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Abstract. Millimeter-wave (mmWave) signals experience severe envi-
ronmental path loss. To mitigate the path loss, beam-forming methods
are used to realize directional mmWave beams that can travel longer.
Yet, advanced algorithms are needed to track these directional beams
by detecting angle-of-arrival (AoA) and aligning the transmit and re-
ceive antennas. To realize these advanced beam-forming algorithms in
real world scenarios, Software-Defined Radio (SDR) platforms that al-
low both high-level programming capability and mmWave beam-forming
are needed. Using a low-cost mmWave SDR platform, we design and
prototype two reinforcement learning (RL) algorithms for AoA detec-
tion, i.e., Q- and Double Q-learning. We evaluate these algorithms and
study the trade-offs involved in their design.

1 Introduction

Next generation 5G networks are being deployed at millimeter-wave (mmWave)
bands, beyond 22 GHz [1]. Such high frequencies enable data rates in the order
of gigabits per second due to the availability of large unlicensed bandwidth.
This is especially beneficial to the future highly dense Internet-of-Things (IoT)
networks, which demand large bandwidth. Further, mmWave systems have small
form factor and are strong candidates for the emerging intelligent surfaces for
IoT devices. Recent studies showed that mmWave antennas can be designed in
a flexible and conformal manner [2–4], making them suitable for wearables.

Although mmWave bands allow for high data rate, the short wavelengths
are heavily attenuated by the environment [5] mostly due to absorption. Thus,
transmitted signals experience severe path loss. To combat the high path loss,
mmWave antenna arrays with beam-forming features are being used for gen-
erating directional beams which attains longer communication range. However,
the directionality of the mmWave beams brings difficulty in mobile settings as
they need constant alignment on both the mobile transmitter and receiver nodes
[6]. mmWave channels can be quite complex as line-of-sight (LoS) and non-LoS
(NLoS) signals can exist due to emphasized environmental effects. Character-
izing mmWave channels, tracking mmWave beams, and Angle-of-arrival (AoA)
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detection have been challenging [7]. Handling this complexity requires the fu-
ture mmWave systems to be highly integrated with software-defined radio (SDR)
platforms, where advanced algorithmic methods can be practiced.

AoA detection [8] is a critical capability that can facilitate better alignment
of the mmWave beams. It is an important directional wireless capability that is
used to detect signals transmitted in the environment [9]. A good estimation of
the AoA enables fine tuning of the beam alignment between the transmit and
receive antennas, which leads to more accurate channel state information (CSI).
As a result, the received signal strength (RSS) increases, which leads to a better
overall signal-to-noise ratio (SNR) and link performance.

AoA detection has been studied extensively over the years. Numerous algo-
rithms have been used to estimate AoA using synthetic data [9]. Deep learning
has been the preferred machine learning (ML) choice for AoA detection, due to
robustness to environmental noise. Other methods have been shown to perform
poorly in estimating AoA in noisy environments [9]. However, the deep learning
methods require extensive training which is not suitable for IoT devices operat-
ing in a highly dynamic environment with almost constantly changing channel
behavior. More importantly, deep learning methods may require large memory
which does not fit well with hardware-constrained IoT devices like wearables.

For mmWave AoA detection, we adapt unsupervised reinforcement learning
(RL) algorithms to avoid the abovementioned complexities of deep learning.
Our RL-based approach to detecting AoA is compatible with mmWave SDR
systems as we show it by implementation. Our approach only considers the
receiver side and can passively detect AoA without help from the transmitter or
any other localization system. We utilize two RL methods, Q-learning and its
variant double Q-learning, for AoA detection. Q-based learning algorithms are
widely used for a wide variety of applications that require fast learning capability,
such as in gaming, or fast detection capability, such as detecting a drone flying
through an indoor environment [10].

Our RL algorithms follow a Markovian model, using actions to explore differ-
ent states of a given environment [11, 12]. The actions can be based off a greedy
policy. With this type of policy, the algorithms can use prior information learned
to select the best actions to take [10]. Positive actions lead to positive rewards,
while negative actions are punished with negative rewards. After a certain num-
ber of iterations, the algorithms learn which actions lead to the best states and
converge to a solution. The algorithms use the Bellman equation, discussed later
in Section 4. Beyond the observed reward for taken actions, the equation relies
on several tunable input parameters: the learning rate α, the discount factor γ,
and the exploration policy ϵ. It has been shown that tuning the learning rate α
and exploration policy ϵ can lead to optimum solutions [12–14]. For our study
we measured the accuracy of detected AoA and convergence time, by tuning
both the learning rate α and exploration policy ϵ. Further, the algorithms take
a certain number of unknown iterations to converge. To tackle this problem, we
use a threshold on the coefficient of variation (CoV) of RSS data samples as the
criteria to detect convergence. We compare the performance of our algorithms
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using Horn antennas controlled by a Pyhton-based SDR setup in connection with
GNU radio [15].

Our main contributions are as follows:

– Adaptation of Q-learning and Double Q-learning methods for mmWave AoA
detection.

– Tuning the hyper parameters (the learning rate α and exploration policy ϵ)
of both Q- and Double Q-learning to detect AoA within 2o’s of accuracy.

– Design of a threshold-based convergence criteria for both Q- and Double
Q-learning using CoV of RSS data samples.

– Implementation of a prototype of the algorithms in an affordable mmWave
testbed platform using an off-the-shelf SDR platform.

The rest of the paper is organized as follows: Section 2 surveys the related
literature on AoA detection and experimental mmWave SDR efforts. Section 3
presents our experimental platform and how the AoA detection algorithms are
implemented in that platform. Next, Section 4 provides a detailed description of
our Q-learning and Double Q-learning algorithms for AoA detection. Section 5
details experimental setup and discusses results from our experiments. Finally,
Section 6 summarizes our work and outlines directions of future work.

2 Related Work

Angle (or direction) of arrival (AoA) detection/estimation has been an exten-
sively studied problem within the context of wireless localization [16]. With the
recent advent of directional beam-forming capabilities in super-6 GHz systems,
AoA detection, in particular, has gained a renewed interest due to emerging
applications using such systems [17].

Experimental demonstration and evaluation of AoA detection in super-6 GHz
bands such as mmWave bands has been lacking. The main reason for this has
been the limited availability of mmWave experimental testbeds due to the lack
and high cost of mmWave hardware [18]. The U.S. National Science Foundation
(NSF) is currently funding wireless communication testbed platforms to enable
such experimentation. The COSMOS platform [19], for example, includes a 28
GHz phased array antenna, designed by IBM. The front end uses a custom
software for steering the antenna beam with respect to azimuth and elevation
angles. The AERPAW platform uses drones for 5G experimentation [20], which
is the first of its kind. These platforms enable users to perform a variety of
wireless communication experiments, such as, AoA detection. However, they
are still being adapted by researchers. Unlike these high-end testbeds, we use
a cheap SDR platform and mmWave hardware to evaluate our AoA detection
mechanisms. Further, the application programming interface (API) used by these
testbed platforms can limit user experimentation. For example, the AERPAW
API restricts users from running on the fly experiments. As a result, users aren’t
able to collect or train radio frequency (RF) data on the fly. This can restrict
the types of algorithms users can use on the platform.
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Researchers have relied on virtual environments and simulations to perform
mmWave experiments. These virtual environments have gotten more sophisti-
cated with the usage of 3D ray tracing. In [21], 3D ray tracing is used to sim-
ulate mmWave signals in virtual environments. Users can use the open source
software to design large intelligent reflective surfaces and determine AoA using
compressive sensing algorithms. Although using simulation-based approaches is
cost effective, they do not render the physical world and fall short of precisely
modeling complicated physical communication channel dynamics in mmWave or
other super-6 GHz bands.

Recently, cheaper off-the-shelf SDRs have been used to setup testbed plat-
forms for AoA detection. The testbed platform [9] uses a Kerberos radio with
four whip antennas at the receiving end. At the transmitting end a long range
(LoRa) radio is used to transmit a signal at 826 MHz. LoRa is beneficial for long
range communication and uses low transmit power. The transmitter includes
a GPS and compass unit used to label the direction of the transmitted signal.
The labeled data set is the ground truth that is trained in the machine learning
(ML) algorithm. The data is trained using a deep learning convolutional neural
network (CNN) model [9].

Multiple Signal Classification (MUSIC) is a widely used AoA detection algo-
rithm and assumes that the received signal is orthogonal to the noise signal [9].
MUSIC uses this assumption to decompose the noise from the received signal into
separate sub-spaces. The power spectral density (PSD) of the signal is taken as a
function of angle [22]. The angular value which results in the maximum power is
estimated to be the AoA. The assumption that the received signal is orthogonal
to the noise signal is not valid in real world scenarios. Therefore, MUSIC does
poorly in environments that involve NLoS propagation. Since mmWave signals
can experience severe environmental path loss and involve multiple NLoS signals,
MUSIC may not be a good choice for mmWave AoA detection.

Support Vector Regression (SVR) has also been used to estimate AoA. SVR
is a supervised ML algorithm. Regression does poorly in estimating AoA from
impinging signals at multiple time steps [9]. The algorithm cannot be used to
determine AoA since the number of impinging signals is unknown [23]. As a
result, the algorithm can be used for detecting AoA for a single source at a time.
This makes SVR less robust for AoA detection in environments with multiple
signal sources. Therefore, SVR is not a good choice for mmWave AoA detection.

The CNN model used in [9] adapts a hybrid configuration. A classification
method is used to determine the number of impinging receive signals and two
regressive heads are used to determine the AoA. The study showed that CNN
outperformed the other classical ML methods, MUSIC and SVR. Further, the
CNN model was able to estimate AoA within 2o’s of accuracy.

Our approach does not use a deep learning approach or supervised learning.
These approaches are not the most suitable for many hardware-constrained IoT
devices as the former requires large memory hardware to perform well and the
latter requires availability of ground truth. Resources-constrained IoT devices
like wearables do not have sufficient memory to keep trained models nor the
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extensive sensing or coordination capability to obtain the ground truth in AoA.
To make it more relevant to IoT devices with high resource constraints, we
design RL-based AoA detection methods that do not require the ground truth
and determine the AoA based only on the RSS observations at the receiver.

3 mmWave Testbed

To perform a thorough evaluation of our reinforcement learning (RL)-based AoA
detection methods, we use our mmWave testbed [24] that allows beam-steering
capability from Python.

3.1 Hardware Setup

The architecture of our testbed can be seen in Figure 1. The testbed uses a
Universal Software Radio Peripheral (USRP) model N210. The USRP uses a
Superhterodyne architecture for up-converting the transmit signal and down-
converting the receive signal [25]. The architecture is built into the USRP’s
daughter-board to tune the signal within sub-6 GHz [25]. As a result, the USRP
is only able to transmit and receive signals at a maximum frequency of 6 GHz.

To handle mmWave frequencies we connect the daughter-board to external
RF mixers to further up/down convert the signal. We use Analog Devices up-
converter ADMV 1013 [26] and down-converter ADMV 1014 [27]. The cost of
each unit is reasonably priced at a few hundred dollars. This makes our mmWave
testbed platform more affordable, compared to [18] and [19] that use RF front-
ends that cost thousands of dollars. Two signal generators are used as local
oscillators for mixing the signal. Two 26 GHz mmWave 15 dB gain horn antennas
are used for transmission and reception. The receive horn antenna is mounted to
a servo that can rotate from 0 to 180 degrees. A pulse width modulated (PWM)
signal is transmitted from the Arduino micro-controller to rotate the servo at a
set angular value.

3.2 Software Setup

GNU radio software is used to program the USRP device. GNU radio is a Python-
based graphical interface that is open source and readily available online. As
seen in 2 [24], the source block is used to generate a cosine signal at a sampling
frequency of 2.5 MHz. The samples are streamed in the USRP sink block that
sets the frequency of the signal to 2 GHz. The signal is then transmitted from the
USRP daughter-board. The receive signal is mixed down to 2 GHz and injected
into the daughter-board. The I and Q base-band data samples are streamed from
the USRP source block. The samples are used to determine the RSS using the
complex to mag-square block. The RSS samples are streamed into a socket using
the ZMQ pub sink block. Python socket libraries are used to connect and receive
the RSS data from the socket.
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USRP N210
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ADMV 1014 ADMV 1013
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Servo

Arduino

Fig. 1: Testbed Configuration

 

Fig. 2: GNU Radio Software Configuration

4 Q-learning and Double Q-Learning

Q-learning and its variant Double Q-learning are model-free RL algorithms. Both
algorithms are based on a Markovian approach that selects random actions [11].
The block diagram in Figure 3 presents our RL model. The learning agent is
located at the receiver horn antenna that is mounted onto a servo motor that
can be steered. The agent can choose to take two possible actions: move left
or right by one degree resolution. Since the servo can rotate up to a maximum
angular value of 180 degrees, the time-variant state values can be st ∈ (0, 180).
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For our setup, a positive reward (i.e., when the action improves the RSS) is set as
the difference of the current RSSt and previous RSSt−1, i.e., RSSt − RSSt−1.
A negative reward (i.e., when the action reduces the RSS) is set to -5. This
design incentivizes the agent to seek the angular position that maximizes the
RSS, which is implied when the antenna is steered to the correct AoA.

Positive Reward:∆𝑹𝑺𝑺
Negative Reward: -5

Action:
Turn Right or Left

Environment:
Laboratory 

State:
(0 -180) 

Agent:
Rx Horn Antenna

Fig. 3: RL Configuration

Q-learning uses the Bellman equation to populate the Q-table. The Bellman
equation is

Q(st, at) = Q(st, at) + α ∗ (rt + γmax
a

Q(st+1, a)−Q(st, at)) (1)

which provides a mechanism to update the Q values as a function of state,
action, and tunable parameters [10]. The variable st is our current state and at
is our current action. When the agent performs an action the algorithm moves
to the next state defined as st+1 and a reward rt is given. For our algorithm, the
discount factor γ is set to 0.98 and the learning rate α ∈ (0, 1) was tuned to 0.1,
0.2, 0.3, and 0.4. Likewise, the greedy policy ϵ was tuned to the same values.
Smaller values of ϵ cause the algorithm to exploit the Q table, by searching for
the action that results in the largest Q value. Increasing ϵ increases the likelihood
that the algorithm will explore the environment, by selecting random actions.

Our software approach is presented in Algorithm 1. At the start of each
run the hyper-parameters γ, α, and ϵ are initialized. The current state st is
initialized to a random angular value, based off our experimental scenario. For
the 90o experimental setup the random angle can be any value in [80,100] degrees
and [120,140] degrees for the 130o. The Qtable used to store the Q values from
equation 1 is initialized to zero. An outer while loop comparing the threshold
value and CoV is used to decide the stopping condition for the algorithm until
the threshold value is met. If the value of ϵ is greater than a random number
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Algorithm 1 AoA Detection with Q-learning
1: Input: α ∈ (0, 1), the learning rate; ϵ ∈ (0, 1), the greediness policy; windowSize ∈

(5, 30), the number RSS samples maintained for implementing convergence crite-
rion; threshold ∈ (0.1, 0.4) threshold for convergence criterion.

2: Output: detectedAoA, AoA detected by the algorithm.
3: γ ← 0.98 ▷ Initialize the discount factor
4: RSS[windowSize]← [ ] ▷ Initialize the array of RSS samples
5: CoV ← 1 ▷ Initialize the coefficient of variation of RSS samples
6: Randomize currentAngle ▷ Initialize to a random angle respectively in [80,100] or

[120,140] for the 90o and 130o scenarios
7: st ← currentAngle ▷ Initialize the current state to currentAngle
8: previousRSS ← Measure RSS at currentAngle
9: RSS.append(previousRSS) ▷ Store RSS sample in array

10: sampleCount← 1
11: Qtable ← 0 ▷ Initialize the Q-table to 0
12: while threshold ≤ CoV do
13: RSS.append(RSSt) ▷ Store RSS data in array
14: if Uniform(0,1)< ϵ then
15: at ← Uniform[0,1] ▷ Randomly choose to turn left (at=0) or right (at=0)
16: else
17: at ← maxa Q(st, a) ▷ Choose action based on maximum Q value
18: end if
19: if at == 0 then
20: Turn antenna beam left by 1 degree
21: currentAngle−−;
22: else
23: Turn antenna beam right by 1 degree
24: currentAngle++;
25: end if
26: newRSS ← Measure RSS at currentAngle
27: RSS.append(newRSS) ▷ Store the new RSS sample and remove the oldest

sample if needed
28: sampleCount++;
29: st+1 ← currentAngle
30: ∆RSS ← newRSS − previousRSS ▷ Calculate the reward
31: if 0 < ∆RSS then
32: rt ← ∆RSS ▷ Positive reward
33: else
34: rt ← −5 ▷ Negative reward
35: end if
36: Q(st, at)← Q(st, at) + α ∗ (rt + γmaxa Q(st+1, a)−Q(st, at)) ▷ Bellman eqn.
37: st ← st+1 ▷ Update current state with next state value
38: if windowSize ≤ sampleCount then
39: CoV ← RSS.std()/RSS.mean() ▷ Compute the CoV of RSS samples
40: end if
41: end while
42: return st
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in (0,1), the agent takes a random action, either turn the antenna using the
servo left or right with one degree resolution. If the value of ϵ is greater than the
random value, then the algorithm will exploit the Qtable by selecting the action
that results in the largest Q value. A positive reward value is given if ∆RSS
is greater than zero. If ∆RSS is less than zero, then the action resulted in a
decrease in RSS. Therefore, the action yields a negative reward value of -5. The
Bellman equation is updated with the reward at every iteration.

Q-learning based algorithms have to train for a certain number of iterations.
Based on the number of iterations, the algorithm may or may not converge to the
solution. This makes selecting the number of iterations trivial. To address this
issue, we take CoV of a certain number of RSS samples (defined by windowSize)
to detect convergence. CoV is a statistical measure of how dispersed data samples
are from the mean of the sample space. It is the ratio of standard deviation
and mean of a certain number of samples. In our algorithm, a window size is
initialized to windowSize ∈ (5, 30). The array RSS is used to store RSS samples
as the algorithm is training on the fly. If the counter sampleCount is greater or
equal to the windowSize, then enough samples have been collected to calculate
the CoV. While the CoV is greater or equal to the selected threshold value, the
algorithm will continue to train. When CoV is less then or equal to the threshold,
the convergence criteria is met and the algorithm breaks out of the while loop.
The smaller CoV means that the RSS samples have stabilized and it is safer to
stop the algorithm and return the last steering angle as the detected AoA.

Q-learning uses a single estimator maxa Q(st+1, a), the maximum next state
Qt+1 value for all possible actions. As shown in [12], this causes the algorithm
to overestimate the desired solution, by causing a positive bias. As a result,
standard Q-learning can perform poorly in certain stochastic environments. To
improve the performance of standard Q-learning other variants, such as, Dou-
ble Q-learning [12], Delayed Q-learning [28], Fitted Q-iteration [29], and Phased
Q-learning [30] were developed to improve convergence time. To reduce over-
estimation, the double Q-learning variant uses two Q functions QA(st, at) and
QB(st, at) seen in equations 2 and 3 below. QA(st, at) is able to learn from

QA(st, at) = QA(st, at) + α ∗ (rt + γQB(st+1, argmax
a

QA(st+1, a))−QA(st, at)) (2)

QB(st, at) = QB(st, at) + α ∗ (rt + γQA(st+1, argmax
a

QB(st+1, a))−QB(st, at)) (3)

the experiences of QB(st, at) and vice versa. This approach has been shown
in [12] to cause the algorithm to underestimate, rather than overestimate the
solution with a positive bias. In conditions where Q-learning performs poorly,
double Q-learning has been shown to converge to the optimum solution [12].

Our AoA detection algorithm for Double Q-learning can be seen in Algorithm
2. Like algorithm 1, the same parameters are initialized at the start of each run.
Two Q tables QAtable and QBtable are initialized to zero. The same greedy ϵ
and reward rt values are also used in Algorithm 2. The variable q is set equal to
a random uniform value q ∈ (0, 1). If q is larger than the threshold value of 0.5
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Algorithm 2 Double Q-learning
Same as lines 1-10 in Algorithm 1

11: QA
table ← 0 ▷ Initialize the first Q-table to 0

12: QB
table ← 0 ▷ Initialize the second Q-table to 0

13: while threshold <= CoV do
14: RSS.append(previousRSS) ▷ Store RSS sample in array
15: if Uniform(0,1)< ϵ then
16: at ← Uniform[0,1] ▷ Randomly choose to turn left (at=0) or right (at=0)
17: else
18: QAB

table ← QA
table(st) +QB

table(st)
19: at ← maxa Q

AB
table

20: end if
21: if at == 0 then
22: Turn antenna beam left by 1 degree
23: currentAngle−−;
24: else
25: Turn antenna beam right by 1 degree
26: currentAngle++;
27: end if
28: newRSS ← Measure RSS at currentAngle
29: RSS.append(newRSS) ▷ Store the new RSS sample and remove the oldest

sample if needed
30: sampleCount++;
31: st+1 ← currentAngle
32: ∆RSS ← newRSS − previousRSS ▷ Calculate the reward
33: if 0 < ∆RSS then
34: rt ← ∆RSS ▷ Positive reward
35: else
36: rt ← −5 ▷ Negative reward
37: end if
38: q ← Uniform(0,1)
39: if q < 0.5 then
40: QA(st, at) = QA(st, at) + α ∗ (rt + γQB(st+1, argmax

a
QA(st+1, a))−QA(st, at))

41: else
42: QB(st, at) = QB(st, at) + α ∗ (rt + γQA(st+1, argmax

a
QB(st+1, a))−QB(st, at))

43: end if
44: st ← st+1 ▷ Update current state with next state value
45: if windowSize ≤ sampleCount then
46: CoV ← RSS.std()/RSS.mean() ▷ Compute the CoV of RSS samples
47: end if
48: end while

then QA(st, at). Otherwise, if q is less than the threshold of 0.5, then QB(st, at) is
selected. The threshold value is set to 0.5 to give both QA(st, at) and QB(st, at)
equal probability of being selected for training. The same convergence criteria is
used in Algorithm 1 is used in 2.
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5 Experimental Evaluation and Results

To understand the efficacy of our RL-based AoA detection algorithms, we mea-
sured the average AoA error and average convergence time for different (ϵ,α)
combinations at each Threshold value. The Threshold value determines how
strict the convergence criterion is. Hence, smaller Threshold causes the AoA de-
tection algorithms to search the AoA for a longer period of time. This enables
them to find a more accurate AoA. Hence, there is a trade-off between the error
in AoA estimate and the convergence time of the algorithms. For a fixed Thresh-
old value, we need to find the best (ϵ,α) combination by minimizing both the
AoA error and convergence time. To do so, we search for the (ϵ,α) combination
that minimizes the product of the two metrics, i.e.:

min
ϵ,α

<AoA Error> ∗ <Convergence Time>. (4)

Fig. 4: Experimental Set-Up

We considered two scenarios for comparing the performance of the Algo-
rithms 1 and 2. As seen in Figure 4, the range between the transmit and receive
horn antennas is 1.5 ft. The distance to the wall to the center is 1.2 ft. In the
first experiment scenario, the transmit antenna is fixed to 90o, pointing towards
the receive antenna to compose an LoS path to the receiver. The receive horn
antenna is initialized to a random angular state value between 80 and 100 de-
grees. For the second scenario, the transmit horn antenna is rotated 130o to the
right, composing a NLoS path to the receiver. The main lobe of the transmitted
signal is reflected off the wall. The initial angle is set to a random value between
120 and 140 degrees.
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As previously mentioned, the hyper-parameters ϵ and α are tuned to 0.1,
0.2, 0.3, and 0.4. This was done to measure which combinations of (ϵ,α) resulted
in the best performance with respect to both AoA detection and convergence
time. The average AoA error and time of convergence was measured for thirteen
threshold values from 0.1 to 0.4 in increments of 0.025. This was done using Q
and double Q-learning for both the 90o and 130o experimental scenarios.

5.1 Q-Learning Results

 

 

 

 

 

 

 

Fig. 5: Q-Learning for 90o and 130o scenarios

Figure 5 are graphs of Threshold vs. average AoA error and Threshold vs.
average convergence time. For each combination of (ϵ, α) the average convergence
time is reduced with respect to window size. A window size of 10 results in faster
AoA detection compared to the window size of 20.

Both the 90o and 130o degree scenarios resulted in average AoA error less
than 1% for some combination of (ϵ, α).This occurs for both window sizes of
10 and 20. With less than 1% AoA error, the detected AoA is within 1o of the
correct AoA.

To understand which (ϵ,α) combinations give the best results, we look at the
heat map of (α, ϵ) occurrences resulting in the minimum product in equation
4 as shown in Figure 6. For the 90o case, ϵ of 0.4 with α of 0.1, 0.2, and 0.4
are the dominate cases. Likewise, ϵ of 0.4 is also the dominant case for the 130o

scenario. The α values are also similar at 0.2 and 0.4 being the dominant cases.
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Fig. 6: Q-Learning Heat Map

For Q-learning the combination of (ϵ,α) that are most effective are (0.4,0.1),
(0.4,0.2) and (0.4,0.4).

5.2 Double Q-Learning Results

Figure 7 shows the average AoA error and average convergence time against
Threshold for Double Q-learning. Like Q-learning, it is clear that an increase in
window size results in larger convergence time. For Double Q-learning, both the
average AoA error and convergence time are better than Q-learning. For nearly
all (ϵ, α) combinations, the average AoA error is less than 0.15% for both the
90o and 130o degree scenarios.

Figure 8 shows the heat map of (α, ϵ) occurrences resulting in the minimum
product in equation 4 for Double Q-learning. For the 90o scenario the (ϵ, α)
combinations that occur the most often are (0.1,0.1), (0.1,0.3) and (0.1,0.4) for
both window sizes. Like the 90o case, it can also be seen that an ϵ of 0.1 does
occur for the 130o scenario for a window size of 10. However, we also see that
ϵ values of 0.3 and 0.4 do occur for both window sizes. The dominant (ϵ, α) are
(0.1,0.1), (0.1,0.2), (0.2,0.3), (0.3,0.2), (0.4,0.2), and (0.4,0.3).
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Fig. 7: Double Q-Learning for 90o and 130o scenarios

 

Fig. 8: Double Q-Learning Heat Map
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6 Conclusion and Future Work

We presented RL-based AoA detection algorithms for mmWave systems that
are operated by SDR. By adapting Q-learning and Double Q-learning to the
AoA detection problem, we demonstrated the practicality of the approach and
experimentally evaluated the methods in a mmWave SDR testbed. We achieved
AoA detection within 2o of the correct AoA accuracy using the RL algorithms
Q- and Double Q-learning. Compared to [9], our current setup uses unsupervised
learning and does not rely on labeling data sets. The setup in [9] uses GPS to
label transmitted signals. GPS does poorly in indoor environments, due to low
power of reception. Further, for the RL algorithms Q- and Double Q-learning,
our study investigated the best combinations of hyper-parameters that minimizes
the AoA detection error and convergence time of the algorithms. We showed that
double Q-learning outperforms Q-learning with respect to both AoA accuracy
and convergence time. Compared to [18] and [19], our mmW platform is much
cheaper and allows for a more user friendly interface.

Neural networks aren’t used in our Q- and Double Q-learning algorithms.
We plan on implementing and testing deep learning methods utilizing neural
networks for AoA detection. With the usage of cheap servos, our current system
set-up is limited. We plan to equip our testbed with phased array antennas [6],
which can steer antenna beams in the order of microseconds. This will result in
much faster convergence time and enable more flexible beamsteering enlarging
the action space for the learning algorithms. We also plan to integrate field
programmable gate array (FPGA) to our setup, in order to improve hardware
and software run-time. An improvement in run-time will result in better overall
convergence time.
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