The training time for a typical run on four benchmark data sets, measured in
hours in a single-core AMD EPYC 7002 (2.50GHz) environment. We show the
time given under the optimal settings for MADE and RealNVP, and the time
under 5 autoregressive layers for MAF. Also provided are the sample size and
dimensionality of the data sets.

Scenario(2): Five pairs of random variables (Ym,1, Ym,2) (m = 1, . . . , 5), each of which
follows a 2-dimensional Gaussian distribution

N
✓

0
0

�
,


1 ⇢

⇢ 1

�◆
,

with ⇢ = 0.1, 0.3, 0.5, 0.7 and 0.9 respectively, and

(X2(m�1)+1, X2m) = (�(Ym,1),�(Ym,2)),

where �(·) is a CDF of the standard Gaussian distribution.
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Figure 6: The computed variable importance for the three simulation scenarios.

Scenario(3): Each of four groups of variables (Y1), (Y2, Y3), (Y4, Y5, Y6), and (Y7, Y8, Y9, Y10)
follows the uni-variate/multi-variate Gaussian distribution in which the marginal dis-
tribution is the standard Gaussian and the pairwise correlation is 0.9, and Xj = �(Yj)
for j = 1, . . . , 10.

The computed variable importance is presented in Figure 6. It shows that a variable tends
to have higher importance when the marginal distribution is substantially di↵erent from
the uniform and/or it is strongly correlated with other variables.

We next compute the variable importance on the MNIST handwritten digits data (Le-
Cun et al., 1998). The gray scale images contained in this data consist of 28 ⇥ 28 = 784
pixels, and each pixel takes integer values ranging from 0 (black) to 255 (white). We obtain
the data with the read mnist function in the R package dslabs (Irizarry and Gill, 2021)
and as in Papamakarios et al. (2017), scale them into [0, 1]. The tuning parameters c0 and
� are both set to 0.1.

Recall that our notion of variable importance characterizes how each variable contributes
to the deviation from the uniform measure in the underlying sampling distribution. For the
particular application of zip-code digit recognition, a pixel is more informative about the
underlying digit if it has large variation over the range of intensities. As such, the practical
meaning of “importance” in this particular application is the opposite to the statistical
importance—it is exactly those pixels with intensities spread out over large ranges (and
thus more uniform) that are informative about the underlying digit. As such, we want to
emphasize the di↵erence between the “practical importance” and that of the “distributional
importance” in terms of KL as we defined before.

The computed “distributional importance” obtained for the ten di↵erent digits is visu-
alized on the left of Figure 7, and a sample of handwriting of 0 is provided on the right.
We can see that the pixels with relatively low “distributional importance” and hence high
practical importance lie along the outlines of the digits. Hence in this case the “distribu-
tional importance” on the left side characterizes “the average shapes” of the handwritten
numbers.
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Figure 7: Left: The importance of pixels (variables) computed for the 10 di↵erent dig-
its. Yellow/purple colors correspond to low/high importance, which indicates
large/small di↵erence in the handwriting styles found at the pixels. Right: A
sample of handwriting of 0.

4. Concluding Remarks

We have proposed an unsupervised boosting method for learning multivariate probability
measures by introducing new notions of addition and residuals based on tree-CDF trans-
forms, and demonstrated how one can carry out density estimation and simulate from the
fitted measure based on the output of the algorithm. Given its similarity to classical boost-
ing for regression and classification, we expect other techniques for the boosting in such
contexts, for example subsampling (Friedman, 2002), could further improve the perfor-
mance of our boosting method. Due to the limited space, we could not exploit all possible
techniques in supervised boosting for improving the performance, but we expect many of
them may be e↵ective.

Software

An R package for our method is available at https://github.com/MaStatLab/boostPM

and the code for the numerical examples is at https://github.com/MaStatLab/boostPM_
experiments.
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Appendices

Appendix A. Proofs

In the following proofs, for a tree CDF G : (0, 1]d 7! (0, 1]d and B 2 B(⌦), the image is
denoted by

G(B) = {G(x) : x 2 B},

and the same notation rule is applied for the inverse G�1. The Lebesgue measure is denoted
by µ.

A.1 Proof of Proposition 1

By the assumption on the full support, the CDFs are invertible.
Suppose X ⇠ G1 � · · ·�Gk. For x 2 (0, 1], we have

P (Gi � · · · �G1(X)  x) = P (X  G�1
1 � · · · �G�1

i (x))

= Gk � · · · �G1(G
�1
1 � · · · �G�1

i (x))

= Gk � · · · �Gi+1(x),

soGi�· · ·�G1(X) ⇠ Gi+1�· · ·�Gk. The converse can be shown by transforming P (X < x),
where Gi � · · · �G1(X), in the same way.

A.2 Proof of Proposition 2

The tree CDFs are already shown to be bijective in Section 2.2.1, so we only show the
measurability here.

Let E be a set of hyper-rectangles that are written in the form of

(a1, b1]⇥ · · ·⇥ (ad, bd]

including the null set ;. Since B((0, 1]d) is the Borel �-field, E 2 B((0, 1]d) holds for every
E 2 E . To show the measurability of the tree CDF G, which is defined by the measure
G 2 PT , it su�ces to show that G�1(E) 2 B((0, 1]d) for every E 2 E since E generates
B((0, 1]d).

By the definition of G, the image G(A) (A 2 L(T )) is also a hyper-rectangle included in
E , and their collection {G(A) : A 2 L(T )} forms a partition of (0, 1]d. Hence E is written
as a union of disjoint sets:

E =
[

A2L(T )

(E \G(A)),

where each E \G(A) is a hyper-rectangle that belongs to E and a subset of G(A). Hence
G�1(E \G(A)) also belongs to E ⇢ B((0, 1]d). Therefore, their finite union

G�1(E) =
[

A2L(T )

G�1(E \G(A))
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is also an element of B((0, 1]d).

A.3 Proof of Theorem 2

To prove the first assertion, define G[r] for r = 1, . . . , R� 1 as

G[r](x) =
X

A2Ar

GA(x)1A(x).

Then the first assertion is equivalent to that if X ⇠ G, then

G[1] � · · · �G[R�1](X) ⇠ Unif((0, 1]d), (13)

which we prove here. In the following proof, Ar denotes a collection of nodes that belongs
to the rth layer.

In the proof, we let X [R] = X and for r = 1, . . . , R� 1

X
[r] = G[r] � · · · �G[R�1](X).

Let G[r] denote the distribution of X [r]. With these notations, we prove (13) by induction:
We show that for A that is a non-terminal node in the rth level, if we have

G
[r+1](Al) = G(Al), G

[r+1](Ar) = G(Ar),

G
[r+1](· | Al) = µ(· | Al), G

[r+1](· | Ar) = µ(· | Ar), (14)

then

G
[r](A) = G(A), G

[r](· | A) = µ(· | A). (15)

The conditions in Equations (14) holds if r = R� 1 because G[R] = G and G 2 PT , and the
statement in Equation (15) being true for r = 1 implies that G[1] = µ, which is equivalent
to Equation (13).

Assume Equations (14) holds for some r. By the definition, G[r] is bijective, and

G[r]�1
(A) = A for every A 2 Ar. Then for X [r] ⇠ G

[r] and A 2 Ar, we have,

G
[r](A) = P (X [r] 2 A)

= P (G[r]�1
(X [r]) 2 G[r]�1

(A)) = P (X [r+1] 2 A)

= G
[r+1](Al) +G

[r+1](Ar) = G(A).

Hence the first equation in Equation (15) holds. To prove the second equation, let X [r] =

(X [r]
1 , . . . , X

[r]
d ) and

A = (a1, b1]⇥ · · ·⇥ (ad, bd].

Then, we show that for zj 2 (aj , bj ],

P (X [r]
1 2 (a1, z1], . . . , X

[r]
d 2 (ad, zd] | X [r] 2 A) =

dY

j=1

zj � aj

bj � aj
(16)
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holds. The probability in the left hand side can be written as follows:

P (X [r]
1 2 (a1, z1], . . . , X

[r]
d 2 (ad, zd] | X [r] 2 A)

= P (X [r]
1 2 (a1, z1], . . . , X

[r]
d 2 (ad, zd] | X [r+1] 2 A)

=
P (X [r+1] 2 Al)

P (X [r+1] 2 A)
P (X [r]

1 2 (a1, z1], . . . , X
[r]
d 2 (ad, zd] | X [r+1] 2 Al)

+
P (X [r+1] 2 Ar)

P (X [r+1] 2 A)
P (X [r]

1 2 (a1, z1], . . . , X
[r]
d 2 (ad, zd] | X [r+1] 2 Ar)

= G(Al | A)P (X [r]
1 2 (a1, z1], . . . , X

[r]
d 2 (ad, zd] | X [r+1] 2 Al)

+G(Ar | A)P (X [r]
1 2 (a1, z1], . . . , X

[r]
d 2 (ad, zd] | X [r+1] 2 Ar). (17)

Let A be divided in the j
⇤th dimension. By the definition of GA, for j 6= j

⇤, X
[r]
j 2

(aj , zj ] () X
[r+1]
j 2 (aj , zj ]. For j⇤, because GA,j⇤(·) is strictly increasing,

X
[r]
j⇤ 2 (aj⇤ , zj⇤ ] () G�1

A,j⇤

⇣
X

[r]
j⇤

⌘
2
⇣
G�1

A,j⇤(aj⇤),G
�1
A,j⇤ (zj⇤)

i

() X
[r+1]
j⇤ 2 (aj⇤ , yj⇤ ] ,

where yj⇤ = G�1
A,j⇤(zj⇤). The expression of yj⇤ changes depending on whether yj⇤  cj⇤ or

not, where cj⇤ is a partition point at which A is divided. We first assume that yj⇤  cj⇤ . In

this case, the second term in Equation (17) is 0 because X [r+1]
j⇤ 2 (aj⇤ , yj⇤ ] does not happen

if X [r+1] 2 Ar. Also, by the definition of GA,j⇤ ,

zj⇤ � aj⇤

yj⇤ � aj⇤
=

G(Al | A))

µ(Al | A)
= G(Al | A))

bj⇤ � aj⇤

cj⇤ � aj⇤

() yj⇤ � aj⇤

cj⇤ � aj⇤
=

1

G(Al | A))

zj⇤ � aj⇤

bj⇤ � aj⇤
.

Therefore, it follows that

P (X [r]
1 2 (a1, z1], . . . , X

[r]
d 2 (ad, zd] | X [r] 2 A)

= G(Ar | A)

8
<

:
Y

j 6=j⇤

zj � aj

bj � aj

9
=

;
yj⇤ � aj⇤

cj⇤ � aj⇤

= G(Ar | A)

8
<

:
Y

j 6=j⇤

zj � aj

bj � aj

9
=

;
1

G(Al | A))

zj⇤ � aj⇤

bj⇤ � aj⇤

=
dY

j=1

zj � aj

bj � aj
.

We can prove (16) for the case of yj⇤ > cj⇤ in the same way.
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To prove the second result, let U ⇠ Unif((0, 1]d). The multi-scale CDF G is bijective
(Proposition 2), so we obtain for B 2 B(⌦)

P (G�1(U) 2 B) = P (U 2 G(B))

= µ(G(B))

= G(B),

where the last line follows Theorem 1. (Note that the proof of Theorem 1 only uses the
first result of Theorem 2). Therefore G�1(U) ⇠ G.

A.4 Proof of Theorem 1

Let X ⇠ G. By the first result of Theorem 2, we obtain

G(B) = P (X 2 B)

= P (G(X) 2 {G(x) : x 2 B})
= µ({G(x) : x 2 B}).

A.5 Proof of Lemma 1

We only need to check the countable additivity. By Proposition 2, Gk � · · ·�G1 is bijective.
Hence, for disjoint sets Al 2 B(⌦) (l 2 N), it follows that

Gk � · · · �G1

 
[

l

Al

!
=
[

l

Gk � · · · �G1 (Al) .

Because {Gk � · · · �G1 (Al)}l=1,2,... are disjoint, this result implies that

Fk

 
[

l

Al

!
= µ

 
[

l

Gk � · · · �G1 (Al)

!

=
X

l

µ(Gk � · · · �G1 (Al))

=
X

l

F (Al) .

A.6 Proof of Proposition 3

First we suppose X ⇠ G1 � · · ·�Gk. By Proposition 2, G1, . . . ,Gk are all bijective, so for
i = 1, . . . , k, the composition

Fi = Gi � · · · �G1

is also bijective. For B 2 B(⌦), we obtain

P (Fi(X) 2 B) = P (X 2 F�1
i (B))

= Fk((F
�1
i (B)))

= µ(Fk(F
�1
i (B)))

= µ(Gk � · · · �Gi+1(B)).

Hence Fi(X) ⇠ Gi+1 � · · ·�Gk. Showing the converse is now straightforward.
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A.7 Proof of Proposition 4

We first show the following lemma, which implies that the conditional distributions Fk�1

and Fk (k = 2, . . . ,K) are the same on subsets in a partition defined by Tk and Fk�1 =
Gk�1 � · · · �G1.

Lemma 4. Let L(Tk) be a set of the terminal nodes in Tk. Also, we let A0 2 L(Tk) and
A = F�1

k�1(A
0). Then for any B ⇢ A, Fk�1(B | A) = Fk(B | A).

(Proof) For B ⇢ A, by Theorem 1, we have

Fk(B) = µ(Fk(A))

= µ(Gk(Fk�1(B)))

= Gk(Fk�1(B)). (18)

Since B ⇢ A, Fk�1(B) ⇢ Fk�1(A) = A
0. Hence Fk(B) is further rewritten as follows

Fk(B) = Gk(A
0 \ Fk�1(B))

= Gk(A
0)Gk(Fk�1(B) | A0)

= Gk(A
0)µ(Fk�1(B) | A0)

= Gk(A
0)
µ(Fk�1(B))

µ(A0)

= Gk(A
0)
Fk�1(B)

µ(A0)
.

By the definition of A, Fk�1(A) = µ(Fk�1(A)) = µ(A0), and by replacing B with A in (18),
we have

Fk(A) = Gk(Fk�1(A)) = Gk(A
0).

Therefore, we obtain

Fk(B | A) = Fk(B)

Fk(A)

= Gk(A
0)
Fk�1(B)

µ(A0)

1

Fk(A)

=
Fk�1(B)

Fk�1(A)

= Fk�1(B | A).

(Proof of Proposition 4) Let Lk = {F�1
k�1(A

0) : A0 2 L(Tk)}. By Lemma 4, the conditional
distributions Fk�1(· | A) and Fk(· | A) are the same for A 2 Lk. Hence the density functions
of Fk�1 and Fk denoted by fk�1 and fk are expressed as

fk�1(x) =
X

A2Lk

Fk�1(A)fk�1(x | A)1A(x),

fk(x) =
X

A2Lk

Fk(A)fk�1(x | A)1A(x),
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where 1 is the indicator function. Fix x 2 (0, 1]d and let Ak 2 Lk such that x 2 Ak and
A

0
k = Fk�1(Ak). By Theorem 1, we have

Fk�1(Ak) = µ(Fk�1(Ak)) = µ(A0
k),

Fk(Ak) = µ(Fk(Ak))

= µ(Gk � Fk�1(Ak))

= Gk(Fk�1(Ak))

= Gk(A
0
k).

Hence, we have

fk(x)

fk�1(x)
=

Fk(Ak)

Fk�1(Ak)
=

Gk(A0
k)

µ(A0
k)

. (19)

Since x 2 Ak,

Fk�1(x) = Gk�1 � · · · �G1(x) 2 Fk�1(Ak) = A
0
k.

Thus the density ratio in (19) is rewritten as

fk(x)

fk�1(x)
= Gk(A

0
k)µ(Gk�1 � · · · �G1(x) | A0

k)

= Gk(A
0
k)gk(Gk�1 � · · · �G1(x) | A0

k)

= gk(Gk�1 � · · · �G1(x)),

where the second equation follows that A0
k 2 L(Tk). Because the discussion above holds for

k = 2, . . . ,K, we obtain the following expression

fK(x) = f1(x)
KY

k=2

fk(x)

fk�1(x)

= f1(x)
KY

k=2

gk(Gk�1 � · · · �G1(x)).

A.8 Proof of Proposition 6

The associativity clearly holds, and showing the existence of the identity element is also
straightforward because the identity transformation, which is a tree-CDF of the uniform
distribution, is included in G.
Proving the existence of an inverse element for every element in G is done by showing that an
inverse function of a local-move function, which is an essential component of a tree-CDF, is
also a local-move function. To this end we use the local-move function GA : A 7! A defined
in Section 2.2.1 and the same notations.
Let c̃j⇤ = aj⇤ + G(Al | A)(bj⇤ � aj⇤) and Ãl and Ãr be a pair of nodes that we obtain by
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dividing A at c̃j⇤ in the j
⇤th dimension. Then we define a function G̃A : A 7! A such that

for any x 2 A, G̃A(x) = (G̃A,1(x), . . . , G̃A,d(x)) where G̃A,j(x) = x for all j 6= j
⇤, and

G̃A,j⇤(x)� aj⇤

xj⇤ � aj⇤
=

µ(Al|A)
µ(Ãl|A)

for x 2 Ãl and
bj⇤ � G̃A,j⇤(x)

bj⇤ � xj⇤
=

µ(Ar|A)

µ(Ãr|A)
for x 2 Ãr.

From this definition G̃A works as a local-move function for the conditional distribution
that assigns the probability µ(Al|A) to Ãl. It is straightforward to see that this trans-
formation G̃A is identical to G�1

A (see the expression of the inverse function provided in
Section 2.3.2).

A.9 Proof of Lemma 2

By the definition of the KL divergence, we have

KL(F ⇤||F ) =

Z
log f⇤

dF
⇤ �

Z
log fdF ⇤

.

By Proposition 4, the second term
R
log fF ⇤ is decomposed as

Z
log fdF ⇤ =

KX

k=1

Z
log gk(Gk�1 � · · · �G1(x))dF

⇤(x).

By the change-of-variable formula (e.g., Theorem 3.6.1 in Bogachev (2007)), the right hand
side can be written in a form of integration with respect to F̃k,

Z
log gk(Gk�1 � · · · �G1(x))dF

⇤(x) =

Z
log gk(x)dF̃k(x).

Since the measure F
⇤ is absolutely continuous with respect to the Lebesgue measure µ, by

the definition of F̃k, that is,

F̃k(B) = F
⇤(G�1

1 � · · · �G�1
k�1(B)) for all B 2 B((0, 1]d),

F̃k is also absolutely continuous with respect to µ. Hence F̃k admits the density function
denoted by f̃k(x), and the right hand side is further rewritten as follows

Z
log gk(x)dF̃k(x) =

Z
log

f̃k(x)

µ(x)
dF̃k(x)�

Z
log

f̃k(x)

gk(x)
dF̃k(x)

= KL(F̃k||µ)�KL(F̃k||Gk).

A.10 Proof of Lemma 3

The result immediately follows Proposition 4, which shows that the log-density of the en-
semble measure can be decomposed into a sum of log-densities of the tree-based measures
the ensemble consists of.
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A.11 Proof of Proposition 5

Since Tk is a finite tree, the log of gk, which is piece-wise constant on TK , is written as

log gk(x) =
X

A2L(Tk)

log
Gk(A)

µ(A)
1A(x) for x 2 (0, 1]d.

Hence the improvement D(n)
k (Gk) is rewritten as follows:

D
(n)
k (Gk) =

X

A2L(Tk)

F̃
(n)
k (A) log

Gk(A)

µ(A)

=
X

A2L(Tk)

F̃
(n)
k (A) log

F̃
(n)
k (A)

µ(A)
�

X

A2L(Tk)

F̃
(n)
k (A) log

F̃
(n)
k (A)

Gk(A)
.

Because the second term in the bottom line takes a form of KL divergence defined for the

two discrete distributions, it is minimized if Gk(A) = F̃
(n)
k (A) for all A 2 L(Tk). Under this

Gk, since the second term is 0, the improvement is maximized if Tk satisfies the condition
provided in Proposition 5.

A.12 Proof of Proposition 7

In this proof, we suppose the learning rate c(A) is independent to a node A for simplicity.
For every leaf node A 2 L(Tk), there is a sequence of nodes {BA,r}Rr=1 such that BA,r

belongs to the rth level of Tk, and

(0, 1]d = BA,1 � BA,2 � · · · � BA,r = A.

With such sequences, based on the discussion in Appendix A.11 , the improvementD(n)
k (Gk)

is decomposed as

D
(n)
k (Gk) =

X

A2L(Tk)

F̃
(n)
k (A) log

Gk(A)

µ(A)

=
X

A2L(Tk)

F̃
(n)
k (A)


log

Gk(BA,2|BA,1)

µ(BA,2|BA,1)
+ · · ·+ log

Gk(BA,R|BA,R�1)

µ(BA,R|BA,R�1)

�

=
X

A2N (Tk)


F̃

(n)
k (Al) log

Gk(Al | A)

µ(Al | A)
+ F̃

(n)
k (Ar) log

Gk(Ar | A)

µ(Ar | A)

�
.

For the bottom line the summand is 0 if F̃ (n)
k (A) = 0. Otherwise, the conditional prob-

abilities F̃
(n)
k (Al | A) and F̃

(n)
k (Ar | A) are defined. In such a case, by the definition of
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Gk(Al | A),

log
Gk(Al | A)

µ(Al | A)
= log

"
(1� c)µ(Al | A) + cF̃

(n)
k (Al | A)

µ(Al | A)

#

� (1� c) log 1 + c log
F̃

(n)
k (Al | A)

µ(Al | A)

= c log
F̃

(n)
k (Al | A)

µ(Al | A)
,

where the second line follows the Jensen’s inequality. The same result holds for Ar. Hence,

F̃
(n)
k (Al) log

Gk(Al | A)

µ(Al | A)
+ F̃

(n)
k (Ar) log

Gk(Ar | A)

µ(Ar | A)

� cF̃
(n)
k (A)

"
F̃

(n)
k (Al | A) log

F̃
(n)
k (Al | A)

µ(Al | A)
+ F̃

(n)
k (Ar | A) log

F̃
(n)
k (Ar | A)

µ(Ar | A)

#
,

where the sum inside of the brackets is the KL divergence for the two Bernoulli distributions

and thus non-negative. Therefore, the improvement D(n)
k (Gk) is non-negative. Additionally,

the last inequality is strict if and only if F̃ (n)
k (Al | A) = µ(Ar | A) and so D

(n)
k (Gk) is

positive.

Appendix B. Expressive Power of the Tree Ensemble

In this section, we provide theoretical results on the expressive power of the tree ensemble
with the final goal of proving Theorem 3.

B.1 Preparations

We introduce the following notations:

1. Let T L be a collection of dyadic trees with axis-aligned boundaries with at most L

maximum resolution. When L = d, T d is a set of trees that can be formed under
Assumption 1. We note that as implied in the following proofs, T L can a set of trees
that have at least one node reach the Lth while the other leaf nodes belong to the
shallower levels.

2. For a tree T 2 T L, a set PT denotes a collection of probability measures conditionally
uniform on T such that

G(· | A) = µ(· | A) and G(A) > 0 (20)

for every terminal node A 2 T . A collection of such tree measures are denoted by GL
0 ,

that is,
GL
0 = {G : G 2 PT for some T 2 T L}.

For a measure G 2 GL
0 defined on a tree T 2 T L, we can define a tree-CDF as in

Section 2, which is denoted by G. We define a set GL
0 as a collection of such tree

CDFs, namely,
GL

0 = {G : G is a tree CDF of G 2 GL
0 }.
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3. Let GL denote a set of finite composition of tree CDFs, that is,

GL = {GK � · · · �G1 : K 2 N and for k = 1, . . . ,K, Gk 2 GL
0 },

and define GL as a collection of probability measures defined by such finite composi-
tions, that is,

GL = {µ(G(·)) : G 2 GL}.

Hence GL includes all measures that can be expressed in the form of ensemble G1 �
· · ·�GK .

We also need to review the definition of push-forward measures because this notation is
closely related to the operation of residualization. Let ' be a mapping ⌦ 7! ⌦ and H be a
probability measure. Then the push-forward of H is defined in the following form:

'#H(B) = H('�1(B)) for B 2 B(⌦).

The following lemma establishes a connection between the ensemble measure and the push-
forward measures.

Lemma 5. For a probability measure F , F 2 GL holds if and only if there exists a mapping
G 2 GL such that G#F = µ.

(Proof) Suppose F 2 GL. Then there exists a mapping G 2 GL such that

F (B) = µ(G(B)) for B 2 B(⌦).

From Proposition 2, G is bijective. Hence for B 2 B(⌦), we have

µ(B) = µ(G �G�1(B)) = F (G�1(B)),

so G#F = µ. The necessity can be shown in the same way.

In the rest of the section, we first discuss the expressive power of the tree ensemble for
the uni-variate cases and next generalize the result for the multi-variate cases. After that,
this result is used to prove Theorem 3.

B.2 Uni-variate Cases

The following proposition shows that any distribution with piece-wise constant and positive
densities can be represented in the form of tree ensemble.

Proposition 8. Let F be a probability measure that admits the piece-wise constant density
f with the following form

f(x) =
IX

i=1

�i1(ci�1,ci],

where �i > 0 for i = 1, . . . , I and

0 = c0 < c1 < · · · < cI = 1.

Then, if L � 2, F 2 GL holds.
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(Proof) We first show the existence of a tree CDF G1 2 G2
0 such that the push-forward

measure G1#F has a density f1 with the following form

f1(x) =
I�1X

i=1

�̃i1(c̃i�1,c̃i], (21)

where �̃i > 0 for i = 1, . . . , I � 1 and 0 = c̃0 < c̃1 < · · · < c̃I�1 = 1.
Let ↵ 2 (0, 1) be a constant that satisfies

1� ↵

↵
=

�2

�1

1� c1

c1
.

Then define a measure G1 2 G2
0 such that

G1((0, c1]) = ↵, G1((c1, 1]) = 1� ↵

and G1 is conditionally uniform on (0, c1] and (c1, 1]. Let G1 be G1’s tree CDF and F1 =
G1#F be a probability measure with the density f1. For x 2 (0,↵], we have

F1((0, x]) = F (G�1
1 ((0, x])) = F ((0,G�1

1 (x)]) =

Z G�1
1 (x)

0
fdµ.

Hence, by the chain rule, the density at this x is written as

f1(x) =
c1

↵
f
�
G�1

1 (x)
�
=

c1

↵
�1.

Similarly, the density at x 2 (↵, 1] is written as

f1(x) =
1� c1

1� ↵
f
�
G�1

1 (x)
�
.

Let c̃i = G1(ci+1) for i = 1, . . . , I � 1. By this definition, ↵ < c̃1, and the density of f1 at
x 2 (↵, c̃1] satisfies

f1(x) =
1� c1

1� ↵
�2 =

c1

↵
�1,

where the second equation follows the definition of ↵. Hence f1 is constant on (0, c̃1].
Moreover, the density on (c̃i�1, c̃i] for i = 2, . . . , I � 1 is (1 � c1)/(1 � ↵)�i�1 so constant.
Therefore the density f1 is written in the form of Equation 21.

By using the same logic for the rest of the I � 2 discontinuous points, we can define
tree CDFs G2, · · · ,GI�1 that connect the densities at these points one by one. Hence the
measure (GI�1 � · · ·�G1)#F has a constant density and thus is the uniform measure µ.

B.3 Multi-variate Cases

In this section, we prove the following proposition that is a generalization of Proposition 8.
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Proposition 9. For j = 1, . . . , d, let {cj,ij}
Ij
ij=1 be a sequence such that

0 = cj,0 < cj,1 < · · · < cj,Ij = 1,

and L = {Ai1,...,id}i1,...,id be a partition of the sample space (0, 1]d that consists of rectangles
written as

Ai1,...,id = (c1,i1�1, c1,i1 ]⇥ · · ·⇥ (cd,id�1, cd,id ].

If a probability measure F is piecewise uniform on L and written as

F (B) =
X

i1,...,ij

ai1,...,id
µ(B \Ai1,...,id)

µ(Ai1,...,id)
, for B 2 B((0, 1]d),

where ai1,...,id > 0, then for L � d+1, there is a mapping G 2 GL such that G#F = µ and
thus F 2 GL. In addition, we can choose G so that for every pair of indices (i1, . . . , id), the
image G(Ai1,...,id) is a rectangle written as

(G(c1,i1�1),G(c1,i1)]⇥ · · ·⇥ (G(cd,id�1),G(cd,id)].

(Proof) We use induction: We assume that the statement of Proposition 9 is valid for the
1,2,. . . ,(d-1)-dimensional cases. Because in this proof we handle measures and transforma-
tion defined in di↵erent dimensional spaces, the sets GL and GL defined for the j-dimensional
space are denoted by GL,d and GL,d, respectively.

Inside of the induction, we also assume that for some l 2 {1, . . . , Id � 1}, there are
mappings G1, . . . ,Gl 2 GL,d such that a probability measure Fl := (Gl � · · · �G1)#F is a
piecewise uniform probability measure written as, for B 2 B((0, 1]d),

Fl(B) =
lX

i=1

Ci
µ(B \ (0, 1]d�1 ⇥ (cd,i�1, cd,i])

µ((0, 1]d�1 ⇥ (cd,i�1, cd,i])
+

IdX

id=l+1

X

i1,...,id�1

a
(l)
i1,...,id

µ(B \A
(l)
i1,...,id

)

µ(A(l)
i1,...,id

)
,

where Ci > 0 and a
(l)
i1,...,id

> 0 for all indices. Also, for the second term, A
(l)
i1,...,id

is a
rectangular written as

A
(l)
i1,...,id

=
⇣
c
(l)
1,i1�1, c

(l)
1,i1

i
⇥ · · ·⇥

⇣
c
(l)
d�1,id�1�1, c

(l)
d�1,id�1

i

⇥ (cd,Id�1, cd,Id ],

where for j = 1, . . . , d� 1, {c(l)j,i}
Ij
i=1 is a sequence such that

0 = c
(l)
j,1 < c

(l)
j,2 < · · · < c

(l)
j,Ij

= 1.

(We note that this sequence’s length can be di↵erent from “Ij” provided in Proposition 9
but to avoid an excessive number of indices, we use Ij here because its size does not a↵ect
the logic provided in this proof.) Under this assumption, we show that there is a measure
(“Fl+1”) that has the same form for l + 1.
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Define a d� 1-dimensional probability measure F̂l+1

F̂l+1 =
X

i1,...,id

a
(l)
i1,...,id�1,l+1

Cl+1

µd�1(B \ Â
(l)
i1,...,id�1

)

µd�1(Â
(l)
i1,...,id�1

)
for B 2 B((0, 1]d�1),

where Cl+1 is the normalizing constant, µd�1 is the Lebesgue measure defined for the d�1-

dimensional sample space, and Â
(l)
i1,...,id�1

is a set written as

Â
(l)
i1,...,id�1

=
⇣
c
(l)
1,i1�1, c

(l)
1,i1

i
⇥ · · ·⇥

⇣
c
(l)
d�1,id�1�1, c

(l)
d�1,id�1

i
. (22)

Because F̂ is a piecewise uniform measure defined on the partition that consists of hyper-
rectangles, by the assumption we set for the induction, there is a mapping Ĝl+1 2 GL�1,d�1

such that Ĝl+1#F̂l+1 = µd�1. With this mapping, we define a mapping Gl+1 : (0, 1]d 7!
(0, 1]d such that for x = (x1, . . . , xd) 2 (0, 1]d,

Gl+1(x) =
⇣
Ĝl+1(x1, . . . , xd�1), xd

⌘

if xd 2 (cd,l, 1] and otherwise Gl+1(x) = x. The mapping Gl+1 moves points only in
(0, 1]d�1 ⇥ (ci,l, 1], which is a node one can obtain by dividing the sample space only once,

according to Ĝl+1, which is a mapping that is a composition of tree CDFs based on trees
with L � 1 leaf nodes. Hence Gl+1 is a composition of tree CDFs defined on trees with
(L�1)+1 = L leaf nodes, so we have Gl+1 2 GL,d. With this mapping, we define a measure
Fl+1 = Gl+1#Fl.

Fix a pair of indices (i1, . . . , id) and let Bd�1 2 B((0, 1]d�1) and B1 2 B((0, 1]) be
measurable sets such that

Bd�1 ⇥B1 2 Ĝl+1(Â
(l)
i1,...,id�1

)⇥ (cd,id�1, cd,id ] .

If id  l, by the definition of Fl+1 and Gl+1,

Fl+1(Bd�1 ⇥B1) = Fl(G
�1
l+1(Bd�1 ⇥B1)) = Fl(Bd�1 ⇥B1).

On the other hand, if id � l + 1, since Fl is conditionally uniform on A
(l)
i1,...,id

,

Fl+1(Bd�1 ⇥B1) = Fl(G
�1
l+1(Bd�1 ⇥B1)) = Fl(Ĝ

�1
l+1(Bd�1)⇥B1)

= a
(l)
i1,...,id

µ(Ĝ�1
l+1(Bd�1)⇥B1)

µ(A(l)
i1,...,id

)

= a
(l)
i1,...,id

µd�1(Ĝ
�1
l+1(Bd�1))µ1(B1)

µd�1(Â
(l)
i1,...,id�1

)µ1((cd,id�1, cd,id ])
,

where µ1 is the Lebesgue measure defined for the 1-dimensional sample space. For such id,
by the definition of F̂l+1 and Ĝl+1,

µd�1(Bd�1) = F̂l+1(Ĝ
�1
l+1(Bd�1)) =

a
(l)
i1,...,id�1,l+1

Cl+1

µd�1(Ĝ
�1
l+1(Bd�1))

µd�1(Â
(l)
i1,...,id�1

)
,

40



Unsupervised Tree Boosting

from which we obtain

Fl+1(Bd�1 ⇥B1) = Cl+1

a
(l)
i1,...,id�1,id

a
(l)
i1,...,id�1,l+1

µd�1(Bd�1)µ1(B1)

µ1((cd,id�1, cd,id ])

=

8
<

:

Cl+1
µ(Bd�1⇥B1)

µ((0,1]d�1⇥(cd,id�1,cd,id ])
(id = l + 1),

a
(l+1)
i1,...,id

µ(Bd�1⇥B1)

µ(Ã
(l+1)
i1,...,id

)
(id > l + 1),

(23)

where, for id > l + 1,

Ã
(l+1)
i1,...,id

= Ĝl+1(Â
(l)
i1,...,id

)⇥ (cd,id�1, cd,id ].

and

a
(l+1)
i1,...,id

= Cl+1

a
(l)
i1,...,id�1,id

a
(l)
i1,...,id�1,l+1

µd�1

⇣
Ĝl+1(Â

(l)
i1,...,id

)
⌘
.

Because B((0, 1]d�1)⇥ B((0, 1]) generates B((0, 1]d�1), from the discussion provided above,
Fl+1 is piecewise-uniform on a partition that consists of

(0, 1]d�1 ⇥ (cd,id�1, cd,id ] (id  l + 1)

and Ã
(l+1)
i1,...,id

(id > l+1), and this partition is denoted by P(l+1). Note that by the definition

of Ĝl+1, and Proposition 9, which we assume holds for (d�1)-dimensional cases, the image

of the hyper-rectangle of Â(l)
i1,...,id�1

under Ĝl+1 and Ã
(l+1)
i1,...,id

are a hyper-rectangle in the

(d� 1)-dimensional space and the d-dimensional space, respectively.
The following lemma states that the partition structure P(l+1) has a finer partition that

has the “checker-board” form, as shown in the next lemma.

Lemma 6. Let {Di}Ii=1 is a partition of the sample space (0, 1]d such that every Di is a
hyper-rectangle. Then, there are sequences {ej,ij}ij (j = 1, 2, . . . , d) such that

0 = ej,0 < ej,1 < · · · < ej,Ij = 1

and a partition {Ei1,...,id}i1,...,id defined as

Ei1,...,id = (e1,i1�1, e1,i1 ]⇥ · · ·⇥ (ed,id�1, ed,id ]

such that every Di is a finite union of elements of {Ei1,...,id}i1,...,id.

Its proof is straightforward because we only need to “extend” the boundaries between the
rectangles {Di}Ii=1. By applying this lemma to the partition P(l+1), it follows that there

are finite sequences {c(l+1)
ij

}ij (j = 1, . . . , d � 1) such that a checkerboard-like partition
consisting of the following type of rectangles

A
(l+1)
i1,...,id

:=(c(l+1)
1,i1�1, c

(l+1)
1,i1

]⇥ · · ·⇥ (c(l+1)
d�1,id�1�1, c

(l+1)
d�1,id�1

]⇥ (cd,id�1, cd,id ]
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is finer than P(l+1). With this partition, the measure Fl+1 is written as for B 2 B((0, 1]d)

Fl+1(B) =
l+1X

i=1

Ci
µ(B \ (0, 1]d�1 ⇥ (cd,i�1, cd,i])

µ((0, 1]d�1 ⇥ (cd,i�1, cd,i])
+

IdX

i=l+2

X

i1,...,id�1

a
(l)
i1,...,id

µ(B \A
(l)
i1,...,id

)

µ(A(l)
i1,...,id

)
.

Because this result holds for l = 1, . . . , Id � 1, there exists a sequence of mappings
G1, . . . ,GId 2 GL,d such that a push-forward measure H := (GId � · · · �G1)#F has a form

H(B) =
IdX

i=1

Ci
µ(B \ (0, 1]d�1 ⇥ (cd,i�1, cd,i])

µ((0, 1]d�1 ⇥ (cd,i�1, cd,i])
.

Define an one-dimensional probability measure Ĥ as follows

Ĥ(B1) =
IdX

i=1

Ci
µ1(B1 \ (cd,i�1, cd,i])

µ1((cd,i�1, cd,i])
for B1 2 B((0, 1]).

Then, by the assumption (or Proposition 8), there exists a mapping Ĝ0 2 G2,1 such that
Ĝ0#Ĥ = µ1. With this mapping, we define another mapping G0 : (0, 1] 7! (0, 1] such that
for x = (x1, . . . , xd),

G0(x) = (x1, . . . , xd�1, Ĝ0(xd)).

This mapping moves input points only in the dth dimension according to Ĝ0 so it is written
as a composition of tree CDFs defined on trees with 2 terminal node and thus an element
of GL,d. Hence G0 2 GL,d. Fix i 2 {1, . . . , Id}. For a measurable set Bd�1 ⇥B1 such that

Bd�1 ⇥B1 2 B((0, 1]d�1)⇥ Ĝ0((cd,i�1, cd,i]),

because H is piecewise uniform, we have

G0#H(Bd�1 ⇥B1) = H(G�1
0 (Bd�1 ⇥B1)) = H(Bd�1 ⇥ Ĝ�1

0 (B1))

= Ci
µ(Bd�1 ⇥ Ĝ�1

0 (B1))

µ((0, 1]d�1 ⇥ (cd,i�1, cd,i])

= Ci
µd�1(Bd�1)µ1(Ĝ

�1
0 (B1))

µ1((cd,i�1, cd,i])
.

On the other hand,

µ1(B1) = Ĥ(Ĝ�1
0 (B1)) = C1

µ1(Ĝ
�1
0 (B1))

µ1((cd,i�1, cd,i])
.

Hence, we obtain

G0#H(Bd�1 ⇥B1) = µd�1(Bd�1)µ1(B1) = µ(Bd�1 ⇥B1).

Therefore, we conclude that

G0#H = (G0 �GId � · · · �G1)#H = µ.

The result of Proposition 9 can be described in a simplified form as in the next corollary.
This proof immediately follows Proposition 9 and Lemma 6.
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Corollary 1. Let {Ei}Ii=1 is a partition of the sample space (0, 1]d such that Ei is a rectangle
with a form

Ei = (ai,1, bi,1]⇥ · · ·⇥ (ai,d, bi,d],

and F be a piecewise uniform probability measure defined on the partition:

F (B) =
IX

i=1

�i
µ(B \ Ei)

µ(Ei)
for B 2 B((0, 1]d),

where �i > 0. Then F 2 GL for L � d+ 1.

B.4 Proof of Theorem 3

We finally provide the proof of Theorem 3, which can be obtained by adding minor modi-
fications to the proof of Theorem 4 in Wong and Ma (2010).

Let f⇤ denote F ⇤’s density function, and we first assume that f⇤ is uniformly continuous.
For ✏ > 0, there exists ✏

0
> 0 such that log(1 + ✏

0) < ✏. Since the function f
⇤ is uniformly

continuous, there exists � > 0 such that

|x� y| < � ) |f⇤(x)� f
⇤(y)| < ✏

0
.

Let {Ei}Ii=1 is a partition of the sample space (0, 1]d such that Ei has a rectangle shape and
diam(Ei) < �. Define a function g̃ as

g̃ =
IX

i=1

⇢
sup
x2Ei

f
⇤(x)

�
1Ei(x) for x 2 (0, 1]d.

Let C =
R
g̃dµ. Because g̃(x) � f

⇤(x) for x 2 (0, 1]d, we have C � 1 and

0  C � 1 =

Z
(g̃ � f

⇤)dµ =
IX

i=1

Z

Ei

(g̃(x)� f
⇤(x))dµ


IX

i=1

Z

Ei

✏
0
dµ = ✏

0
.

Define a density function g := g̃/C. The corresponding probability measure G is an element
of GL by Corollary 1. Hence, for the two measures F

⇤ and G, we can bound the KL
divergence as follows

KL(F ||G) =

Z
f
⇤ log

f
⇤

g
dµ =

Z
f
⇤ log

f
⇤

g̃
dµ+

Z
f
⇤ logCdµ

 logC  log(1 + ✏
0) < ✏.

We next consider the general case, where we assume f
⇤  M for some M > 0. By Lusin’s

theorem, for any ✏̃ > 0, there exits a closed set B such that µ(Bc) < ✏̃ and f
⇤ is uniformly

continuous on B. Using this fact, we modify the first discussion as follows. The definition
of g̃ is modified as follows: If Ei \B 6= ;, for x 2 Ei, we let

g̃(x) = sup
x2Ei\B

f
⇤(x).
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Otherwise, g(x) = M . With this modification, we obtain

0  C � 1 =

Z
(g̃ � f

⇤)dµ =

Z

B
(g̃ � f

⇤)dµ+

Z

Bc
(g̃ � f

⇤)dµ

 ✏
0 +M ✏̃,

which can be arbitrarily small, so the same result follows.

Appendix C. Details on Learning Probability Measures with the Pólya
Tree Process

This section provides details on the weak learners we use to fit tree measures to the residuals
in the estimation. The algorithm is based on the PT-based method proposed in Awaya and
Ma (2024), and interested readers may refer to this paper.

C.1 Theoretical Justification of Using the PT-based Model

As shown in Section Proposition 5, the improvement in the entropy loss is maximized when
a fitted tree is a solution of the problem

arg max
T2T

X

A2L(T )

F̃
(n)
k (A) log

F̃
(n)
k (A)

µ(A)
,

where F̃
(n)
k is the empirical measure defined by the residuals r(k�1) = {r(k�1)

i }ni=1. As

n ! 1, the empirical measure F̃
(n)
k (B) converges to F̃k(B) for B ⇢ (0, 1]d, where F̃k is the

true distribution of the residuals defined by the previous tree-CDFs G1, . . . ,Gk�1. At this
population level, the maximization problem is written as

arg max
T2T

X

A2L(T )

F̃k(A) log
F̃k(A)

µ(A)
,

and we can show that this maximization is equivalent to minimizing the KL divergence
KL(F̃k||F̃k|T ), where F̃k|T is “a tree-approximation of F̃k under T”, namely,

F̃k|T (B) =
X

A2L(T )

F̃k(A)
µ(B \A)

µ(A)
for B 2 (0, 1]d.

Theorem 4.1 in Awaya and Ma (2024) shows that the posterior of trees also concentrates
on the minimizer of KL(F̃k||F̃k|T ), and this result implies that at the population level, or
when n is large, we can find the tree that maximizes the improvement in the entropy loss
or similar ones by checking the posterior of trees.

C.2 Details on the sampling algorithm

Suppose we have obtained the residuals at the beginning of the boosting algorithm. Since
the task of fitting a new measure to the residuals is essentially the same for all steps, we drop
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the k, the index of the trees and measures consisting of the ensemble, from the notations for
simplicity. Then the residuals are denoted by r = (r1, . . . , rn), and our task at each step is
to capture their distributional structure by fitting a dyadic tree. In the section, we provide
details on the prior distributions introduced for the tree T and the stochastic top-down
algorithm we use to find a tree with good fitting. We also describe an algorithm to obtain
the tree-based probability measure we add to the ensemble given the learned tree structure,
which incorporates shrinkage.

C.2.1 Prior distribution of T

As in Awaya and Ma (2024), we construct a prior of T by introducing the random splitting
rule for each node A. First, we introduce the stopping variable S(A) that takes 0 or 1, and
if S(A) = 1, we stop splitting A and otherwise split A. Here we set P (S(A) = 1) to 0.5. In
the latter case, we next define the dimension variable D(A) and the location variable L(A).
If D(A) = j (j = 1, . . . , d), the node A is split in the jth dimension, and the location of
the boundary is determined by L(A) 2 (0, 1), in which 0 (or 1) corresponds to the left (or
right) end point. Their prior distributions are as follows:

P (D(A) = j) = 1/d, (j = 1, . . . , d),

P (L(A) = l/NL) =
1

NL � 1
(l = 1, . . . , NL � 1),

where NL � 1 is the number of grid points, which is 127 in the estimation.

On the tree T , we also define a random measure G̃, with which we can define the
likelihood of the residuals r. The prior of the measure G̃ is defined by introducing the
parameters ✓(A) = G̃(Al | A), where Al is the left child node, for every non-terminal node
A. They follow the prior distribution specified as

✓(A) ⇠ Beta(✓0(A), 1� ✓0(A)), ✓0(A) =
µ(Al)

µ(A)
.

The joint model of the tree T and the measure G̃ can be seen as a special case of the
density estimation model that is referred to as the adaptive Pólya tree (Ma, 2017) model
in Awaya and Ma (2024) with the number of the latent states being 2.

We note that this random measure G̃ is introduced just to define the marginal posterior
of T , namely, P (T | r) and to find a tree with a large marginal posterior, which captures
the distributional structures of the residuals well. This Bayesian model also could be used
to obtain a new tree-based measure to add to the ensemble: for example, we can use the
posterior mean of G̃ given the tree. In the estimation, however, we obtain the new tree-
based measure with the node-specific shrinkage method introduced in Section 2.7.2 because
this method is theoretically justified in terms of improving the loss (see Proposition 7) and
also by the empirical results provided in Section 3.1.

The detailed algorithms to construct the tree and the tree-based measure are provided
in the following sections.
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C.2.2 Top-down stochastic algorithm

The particle filter proposed in Awaya and Ma (2024) is shown to be e↵ective to sample
from the posterior of trees. This original algorithm, however, has drawbacks when seen as
a component of the boosting from a viewpoint of computational cost:

1. In the particle filter, we construct thousands of candidate trees, but this strategy
may make the whole boosting algorithm too time-consuming since in the boosting
algorithm we need to repeat fitting trees to the residuals many times.

2. In the original algorithm, we do not stop splitting nodes until we reach the bottom
nodes unless the number of included observations is too small. (Technically speaking,
this is because the stopping variables, or the latent variables in general, are integrated
out in the sampling.) The number of nodes generated in a tree, however, tends to
be large especially when the sample size is large, and constructing such large trees
repeatedly in the boosting algorithm is also too time-consuming. The computation
cost would become reasonable if we “give up non-promising nodes”, that is, stop
dividing nodes if no interesting structures are found there.

From these reasons, we modify the original algorithm as follows: (i) Instead of generat-
ing many candidate trees, we set the number of particles to one, that is to say, construct a
tree by randomly splitting nodes on the tree in a top-down manner. Hence the algorithm
is similar to the top-down greedy method, but in our algorithm one selects splitting rules
stochastically. (ii) For each active node, we compare possible splitting rules and the de-
cision of stopping the splitting, where the latter option is added to the algorithm. This
comparison is based on their posterior probabilities, and the splitting tends to be stopped
if the conditional distribution is close to uniform.

For an active node A, the possible decisions are compared based on the following quan-
tities that are seen as “prior ⇥ marginal likelihood”. A conceptually very similar algorithm
for supervised learning is proposed in He and Hahn (2023). For the decision of stopping,
we compute

L; = P (S(A) = 1)µ(A)�n(A)
,

where n(A) is the number of residuals included in A. On the other hand, for the splitting
rule D(A) = j and L(A) = l/NL that divides A into Al and Ar, we compute

Lj,l = P (S(A) = 0, D(A) = j, L(A) = l/NL)

⇥
Z

Beta(✓ | ✓0(A), 1� ✓0(A))✓n(Al)(1� ✓)n(Ar)d✓

⇥ µ(Al)
�n(Al)µ(Ar)

�n(Ar)

= P (S(A) = 0, D(A) = j, L(A) = l/NL)

⇥ Be(✓0(A) + n(Al), 1� ✓0(A) + n(Ar))

Be(✓0(A), 1� ✓0(A))

⇥ µ(Al)
�n(Al)µ(Ar)

�n(Ar),
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where Be(·) is the beta function. Based on these quantities, we choose to stop the splitting
with probability

L;

L; +
Pd

j=1

PNL�1
l=1 Lj,l.

Otherwise, we choose the splitting rule D(A) = j and L(A) = l/NL with probability

Lj,lPd
j0=1

PNL�1
l0=1 Lj0,l0

.

C.2.3 Fitting a tree measure to the residuals

This section provides an algorithm to obtain a new tree-based probability measure, denoted
by G to add to the ensemble given a learned tree T in each iteration of the boosting
algorithm. This measure G incorporates the shrinkage method described in Section 2.7.2.

To construct G, we just need to specify the probability assignment G(Al | A) for every
non-terminal node A. Every time we split a node A in the top-down algorithm, we compute

Gk(Al | A) = (1� c(A))µ(Al | A) + c(A)
nk(Al)

nk(A)
,

where c(A) is the node-specific learning rate (see Section 2.7.2 for the definition) and nk(Al)
and nk(A) are the number of residuals included in Al and A, respectively.

Appendix D. Details of the 48-dimensional Experiments

In the experiment, we used the following three scenarios.

Scenario A: (X1, X2, X3, X4), . . . , (X45, X46, X47, X48) are independent, and each tuple fol-
lows

Normal(µ,⌃),

where µ = (0.5, . . . , 0.5) and

⌃i,j = 0.9|i�j|
/82, i, j = 1, 2, 3, 4.

Scenario B: (X1, X2), . . . , (X47, X48) are independent, and each pair follows

1

10
Beta(x1 | 1, 1)⇥ Beta(x2 | 1, 1) +

3

10
Beta(x1 | 15, 45)⇥ Beta(x2 | 15, 45)

+
3

10
Beta(x1 | 45, 15)⇥ Beta(x2 | 22.5, 37.5)

+
3

10
Beta(x1 | 37.5, 22.5)⇥ Beta(x2 | 45, 15).

Scenario C: (X1, X2), . . . , (X47, X48) are independent, and each pair follows

1

3
1[0.1,0.45]⇥[0.35,0.9](x1, x2) +

1

3
1[0.2,0.8]⇥[0.45,0.5](x1, x2)

+
1

3
1[0.7,0.9]⇥[0.05,0.6](x1, x2).
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Appendix E. Additional Tables and Figures

(c0, �) POWER GAS HEPMASS MINIBOONE
(0.1, 0.0) 0.004 0.060 0.028 0.075
(0.1, 0.5) 0.004 0.023 0.032 0.064
(c0, �) AReM CASP BANK

(0.1, 0.0) 0.022 0.038 0.078
(0.1, 0.5) 0.015 0.030 0.023

Table 4: The standard deviations of the average predictive scores based on 30 di↵erent
random seeds.

POWER GAS HEPMASS MINIBOONE
4.5 9.6 24.3 15.3

AReM CASP BANK
1.4 1.6 9.0

Table 5: The average computation time (seconds) for simulating 10,000 observations based
on 30 di↵erent random seeds. The tuning parameters c0, � are set to 0.1 and 0.5,
respectively.

Figure 8: The training set of the POWER data (a subset of size 10,000 is visualized) and
10,000 observations simulated from the learned probability measure.
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Figure 9: The training set of the GAS data (a subset of size 10,000 is visualized) and 10,000
observations simulated from the learned probability measure.

Figure 10: The training set of the AReM data (a subset of size 10,000 is visualized) and
10,000 observations simulated from the learned probability measure.
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