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The advent of Urban Air Mobility (UAM) presents the scope for a transformative shift in
the domain of urban transportation. However, its widespread adoption and economic viability
depends in part on the ability to optimally schedule the fleet of aircraft across vertiports in a UAM
network, under uncertainties attributed to airspace congestion, changing weather conditions,
and varying demands. This paper presents a comprehensive optimization formulation of the
fleet scheduling problem, while also identifying the need for alternate solution approaches, since
directly solving the resulting integer nonlinear programming (INLP) problem is computationally
prohibitive for daily fleet scheduling. Previous work has shown the effectiveness of using (graph)
reinforcement learning (RL) approaches to train real-time executable policy models for fleet
scheduling. However, such policies can often be brittle on out-of-distribution scenarios or
edge cases. Moreover, training performance also deteriorates as the complexity (e.g., number
of constraints) of the problem increases. To address these issues, this paper presents an
imitation learning approach where the RL-based policy exploits expert demonstrations yielded
by solving the exact optimization using a Genetic Algorithm. The policy model comprises
Graph Neural Network (GNN) based encoders that embed the space of vertiports and aircraft,
Transformer networks to encode demand, passenger fare, and transport cost profiles, and
a Multi-head attention (MHA) based decoder. Expert demonstrations are used through
the Generative Adversarial Imitation Learning (GAIL) algorithm. Interfaced with a UAM
simulation environment involving 8 vertiports and 40 aircrafts, in terms of the daily profits
earned reward, the new imitative approach achieves better mean performance and remarkable
improvement in the case of unseen worst-case scenarios, compared to pure RL results.

I. Nomenclature

N = total number of vertiports/nodes in the UAM network

Vv = set of all vertiports/nodes

E = set of all vertiport connections/edges

A = connectivity matrix for the vertiports/nodes

Gy = (Vy, Ey, Ay) Vertiport network expressed as a graph

G, = (Ve,E., A.) eVTOL network expressed as a graph

K = setof all eVTOLs

Nk = number of eVTOLSs

k = index to denote eVTOLS in K

Xkt = vertiport where eVTOL k is at time t

S{:"" = setof all journey of eVTOL k € K

v = starting vertiport of the journey j € S;(O”’ for eVTOL k € K
Vg”]‘d = ending vertiport of the journey j € §;°*" for eVTOL k € K
C = maximum passenger capacity for the eVTOLs

T = total time window for daily operation

start time of journey j € Siow foreVTOL k € K
end time of journey j € §,°* for eVTOL k € K
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representation of a time instant (t € T')

Cf:g}f = max eVTOL parking capacity of a vertiport
CCharge = max eVTOL charging capacity of a vertiport
BX .. = maximum battery capacity of eVTOL k
Bk = battery charge of eVTOL k at time instant ¢
charge _ . . . . .
B; j = battery charge required to travel from vertiport i to vertiport j
0 = demand forecast model
o, j,1 = demand forecast from node i to node j at time ¢
F i’;.fmenger = fare charged from passengers travelling from node i to j at time ¢
R;j = cost of transporting 1 passenger from vertiport i to node j
N lp SNETS = number of passengers transported by an eVTOL on journey j € $7°,i = vt
Price®lec = price of electricity
Trop = expected take-off delay at vertiport i
Pl?ljf”“’ ¢ = probability of route closure between vertiports i and j
P{ ail = probability of eVTOL k € K failing

I1. Introduction

In the modern landscape of urban transportation, the emergence of Urban Air Mobility (UAM) introduces a
revolutionary dimension to the concept of commuting. As cities grapple with increasing populations and traffic
congestion, the concept of UAM proposes the use of electric vertical take-off and landing (eVTOL) aircraft [1] as
an alternate form of automated air transportation. With a projected market size of $1.5 trillion by 2040 [2], its
economic viability will be driven by the ability to operate a sufficiently large number of eVTOLSs in any given market
(high-penetration), placing the domain of UAM fleet scheduling at the forefront of innovations. Following the air-space
and aircraft safety constraints while being robust against dynamic environmental changes, mitigating energy footprint,
and maximizing profitability makes developing an optimal scheduling policy challenging. The complexities inherent in
UAM fleet scheduling are characterized by:

Dynamic environments where real-time factors such as airspace congestion, weather conditions, demand uncertainty
characterized by dynamic traffic patterns, changing weather conditions, and regulatory constraints demand intelligent
scheduling solutions that can swiftly adapt to real-time challenges [1].

State information sharing among all vertiports and eVTOLSs is necessary for trajectory and speed adjustments to
ensure the safety of the operations [3].

Scarce resources such as vertiport parking lots, charging stations, and air corridors must be optimally allocated to
prevent unnecessary delays and conflicts [4].

Contemporary solutions to such scheduling problems take the form of complex nonlinear Combinatorial Optimization
(CO) problems [5], which can be addressed through classical optimization, heuristic search, and learning-based
approaches. While these approaches provide local optimal solutions for small UAM fleets [6-8], they often present
computational complexities that render them impractical for online decision-making and larger fleets. Furthermore,
despite the computational expenses, these methods would still be viable options if we disregard uncertainties in the
eVTOL’s operations (e.g. occasional failures of the aircraft) and environmental constraints (like the closure of air
corridors due to bad weather conditions). However, these factors cannot be disregarded because of the safety concerns
they impose, making it especially challenging to use such approaches.

In the pursuit of addressing these complexities and presenting an efficient online scheduler, we extend our previous
work in [9] by proposing a specialized Graph Neural Networks (GNN) [10, 11] based adversarial imitation learning
framework that learns from the optimal schedules (expert data) generated by classical optimization algorithms and
builds upon existing multi-agent task allocation methods for scaling up to larger UAM fleets. We begin by posing the
UAM fleet scheduling problem as an Integer Non-Linear Programming (INLP) problem with a small number of eVTOLs
and vertiports and generate optimal solutions using an elitist Genetic Algorithm. These form the expert demonstrations
for the imitation learning policy. We use the Generative Adversarial Imitation Learning (GAIL) [12] algorithm to train
the GNN policy. Then, we establish how a graph representation efficiently encodes all the state-space information
of the vertiports and the eVTOLS, thus motivating the use of GNNs over regular neural networks. We also present a
comparative study between a pure reinforcement learning-based method and a Genetic Algorithm, that demonstrates



edge cases where standard RL methodologies fail to generate an optimal solution and require access to expert data to
train an optimal policy. Finally, we compare our results with standard RL-based and Genetic Algorithm based solutions
and demonstrate that our method performs better than RL-based methods, in terms of profitability and while it performs
equally to a Genetic Algorithm, it is significantly faster in it terms of computational times when compared to the Genetic
Algorithm. Fig.1 presents a diagrammatic representation of the UAM fleet management problem.
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Fig.1 A visual representation of the UAM fleet management problem. CapTAIN-GAIL is the imitation learning
policy that takes as input, the information from the vertiport and eVTOL graphs along with operational costs,

passenger demands, and air-corridor availabilities and decides the next vertiport that the decision-making agent
should go to.

I11. Related Works

The existing body of work in Urban Air Mobility (UAM) fleet planning has witnessed notable growth, propelling the
optimization and learning formalism to advance this emerging concept. However, a considerable portion of this literature
neglects crucial guidelines outlined by the FAA [1] concerning UAM airspace integration, particularly in aspects
such as air corridors, range/battery constraints, and unforeseen events like route closures due to adverse weather or
eVTOL malfunctions [7, 13, 14]. Traditional methods, including Integer Linear Programming (ILP) and metaheuristics,
prove inadequate for efficiently solving related NP-hard fleet scheduling problems [15-20]. For context, we focus on
hour-ahead planning to allow flexibility in adapting to fluctuating demand and route conditions affected by weather
and unforeseen aircraft downtime. While learning-based methods have shown promise in generating policies for
combinatorial optimization problems with relatable characteristics [11, 21-27], their current forms often oversimplify
complexities or tackle less intricate problem scenarios. In response, our paper introduces a centralized learning-based
approach tailored to address the complexities and safety guidelines inherent in UAM fleet scheduling. Our proposed
approach involves the creation of a simulation environment that encapsulates these complexities, facilitating the training
of a policy network for generating hour-ahead sequential actions for eVTOLSs across a generic 12-hour operational day.
The policy network integrates a Graph Capsule Convolutional Neural Network (GCACPN) [28] for encoding vertiport



and eVTOL state information presented as graphs, a Transformer encoder network for assimilating time-series data on
demand and fare, and a feedforward network for encoding passenger transportation cost. Additionally, a Multi-head
Attention mechanism is employed to fuse the encoded information and problem-specific context, enhancing sequential
decision-making [25, 29].

IV. Problem Description and Formulation

A. UAM Fleet Scheduling as an Integer Non-Linear Programming Problem

We begin by posing the UAM fleet scheduling problem as an optimization problem [9], enabling us to use a Genetic
Algorithm to generate the expert solution. Consider a UAM network comprising N vertiports and Nx number of
eVTOLs, each with a maximum passenger carrying capacity of C(= 4). Let V and K denote the set of all vertiports

and eVTOLSs, respectively, with each vertiport i € V capable of accommodating a maximum of CﬁZ;k = 10) number

of eVTOLs while also having charging stations for C,Lnf;irg (= 6) eVTOLS. Some vertiports might not have charging
stations and are called vertistops (Vs C V). We consider there to be 4 air corridors between two vertiports with two
corridors for each direction. Each vertiport i € V has an expected take-off delay Tl.TOD that affects every eVTOL taking
off, and we consider this estimated take-off delay to be less than 6 minutes at each vertiport. The probability of route
closure between any two vertiports i and j is considered to be Pil]?’s “re(< 0.05) while the probability of an eVTOL k
becoming dysfunctional is considered to be Pi all(S 0.005). Every episode considers a randomly assigned take-off
delay (< 30 mins) that is drawn from a Gaussian distribution with mean Tl.TOD and a standard deviation of 6 minutes.
Additional assumptions that are made regarding the problem setup are: 1) The decision-making is done by a central
agent that has access to the full observation of the states of the eVTOLs and the vertiports, and 2) An eVTOL can travel
between any two vertiports given it has sufficient battery charge and the resistive loss of batteries is negligible.

We define R;; as the operation cost of transporting a passenger from vertiport i to j while F/**“"#“" is the price
a passenger is charged for traveling from i to j at time ¢, that is based on passenger demand. We follow the demand
model as mentioned in our previous work [9]. Let Q(1, j, t) represent the demand between vertiports i and j at time
t. A subset of vertiports Vg C V are considered to be high-demand vertiports and we account for two peak hours of
operation: 8 : 00 — 9 : 00 am (T7¢%*!y and 4 : 00 — 5 : 00 pm (T7¢*k?) such that Vz experience high demands during
both peak hours. The demand is high from V — Vj to V during T77¢?¥! and vice-versa during T7P7¢?¥2, The passenger
fare is computed by adding a variable fare FP%55¢"8¢" o a fixed base fare of F?%%¢ = $5. The variable fare between
two vertiports i and j is dependent on the passenger demand Q(i, j, t) and the operational cost R; ; and is computed

Flpfise"ger = Ri j X Qractor (i, j, 1), where Q racror (i, j, 1) = max(log(Qi, j,1)/10),1). A constant electricity
pricing, Price®’¢c = $0.2/kWh is used [30].

The eVTOL vehicle model is considered to be the City Airbus eVTOL [31] with a battery model similar to the one
described in [8]. The aircraft has a maximum cruising speed of 74.5 mph and a passenger seating capacity of 4. The
operating cost of this vehicle is $0.64 per mile [8]. It has a maximum battery capacity of B,4x = 110 kWh. Let Bf
represent the charge left in eVTOL £ at time ¢ and if the eVTOL travels from vertiport i to j, then the charge at the next

time step is BY, | = BF — Bd;.arge where BCha 8¢ is the charge required to travel from i to j.

We consider an operating time horlzon of T hours (with start time 7%'*"* and end time 7¢*?) and the aim of the
UAM scheduling problem is to maximize the profits earned in the 7 hours. This is achieved by smartly assigning (based
on the demand, battery charge, operation cost, etc.) a journey to an eVTOL during each decision-making instance ¢ € 7.
A journey is defined as the commute of an eVTOI between two vertiports i and j. If i = j, the eVTOL has to wait for
TW4 (= 15) minutes at the vertiport before assigning a journey in the next decision-making instance. We assume that
each eVTOL can take off at any time within the T horizon, and we consider the schedule for a single-day operation
where the operational time begins at 6:00 AM (T°%"") and ends at 6:00 PM (Tend).

Optimization formulation: Based on the notations described above, the optimization problem is formulated as
follows (similar to our previous work [9]). For every eVTOL k € V,, let S{{OW be the set of journeys taken during time

period of T and, N/**“"8"* be the number of passengers transported during the trip, [ € Sio‘” by eVTOL k. Let Bf
be the battery charge of eVTOL k just before its I’th journey, VS tart and Ve”d be the respective start and end vertiports
of eVTOL k during it /’th journey, T mkeof  and Tla"dmg be the correspondlng takeoff time and landing time. Then the

objective of the optimization problem is to maximize the net profit z that can be computed by subtracting the operational
costs C© and the cost of electricity CF from the revenue generated. These values are computed as:
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Therefore, the objective function can be formulated as:

max z = Revenue — C9 — C€ @
With the following constraints:
Nl{)lassengers‘ =min(C,Quc: (I, ,1)) ,i= Vl:,tlurt’j — V,i’l’d,t _ le,alkeoffVl c S‘,’é"”r )
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Where Q.. (1, j,t) is the actual demand, and A is a matrix that represents the availability of routes between
vertiports. A;; = Aj; = 1 if the route between i and j is open and = 0 if the route is closed.

B. Generating the Expert Demonstrations

Given the INLP problem formulation in Sec.IV.A, we use an elitist Genetic Algorithm (GA) to generate the expert
solutions for a small number of eVTOLSs (N = 40) and vertiports (N = 8). The GA uses a population size of 100,
max iterations of 100, mutation probability of 0.1, elite ratio of 0.01, and cross-over probability of 0.5. The GA is
implemented in batches of 60 decision variables which are then simulated sequentially and the objective functions are
computed. Upon simulating a batch of the GA solution, we achieve an updated state of the environment which is then
used to compute the next 60 decision variables. This process is repeated until the episode is over. Each decision variable
takes an integer value between 1 and N. We generate the GA solutions for 100 different scenarios (for each scenario, the
locations of the vertiports stay fixed) which are then used as expert demonstrations for the imitation learning algorithm.

C. MDP Formulation

Having expressed the UAM fleet scheduling problem as an INLP problem, we now define it as a Markov Decision
Process (MDP) that sequentially computes the action for each eVTOL at the decision-making time instant ¢ € 7. The
state, action, reward, and the transitions are described below:

State Space: The state-space at time ¢ consists of information about 1) the vertiports, represented as a graph Gy, 2)
the eVTOLs, represented as a graph G, 3) the passenger demand model Q, 4) passenger fare F'P4$5¢"8¢" | 5) operational
costs R (computed based on the per mile operational cost of the eVTOL, the passenger demands and the price for
electricity), and 6) time when it is safe to launch an eVTOL to the corridors 7¢°" € RNXNXZ

At any decision-making time step, the state information is processed by a transformer-aided multihead-attention
graph capsule convolutional neural network (that was presented in [9]) that acts as the policy network for the imitation
learning algorithm. Details about the policy network have been discussed in V.A. Further details on the state space are
as follows:

Graph Representation of the Vertiport Network: Gy = (V,,, E,,, A,) represents the vertiport network as a graph
where V), (= V) is the set of vertiports, E,, represents the set of edges/routes between the vertiports, and A, represents
the adjacency matrix of the graph. To consider the route closure probability, a weighted adjacency matrix is
computed as A, = (1yxny — PL9*7€) x A. The node properties 6% of the vertiport i € V, at time ¢ are defined as

park pcharge -TOD jvstop
Ci [ T ’ Tl ’ Ii ]

; , where (x;, y;) are the x-y coordinates of the vertiport, C’* "k is the number

0t = [xi, i,



of eVTOLSs currently parked, Tfharg ¢ is the earliest time when a charging station will be free, TP is the expected

take-off delay, and 1;*°" is a variable that takes the value 1 if the node is a vertistop and 0 if the node is a vertiport.
Graph Representation of the eVTOLs: G, = (V,, E., A.) represents the graph that encodes the information

about the eVTOL network. V, represents the set of eVTOLs, E, represents the set of edges, and A, represents the

adjacency matrix. G, is considered to be fully connected and each eVTOL k € V, is represented by it properties i.e.

vt = |xd, yd, BX, TE ight - dec, Pfj‘“], ! € RS. Here, x¢, y{) represent the coordinates of the destination vertiport, By is

the current battery level, T: igh i< the next flight time, T{¢ is the next decision making time, and P} is the probability
of failure.

Action Space: At each decision-making time instance, each agent takes an action from the available action space.
The action space consists of all the available vertiports. Therefore the action space will be of size Nx. During a
decision-making step, if an agent chooses the vertiport at which it currently is, then it waits for 15 minutes in the
vertiport, until it makes a new decision.

Reward: We consider a delayed reward function where the agent gets a reward only at the end of an episode. The

reward is ratio of the profit earned to the maximum possible profit in an episode, i.e. ey jev se[rsiart Tena](Q (i, j, 1) X
Fpassenger) ’ ’ ’
it
Transition Dynamics: Since demand and electricity pricing can vary from that of the forecasted values, the

transition of the states is considered to be stochastic. The transition is an event-based trigger. An event is defined as the
condition that an eVTOL is ready for takeoff. As environmental uncertainties and communication issues (thus partial
observation) are not considered in this paper, only deterministic state transitions are allowed.

V. Proposed Graph-based Adversarial Imitation Learning Approach
We propose an adversarial imitation learning formulation to train a transformer-aided GNN-based policy network
called CapTAIN [9] that will assign actions to the eVTOLs. The policy network takes the state information from all the
eVTOLs and vertiports as input and assigns an action to the eVTOLSs that are ready for take-off. The policy is trained
using the generative adversarial imitation learning (GAIL) [12] algorithm that uses the solutions generated by the GA as
the expert demonstrations. The following section presents further information about the GAIL algorithm and the state
encoding and decoding.

A. Policy Network

We use the Capsule Transformer Attention-mechanism Integrated Network (CapTAIN) [9] as the policy network
for GAIL. CapTAIN combines graph neural networks and transformers to encode the state-space information and used a
multi-head attention-based decoder to generate the action.

The information from the veriports and eVTOLs (Gy and G,) are first passed through a Graph Capsule Convolutional
Network (GCAPCN), introduced in [28], which takes the graphs as the inputs and generates the feature embeddings for
the vertiports and eVTOLs. Simultaneously, a transformer architecture is used to compute learnable feature vectors
for the passenger demand model and the passenger fares (information that can be represented as time-series data).
Additionally, a simple feed forward network computes the embeddings for the passenger transportation cost R which can
be represented as a N x N matrix, and another feed forward network processes the corridor availability. We keep a track
of the time at which it is safe for a new eVTOL to enter a corridor, subject to various safety restrictions and minimum
separation, using a N X N X 2 tensor, 7", which is flattened and fed into the feed forward network. The outputs from
the transformer, GCAPCN, and the feed forward networks form the encoded embedding which is then passed through a
multi-head attention [29] decoder to generate the probabilities of choosing each action, for the decision-making agent.
Further technical details about CapTAIN have been discussed in [9].

B. Training with Generative Adversarial Imitation Learning

The policy network 7 is trained on the expert demonstrations generated by the Genetic Algorithm, using Generative
Adversarial Imitation Learning (GAIL), an imitation learning approach introduced in [12]. The policy is learnt using a
two-player zero-sum game which can be defined as:

argmin argmax E, [log D(s,a)] + B, [log (1 — D(s,a))] — AH(x) )
© De(0,1)



Where ng is the policy followed by the expert demonstration. D is a discriminator that solves a binary classification
problem D : SxA — (0, 1), where S represents the state-space and A represents the action-space. D tries to distinguish
between the distribution of data generated by x from the expert data generated by 7z, When D cannot distinguish data
generated by the policy 7 from the true data, then 7 has successfully matched the true data. H(1) = E, [—logn(als)]
is the entropy. Figure 2 shows the overall learning framework.

The discriminator (approximated by a neural network) tries to maximize the objective, while the policy 7 tries to
minimize it. GAIL alternates between an Adam gradient [6] step on the parameters w of D,, with the gradient:

By, [Vi log Dy (s,a)] +Ep [Vy log 1 = Dy, (5, a)] (10)

and a Trust Region Policy Optimization (TRPO) [7] gradient step on the parameters 6 of m, heta which minimizes a cost
function c(s, a) = log D,,,,, (s, a) with the gradient:

B, [Vologmg(als)Q(s,a)] —AVeH (7e) (11)
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Fig. 2 The learning framework for CapTAIN-GAIL

VI. Experiments and Results

A. Simulation Details

We use the simulation environment presented in [9] that is implemented in Python and uses the Open AI Gym
environment interface. We consider a hypothetical city covering an area of 50 x 50 sq. miles with 8 vertiports (2 of
which are vertistops) and 40 eVTOLs. The locations of the vertiports remain the same throughout training and testing
the algorithm. The rest of the operational details stay the same, as discussed above. To train the CapTAIN policy
network, we use the GAIL implementation from imitation [32], a python package for imitation learning algorithms, and
PPO [33] from stable-baselines3 [34].

B. Training Details
We begin by training the CapTAIN policy using just PPO, for 1.5 million steps. Next, we generate the expert
demonstrations for 100 scenarios (un-seen by CapTAIN during training) using a standard elitist Genetic Algorithm



(GA) (using the parameters as described in Sec.IV.B) and compare the performance of CapTAIN against GA. These test
scenarios are generated by fixing the seed values for the random number generators in the simulation. Finally, we train
the imitation learning policy (CapTAIN-GAIL) on the expert demonstration, with a soft start by beginning the training
with the pre-trained weights from CapTAIN, and finally compare the performance of CapTAIN-GAIL against CapTAIN
and GA. All the training, experiments, and evaluations are computed on a workstation running Ubuntu 22.04.4 LTS
and equipped with an Intel Core i19-12900K processor and Nvidia GeForce RTX 3080 Ti graphics processor. Further
evaluation details and results are discussed in the sections ahead.
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Fig. 3 Difference in the profits earned by GA and CapTAIN, Positive values indicate better performance by GA
and negative values indicate better performance by CapTAIN.

C. Comparing CapTAIN vs. Genetic Algorithm

We begin by testing the performance of a policy trained purely using reinforcement learning (i.e. CapTAIN trained
using PPO) against GA. The daily profit earned by both the algorithms in each test scenario, is used to compare their
performance and Fig.3 plots the difference in the profits earned by GA and CapTAIN in each of the 100 test scenarios.

It can be seen that GA generates more profits in the majority of scenarios (GA performs better in 66 out of 100
cases), with GA generating an average profit of $17603 while CapTAIN generating an average profit of $15727.
To test the significance of this difference, we perform a statistical T-test with the null-hypothesis being that both methods
generate the same amount of profit. The p-value of the test turns out to be 3.08 x 1073 (< 0.05) which means that GA
has a significant statistical advantage over CapTAIN. This motivates the use of imitation learning for training a policy
that can mimic GA while being significantly more efficient than GA in terms of computational time.

D. Evaluating CapTAIN-GAIL

We train the imitation learning policy with a soft start, i.e. we use the pre-trained CapTAIN policy from Sec.VI.C as
the initial policy for GAIL. The generator policy in GAIL is trained for 20 iterations with 20000 steps in each iteration.
The trained imitation learning policy is then tested on the 100 test cases and its performance is compared against
CapTAIN and GA. We further test the generalizability of CapTAIN-GAIL on a new set of 100 unseen test cases that
were not a part of the expert demonstrations.

1. Average Profits
Fig.4 plots the average profits earned by all three methods, in the test scenarios that were a part of the expert
demonstrations. It can be noticed that CapTAIN generates the least profit while CapTAIN-GAIL and GA almost earn



equal profits on average. A more detailed analysis of the performance of the three methods is discussed below.
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2. CapTAIN-GAIL vs. CapTAIN
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Fig. 5 Difference in the profits earned by CapTAIN-GAIL and CapTAIN, Positive values indicate better
performance by CapTAIN-GAIL and negative values indicate better performance by CapTAIN.

Fig.5 compares the difference in the profits earned by CapTAIN-GAIL and CapTAIN. CapTAIN-GAIL generates
more profits than CapTAIN in 73 out of 100 cases, with the average profit of CapTAIN-GAIL being $17587 while
the average profit of CapTAIN is $15727. To statistically evaluate the significance of this difference, we conduct
a T-test with the null-hypothesis being that both the algorithms generate equal average profits. With a p-value of



6.55 x 10~5(< 0.05), we have statistical evidence that CapTAIN-GAIL performs significantly better than CapTAIN.

3. CapTAIN-GAIL vs. GA

Next, we evaluate the performance of CapTAIN-GAIL against GA. With Fig.6 plotting the difference in the profits
earned by these two methods, we can see that CapTAIN-GAIL performs better than GA in 55 out of the 100 cases,
which is roughly half the number of test cases. The average profit earned by GA is $17603 while the average profit
earned by CapTAIN-GAIL is $17587. Upon performing a T-test with the null hypothesis being that both methods
earn the same average profit, we get a p-value of 0.97(> 0.05) which indicates that statistically, both methods have a
similar performance. This result matches our expectations since the imitation learning policy should at least perform
equal to the expert when tested on the expert demonstrations.
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Fig. 6 Difference in the profits earned by CapTAIN-GAIL and GA, Positive values indicate better performance
by CapTAIN-GAIL and negative values indicate better performance by GA.

Even though both CapTAIN-GAIL and GA perform equally in terms of the average profits they generate, it shall
be noticed in Fig.6 that the difference in the profit values are quite large. This indicates that in cases where GA
performs better, it outperforms CapTAIN-GAIL by a large margin while the opposite is also true, i.e. CapTAIN-GAIL
outperforms GA by a large margin, in the cases where it performs better. One would ideally assume the difference in the
profits to be close to 0, given that both the methods generate similar amount for profits, and this discrepancy in the
performance of these two algorithms shall remain the subject of future research.

4. Generalizability Analysis

To test the generalizability of CapTAIN-GAIL, we test it on a new set of 100 unseen scenarios that were not a
part of the expert demonstrations on which it was trained, and compare it’s performance against CapTAIN. Fig.7
plots the difference in the profits earned by CapTAIN-GAIL and CapTAIN. When compared to Fig.5, we notice that
CapTAIN-GAIL shows improvement in terms of performing better in cases where CapTAIN generates more profits
(which can be seen by the reduced negative values in Fig.7).

Further analysing the mean profits earned by both the methods in the unseen scenarios (as shown in Fig.8) and
comparing it to Fig.4, we notice that CapTAIN-GAIL achieves better mean performance and remarkably better bounding
of the unseen worst-case scenarios (that can be seen in the reduce standard deviation between Fig.4 and Fig.8), when
compared to CapTAIN. In the unseen scenarios, CapTAIN-GAIL generates an average profit of $17813 as compared
to $17587 in the expert demonstration cases while CapTAIN generates $15902. Additionally, the standard deviation
of the profits earned, goes down from $3363 in the expert demonstration cases to $3161 in the unseen cases. This
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Fig. 7 Difference in the profits earned by CapTAIN-GAIL and CapTAIN in completely unseen scenarios.
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by GA.

shows that CapTAIN-GAIL is generalizable across scenarios that are unseen in the expert demonstrations. Conducting
a T-test with the null-hypothesis being that both the methods generate the same average profits, gives a p-value of
3.097%(< 0.05). Which means that CapTAIN-GAIL performs statistically better than CapTAIN.
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Fig. 8 Comparing the average profits earned by CapTAIN-GAIL and CapTAIN in the unseen test cases.
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5. Further Analysis

To further analyse the performance difference among the three methods, we look at their computation times as well
as track the average number of idle decisions and flight decisions taken by the three methods.

The computing time for GA is calculated by adding the total time required to generate the solutions for an
entire episode. Similarly, the computation times for CapTAIN and CapTAIN-GAIL are calculated based on the total
forward-propagation time for the entire episode. It was found that GA took an average of 783.48 + 267.54 seconds per
episode while CapTAIN and CapTAIN-GAIL took 2.57 + 2.24 seconds and 1.86 + 2.25 seconds respectively. Thus,
there is a significant advantage of using a policy trained using imitation learning when compared to an optimization
solver like GA, in terms of computational time required.
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Fig. 9 Comparing the number of idle decisions and number of flight decisions taken by the 3 algorithms.

Additionally, Fig.9 shows the average idle decisions and flight decisions taken by all the three algorithms in the
scenarios present in the expert demonstrations. It can be noted that GA take the most number of flight decisions and the
least number of idle decisions where as CapTAIN takes the least number of flight decisions and most number of idle
decisions. Meanwhile, the decisions taken by CapTAIN-GAIL closely resemble those taken by GA, which is expected
given that we have already seen that CapTAIN-GAIL performs similar to the GA.

In comparison, Fig.10 show the decisions taken by CapTAIN-GAIL and CapTAIN in the unseen test cases. It can
be noted that the decisions remain fairly the same for both the algorithms. Additionally, the number of outliers in the
unseen cases for CapTAIN-GAIL are lower than that for the expert demonstration cases. On an average, CapTAIN-GAIL
takes 51.84 idle decisions and 187.29 fight decisions in the seen cases and 52.36 idle decisions and 189.48 flight
decisions in the unseen cases, while CapTAIN takes 72.11 idle decisions and 179.96 fight decisions in the seen cases
and 71.8 idle decisions and 178.39 flight decisions in the unseen cases. This further demonstrates the generalizability of
CapTAIN-GAIL.

VII. Conclusion and Future Work

In this paper, we present CapTAIN-GAIL, a graph neural network based policy that is trained on expert demonstrations
from a Genetic Algorithm, using generative-adversarial imitation learning, for the Urban Air Mobility fleet scheduling.
We demonstrate that pure RL-based methods are unable to achieve optimal solutions whereas classical and heuristic
optimization techniques are computationally too expensive. This motivates the use of imitation learning and we
demonstrate that CapTAIN-GAIL performs better than pure RL-based methods. We evaluated the three methods
on 100 test scenarios and found that CapTAIN-GAIL generates near-optimal solutions (statistically equivalent to the
solutions generated by the Genetic Algorithm) while doing so in a fraction of the time taken by the Genetic Algorithm.
Additionally, we tested CapTAIN-GAIL and CapTAIN on 100 unseen test scenarios that were not a part of the expert
demonstrations and found that our method showed an improvement in terms of the average profit earned while also
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unseen scenarios.

reducing the standard deviation of the profits earned.

While comparing the performance of our algorithm against GA, we notice that in some cases, GA performs

significantly better while in other cases, CapTAIN-GAIL performs significantly better. Although both the methods
generate similar average profits, one would expect the difference in their performance to be ideally minimal. Identifying
the cause of this result shall be a focus for the future works.

(1]

(2]
(3]
(4]

(3]

(6]

(71

References
“Urban Air Mobility (UAM) Concept of Operations 2.0_0.pdf,” , ???? URL https://www.faa.gov/sites/faa.gov/
files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%200f%200perations%202.0_0.pdf.

Reed, T., “INRIX Global Traffic Scorecard,” , 2019.
Krivonos, P. D., “Communication in Aviation Safety: Lessons Learned and Lessons Required,” 2007.

Sun, L., Wei, P., and Xie, W., “Fair and Risk-Averse Urban Air Mobility Resource Allocation Under Uncertainties,” 2023. URL
http://dx.doi.org/10.2139/ssrn.4343979%http://dx.doi.org/10.2139/ssrn.4343979.

Hwang, S.-I., and Cheng, S.-T., “Combinatorial Optimization in Real-Time Scheduling: Theory and Algorithms,” Journal
of Combinatorial Optimization, Vol. 5, No. 3, 2001, pp. 345-375. https://doi.org/10.1023/A:1011449311477, URL https:
//doi.org/10.1023/A:1011449311477.

Pradeep, P., and Wei, P., “Heuristic Approach for Arrival Sequencing and Scheduling for eVTOL Aircraft in On-Demand Urban
Air Mobility,” 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 2018, pp. 1-7. https://doi.org/10.1109/
DASC.2018.8569225.

Kim, S. H., “Receding Horizon Scheduling of On-Demand Urban Air Mobility With Heterogeneous Fleet,” IEEE Transactions
on Aerospace and Electronic Systems, Vol. 56, No. 4, 2020, pp. 2751-2761. https://doi.org/10.1109/TAES.2019.2953417.

13



[8

—

[9

—

(10]

(1]

(12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

Shihab, S. A. M., Wei, P., Shi, J., and Yu, N., Optimal eVTOL Fleet Dispatch for Urban Air Mobility and Power Grid Services,
72777 https://doi.org/10.2514/6.2020-2906, URL https://arc.aiaa.org/doi/abs/10.2514/6.2020-2906.

Paul, S., Witter, J., and Chowdhury, S., “Graph Learning-based Fleet Scheduling for Urban Air Mobility under Operational
Constraints, Varying Demand & Uncertainties,” Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing,
Association for Computing Machinery, New York, NY, USA, 2024, p. 638—-645. https://doi.org/10.1145/3605098.3635976,
URL https://doi.org/10.1145/3605098.3635976.

A Scalable Graph Learning Approach to Capacitated Vehicle Routing Problem Using Capsule Networks and Attention
Mechanism, International Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, Vol. Volume 3B: 48th Design Automation Conference (DAC), 2022. https://doi.org/10.1115/DETC2022-90123,
URL https://doi.org/10.1115/DETC2022-90123.

Paul, S., Ghassemi, P., and Chowdhury, S., “Learning Scalable Policies over Graphs for Multi-Robot Task Allocation using
Capsule Attention Networks,” 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 8815-8822. URL
https://api.semanticscholar.org/CorpusID:248562542.

Ho, J., and Ermon, S., “Generative Adversarial Imitation Learning,” Advances in Neural Information Processing Systems,
Vol. 29, edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Curran Associates, Inc., 2016. URL
https://proceedings.neurips.cc/paper_files/paper/2016/file/cc7e2b878868cbae992d1{fb743995d8f-Paper.pdf.

Fernando, M., Senanayake, R., Choi, H. H., and Swany, M., “Graph Attention Multi-Agent Fleet Autonomy for Advanced Air
Mobility,” 2023. https://doi.org/10.15607/RSS.2023.X1X.105.

Paul, S., and Chowdhury, S., “A Graph-based Reinforcement Learning Framework for Urban Air Mobility Fleet Scheduling,”
AIAA AVIATION 2022 Forum, 777? https://doi.org/10.2514/6.2022-3911, URL https://par.nsf.gov/biblio/10345357.

Kamra, N., and Ayanian, N., “A mixed integer programming model for timed deliveries in multirobot systems,” 2015 IEEE
International Conference on Automation Science and Engineering (CASE), 2015, pp. 612—617. https://doi.org/10.1109/CoASE.
2015.7294146.

Miller, C. E., Tucker, A. W., and Zemlin, R. A., “Integer Programming Formulation of Traveling Salesman Problems,” J. ACM,
Vol. 7, 1960, pp. 326-329. URL https://api.semanticscholar.org/CorpusID:2984845.

Miihlenbein, H., “Parallel genetic algorithms, population genetics and combinatorial optimization,” Parallelism, Learning,
Evolution, edited by J. D. Becker, 1. Eisele, and F. W. Miindemann, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, pp.
398-406.

Peng, Y., Choi, B., and Xu, J., “Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art,” Data
Science and Engineering, Vol. 6, No. 2, 2021, pp. 119-141. https://doi.org/10.1007/s41019-021-00155-3, URL https:
//doi.org/10.1007/s41019-021-00155-3.

Rizzoli, A. E., Montemanni, R., Lucibello, E., and Gambardella, L. M., “Ant colony optimization for real-world vehicle
routing problems,” Swarm Intelligence, Vol. 1, No. 2, 2007, pp. 135-151. https://doi.org/10.1007/s11721-007-0005-x, URL
https://doi.org/10.1007/s11721-007-0005-x.

Wang, X., Choi, T.-M., Liu, H., and Yue, X., “Novel Ant Colony Optimization Methods for Simplifying Solution Construction
in Vehicle Routing Problems,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 11, 2016, pp. 3132-3141.
https://doi.org/10.1109/TITS.2016.2542264.

“Exploratory Combinatorial Optimization with Reinforcement Learning,” Vol. 34, 2020, pp. 3243-3250. https://doi.org/10.
1609/aaai.v34i04.5723, URL https://ojs.aaai.org/index.php/AAAl/article/view/5723.

Khalil, E. B., Dai, H., Zhang, Y., Dilkina, B. N., and Song, L., “Learning Combinatorial Optimization Algorithms over Graphs,”
ArXiv, Vol. abs/1704.01665, 2017. URL https://api.semanticscholar.org/CorpusID:3486660.

Jacob, R. A,, Paul, S., Li, W., Chowdhury, S., Gel, Y. R., and Zhang, J., “Reconfiguring Unbalanced Distribution Networks
using Reinforcement Learning over Graphs,” 2022 IEEE Texas Power and Energy Conference (TPEC), 2022, pp. 1-6.
https://doi.org/10.1109/TPEC54980.2022.9750805.

Kaempfer, Y., and Wolf, L., “Learning the Multiple Traveling Salesmen Problem with Permutation Invariant Pooling Networks,”
2018.

14



[25]

(26]

[27]

(28]
[29]

(30]
(31]

(32]

(33]

(34]

Kool, W., van Hoof, H., and Welling, M., “Attention, Learn to Solve Routing Problems!” International Conference on Learning
Representations, 2018. URL https://api.semanticscholar.org/CorpusID:59608816.

Li, Z., Chen, Q., and Koltun, V., “Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search,”
Advances in Neural Information Processing Systems, Vol. 31, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/8d3bba7425e7c98c50f52calb52d3735-Paper.pdf.

Nowak, A., Villar, S., Bandeira, A. S., and Bruna, J., “Revised Note on Learning Algorithms for Quadratic Assignment with
Graph Neural Networks,” , 2018.

Verma, S., and Zhang, Z.-L., “Graph Capsule Convolutional Neural Networks,” , 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, 1., “Attention is
All you Need,” Advances in Neural Information Processing Systems, Vol. 30, edited by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

“Electricity Rates (Updated June 2024) — Electric Choice,” https://www.electricchoice.com/electricity-prices-by-state/, 777?

“CityAirbus NextGen - Urban Air Mobility - Airbus,” https://www.airbus.com/en/innovation/low-carbon-aviation/urban-air-
mobility/cityairbus-nextgen, 7???

Gleave, A., Taufeeque, M., Rocamonde, J., Jenner, E., Wang, S. H., Toyer, S., Ernestus, M., Belrose, N., Emmons,
S., and Russell, S., “imitation: Clean Imitation Learning Implementations,” arXiv:2211.11972v1 [cs.LG], 2022. URL
https://arxiv.org/abs/2211.11972.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., “Proximal Policy Optimization Algorithms,” ArXiv, Vol.
abs/1707.06347, 2017. URL https://api.semanticscholar.org/CorpusID:28695052.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N., “Stable-Baselines3: Reliable Reinforcement
Learning Implementations,” Journal of Machine Learning Research, Vol. 22, No. 268, 2021, pp. 1-8. URL http://jmlr.org/
papers/v22/20-1364.html.

15



	Nomenclature
	Introduction
	Related Works
	Problem Description and Formulation
	UAM Fleet Scheduling as an Integer Non-Linear Programming Problem
	Generating the Expert Demonstrations
	MDP Formulation

	Proposed Graph-based Adversarial Imitation Learning Approach
	Policy Network
	Training with Generative Adversarial Imitation Learning

	Experiments and Results
	Simulation Details
	Training Details
	Comparing CapTAIN vs. Genetic Algorithm
	Evaluating CapTAIN-GAIL
	Average Profits
	CapTAIN-GAIL vs. CapTAIN
	CapTAIN-GAIL vs. GA
	Generalizability Analysis
	Further Analysis


	Conclusion and Future Work

