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Abstract

Lectins are carbohydrate-binding proteins with specific affinity to glycoconjugates expressed in various tissues.
Lectins are of substantial utility as research, histochemical, and diagnostic tools in mammalian systems.
Reactivity of 12 commonly used plant-based lectins was studied in zebrafish liver. Four lectins, tomato lectin
(TL), wheat germ agglutinin, concanavalin A, and Jacalin showed strong reactivity to hepatic parenchymal
structures. Importantly, TL reacted to glycoconjugates within segments of the larval and adult intrahepatic
biliary network, from canaliculi to bile ducts. We provide evidence that lectins can serve as important histo-

chemical tools to investigate the structural and functional characteristics of the zebrafish liver.
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THE ZEBRAFISH IS AN IMPORTANT model egeme@ in the
study of liver development and diseases.'™ Lectins are
carbohydrates or glycan-binding proteins expressed in plants
and animals.* Plant lectins have historically been used in
mammalian model systems as histological reagents for cell
and tissue identification, and as diagnostic tools in a variety
of cancers.’™'® Yet, there are few investigations into the
usefulness of lectins in the model organism zebrafish.'"'?
Although a number of zebrafish transgenic lines express
liver-specific genetically encoded markers, a timely and
complete set of these lines is not always readily available.
Hence, alternative histological tools can be beneficial.
Previous study from our laboratory has demonstrated
that lectins can be used as histochemical tools to identify
tissue types in the adult and developing zebrafish heart.'* We
have investigated the utility of lectins as research tools in
the zebrafish liver. We used 12 routinely employed plant-
based lectins to demonstrate that the zebrafish liver paren-
chyma displays differential reactivity and staining patterns.
Strong levels of reactivity were observed for Lycopersicon

esculentum (tomato lectin, TL), Triticum vulgaris (wheat
germ agglutinin, WGA), Concanavalia ensiformis agglutinin
(Con A), and Artocarpus heterophyllus (Jacalin).

Low-to-medium levels of reactivity were noted for Gly-
cine max (soybean), Arachis hypogaea (peanut), Vicia villosa
agglutinin, Solanum tuberosum (potato), and Ricinus com-
munis. No discernable reactivity was detected with Ulex
europaeus, Bandeiraea simplicifolia, and Dolichos biflorus
agglutinin. The binding specificity and reactivity of these
lectins are summarized in Supplementary Table S1. The
lectin staining protocol used is described in Supplementary
Data S1.

Most notable was the reactivity pattern of TL. In stained
wholemounts (Fig. 1A) and 10-um cryosections (Fig. 1B) of
adult liver, a pattern of TL-stained short or long repeating and
angled segments could be observed, analogous to previously
described biliary network in zebrafish.'*'> A number of these
TL-reactive short segments appear intracellular, spanning the
plasma membrane of hepatocytes to perinuclear regions
within the cytosol (Fig. 1C). To confirm that the TL-reactive
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FIG. 1. Binding pattern of TL (Lycopersicon esculentum) in the intrahepatic biliary architecture of zebrafish. (A) TL
reactivity (green) in wholemount-stained and imaged adult zebrafish liver displaying interconnected and discontinuous short
(arrowhead) and long (arrow) jagged-line segments analogous to the pattern of biliary structures at low magnification.
(B) TL reactivity (green) in 10-um cryosections stained and imaged adult zebrafish liver displaying relatively long and short
and jagged-line segments (arrowhead) at low magnification. (B”) Actin-enriched short and jagged line segments (arrow-
head) visualized using rhodamine-labeled phalloidin in the same section in (B). (B”’) Overlayed images of (B, B’) showing
colocalization (yellow) of the TL (green) and actin (red) line segments. (C) TL reactivity (green) in 10-um cryosections
stained and imaged adult zebrafish liver displaying strongly reactive short line segments (arrowhead) between six hepa-
tocyte nuclei (*) at high magnification. (C’) Actin-enriched short line segments (arrowhead) visualized using rhodamine-
labeled phalloidin in the same section in (C). The terminal end of each segment approaches the hepatocyte nuclei and
represents hepatic canaliculi (arrowhead) that connect to preductules (arrow). (C’’) Overlayed images of (C, and C’)
showing colocalization of the TL and actin line segments in a canaliculus (arrowhead) and appears contained within the
preductule (arrow). (D) TL staining (green) in a bile duct appearing like a partially sinuous, punctate, and dense large
diameter column (arrow) with adjacent ductules (arrowhead). (D’) Phalloidin-stained actin-enriched duct (arrow) and
ductules (arrowhead) are seen. (D’”) Overlayed images of (D, D’) showing the smaller diameter TL-stained column (green)
localized along the same longitudinal axis to the center of the larger diameter actin-enriched column. (E) A 3D recon-
struction of TL (green) and phalloidin (red)-stained section showing a main duct (*) with connecting ductules (left side of
panel), and a digitally subtracted part of the duct (right side of panel) demonstrating that TL-stained glycoconjugates and
presumptive bile column (arrow) located within the bile duct. (F) TL staining (red) of biliary duct profiles. (F’) Overlaid
image of (F) with 2F11 antibody-labeled biliary epithelial cells showing TL-stained glycoconjugates within the biliary duct.
(G) TL-stained glycoconjugates in larval liver hepatocytes at 7 days postfertilization. (G’) Overlaid image of (G) with actin-
enriched canaliculi. TL, tomato lectin.
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FIG. 1.

segments constituted the zebrafish liver biliary tree, we per-
formed lectin staining in combination with phalloidin that
identifies the actin-rich cytosolic aspects of canaliculi, biliary
preductules, ductules, and ducts (Fig. 1B”).16

The close overlapping of lectin-stained segments with
phalloidin indicated that TL identified preductules and
canaliculi that are deep infoldings of the apical hepatocyte
plasma membrane (Fig. 1C*”). TL stains biliary glycoconju-
gates present in the lumen of bile ducts (Fig. 1D, E). In ad-
dition, TL reactivity was closely associated with FIS-2F11
antibody immunoreactivity that stains the hepatopancreatic
ductal system (Fig. 1F).'""'° Moreover, TL reactivity could
be detected in the hepatocytes of the larval liver at 1-week
postfertilization (Fig. 1G), suggesting that it could potentially
be used as a functional measure for bile production and flow.

WGA stained glycoconjugates on the surface of hepato-
cyte membranes and was strong in the endothelium of hepatic
sinusoids revealing the tubular nature of the fish’s liver
(Supplementary Fig. SIA). Con A and WGA had significant
overlap in reactivity; however, Con A staining was broader
and could be observed on cell membranes other than hepa-
tocytes (Supplementary Fig. S1B, C). Because of their broad
reactivity, these two lectins can also be used as counterstains
for double staining schemes such as TL with WGA, and TL
with Con A (Supplementary Fig. S1D, E). Jacalin displays
strong and unique reactivity compared with that of TL,
WGA, or Con A.

Although Jacalin appears to stain small cytoplasmic vesi-
cles in hepatocyte (colocalizing with WGA), reactivity was
particularly strong in the apical region of biliary epithelial
cells facing the lumen of bile ductules and ducts (Supple-
mentary Fig. S1F). Interestingly, clusters of perivascular
cells displayed the strongest reactivity to a number of lectins,
including TL, WGA, and Con A. Most of these perivascular
cells are stained with the pan-leukocyte marker Lepl (Sup-
plementary Fig. S2). The specific location of these cell
clusters and their morphology are consistent with the phe-
notype of perivascular macrophages previously described in
the zebrafish liver.***'

In conclusion, TL, WGA, Con A, and Jacalin can be used
singularly or in combination with other lectins, or in con-
junction with immunostaining. They can be utilized as a
methodologically simple and highly valuable histological

(Continued).

tool for the identification of hepatocytes, hepatic sinusoids,
canaliculi, and various segments of the intrahepatic biliary
network. The functional correlates of these staining patterns
have not yet been elucidated. The utility of lectins in
functional studies of the zebrafish liver warrants further
investigations.
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