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ABSTRACT
With the emerging advancements of AI, validating data generated
by AI models becomes a key challenge. In this work, we tackle
the problem of validating tabular data generated by large language
models (LLMs). By leveraging a recently proposed technique called
Gen-T, we present a technique to verify if the data in the LLM table
can be reclaimed (reproduced) using tables available in a given
data lake (for example, tables used to train the LLM). Speci�cally,
we measure the number of data lake tables that support tuples (or
partial tuples) in a generated table. We further provide suggestions
for value replacements if a generated value cannot be reclaimed.
Using this approach, users can evaluate their LLM-generated tables,
consider potential modi�cations for table values, and gauge how
much support the modi�ed table has from the data lake. We discuss
two case studies showing that table values annotated with reclama-
tion support scores, along with possible value replacements, can
help users assess the trustworthiness of LLM-generated tables.
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1 INTRODUCTION
Verifying the output of generative AI or large language models
(LLMs) using a data management lens is an emerging and important
area [14, 36]. For example, users who generate summary tables
and charts (e.g., Microsoft Copilot [28]) or presentation slides (e.g.,
SlidesAI [35]) from input data would �nd it useful to verify model
outputs and examine what data may have been used to generate
them. Associating AI-generated data (or any automatically created
data) with some form of evidence for validity will give users more
con�dence in the data they are using.

Many applications require the generation of tabular data includ-
ing benchmarking where synthetic data may be used [37], or where
real data can be modi�ed systematically to generate new tables
for benchmarking solutions to problems such as data cleaning [1].
Other applications have used knowledge graphs [9], Git reposito-
ries [20], and the web [6] to generate tabular data. Di�usion models
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have also been used to synthesize tabular data [25, 41]. Recently, Pal
et al. proposed a method to generate tabular data using LLMs [32] to
create benchmarks for semantic data management problems. These
methods may require manual veri�cation of the generated tables,
which may provide users with an intuitive sense of what evidence
is being used in the veri�cation. However, manual veri�cation is
laborious. This is the problem we tackle: how do we verify (LLM)
generated tables in a clear and intuitive way that allows a user to
easily assess what information is being used for the veri�cation and
the degree of support di�erent tuples in a generated table may have.

We build on top of a recently proposed technique called Gen-
T [10] and present a technique to verify if the data in a generated
table can be reclaimed (reproduced) using tables available in a given
data lake (for example, tables used to train an LLM that generated
the table). Given a table (referred to as a Source Table)1, Gen-T
searches the data lake to �nd a set of supporting tables that can be
integrated to reclaim (reproduce) the generated table as accurately
as possible. Given a reclaimed table, �rst we show the degree of
support for tuples (or partial tuples) from the supporting tables and
allow the user to examine the supporting tables and second, we
suggest corrections (value replacements) for values that cannot be
reclaimed.

1.1 Motivating Example
Assume a data scientist wants to analyze diversity reports of di�er-
ent high-tech companies. To do so, the scientist uses (prompts) an
LLM to “show demographics of employees in Top US tech compa-
nies in 2021”. Figure 1a (top table) shows such an LLM-generated2
table including companies, their CEOs, and their employee demo-
graphics. In addition, assume that the scientist has access to a data
lake. The bottom left side of Figure 1a shows a subset of data lake
tables, which we refer to as supporting tables. These tables are
considered as possible tables that the LLM used to generate its
table.

Our proposed framework �rst �lters the data lake to generate a
set of supporting tables using Gen-T [10]. Our solution computes
which supporting tables support which portions of the reclaimed
table and using this, a scientist can already detect that row infor-
mation about ‘Amazon’ in the LLM table are supported by a table
containing ‘International’ statistics, whereas statistics reported for
‘Microsoft’ in the reclaimed table supported by tuples reporting
US statistics. Using this supporting information, users can verify
the LLM values. Our method automates this e�ort by computing
support scores for the source table values. A value that cannot be
reclaimed has a support score of zero (and would appear as a null
in Gen-T’s output). In this simple example, the support scores are

1Which, in this work, we assume is LLM-generated.
2In the example, we used the free research preview of GPT 3.5.
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Figure 1: (a) LLM-generated table (top) and supporting tables (bottom left) that the LLM may have used to produce the top table.
By integrating the supporting tables, Gen-T produces a reclaimed table (not shown) that has nulls for three values. Our method
adds to the reclaimed table support scores (b) and suggests values for the unreclaimed values to generate a possible Veri�ed
(and Corrected) Table (bottom right in (a)). The LLM-generated Table and veri�ed table from (a) are annotated with support
scores in (b), (c), respectively. Every cell is color-coded according to its support score, with darker cells indicating higher scores
and lighter shades indicating lower scores.

all one or two except for the three values that cannot be reclaimed.
Our support and veri�cationmethod suggests corrections for values
with zero support scores. A possible veri�ed table is presented in
the bottom right side of Figure 1a, in which the %White and %Black
values in the third row are corrected and the CEO is corrected to
Andy Jassy.

1.2 Contributions
In this work, we present a framework to verify and correct tabular
data generated by LLMs (or any automated method). In summary,
we make the following contributions.

(1) Wemeasure the degree of support that a generated table has
from a set of supporting tables that can be used to reclaim
the table as accurately as possible.

(2) We suggest replacements for values that cannot be re-
claimed (or that a user questions, perhaps due to their low
support). We useGen-T to compute a value that would have
the highest support from supporting tables and suggest this
as a way to correct or repair the generated table.

(3) We conduct two case studies to show the value of measuring
support and using this to verify the tabular output of LLMs
and to suggest possible corrections for values that cannot
be reclaimed. We show that our method out-performs a
recent proposal by Narayan et al. [29] for using LLMs to
correct data.

All our code and data is open source.3

3https://github.com/northeastern-datalab/table-validation

2 RELATEDWORK
In our framework, we �rst search for a set of data lake tables that
support a given source table. From this set of tables, we can suggest
replacements for values in the source table that have low support.

2.1 Table Discovery and Query-by-Example
Our work uses Gen-T for supporting table discovery and reclama-
tion [10]. Table discovery is a long-standing problem [11] that
can be solved using keyword search over tables, unionable ta-
ble search, joinable table search, or various forms of related ta-
ble search. Early work such as Octopus [7] and Google Dataset
Search [5] support keyword search over the metadata of tables [26]
and smaller scale web-tables [38]. Data-driven table discovery sys-
tems [15, 30, 33, 42, 43] were then developed to �nd schema com-
plements, entity complements, joinable tables, and unionable tables.
Recent work relies on value overlap between the columns [3, 42, 43],
knowledge graph concept or value embedding similarity [23, 30],
and similarity of table representations [12, 19]. Some table discov-
ery methods [13] capture relationships between tables by building
an enterprise knowledge graph, but only aim to solve the table
discovery problem and do not perform table integration or recla-
mation. Other recent work [16] is also goal-oriented discovery for
speci�c downstream tasks, aiming to augment columns. Gen-T uses
table discovery then performs reclamation of a given Source Table.

Query-by-Example methods [18] also aim to reproduce an input
table, but with the goal of completing a partial input table. Unlike
these methods, Gen-T aims to reproduce the input table as closely



as possible, making no assumption that the input table is only
partial. Gen-T uses more integration operators than most QBE
methods, namely S������P�������J����U���� queries, since it aims
to integrate tables to do the reclamation. Gen-T is also similar to
Query-by-Target methods [40] that synthesize a pipeline to create
a target table from a given set of tables. However, Gen-T does not
assume the set of tables or integration query that �rst generated a
given table are known. This aligns with our framework, since we do
not know what tables an LLM may have used to produce a tabular
output. Finally, most QBE approaches assume a small example table
while Gen-T can reclaim large tables with thousands of tuples.

2.2 Error Correction
Another line of related work is error correction. Error correction
may use knowledge bases and crowdsourcing [8], or reference
data [8], among other approaches. An important line of work uses
the notion of minimal repair to suggest corrections that would
require the fewest number of changes [21]. Our maximum support
corrections are motivated by the intuition that tables in a data
lake each provide independent evidence for a repair so we use the
correction with the highest evidence. An interesting line of future
work would be to consider whether supporting tables are in fact
independent or whether they are versions of each other [34].

3 METHOD OVERVIEW
We propose a veri�cation framework that �rst reclaims a source
table, and then computes support values and uses these to suggest
corrections for values that cannot be reclaimed.

3.1 Preliminaries
To verify the values of a source table generated from an LLM, we
�rst �nd tables from a data lake that support and reclaim the source
table. We do not assume that we know the exact set of tables that
the LLM used to �rst generate the source table, especially a closed-
source LLM, so we do not know if we can �nd a set of data lake
tables that reproduces the entire source table. To search for data
lake tables that can support the source table, we need to compare
columns and tuples in data lake tables to those in the source table.
Thus, we �rst perform schema matching and instance comparison.
Following Gen-T [10], we perform schema matching by �nding
tables with columns that have high value overlap with columns
from the source table, and rename the tables’ columns with the
source table’s column name. To e�ciently �nd data lake tables that
can reproduce the source table, we follow Gen-T and make use of
key column(s) in the source table. While Gen-T does not assume
data lake tables contain keys or have foreign key relationships,
Gen-T does require the source table to have a key so that instance
(table) comparison is fast [10] (as instance comparison is done often
in their solution).

3.2 Reclaiming LLM Tables
We provide Gen-T with a (LLM-generated) source table, along with
a data lake (which may include set of tables used to train the LLM).
Gen-T discovers a set of supporting tables that are likely to be tables
from which the LLM-generated data may have originated, and thus
support values in the source table. Gen-T integrates the supporting

tables in a way that reclaims as many of the source values as possi-
ble, outputting a reclaimed table. The reclaimed table is identical
to the source table if all values can be reclaimed, otherwise it has
nulls for values that cannot be reclaimed.

3.3 Degree of Support
To verify a source table, we �rst compute support values for all val-
ues in the reclaimed table. These support values give users further
insight into the source table by evaluating how often the table’s
values are found in supporting tables. To accurately �nd the support
that each value has, we use the source key and search the support-
ing tables for all occurrences of the source key and key-value pairs.
Thus, we �nd support scores by encoding the degree of support
that each key and key-value pair has.

E������ 1. In Figure 1, recall that the value Jeff Bezos cannot
be reclaimed from the given supporting tables. The key-value pair
(Microsoft, Satya Nadella) has support 1, while (Amazon,

Andy Jassy) has support 2.

3.4 Suggesting Value Replacements
If values in the source table cannot be reclaimed or have low sup-
port, we suggest possible replacements for these values. Thus, we
use support values to suggest corrections to a source table. If the
supporting tables have values with higher support scores than un-
reclaimed source values, these values can be suggested as possible
replacements to the unreclaimed source values. We take values with
the highest support from supporting tables, and suggest them as
corrections to the source table. The user can then choose to replace
source table’s values with suggested values. Note that we do not as-
sume that suggested value replacements from supporting tables are
correct, we only provide one method for suggesting replacements
for the source table. While there are other ways to evaluate and
compare degrees of support, such as trustworthiness, completeness,
and accuracy of supporting tables, we leave this to future work.

E������ 2. In Figure 1, Figure 1b shows the source table and
Figure 1c shows the veri�ed table from Figure 1a, both annotated
with support scores. Cells are color-coded to show the degree of
support that each table value has, with darker shades indicating a
high support and lighter shades indicating a lower. Comparing the
two heatmaps of support scores, we notice that the source table 1b has
no support for some Google values (in white), whereas the veri�ed
table 1c has di�erent Google values with higher support (in blue).
Thus, users can choose whether to replace values in their source
table with high support values suggested by our veri�cation and
correction method.

4 CASE STUDIES
We present two case studies in which we verify LLM-generated
source tables and assess how much support they have from a set of
tables known to be part of the LLM’s training data. Note that these
are preliminary studies intended to analyze LLM-generated tabular
output using ourmethodology and provide insights to inspire future
directions. In future work, we will develop evaluation metrics and



carry out extensive experiments to study this problem. We use
Gen-T to reclaim as many values from the source tables as possible
from the training data, and evaluate their support scores. For values
that we cannot reclaim, we will illustrate what values our method
suggests as replacements. The �rst case study is a controlled study
(Section 4.1), in which we use an LLM [31] to generate source tables
using tables from the TPC-H benchmark [37], and assess howmuch
support the (LLM-generated) source tables have. In the second study
(Section 4.2), we take a benchmark with tables previously generated
from an LLM [32], 4 and analyze their support from an open data
lake WikiTables [2] known to be included in the LLM’s training
data.

4.1 TPC-H Controlled Study
We start with eight tables from the TPC-H benchmark [37] with
information on customer orders, suppliers, nations, etc. Using an
LLM (ChatGPT3.5 [31]), we integrate di�erent tables from the TPC-
H benchmark to produce a tabular result. First, we serialize each
TPC-H table into a string by concatenating cell values from each
row. For table integration, we ask the LLM to consider S������
P�������J����U���� queries. We prompt the LLM to output a table
that has a key column. Note that we consider a single key column in
this controlled study, but ourmethod can also handlemulti-attribute
keys. Figure 2 shows an example prompt we give to ChatGPT.

Given the following tables, integrate them using some 
Select-Project-Join-Union query. The integration result 
should have one key column, meaning it has all unique 
values and no null value. Return the tabular result with 
name nation_supplier_part_partsupp.csv separated by 
semicolons. Ensure that all rows in the tabular result 
have the same number of columns.
<serialized Table 1>
<serialized Table 2>
…

Figure 2: Sample LLM prompt to produce source tables. The
LLM is prompted to generate a table from a set of TPC-H
tables.

We analyze four tables generated by the LLM (our source tables).
We then use Gen-T [10] to reclaim each table, and see if there
are unreclaimed values (which would be the result of errors or
hallucinations by the LLM) and whether any unreclaimed values
can be correctly repaired by our method.

You are a scientist who detects and corrects errors in 
tabular data. Return the corrected table, along with an 
explanation of what errors you detected, and how you 
fixed them using the provided data lake. Here is the 
table you need to correct: 

<serialized table>

Here is the data lake that you can use to correct values 
in the table: 

<serialized Table 1>
<serialized Table 2>

…

Figure 3: An LLM prompt to correct the source table using
TPC-H tables, and return an LLM-corrected table. This serves
as a baseline in our analyses.
4These tables were generated as a benchmark for the table union search problem.

To evaluate how well our method suggests value corrections, we
also consider a baseline inspired by Narayan et al. [29], in which we
use the same LLM to “correct” errors in the source table.We serialize
the source table, along with TPC-H tables, and prompt the LLM
to detect errors in the source table. Then, the LLM is prompted to
correct these errors using the TPC-H tables and return the corrected
table. It has been shown that an LLM’s performance improves when
it explains its thought process [39], so we also prompt the LLM to
explain the errors it detected and how it �xed them. Figure 3 shows
an example prompt to produce an LLM-corrected table.

4.1.1 Column-level analysis. We compare the support that source
tables, veri�ed tables, and LLM-corrected tables have from a data
lake (TPC-H tables), shown in Table 1. In the last column of Table 1,
we �nd how many columns (attributes) in the source table contain
values that have some support. We compare this to the column-level
support that the veri�ed table and LLM-corrected table have.

Across all four source tables generated by an LLM, 64-90% of their
columns have some support. In other words, 10-36% of columns
have no support from the data lake. On the other hand, all columns
in the veri�ed tables have some support from the data lake. This
shows that table reclamation is useful when validating values of a
source table and guaranteeing support from a data lake.

Compared to the LLM-corrected table (our baseline), the veri�ed
table still produces more values supported by the data lake. By
prompting an LLM to use a data lake to correct the source table,
we �nd that its output values are still not always consistent with
(supported by) the data lake. Only 50-80% of the tables’ columns
have some support, but 20-50% of their columns have no support
from the data lake. Thus, our data-driven approach to �nding value
corrections for source tables is more accurate.

4.1.2 Row-level analysis. We perform a row-level analysis in which
we see how many rows are fully supported by TPC-H tables. We
�nd that no row in the source tables or the LLM-Corrected tables
is fully supported by TPC-H tables. That is, no row has support for
all values. By contrast, most if not all rows in the veri�ed tables
have support for all their values by the data lake.

Table 2 shows an analysis of partial data lake support for each
row in source tables, veri�ed tables, and LLM-corrected tables.
Veri�ed tables contain as many, if not more supported values than
the source tables. Thus, users can use supported values from the
veri�ed tables to replace source table’s values.

E������ 3. Figure 4 shows a source table (Figure 4a), Veri�ed
table (Figure 4b), and LLM-corrected table (Figure 4c). All cells are
color-coded to show each value’s degree of support from the TPC-H
tables (darker colors indicate higher support). Each cell lists the
supporting table(s) for that value, showing the TPC-H table(s) that
support each value. Note that this is a controlled study in which
each value has only a few supporting tables (1-2), but this is not
generally the case. In Figure 4a, the source table does not have any
support for any value in the “REGIONKEY” column and for some
values in the “S_COMMENT” column. This implies that the LLM
found wrong region key values for every nation. After reclaiming
the source table using the TPC-H tables (Figure 4b), we �nd di�erent
region key values and supplier comments for every nation, that all



% Columns with support for some value
Table Name Source Table Veri�ed Table LLM-Corrected Table

region_nation_supplier_1 80% 100% 80%
region_nation_customer_0 64% 100% 73%
region_nation_supplier_2 70% 100% 60%
nation_supplier_part_partsupp_2 90% 100% 50%

Table 1: Percentage of columns in each Source table, Veri�ed table, and LLM-corrected table (baseline) that have some support
from the data lake for some of their values.

Table Name Method # Rows Supported Values / Row

region_nation_supplier_1

Source Table 5 6-8
Veri�ed Table 5 7-8
LLM-Corrected Table 5 6-8

region_nation_customer_0

Source Table 5 6-7
Veri�ed Table 5 8
LLM-Corrected Table 5 7-8

region_nation_supplier_2

Source Table 4 6-7
Veri�ed Table 4 8
LLM-Corrected Table 4 2-5

nation_supplier_part_partsupp_2

Source Table 19 9
Veri�ed Table 19 9
LLM-Corrected Table 19 2-4

Table 2: Number of rows and supporting values per row, for Source tables, Veri�ed tables, and LLM-corrected tables.

have support from the data lake. We can refer to the listed supporting
tables for values in the “REGIONKEY” column (“nation.csv”) and
further validate the values in the veri�ed table.

In the LLM-corrected table (Figure 4c), values for columns
“S_ACCTBAL”, “S_PHONE”, ..., “S_COMMENT” do appear in the
TPC-H tables, but in rows with di�erent “NATIONKEY” and “SUP-
PKEY” values. For example, values in the second tuple (1432.69,
18-179...) appear in the “supplier” table, but in a tuple where “NA-
TIONKEY” is 8 and “SUPPKEY” is 12.

LLM-corrected tables have the same number of columns and
rows as the source table. Note that a veri�ed table may have fewer
rows if the key value of the row does not appear in the data lake.
However, an LLM may generate value corrections that have the
same or less support from the data lake as the original value. As
shown in Example 3 and Figure 4, an LLM can also falsely detect
supported values as errors and replace them with values that have
no support. New values in the LLM-corrected table may appear
in di�erent tuples with di�erent key values, creating misaligned
key-value pairs. This again shows that a data-driven approach for
table veri�cation is necessary to validate tabular values and suggest
values with data lake support.

4.2 General LLM Study
In our second case study, we take an existing benchmark called
UGen [32], which contains tables generated by an LLM (Mixtral-
8x7B-Instruct [22]). We do not knowwhat tables were used to create
UGen’s tables, so we take the WikiTable benchmark [2] and see if
any of UGen’s tables can be veri�ed using the 540,000 WikiTables
as a data lake.

Table Name Source Table Veri�ed Table

Criminology 46.154% 64.103%
Sports 35.915% 57.576%
Climatology 28.785% 56.503%

Table 3: Percentage of values with support from the data lake

We present an analysis of three source tables from the UGen
benchmark that have the most support (“Criminology”, “Sports”,
“Climatology” ) from the data lake. We use table reclamation to re-
claim each table and produce veri�ed tables of each source table.
In regard to the LLM-corrected baseline, unlike our previous con-
trolled study, we do not knowwhat or if tables from theWikiTables
benchmark generated the UGen tables. Prompting an LLM with the
entire WikiTables benchmark is not realistic due to the token limit



(a) Source table

(b) Veri�ed table

(c) LLM-Corrected table

Figure 4: (a) LLM-generated source table from regions, nations, and supplier tables from the TPC-H benchmark, (b) the Veri�ed
table produced by Gen-T with value replacements, and (c) the LLM-corrected table produced by an LLM. Each cell has a value
(in bold) and a list of supporting tables for that value (in red).

constraint of LLMs, so we cannot use an LLM to correct the tables
using WikiTables as a data lake.

As a general study, we analyze how many values from each table
have any support from the WikiTables data lake. Table 3 shows the
percentage of values that have data lake support for each source
table and their veri�ed table. While some values in the source tables
have support from the data lake (29-46% of values), most values
do not have any support (54-71% of values). On the other hand,
the veri�ed tables have many more values with data lake support.

This shows that our data-driven approach does provide valid value
replacements.

To better understand the di�erence between values in a source
table from the UGen benchmark and a Veri�ed table, we analyze
values from the “Criminology” table in Figure 5.

E������ 4. Figure 5a shows a subset of rows and columns from
a table from the UGen benchmark about criminology reports, and
Figure 5b shows its veri�ed table. The �rst row in Figure 5a is fully



(a) Source table (b) Veri�ed table

Figure 5: (a) Subset of rows and columns from the “Criminology” table from UGen about Crime reports, and (b) values in the
veri�ed table. Each cell is color-coded based on its support score from the WikiTables data lake. Each cell also has the number
of data lake tables that support that value (in red).

reproduced in the veri�ed table (Figure 5b). However for Incidents
35 and 50 (second and third rows), the source table and Veri�ed
table have di�erent values for “Victim Race”. Neither of the “Victim
Race” values in the source table have any support from the data lake,
whereas the “Victim Race” values in the Veri�ed Table have some
support from the data lake. We �nd that all “Victim Race” values
in the veri�ed table have the same supporting table. Thus, “Black”
and “White” are reasonable replacements for “Asian” under “Victim
Race” in the source table. Note that some values in the veri�ed table
may not have any data lake support (e.g., “Victim Gender” values
for Incidents 35 and 40). Gen-T aims to reproduce as many values as
possible, and if Gen-T �nds rows aligned at di�erent columns (e.g.,
“Victim Age”), it may over-combine them and replace null values
(supported by the data lake) to reproduce source table’s values (e.g.,
Female gender). This creates a key-value pair that has no support
from the data lake (e.g., Female Victim for Incident 40).

By comparing the degrees of support in source tables and Veri�ed
tables, we show that values in Veri�ed Tables are supported by the
data lake and can be used to replace values in the source table
that have little or no support. Note that the corrections provided
by our method do not take into account bias in the data or in the
LLM [17, 24], although this would be an interesting direction for
future research.

5 CONCLUSION AND FUTUREWORK
Table reclamation [10] has been proposed as a way of understand-
ing how a set of tables may have been integrated. In this work, we
propose a novel application of reclamation to the veri�cation and
correction of automatically generated tables, such as tables pro-
duced by generative AI. Our novel contributions include a method
for computing the support of reclaimed data and a method for sug-
gesting corrections to values that cannot be reclaimed. We have
shown that our method outperforms an LLM-based data wrangling
and correction approach [29]
Limitations: To �nd supporting tables from a data lake for a
source table, we currently follow Gen-T [10] and rely on exact cell
matches. However, this does not account for di�erent syntactic
representations of the same value. In addition, when we compute
support values (Section 3.3), we simply �nd occurrences of source
keys and key-value pairs. In future work, we need to develop a
scoring function that considers how much support each row in the
source table has from supporting tables, thus taking table context
into account. Lastly, while we have preliminary case studies, we

need to develop formal methods to evaluate table corrections and
discuss table validation from a data lake.
Future Work: While this is a �rst step in validating LLM tabular
outputs using a data lake and suggesting possible value replace-
ments, there is great potential for future work. So far, methods for
error correction have mainly relied on external sources such as
Knowledge Bases or models [4, 8, 27, 29] or on LLMs themselves.
Our work is a preliminary investigation into using data lakes for
error correction. Our current support score gives a value a high
score if it appears many times in a data lake. However, this does
not mean that the value is accurate or trustworthy. Oftentimes,
an error is propagated in a data science pipeline and thus appears
in many tables. Future research requires studying the accuracy
or trustworthiness of data (including understanding if tables are
versions of each other) and aiming to reclaim them in a way that
properly re�ects these important properties.
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