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ABSTRACT

The collective performance or capacity of collaborative au-
tonomous systems such as a swarm of robots is jointly influenced
by the morphology and the behavior of individual systems in that
collective. In that context, this paper explores how morphology
impacts the learned tactical behavior of unmanned aerial/ground
robots performing reconnaissance and search & rescue. This is
achieved by presenting a computationally efficient framework to
solve this otherwise challenging problem of jointly optimizing
the morphology and tactical behavior of swarm robots. Key
novel developments to this end include the use of physical talent
metrics and modification of graph reinforcement learning archi-
tectures to allow joint learning of the swarm tactical policy and
the talent metrics (search speed, flight range, and cruising speed)
that constrain mobility and object/victim search capabilities of
the aerial robots executing these tactics. Implementation of this
co-design approach is supported by advancements to an open-
source Pybullet-based swarm simulator that allows the use of
variable aerial asset capabilities. The results of the co-design
are observed to outperform those of tactics learning with a fixed
Pareto design, when compared in terms of mission performance
metrics. Significant differences in morphology and learned be-
havior are also observed by comparing the baseline design and
the co-design outcomes.

Keywords: Collective intelligence, co-design, Reinforce-
ment Learning, Graph Learning, Actor-critic RL, Swarm tac-
tics, Search and Rescue, Aerial systems

1. INTRODUCTION

Collective intelligence enables a swarm of robotic systems
to adapt effectively to uncertain and unknown environments, au-
tonomously organize themselves, and exhibit emergent behaviors
that lead to superior problem-solving capabilities. Through the
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collaborative efforts of multiple robots working in tandem, tasks
(e.g., exploration, transportation, surveying, harvesting, search &
rescue, and assembly of distributed objects [1]) that are beyond
the capabilities of any single robot can be efficiently tackled. Yet,
realizing the potential of swarm robotics and collective intelli-
gence involves addressing formidable challenges with respect to
design choices that shape the operating envelope and functional-
ities of the individual members of a swarm or multi-robot team.
For example, consider the generic swarm scenario in which indi-
vidual robots in a swarm autonomously assess their surroundings,
communicate findings with each other, and collaboratively plan
and execute future tasks or actions. The challenge is that there
are no clear-cut, principled approaches to designing the low-level
behaviors (individual decisions or policies) and individual robot
morphology that will ensure the desired collective behaviors.

Emergent behavior in swarm robotics/collective intelligence
results from simple rules followed by each entity and their interac-
tion with each other and their environment [2]. These interactions
give rise to complex and adaptive behaviors that are robust and
efficient. However, this emergent behavior cannot be directly in-
ferred from an individual’s behavior or capabilities; rather, it is a
product of dynamic interplay within the swarm. Minor modifica-
tions in the design of individual robots might affect the robot’s op-
erating envelope, significantly impacting its emergent behavior at
the collective level. Most often, behavior is trained or developed
based on fixed or apriori-designed physical systems [3, 4]. This
approach inherently restricts each robot’s operational capabilities,
often resulting in designs that do not fully optimize performance
and thus limit the overall effectiveness of the swarm. The intri-
cate interplay between morphology (physical form/design) and
behavior (e.g., robot’s decisions that enable coordinated motion
and task completion) must be optimized together to explore how
efficiently the swarm as a whole can perform desired operations
without failure. This co-design process ensures that physical de-
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sign and behavioral algorithms evolve together, facilitating the
alignment of capabilities to achieve superior collective perfor-
mance.

Machine learning-based policies are becoming increasingly
popular in expressing perception and control/planning loops in
robots and autonomous systems, including those that can work as
acollaborative group. There has been some work on co-design for
individual robots on control side [5—14]. In the area of co-design
with ML-based policies, Gupta et al., [15] introduced the DERL
framework to create embodied agents for a complex animal mor-
phology, which uses both traditional evolutionary methods and
RL methods in parallel. Many of the earlier methods in this
field relied on evolutionary algorithms, which can suffer from
computational inefficiency. Among others, notable methods that
are closest to our work are introduced by Schaff et al. [16],
who introduced a Deep Reinforcement Learning method for co-
designing agents’ morphology and behavior. In their method, an
additional distribution for designs is introduced, and its parame-
ters are updated to maximize the policy reward. Another method
that is closest to our work is introduced by Luck et al. [17],
where four individual networks, two for morphology and two for
behavior, are trained in parallel. These works are showcased in
singular robotics environments using PyBullet, focusing on con-
trol systems with continuous state-action spaces. Firstly, most
of these existing approaches seek to directly operate on the raw
morphological (design) space, which becomes computationally
prohibitive as the complexity of the system increases. What is
thus currently lacking is the understanding of how morphology
affects (usually a smaller set of) fundamental or latent system
capabilities, which in turn constrain or shape the envelope of fea-
sible behaviors and exploit this understanding to decompose the
co-design problem into a sequence of simpler search problems.
Secondly, unlike in classical co-design, there exists very little
work on systematic co-design of swarm or multi-robot systems.

To address these gaps, in this paper, we propose a compu-
tational framework that enables the concurrent design of i) the
morphology of individual robots in a swarm and ii) their collective
behavior. Here, we utilize our previously proposed artificial-life-
inspired talent metrics [18] that are physical quantities of interest,
reflective of the capabilities of an individual robotic system (e.g.,
range, nominal power consumption, weight, sensing FoV, payload
capacity, turning radius, etc.). Talent metrics represent a com-
pact yet physically interpretable parametric space that connects
the behavior space and morphology space. We use this to decom-
pose the morphology-behavior co-optimization into a sequence of
talent-behavior optimization problems that can effectively reduce
the overall search space (for each individual problem) without
negligible compromise in the ability to find optimal solutions.
In other words, the decomposition approach presented here is
nearly lossless, i.e., a solution that can be found otherwise with
a brute-force nested optimization approach to co-design will also
exist in the overall search space spanned by our decomposed
co-design approach (albeit assuming that each search process is
ideal). We also propose a novel talent-infused actor-critic method
to optimize the talents and learn the behavior concurrently.

To demonstrate the efficacy of the proposed co-design ap-
proach, we examine its application in a complex Urban Search

and Rescue operation using heterogeneous swarm robots. We
call this problem, SWArm robotic search and Rescue Mission
for Complex Adversarial Environment (SWARM-CAE). Often,
in complex robotics missions, it is imperative to combine multiple
swarm behaviors to accomplish a higher-level goal. Behjat et al.,
[19] introduced a tactical learning framework for complex swarm
missions where the higher-level goals are decomposed into mul-
tiple sub-goals that are achieved by combining individual swarm
and single-robot behaviors; further, this framework also provides
abstraction methods to overcome the state and action space explo-
sion in multi-robot systems pertinent to learning based methods.
Due to the framework’s versatile nature, it is adapted for our
SWARM-CAE problem. Here, we consider an urban or semi-
urban environment where the operation takes place, with the
robots spawned at a nearby depot location. The robots are com-
manded by a neural network-based policy that decides the tactical
behavior (aka allocation of different tasks and GoTo locations) to
rescue victims or find/extract objects of interest from the environ-
ment as quickly as possible while mitigating the loss of swarm
agents to adversarial entities in the environment — these character-
istics are typical of disaster response, humanitarian missions, and
planetary explorations. The neural network-based policy guiding
the behavior of the swarm is trained using reinforcement learning
(RL) over experience collected in an open-source robot simulator.
This application was chosen because it effectively showcases the
benefits of co-designing swarm systems, particularly in manag-
ing the complexities and dynamics of real-world missions where
multiple swarm behaviors are required to achieve higher-level
goals. Often, the swarm search and rescue frameworks avail-
able currently are restricted to grid-based environments and lack
real-world characteristics. The application presented here takes
place in real-world maps obtained with OpenStreetMaps API and
simulated with SHaSTA (an Open Source Simulator) [20].

Thus, the primary contribution of this paper is a compu-
tational framework capable of concurrently learning the tal-
ents (driven by morphology) and behavior of RL-guided swarm
robotic systems performing real-world missions. The secondary
objective is to formulate a Markov Decision Process (MDP) on top
of the graph for the SWARM-CAE Problem and Graph Capsule
Convolution network (GCAPCN) to serve as the tactical policy
network for the MDP. Though the assumed application uses a
heterogeneous team of two different types of robots, unmanned
aerial vehicles (UAVs) and unmanned ground vehicles (UGVs),
in this paper, for simplicity, we only optimize the morphology of
UAVs. In this proposed approach, first, we derive talent metrics
for quadcopter-type UAVs using a set of logical principles based
on the application, perform multi-objective optimization to ob-
tain the Pareto front in talent space, and then create a regression
surface representation of this talent Pareto. The talent Pareto is
used in our proposed novel Talent-infused Actor-Critic approach
to optimize for mission efficiency. Finally, we perform another
optimization to find the exact morphology corresponding to the
learned talents.

The remaining portion of this paper is organized as follows:
in section 2, we define the co-design problem using an exam-
ple, thereby defining the concept of talent metrics; concurrently,
we provide an overview of our proposed talent-infused actor-

Copyright © 2024 by ASME



critic method in a generalized form; section 3 introduces the
SWARM-CAE problem; section 4 describes the graph neural
network developed for the proposed Talent-infused Actor-Critic
method; section 5 presents the results of using Talent-infused
actor-critic method on the SWARM-CAE Problem, compared to
a baseline; finally in section 6, we present our conclusions.

2. FRAMEWORK FOR CONCURRENT DESIGN OF
BEHAVIOR AND MORPHOLOGY

Consider a group of UAVs performing a search operation
over an environment. Let Xj, represent the vector of morpho-
logical variables of individual UAVs, such as wing span, frame,
or battery capacity. This vector encompasses all the variables
necessary to build a complete system. Meanwhile, ® represents
controllable parameters of the algorithm that guide its behavior.
Depending on the complexity, @ can be a single heuristic param-
eter or the neural network’s weights if the behavior is based on
it. The performance metric, denoted as f7, quantifies its effec-
tiveness in the environment. In the context of RL, this can be a
reward function. The primary goal of co-design optimization in
this context is to maximize this performance metric, and this can
be represented as an optimization problem shown in Eq. (1).

Max: [ (Xp, @)

S.t: Xnin < X < Xnax
(I)min <®< (I)max

g(Xp) <0

Three primary methods are used to solve this optimization
problem: Sequential Design: first optimize the Morphology X,
and optimize for the behavior @ or vice versa; this leads to
a highly sub-optimal design/collective behavior and cannot be
generalized [21]; Nested Design: optimize both the behavior
and morphology in a nested way, while it can be thorough, it
is computationally intensive [22]; Evolutionary methods: use
evolutionary optimization methods to optimize the behavior and
morphology together, this approach is computationally feasible
when the behavior or morphology is simple, as the complex-
ity increases, the computational cost increases [23]. Using the
talent metrics concept proposed in our previous paper [18], we
decompose the morphology-behavior design into a series of se-
quential talent-based optimization problems. Figure 1 shows the
four steps involved in our proposed co-design framework. The
below subsections delve deep into each step.

)

2.1 Morphology Constrained Talent Metrics Selection

The talent metrics (Y1) refer to the morphology-driven vari-
ables that directly influence the resultant behavior’s performance.
For instance, given different combinations of morphology vari-
ables, we obtain different metrics representing the UAV’s operat-
ing envelope, such as flight range and cruising speed. It is evident
that these talent metrics form a parametric layer given by

Y1 = fu (Xnr) 2

where fjps denotes the model responsible for determining the
talents corresponding to a morphology. This can be obtained
with simulations, supervised learning if a dataset is available,

and analytical equations. Yr_ is a vector consisting of values
[YtL,1,. .., Y7L,m]. Upon introducing talents, the objective func-
tion Eq. (1) can be modified as an optimization problem expressed
in Eq. (3).

Max:  fp(YrL, ®)

S.t:. Y, ®eR
Yrrp, < Yro < Yri,,
(Dmin <P < (I)max

3)

To effectively replace morphology with talents, the selected
talent metrics should satisfy four principles: 1) The collection
of talent metrics should depend only on morphology. 2) Talent
metrics should exhibit the monotonic goodness property, mean-
ing that for each metric, there should be a direction (increasing or
decreasing) corresponding to improved performance. 3) Talent
metrics should be collectively exhaustive in determining the im-
pact on the performance of the behavior, meaning there cannot be
a case where constraints or bounds of behavior can change with a
fixed talent. 4) Each talent metric should conflict with the others;
for example, increasing the payload reduces the range.

Advantages of substituting Xy with Yt are i) Directly op-
timizing the talent space allows focusing on the most relevant
performance metrics, this often leads to finding the optimal tal-
ents and behavior more efficiently than when co-optimizing mor-
phology and behavior, ii) provides a likely dimension reduction;
Typically, the morphology space is considerably larger than the
talent space; iii) the monotonous goodness property allows for
safely eliminating solutions in the dominated region and con-
straining the optimization to Pareto front.

2.2 Talent Pareto Boundary Construction

Given the monotonic goodness property of each talent met-
ric, the optimal talent should lie within the Pareto region. There-
fore, we perform a multi-objective optimization to identify the
non-dominated (Pareto) points of the talent variables. The opti-
mization problem can be expressed as

Max:  (Yri,1,.-., Y1i,m) = fu (Xmr)
S.t: Xnin < X < Xiax 4
gXpy) <0

This exposes the Pareto points for the multi-objective optimiza-
tion problem. The pareto front can be modeled through an ap-
proximation or surrogate method. The model can be represented
as

Yrim = £ (Yot - Yo m-1) )

where fg represents the approximation model, and m represents
the quantity of talents metrics.

2.3 Behavior Learning via Talent-infused Actor-critic
subject to Talent Boundary
In the context of a group of UAVs performing the search
example provided before, consider a complex neural network is
used for the behavior of individual robots and trained through
an actor-critic-based RL algorithm. The Actor-critic algorithm
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FIGURE 1: Flowchart of our co-design framework, a) Morphology and its dependent talent parameters are derived, b) Based on the talents,
we create a Pareto boundary, c) The Talent-infused Actor-critic method is used to train the associated behavior and talents, d) Finalize the

morphology for the optimized talents.

consists of 2 neural networks. The actor network maps the current
state of the UAV to the actions, and it dictates how the UAV should
behave. The actor policy can be denoted as 7 ((als;0) where 6
are the weights of the actor network and a represents the action
given state s. While the actor decides the actions given a state, the
critic network evaluates the potential value (state-value) of being
in that state, estimating the future rewards that can be obtained
from that state. The value network can be represented as V (s; w)
where V is the value of state (s) with weights of the network (w).
In order to solve our optimization problem shown in Eq. (3), we
need to incorporate talents into the actor and critic network. The
below sections delve deep into the modifications performed as
well as the pseudo-code of the proposed Talent-infused Actor-
critic Algorithm.

2.3.1 Modifications in Actor-Critic Framework. The actor
network that typically generates the action/behavior for the UAV
is augmented with an additional neural network called the talent
network. Figure 1c) provides an example representing this aug-
mentation. The output shape of the talent network is m — 1, where
m represents the total number of talents. The weights of the input
neurons of the talent network are set to zero, and not-trainable,
i.e., the network doesn’t require a state or input to work and always
provides a constant output. These outputs directly correspond to
the mean of m—1 distributions, which is further processed through
the talent decoder to obtain the final talent values. Here, in order
to limit the optimization inside the Pareto front, the final layer
of the talent network is given a sigmoid activation function and
is processed through a talent decoder. The policy of this actor

network is given by 7 ((al|s, ¥r_ 1, -+ , ¥rL n-1); 6), where a is the
behavioral action 6 indicates the weights and Y1, -+, Y71 n-1

are the outputs from talent network.

2.3.2 Talent Decoder. The talent decoder’s objective is to
scale the values from the talent network to ensure they remain
within the bounds of the talent Pareto front. Once the actor
network provides the talent values (YTLJ , IA/TL, 2, s IA/TL, n-1), We

need to scale these values using upper and lower bounds to get
the talent value (Y7 ). In order to find the upper and lower limits
of each talent value, we employ quantile Regression model at Sth
and 95th percentile respectively conditioned on previous talents.
For the First Talent (Yrz.1), we can directly get the lower and
upper limits. Hence, we use the below equation to obtain the first
talent.

Yrr,1 = Yro i (max(Yrp 1) — min(Yrp1)) + min(Yrp1) - (6)

From the 2nd to m — 1 talents, we use the following equation,

Yroi =Yoo (Q(0.95YrL 1, ..., YrLio1)
-0(0.05YrL 1, .-, Y1Li-1)) +
Q(0.05|YrL1, ..., YrLio1)

Vie{2,...,m—1}

This scaling allows us to stay within the Pareto front. The
scaled values are passed onto the simulation for creating the
robots.

2.3.3 Training Phase. Here, the main objective is to opti-
mize the distribution with the talent network and learn the behav-
ior. During the first step of each episode, We do a forward pass
in the actor network, which is then followed by sampling through
distribution. The augmented output of the actor network can be
given by

foralli € {1,...,T}
@)

Ag(si) = (ai, Yrp, Yoo as - - o Yo ma)s

where Ag(s(;)) signifies the output of actor policy at timestep
i with input state s(;). a(;) represents the action for state s(;),
Yro 1, ¥, 2,.. Y7L, m-1 represents the talent values from 1 to
m — 1. These m — 1 values are subsequently processed by a talent
decoder, which scales these values based on the maximum and
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minimum bounds of their respective talents. To get the final talent
IA/TL, m,» We use the approximation model created with Eq. (5).
Following the determination of actions and talents, these values
are fed into the simulation environment. Based on these talents,
robots are instantiated, and the chosen action is executed, which
then returns us with the reward and the new states. The new states
are passed on to the actor network again. Crucially, after the first
step of the episode, talent values are not sampled from the talent
network and the actor network continues to suggest actions based
on the current state without any changes until the episode ends.
Essentially, talents stay the same throughout an episode, but the
states and actions update with each step, as shown in the Eq. (7).

The critic network updates primarily using the state value,
incorporating an additional component called "talents" into the
state space. This integration results in the input to the network
containing both state and talent values. Instead of calculating a
state value using the critic network, the critic network now calcu-
lates the state-talent value pair. Consider V (s, Yrus w) represents
the value of state from critic network with weights w for states s;
and all the talents from actor network ¥y The talents employed
by the UAV during the episode are used in the state-talent input
for the critic network. The critic assesses the state value based on
these talents, offering an estimate of the expected future reward
accumulation for the given talent and actions with state s. The
Temporal Difference (TD) error is computed based on

§=r+yV(sue), YrLiw) = V(sy, Yros w) ®)

The critic network updates its weight w to minimize the TD error
and the update rule can be represented as

Wer1 = wy + a8V, V(sy, Yoos w) &)

If the cumulative reward from the actor’s actions and talents
exceeds the critic’s estimate, the critic provides positive feedback,
encouraging the actor to increase the probability of the current
action and associated talent.

VoJ(0) = 6Vglogn(als;, Yri; 6) (10)

Over time, this iterative process enables the actor to refine
both its policy and talent parameters, striving for an optimal
balance that maximizes cumulative rewards. To ensure gener-
alizability, updates should be performed over a large batch of
episodes. This necessity arises from accumulating gradients over
a diverse set of talent values.

The pseudo-code for talent-infused actor-critic method is
shown in Alg.1. Most of the open-source RL libraries, includ-
ing Stable-baselines3 [24] and OpenAl Baselines [25], follow
updates over the batch method. In libraries, parallel vectorized
environments are created to collect experiences and update the
policy after collecting a batch of episodes. For more details on
the implementations, please refer to [26].

2.3.4 Testing Phase. During the testing phase, the distri-
butions are removed, thereby taking deterministic actions. Since
the talent network (part of the actor network) has weights of 0 in
the input layer, the state space doesn’t affect the outcome, and it
always results in a single value. These final values passed through

the talent decoder will provide us with the optimized talents Y7, ,
and the learned policy is the result of the optimization problem
expressed in Eq. (3). Let us consider the optimized talents as Y7, .

Algorithm 1 Talent-Infused Actor-Critic Method

1: Input: Learning rates @ and @, discount factor y, batch size B, and the total number
of talent variables m

2: Initialize actor network Ag with weights @, outputting policy 7 ((a, YrL)|s; 6), where
Yt are the talent values and a is the behavioral action {Morphology-dependent weights
are set to 0 and are non-trainable }

3: Initialize critic network with weights w, estimating value function V (s, ?[L; w)
4: TInitialize experience buffer €

5: while not reached end of training do

6: for b = 1to B do

7: Initialize start state s, for the b-th episode

8: Obtain a(,) and Yo, Yoo, -, PrL, 1 from Ag (s(ep))

9: Calculate Yﬁ-Lvm using fSM()A’TLJ ey )A’TL,m_l)

10: while not done do

11: Use ay; and Yry, for simulation, where #; denotes the current timestep
12: Execute action ay; , observe reward r and next state S(;+1)

13: Store transition (¢, dr; , 7', S(t+1) » YiL) in €

14: For t; > t, retain YT]_ without re-sampling

15: Update s; t0 S(741)

16: end while

17: end for R

18: for all transitions (s;, a, ', S(z+1), YrL) in € do

19: Compute TD error: & =7 +yV (s(41)» YiLsw) = V(se, YrLsw)
20: Update critic weights: w = w + a8V V (57, YrL; w)
21: Update actor weights @ based on gradient: VoJ (0) =

6V log m(als:, YiL; 6)

22: end for
23: Clear experience buffer € for next batch

24: end while

2.4 Morphology Finalization using Learnt Behavior and
Talent Boundary
To finalize the morphology for optimized talents, another
optimization approach given by Eq. (11) should be handled

Min: Jr = Y1 (Xpr) = Yq, ]
Subjectto: Xps € R (11)
Xmin < XM < Xmin

where f; refers to the objective function value, and Y7, represents
the optimal talent. This optimization aims to obtain morphology
that provides talents as close as possible to the optimal talents
obtained in learning.

3. MULTI-ROBOT SEARCH AND RESCUE

We consider a swarm search and rescue operation happen-
ing in an urban environment involving UAVs and UGVs. Here,
the robots aim to locate a specific building with an object of in-
terest (victim) inside and rescue it. Initially, all robots form a
preset platoon in a depot for deployment. The urban environment
contains multiple suspect buildings (target buildings) where the
victim can be, and the goal is to find the true target building
(goal location) where the victim is. UAVs can search the build-
ing’s perimeter to determine whether it is the true target building
(goal location) with the exact location of the victim. Meanwhile,
UGVs have indoor search capabilities, allowing them to search
within the building and execute the rescue operation. If the
UAVs successfully identify the target building and its location,
the UGVs can bypass comprehensive exploration, expediting the
rescue upon entry. The outdoor search progress is calculated as
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Y1 out = Vy X (ng X P), considering the number of floors (ny), total
perimeter (P), and individual UAV search speed (V}, or Field of
view/FOV). The Search speed is based on a sensor that can detect
the presence of a victim, and the quality of the sensor depends on
its weight; the higher the weight of the sensor, the higher the V,
value, and it allows faster perimeter search.

Three types of adversaries are considered: Smoke, Bombs,
and Dynamic adversaries. Dynamic adversaries follow fixed
paths and continuously monitor the area. UGVs can neutral-
ize dynamic adversaries but can also be neutralized. Bombs are
not neutralizable and can destroy UGV on contact. Smoke slows
down UAVs but is undetectable by dynamic adversaries. We use
an MDP formulation to solve the SWARM-CAE problem, focus-
ing on optimal tactics for effective mission completion (see Sec-
tion 3.2 for details). To manage the state-action space, we employ
encoding techniques, including group abstraction (robot platoon-
ing with various commands) and Pareto encoding of nodes (iden-
tifying critical points through non-dominated sampling). Further
details can be found in [19]. Figure 1 c1) illustrates these abstrac-
tions and consists of a sample 3D environment where the mission
is happening. A short video describing the environment and the
mission can be found in this link!

3.1 Simulation

We used a simulator called SHaSTA(Simulator for Human
and Swarm Team Applications) [20] for this study. SHaSTA
has multiple advantages over other simulators, some of which
are: 1) automated importing of any real-world maps using Open-
StreetMap API and running swarm simulations, 2) inbuilt swarm-
primitives such as formation control and path planning. Three
different primitives are used: Task allocation, Path Planning, and
Formation control. For path planning, we consider 3 different
routes: i) Aggressive path: Fastest path to the destination, ii)
Normal path: The path cannot have deadly adversaries such as
bombs or dynamic adversaries. iii) Cautious path: No adver-
saries present. The policy model provides the tactical decision
of location to search and the path to take to reach that location.
The entire map is abstracted as a topological graph. The loca-
tion of interests, such as buildings, intersections, and building
entrances, are considered nodes of graphs. The path planning
is done using the networkx library using this topological map.
The region-based formation control method [27] is used here to
navigate the platoons to the desired location. In order to im-
plement our Co-design approach, a simulator must be able to
import custom robots. New modules have been implemented for
importing custom robots without completely closing the simula-
tion. This helps collect experiences at a much faster pace and
aids in learning faster.

3.2 MDP Formulation

3.2.1 States. SHaSTA allows importing any real-world lo-
cation as a graph structure. This already solves the problem of
discretizing a continuous environment. Further, not all locations
on the map are equally important. Through Pareto optimality-
based filtering, We identify the critical locations through a non-
dominated sorting process. The Pareto filtering process can be

thttps://buffalo.box.com/s/3tadqfqtgv7jwSkcez7vt5gfc54ny2wq

TABLE 1: States of the tactics model for a swarm with variable UAV
Squads and UGV Squads

Graph Property Shape
Remaining Time 1,
Remaining UAV platoons 1,
Remaining UGV platoons 1,

State of the mission

shape 3,1)
Location 2,
range 1,
UAV states Gyay type 1,
Goal Location 1,
[ shape” — = = = " " 7|7 (Nyav,5) |
Location 2,
range 1,
UGV states Sygv g/e;éth }’
Goal Location 1,
T (Nugv.9) |
location 2,
probability 1,
Building states Spr.p indoor search progress 1
outdoor search progress 1

shape (NBLD>S)
location 2,
. type 1,
Acting Platoon YacT | range | N
shape 4,1
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given by k* = argmin, f;(k) = P(G)) xt(X — Gy), | =
1,2,... Ny, where X; represents the spatial location of the k-th
graph node that can be allocated as a destination; (X — G;) is
the time taken to reach a potential target G; from the point Xk,
and P(G;) is the probability that it is the true target G;. At the
beginning of the mission, the probability of each target building
is set to 1/N;, and once either the indoor or outdoor search is
completed for any target location, the probability of all the other
locations gets updated.

We formulated 4 individual graphs for the states of UAV,
UGYV, Pareto node, and adversaries. Note that these graphs are
input space for the Reinforcement Learning policy and differ
from the environment graph used for abstraction and simulation.
The UAV states are represented by Gyav = (Vuav, Euav, Quav),
the UGV states are represented by Gugv = (Vucv, Eugv, Qucv),
Pareto node states 6g1p = (VeLD, EBLD, £28LD) and the adver-
sary nodes by Gapy = (Vapv, Eapv, Qapy). In each graph, V
represents the nodes/vertices specific to the state, E represents
the edges connecting these vertices, and € is the corresponding
weighted adjacency matrix. Each node in these graphs represents
an entity - be it a UAV, UGV, Pareto node, or adversary and each
edge connects a pair of these nodes. The total count for each
node type is denoted by Nyav, Nugv, NpLp, and Napy, which
represents the total number of UAVs, UGVs, Pareto nodes, and
adversaries respectively.

The complete state formulation is provided in table 1. Apart
from these graphs, we also include linear vectors to include the
state of the mission, talents, and acting platoon in the state space.
For the "state of the mission," we consider the remaining time
and the current functional platoon counts. The UAV talent space
consists of the talent vectors (Y1, ). More details on the selection
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of talent metrics are explained in sec.5. At each time step, an
idle platoon is selected for which the action is required, and the
properties of this platoon are given in the acting platoon vector.

3.2.2 Actions. The Behavioural action (a) here is discrete,
and policy should decide which Pareto node to visit and the path
to be taken (aggressive path, normal path, and cautious path) for
the selected idle platoon. If the platoon runs out of range or
health, it is considered non-functional and will not be considered
further in the mission.

3.2.3 Reward. The proposed reward function takes into ac-
count the mission status, time, and casualties. If the scenario is
successful, meaning the robots have rescued the victim within the
allowed time, we provide rewards as follows

R=1s + (Asc) (12)

where (7. ) is the rescue time that is the duration taken to rescue
the victims and is normalized by the maximum allowed mission
time. The survival rate (A.) represents the ratio of the number
of robots that survive the mission to the initial size of the swarm.
If the operation is not successful, we provide a negative reward
of —1

4. GRAPH BASED REINFORCEMENT LEARNING

The Reinforcement learning (RL) approach involves max-
imizing the total reward per episode by training a policy net-
work to learn actions sequentially for the mission represented
as an MDP whose objective is to maximize the total reward per
episode. In this work, we implement a policy gradient-based on-
policy method called Proximal Policy Optimization (PPO) [28]
to train the policy. During every decision-making instance, the
policy takes in the state space variables and computes the ac-
tion (in this case the which Pareto node to visit and the path
to take, and also the talent metrics at the start of an episode.)
Since 4 of the main state space variables are represented as a
graph (as explained in section 3.2), we develop a policy network
based on Graph Neural Networks (GNN). The GNNs are used
to compute node embeddings for the graph. In this work, we
use Graph Capsule Convolutional Neural Networks (GCAPCN)
[29] as the GNN. GCAPCN has proved to be an excellent graph
feature abstraction network (from our previous work on sim-
ilar Multi-agent problems [30, 31]) compared to other GNNs
such as Graph Convolutional Networks (GCN), Graph Atten-
tion Networks (GAT), etc. We initialize 4 GCAPCN network
for the 4 grpahs (Syav, Sucv, €BLD, €apv) respectively, and
compute the corresponding node embeddings Fyyay € RNuav*/
Fygy € RNUGVXh, Fprp € RNBLDXh, and Fapy € RNADVXh,
respectively. Here h is the embedding length. We compute
feature vectors for representing the states of the acting platoon
Fac: € R and the UAV talents Fr, € R™", by two sepa-
rate linear transformations (with learnable weights). The features
Fuav, Fugv, Fapv, Fact, and Frap, are used to compute a
context vector Fourexs (explained in section 4.1.2). Since the
goal of the policy is to select a Pareto node and a path (one out of
three options), we compute logits for all the Pareto nodes across
all three paths. We compute 3 logits vector (LGp; € RI0X!
LGp; € R "and LGp3 € R'%%1), for the three types of path.

We use 3 Multi-head Attention (MHA) based decoders to com-
pute the logit vectors (explained in section 4.1.3).

4.1 Policy Model

4.1.1 Graph capsule-based feature abstraction. In order
to compute a learned representation of the 4 graphs of the state
space, we use a GCAPCN network to compute node embed-
dings. We initialize 4 GCAPCN networks for the 4 graphs. The
GCAPCN networks (Fig. 2) take in a graph (in the form of
node properties and the weighted adjacency matrix) and output
the node embeddings. Here we give a very brief description
of GCAPCN. Consider a graph ¢ = (V, E,Q) with N nodes,
where V is the set of nodes, E is the set of edges, and Q is the
weighted adjacency matrix. Let ¢; represent the node properties
of node i € V, as a vector, and X = [6)...6n] € RVXI%! pe
the node property matrix, where |§;| represents the cardinality
of ¢;. First, the node properties undergo a linear transformation
Fy € RV*" where N is the number of nodes in the graph and £
is the embedding length. This is followed by multiple graph cap-
sule layers [29] that make use of the transformed node properties
and the graph Laplacian matrix to compute permutation-invariant
node embeddings f7(X,L) € RN*" 'V p € [1,P],1 € [1, L],
where P is the highest order of statistical moment and L, is the
number of layers. This captures the nodal information (the node
properties matrix X) and the structural information ( the Graph
Laplacian L) of the nodes of the graph and has P representations
of this information. The node properties of the four graphs in
the state space can be found in Table 1. These embeddings are
concatenated and done for multiple layers (L.). The output from
the final layer F7_(x,r) is passed through a feedforward layer to
get an embedding length of A, which is then added with Fj to
get the final embedding F € RNV*". For further information on
GCAPCN, we refer the reader to [29, 30]. In the main policy
diagram (Fig. 4), the outputs are represented as Fprp, Fyav,
Fygv, and Fapy

4.1.2 Context Vector. The context vector is computed using
all the feature vectors.

Fcontext = C()l’lC(lt(MEHI’l(FBLD), Mean(FUAV), (13)
Mean(Fygv), Mean(Fapv), Facr, FrL))

where Mean(Fprp) € R is the mean of the mean feature
vector across all the nodes, and similarly for Mean(Fyav),
Mean(Fygy),and Mean(Fapy). The context vector Feopnrext €
R!*6" will be used along with Fg;p to compute the logits for
the three paths using the MHA decoder (explained in the next
section).

4.1.3 Logits Computation using MHA-based Decoder.
As mentioned in the above section, given the current state, the
goal is to select which Pareto node to visit and path to choose,
and this selection is made based on computing 3 logits vec-
tors (Zp1, Zp2, Zp3). In order to compute the logits, we use an
MHA-based decoder (Fig. 3). The decoder takes in the Pareto
embeddings Fprp in the form of keys (¥) and values (7/), and
the context Fonzex: in the form of query (Q) and computes com-
patibility scores between F opnrexr and every node embedding in
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FIGURE 2: The GCAPCN-based encoder. The node properties undergo a linear transformation first, followed by multiple graph capsule
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FIGURE 3: The MHA-based decoder. The input to the decoder in-
cludes the node embeddings and the context and the output is the
computed logits.
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(GCAPCN)
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Talent Bias Terms

FIGURE 4: Structure of the overall policy model consisting of the
GCAPCN encoders, Context, MHA-based decoders, Talent bias net-
work, and the custom probability distribution.

Fprp which is then used to compute the attention heads. These
attention heads are then passed through a feedforward layer and
multiplied with another linear transformation of the node embed-
dings to compute the final logits. This is done with three different

encoders for computing logits for the three types of path, which
is then used to compute the action distribution.

5. CASE STUDY - CO-DESIGN FOR SWARM TACTICS
LEARNING

In this section, we showcase the results obtained by applying
our proposed co-design framework to the SWARM-CAE prob-
lem. We delve deep into Talent selection based on the morphol-
ogy of UAVs, Pareto model creation using polynomial regres-
sion, Co-learning using our proposed Talent-infused Actor-critic
method, and finally, comparing the results of a co-design policy
with a sequential design policy.

' Co-designed Talent
@ Baseline Talent
Search Speed: 0.14 m/s

Cruising Speed: 5.62 km/hr
Flight Range: 16.95 Kms

25
20
o
YR\
%
z >
3 e
o
Q
By <D
. %2 &
0 R
Search Speed: 0.9 m/s £ &
Cruising Speed: 7.99 km/hr ’>>/ o ‘& ’Z}

Flight Range: 5.04 kms

FIGURE 5: Talent Pareto front represented by Polynomial Re-
gression applied to computed Pareto solutions obtained by multi-
objective optimization of Talents; limits of talents captured with
quantile regression.
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TABLE 2: Talent Metrics and Design Variables of UAVs achieved in
Co-design compared with Baseline Fixed Design

Constraints Design Outcome

conducted parallel training (10 threads) on a 24-core server with
64 GB of memory. Figure 6 displays convergence history for the
three talent variables and rewards over 55,000 episodes.

Type Variable LB UB ICo-design Baseline

Xu Length (m) 02 05 0.31 0.25
Width (m) 02 05 0.50 0.45

Motor Size (W) 100 300 143 105

Battery Size (W.h) 13.9 50 50 50
Propeller Size (m) 0.18 0.3 0.30 0.23
Payload(kg) 0.01 3.0 0.63 2.69

Y, | Search Speed (m/s) 0.0 1.0 0.14 0.9
Flight Range (km) 3.4 314 | 16.95 5.04
Cruising Speed (km/hr) 4.46 11.91 5.62 7.99

5.1 Talent Metrics and Pareto Model

Here, we focus on developing a Blended-Wing-Body (BWB)
integrated Quadcopter (BIQU) used in our previous studies [18].
Key morphological parameters that determine the performance
attributes are the dimensions (length and width) of the quad-
copter’s arm, the motor power, the battery capacity, propeller
diameters, and the payload. The lower and upper bounds of
these parameters are shown in table 2. We identify three unique
talents based on the characteristics of the SWARM-CAE prob-
lem: search speed (YT 1), cruising speed (YT ,») and flight range
(Y7L ,3). For the search speed, we assume a linear correlation be-
tween the sensor and its weight; thus, the higher the payload, the
higher the search speed. We executed the NSGA?2 multi-objective
optimizer 6 times with an initial population of 120 and 40 gen-
erations each; the non-dominated samples from these runs were
again filtered based on the non-dominated filtering process to get
the final Pareto points. For creating a Pareto model as explained
in section 2.2, we considered search speed and the velocity to be
independent variables and created a polynomial linear regression
model to approximate the Fight Range. The resulting model is
shown in Fig 5.

5.2 Behavior Learning subject to Talent Boundary

5.2.1 Policy Creation. We used Stable-baselines3 [24], a
standard open-source RL Library for creating a custom policy,
distribution, and neural networks as discussed in section 4. The
policy outputs the search speed IA/TLJ , cruising speed IA/TL, 2and a
behavioral action(a).

5.2.2 Training. We trained the swarm tactics policy using
the Talent-infused Actor-Critic method for 3 million timesteps
simulated in the Buffalo Downtown region, keeping the platoons
counts fixed at Nyay : 4, Nugy : 4, Ngrp : 10, and Napy : 6,
with a consistent depot location. Even though every episode of
training can have any combination of the above-mentioned pa-
rameters, we set it as constant during training since this enables us
to stack the state space variables as tensors for faster training using
GPUs. Each episode can be considered as a function evaluation
with respect to the behavior and talents f7 (Yrr, ®) = R, where
R is the mission completion reward given by Eq. (12). We in-
troduced 30 unique scenarios, varying goals, robot numbers(they
form as 4 platoons), target buildings, and adversaries, yet all sce-
narios began from the same depot. In each episode, a scenario
was randomly selected from this pool, and the policy underwent
training for 3 million timesteps with a learning rate of le —3. We
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FIGURE 6: Training history (Talents and overall reward): a) Flight
range b) Cruise speed, c) Search speed, d) Mission Rewards

Figure 6 d) shows the rewards converge at around 22000
episodes. At the onset of training, the confidence level or the
variance of the policy due to the Gaussian distribution in RL
policy is high, and this allows for higher exploration in talent
space. This is evident from Fig 6 a), b), and c). As the training
progresses and the rewards get to a steady level, the confidence
level increases, which reduces the variance in the talents. The
final cumulative standard deviation in the trained policy after
55,000 episodes is 13%. The policy enforces higher range, lower
speed, and lower search speed. The training scenarios are cre-
ated in such a way that the goal locations(victim’s location) are
at different distances from the depot location, and in order to be
successful in all scenarios, the UAVs require a higher range. Due
to its high range, it has to sacrifice its speed and/or payload. Since
each UAV platoon consists of multiple robots and they collabo-
ratively search different areas of the buildings, it is not necessary
for an individual vehicle to have high-quality sensors leading to
high payloads, and this explains the convergence of search speed
to a low value. The total training time is approximately 160
hours, and hence, for each episode(single function evaluation of
JL(YrL,®)), it takes 10.47 seconds. The optimized talents Y;L
from the RL policy after the training are given in table 2

5.3 Morphology Finalization

Using the optimized talents Y7, we got from the training, We
use Mixed-Discrete Particle Swarm Optimization (MDPSO)[32]
to optimize for the best morphology. The objective here is to find
suitable morphology that is as close as possible to the required
talents. With an initial population of 150, the optimization ran
for 80 iterations. The convergence history is shown in Fig 7. The
final morphology closely matched the learned talents, with an
error under 0.9, demonstrating the effectiveness of the polyno-
mial regression-based Pareto model (Table 2). The optimization
process took 110.8 seconds.
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FIGURE 8: CAD model showing the comparison of optimized UAV
design (left) and the Baseline UAV (right); note that they also are
significantly different in their motor size and payload capacity,
which are not illustrated here.

5.4 Performance Analysis

In this section, we compare the results of our co-designed
policy with a fixed-design policy. To get a suitable talent for fixed-
design policy, we calculated the average distance between the
depot and target locations with a cautious path selection, which
is 758 meters, and the distance between each target location is
approximately 550 meters. There are a maximum of 8 target
locations, and if a single UAV platoon decides to go to all 8 target
locations, the maximum range it requires is around 5 KM. We
randomly sampled a Pareto point from the Pareto solutions we got
from section 5.1 with a 5 KM range. Note that obtaining values
from Pareto points results from the sequential design process
explained in section 2. We narrowed down a set of values based
on environmental factors and selected the optimal Pareto value
to ensure the most robust and effective comparison. Since we
are compromising on the range, we get higher search speed and
cruising speed, allowing the UAV platoons to go to different
locations and complete the search faster. Both the optimized
talents and fixed talents are shown in Fig 5 and in table 2. We
trained this RL policy for the same number of episodes as the
co-design policy; note that here, the policy doesn’t contain an
additional talent network as we did for the co-design policy. The
fixed design policy only outputs the action a to be taken given the
state s, whereas the talents remain fixed. The state space, reward,
and all hyper-parameters are kept the same.

To evaluate the performance of the trained policies, we hand-
crafted an additional 40 distinct scenarios with high complexity
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FIGURE 9: Performance of Co-design Policy and Fixed Baseline
Trained Policy in training map. The metrics used for comparisons
are a) Rewards, b) Survival rate (Number of remaining robots at
end of mission), c) Completion Time of the rescue operation, and
d) Success Rate of rescue operations (Bar plot showing total suc-
cessful mission completion)

for testing. These scenarios contain varying critical swarm pa-
rameters such as the number of robots, the locations of targets and
goals, and the presence of adversaries. Each policy was tested
for 250 episodes, and the outcomes are presented in Fig 9. As
shown in the figure, the co-design policy achieves a success rate
of about 82%, whereas the fixed design policy achieves only 61%.
Our analysis focuses on 3 key metrics: total rewards, completion
time, and survival rate. These metrics are only applicable for suc-
cessful scenarios and hence don’t reflect the performance. The
total rewards, quantifying the cumulative reward achieved at the
end of each episode, are computed as per Eq. (12). Notably, the
completion time and survival rate influence the reward metric.
Hence, we also provide a comparison of these parameters. The
co-design policy also has a higher reward and higher survival
rate with less variance than that of a fixed-design policy. The co-
design Policy has a higher completion time; this is primarily due
to low cruising speed. The CAD model comparing the Baseline
UAV and Co-designed UAV is shown in Fig 8.

5.5 Computing Costs Analysis

In this section, we compare the computational time taken by
our proposed co-design framework to the nested co-optimization.

Our talent-behavior co-optimization was trained in a work-
station with Intel CPU-12900k (24 Threads), NVIDIA 3080ti,
and 64 GB of RAM. The computation times for each step in our
co-design framework are as follows: 6.7 minutes for 6 runs of
NSGA?2 to obtain talent metrics, nearly negligible time (3.5 sec-
onds) for creating a Pareto boundary, approximately 160 hours
for talent-behavior actor-critic optimization using 20 parallel en-
vironments for experience collection, and 1.8 minutes for final-
izing morphology. Overall, our co-design framework incurs a
total computational cost of approximately 160.10 hours, with a
significant portion of this time allocated to the learning process.

For the same settings of NSGA2, i.e., a population size of
120 and 40 generations, and considering each behavioral learn-
ing takes 20,000 episodes, a single run of NSGA-2 will take an
estimated 2333 hours. This estimate is based on the assumption
that all 120 behavioral learning happen in parallel, while each
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behavioral learning uses 20 parallel environments to collect ex-
periences. With the nested co-optimization, there is a necessity to
search the overall morphology space, whereas, in our co-design
approach, the morphology-talent mapping and utilizing the pareto
front for talent-behavior learning convert the morphology search
space into Talent-Pareto search (search within the non-dominated
solutions), which essentially makes our co-design framework ex-
tremely frugal in terms of computational time and computational
hardware requirements compared to the nested co-optimization
approach.

6. CONCLUSION

In this paper, we introduce an efficient co-design framework
to concurrently design the behavior and morphology by decom-
posing this optimization process into multiple search processes,
the most critical among which is a talent-behavior co-learning
process that is also constrained by a pre-computed talent Pareto.
This process uses a novel Talent-infused Actor-Critic. To demon-
strate the effectiveness of the proposed framework, we apply it to
design the morphology and behavior of quadcopter type UAVs
that are operating as a swarm along with a team of UGVs. Here,
the behavior encompasses tactical decisions regarding tasks to
allocate to different UAVs/UGVs in order to complete the mis-
sion in minimal time and with minimal loss of robots due to
adversaries. These decisions are provided by the behavior policy
model, trained by graph RL. Compared to a baseline sequential
design (with morphology chosen from the talent Pareto and be-
havior learned separately), the co-design obtained outcome per-
forms significantly better in terms of mission success rate. The
overall co-design costs were also estimated to be 14 times smaller
than what a nested co-optimization would have cost in terms of
computing time. In its current form, the proposed approach
hinges on the ability to identify talent metrics that are purely a
function of morphology (i.e., independent of the control/behavior
models). Hence, future work could explore autoencoders or re-
lated approaches to identify latent spaces to serve as the talent
space instead and, therefore, allow the presented decomposition
approach to work in a wider range of problems.
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