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Abstract. Social touch provides a rich non-verbal communication chan-
nel between humans and robots. Prior work has identified a set of touch
gestures for human-robot interaction and described them with natural
language labels (e.g., stroking, patting). Yet, no data exists on the seman-
tic relationships between the touch gestures in users’ minds. To endow
robots with touch intelligence, we investigated how people perceive the
similarities of social touch labels from the literature. In an online study,
45 participants grouped 36 social touch labels based on their perceived
similarities and annotated their groupings with descriptive names. We
derived quantitative similarities of the gestures from these groupings
and analyzed the similarities using hierarchical clustering. The analy-
sis resulted in 9 clusters of touch gestures formed around the social,
emotional, and contact characteristics of the gestures. We discuss the
implications of our results for designing and evaluating touch sensing
and interactions with social robots.

Keywords: Social Touch · Touch Dictionary · Non-Verbal
Communication · Crowdsourcing Study

1 Introduction

Social touch has been an active area of research for human-robot interactions
(HRI) in the last decade. Social touch gestures refer to different ways that people
use touch to communicate information or emotion and bond with other humans
or robots [10]. For example, one may tap a robot’s arm to get its attention or
hug a robotic pet when stressed. A companion robot may stroke a user’s hand
to convey emotional support or guide the user’s action by pushing their hand.
Previous work has derived a set of social touch gestures and their definitions
based on user interactions with robotic pets [28]. Others designed and evaluated
touch interactions with humanoid robots [3,7]. The touch gestures from these
studies have guided the development and evaluation of touch sensors for robots,
helped examine user experience of robot-initiated touch, and informed the design
of robot response to user touch.
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Fig. 1. In our study, users grouped social touch labels based on their perceived similar-
ities (A). The resulting touch clusters can be used by robots to interpret and perform
touch interactions with people (B).

Despite the abundance of interest in social touch communication, the seman-
tic relationship(s) between various touch gestures remains unclear. Some gestures
may be very similar or even identical in their contact characteristics (e.g., tap-
ping vs. patting), while others may be similar considering the intended emotion
or social context. People develop a mental structure for the semantics of touch
gestures and their relationships. This mental structure shapes people’s percep-
tion, interpretation, and use of touch [8]. Charting the relationship between
social touch gestures can help HRI researchers select touch gestures for their
studies (e.g., touch sensor evaluation) and develop robots that use touch in a
socially intelligent manner. Yet, little data exists in the literature about how
people perceive the relationships between social touch gestures.

As a first step toward addressing this gap, we asked how people perceive
similarities of social touch labels (e.g., stroking, hugging). People can have unique
styles in applying a touch gesture [12]. On the other hand, people often use
natural language labels to refer to archetypal features of a touch gesture. The
touch labels are also used in HRI studies to ask users to contact a robot (or a
sensor) in a certain way [3,12] or to analyze user interactions with a robot [28].
The study of natural language labels for emotions has helped capture users’
cognitive structure, leading to a circumplex model for affect [18]. Thus, as a first
step, we investigated the semantic structure of social touch labels in the users’
minds in this paper.
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To chart the relationship between touch labels, we ran an online card sorting
study with 56 users over Amazon Mechanical Turk (Fig. 1-A). The participant
received the labels and definitions for 36 touch gestures from the literature,
sorted them into 4, 8, and 12 groups successively based on their similarities,
and provided descriptive names for each group. From this data, we identified 11
outliers by manually reviewing the data as well as analyzing the responses quan-
titatively. Then, we created a dissimilarity matrix for the 36 touch gestures with
the data of the remaining 45 participants and applied agglomerative hierarchical
clustering on the dissimilarity matrix. Furthermore, we analyzed the descrip-
tive names that the participants had for their groupings using open codes (e.g.,
social, aggressive) and calculated the frequency of the codes for the gestures.

Based on the above analysis, we contribute 9 clusters for social touch ges-
tures and the distribution of the top codes for each cluster. Using this data,
we interpret the 9 clusters to capture the types of touch as follows: (1) social,
(2) romantic affection, (3) caregiving affection, (4) hand contact, (5) aggres-
sion, (6) forceful press, (7) functional movement, (8) nervous contact, and (9)
contact without movement (Fig. 1-B). Our results suggest that people primarily
group touch gestures based on their social, emotional, and contact characteris-
tics. These results provide the first data on cognitive structure(s) that people
use to interpret and conceptualize social touch. We discuss how the results can
help design and evaluate a robot to sense, interpret, and communicate via touch.

2 Related Work

2.1 Social Touch in HRI

The literature on social touch ranges from communication between humans
to interactions between humans and robots. Hertenstein et al. studied how
dyads use social touch gestures to communicate different emotions and found
that people can decode the intended emotions with great accuracy when being
touched [8]. Similar studies of human-human touch suggest that touchers can
subtly but significantly vary contact attributes of their touch actions to com-
municate distinct messages [27]. HRI researchers have replicated Hertenstein
et al.’s work to investigate how users and robots can use touch to communi-
cate emotions. Some studies examined how humans communicate emotions to
robots [11,28], while others examined whether a robot can communicate emo-
tions to humans via touch [21,23].

Social touch gestures have also informed the development and evaluation of
tactile skins for robots. Previous work in this area has proposed touch sensors
with a novel working principle [5], sensors resembling the feel and structure
of human skin [24], and low-cost do-it-yourself sensors for specific applications
such as companion robots for children with autism [3]. To evaluate the sensor’s
efficacy, researchers select a set of social touch gestures and ask users to touch
the sensor accordingly. Data from user contact with the sensor is then used to
classify the gestures.
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A variety of touch gestures are reported in the above studies. Yohanan and
MacLean proposed a touch dictionary with labels and definitions for 30 gestures
based on videos of user interactions with a furry lap-sized robot [28]. This dic-
tionary has been widely used in social touch studies [3,11]. Others mentioned
additional gestures for interactions with humanoid robots such as fist bump-
ing [15–17], handshaking [2,17,26], or kicking [8,13,20]. To inform future work
in this area, we collected common touch gestures from prior studies and exam-
ined how people conceptualize the relationship between these gestures.

2.2 Identifying Perceptual and Semantic Clusters

The psychophysics and interaction design literature has developed methods for
estimating perceptual and semantic similarities of items through user studies.
The pairwise rating method asks participants to rate the similarity of pairs of
items in the set [1]. This method is effective for a small set of items (e.g., < 15)
but it is prone to noise from local judgments and does not scale to large item
sets [25]. The sorting methods, known as card sorting or cluster sorting, ask
participants to group items into clusters based on their similarities. This process
can be repeated with an increasing number of groups to obtain a fine-grained
similarity matrix [22]. This method allows for collecting cognitive similarities of
large item sets [18]. The similarity matrix is further analyzed using dimension-
ality reduction or clustering techniques [1,18]. Following this methodology, we
used iterative cluster sorting and asked users to name their groups to obtain
semantic clusters for social touch labels.

Natural language labels have been used to capture lay users’ cognitive struc-
ture for sensory and emotional items. The circumplex model of affect by Rus-
sell [18] is based on a series of studies that use natural language labels for emo-
tions. Also, studies of social touch often rely on user understanding of natu-
ral language labels for touch. In these studies, users receive labels for a set of
social touch gestures (e.g., tapping, stroking) and are asked to touch the robot
accordingly [3,11]. Similarly, studies on human-human and human-robot emo-
tional communication sometimes provide a list of touch gesture labels for users
to choose from, before applying the gestures [8,27]. The studies may also pro-
vide short definitions for each touch gesture e.g., from the touch dictionary by
Yohanan and MacLean [28]. These studies rely on the users’ knowledge of natu-
ral language labels for touch gestures. We follow a similar approach in our work
to capture users’ cognitive structure and similarities of social touch gestures.

3 Methods

To study how people perceive similarities of social touch gestures, we compiled
a list of touch gestures from the literature, designed an online questionnaire for
grouping the touch gestures, and ran a data collection study on MTurk.
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Table 1. The 7 touch gestures that we added to the 29 gestures in Yohanan and
MacLean’s touch dictionary [28], resulting in 36 touch gestures for our online study.

Gesture Label Gesture Definition
Finger Interlocking Interlace fingers of one hand
Fist Bumping Lightly tap clenched fists together
Handshaking Shake clasped hands
High Fiving Slap upraised hands against each other
Kicking Strike forcibly with a foot
Picking Up Take hold of and lift or move something
Squish Press or beat into a pulp or a flat mass

3.1 Touch Gestures

We compiled 36 social touch gestures that are used for interacting with humans
or robots. We focused our scope on gestures that are used in at least two publi-
cations in the social touch and HRI literature. Specifically, we included 29 touch
gestures from the touch dictionary by Yohanan and MacLean [28]. Different sub-
sets of these gestures are used in several other studies [11,12]. We removed finger
idly from the touch dictionary as this gesture is not used in any other publication.
We added seven other touch gestures that appeared in at least two publications
including finger interlocking [8,9], fist bumping [15–17] handshaking [2,17,26],
high fiving [6–8], squishing [4], kicking [8,13,20], and picking up [4,19,20].

We adapted the definitions provided in Yohanan and MacLean’s touch dic-
tionary by replacing the phrases related to their robotic pet (i.e., the Haptic
Creature, or fur of Haptic Creature) with “something” in the definition. For
example, we defined lifting as “raise something to a higher position or level.”
For the 7 actions that were not in the original touch dictionary, we created a
definition with inspiration from sources such as the Britannica Encyclopedia.
Table 1 shows the 7 newly added gestures and their definitions.

3.2 Questionnaire

We designed a Qualtrics survey to collect user demographics and data on the
similarity of touch actions (Fig. 2). The first page of the survey asked users to
enter their demographic information including their age, gender, and country
where they grew up. The next three pages asked the users to divide the touch
gestures into 4, 8, and 12 groups respectively. We call these 4 groupings, 8 group-
ings, and 12 groupings in this paper. Each page showed the list of touch gesture
labels in a random order. The users could hover over a gesture’s label to see
its definition. The users were asked to group the touch gestures based on their
likeness or similarity and provide a descriptive name for each group. Reasons for
likeness were up to user interpretation. Having the users describe their groupings
served multiple purposes. First, they helped us identify users’ reasoning for the
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Fig. 2. A screenshot of the questionnaire for grouping the touch gestures in our study.
The image shows touch gestures that are divided into four groups, the remaining list
of gestures for grouping, and example descriptive names from one of the participants.

similarity of touch gestures. Second, the descriptive names served as an attention
test and allowed us to detect those who did not do the task properly, e.g., if they
organized the gestures into random groups.

We devised the above procedure based on common practices in studies of
similarity perception and social touch gestures in the literature. First, the iter-
ative cluster sorting method allowed us to collect users’ holistic comparisons of
the similarities of all 36 gestures. Second, following prior work on touch sensing
and communication, the touch labels helped us abstract from a variety of styles
that people use to apply the touch gestures (e.g., tapping one time or multiple
times) to capture users’ cognitive structure of the gestures.

4 Analysis and Results

We collected participant responses through MTurk. Eligible turkers were
required to have at least 5,000 completed tasks with a minimum success rate
of 97% and to speak English at the B2 level or higher. We analyzed their data
in the following steps:

– Identifying outliers.We identified participants who did not follow the study
instructions or appeared to group the touch gestures randomly (Sect. 4.1) and
removed their data from the subsequent analysis. We also examined the effect
of where participants grew up on their groupings.
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– Coding descriptive names for the groups. To identify the themes behind
the user groupings, we coded the descriptive group names from the partici-
pants. This step resulted in 25 codes (e.g., social, aggressive) to capture user
logic for their groupings (Sect. 4.2).

– Clustering touch gestures. We calculated a dissimilarity matrix for the
touch gestures based on the participants’ groupings and identified semantic
groups by applying hierarchical clustering on the dissimilarity matrix.

– Interpreting the clusters. Finally, we counted how many times a code
from Step II was applied to the touch gestures in each cluster. The results
helped us interpret and label each of the 9 social touch clusters (Sect. 4.3).

Below we detail these steps and their results.

4.1 Identifying Outliers

We marked and removed outliers who did not follow the study instructions or
their groupings and descriptive names appeared random. One of the authors care-
fully examined all the responses from the 56 participants and marked potential
outliers for further analysis. The author marked cases where no label was pro-
vided, the label was gibberish, or the description of group labels did not match
with its gesture items. For example, if a participant grouped kissing, nuzzling,
and stroking with hitting and labeled them as “fighting”, we marked this as an
unusual group. By the end of this step. 16 participants with several unusual
groupings were marked as potential outliers.

Next, we calculated a similarity matrix where each cell showed similarity
of the groupings provided by two participants (56 × 56 matrix). To obtain the
best matching between groups from two different participants, we calculated the
Jaccard Index values for all pairs of groups provided by them (e.g., 8 pairs for
the 4 groupings) and averaged the highest Jaccard values as a measure of the
similarity of the two participants.

We projected the participant similarities into two dimensions using a com-
mon dimensionality reduction technique known as non-metric Multidimensional
Scaling (nMDS) and used clustering to assess outliers (Fig. 3). In addition, we
conducted k-means clustering with a range of 2 to 10 clusters on the dissimilar-
ity matrix. The value of the Gap Statistic suggested 3 as the optimal number
of clusters (Fig. 3). Our analysis revealed that cluster 3 contained 11 out of the
16 participants that we had manually identified as potential outliers. Cluster 2
contained the remaining 5 potential outliers, as well as participants not consid-
ered to be outliers in our manual analysis. Thus, the two methods of manual
and quantitative analysis of outliers largely overlapped and provided support
that the cluster 3 participants either provided noisy data or judged similarities
differently from the majority. Thus, we included the participants from clusters
1 and 2 (n = 45 participants) in further analysis.

The remaining 45 participants were from the United States (32), followed
by India (7), Brazil (5), and Japan (1). They self-identified as man (n = 29),
woman (n = 16), or nonbinary (n = 0). The mean age of the participants was
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Fig. 3. MDS plot visualizing similarity of the 56 participants in grouping the gestures.
Each mark represents one participant. The color and shape of the marks denote the
clustering results and participant backgrounds, respectively. Participants in cluster 3
(red) were identified as potential outliers and were removed from further analysis.
(Color figure online)

36.4 (±10.73) years and their ages ranged between 21–63 years. The participant
background is denoted with the shape of the marks in Fig. 3. Participants who
were not from the US are either in clusters 2 or 3. We analyzed this aspect
further in our clustering results (Sect. 4.3).

4.2 Coding Descriptive Names for the Groups

To understand the reasoning behind group choices, we coded the descriptive
names provided by the participants for each group. From 4 to 8 to 12 groupings,
the codes became more complex as subgroups began to form. The process of
identifying these codes was iterative. For example, when coding the descriptive
names for 12 groupings, we used the codes identified from 8 groupings in the
first iteration. If we found any new or more specific patterns, we added new
codes and recorded the previous data accordingly. Upon completing the coding
of all the groupings, we had a total of 25 codes. We found some descriptive
names to be ambiguous and coded them as ‘vague’. We also found that some
names did not match the social touches they were assigned to, we coded these
descriptive names as ‘random’. In some cases, participants labeled a group as
‘other’ or ‘miscellaneous’. Thus, we also coded these groupings as ‘miscellaneous’.
If a grouping contained only a single social touch, we coded it as ‘single action’.
The remaining 21 codes included: aggressive, annoying, caregiving, direction,
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fingers, force, friendly, full-body, functional, grief, hands, holding onto, massage,
nervous, playful, rapid, repetitive, romance, slow, social, and squeezing.

Fig. 4. Results demonstrating hierarchical clustering results for the social touch ges-
tures. The Gap Statistic criterion suggested an optimal number of 9 clusters. The
Cophenetic correlation coefficient is 0.85 suggesting strong correspondence with the
dissimilarity matrix. Each color represents one cluster.

4.3 Clustering Touch Gestures

Using the grouping data of each participant, we created a similarity matrix of
touch gestures following the same procedure described by Russell [18]. First,
each pair of words was given a minimum similarity score of 1. If pairs of words
were included in the same user-defined group, then their similarity score was
increased by the number of groups being organized. For example, we increased
the similarity score by 4 if a pair of words were in the same cluster for the 4
grouping mode for a participant. If a pair of words were included in the same
group for 4, 8, and 12 groupings modes, then the words would have the maximum
possible similarity of 1+4+8+12 = 25. A single similarity matrix was calculated
from the three grouping modes, and the matrix was subsequently normalized by
dividing its entries by the maximum possible similarity value (i.e., 45 participants
× 25 = 1125). We subtracted the normalized matrix from a matrix of ones to
generate a dissimilarity matrix for all the gestures.

We applied clustering to the dissimilarity matrix and identified 9 clusters for
the touch gestures. Specifically, we employed agglomerative hierarchical cluster-
ing using the unweighted pair group method with arithmetic mean (UPGMA)
[14]. To determine the optimal number of clusters for hierarchical clustering, we
utilized the Gap Statistic evaluation criterion with a range of 2 to 10 clusters.
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Table 2. Our derived names and the top 5 codes with their percentages for the 9
clusters. All the single-item groups are coded as ‘single action’.

C1 Social social hands romance caregiving random
50% 14% 14% 4% 3%

C2 Romantic romance caregiving massage random vague
Affection 33% 11% 6% 5% 4%

C3 Caregiving caregiving romance vague functional random
Affection 15% 12% 10% 8% 6%

C4 Hand force hands social vague random
Contact 12% 10% 9% 9% 8%

C5 Aggression aggressive functional random hands vague
52% 9% 5% 5% 5%

C6 Forceful aggressive functional squeezing vague force
Press 18% 12% 12% 9% 8%

C7 Functional functional vague aggressive random hands
Movement 29% 12% 8% 8% 5%

C8 Nervous nervous aggressive vague random force
Contact 30% 14% 11% 6% 5%

C9 Contact w/o single action miscellaneous social vague functional
Movement 24% 10% 10% 7% 6%

This analysis suggested 9 clusters (Fig. 4). The Cophenetic correlation coefficient
was 0.85 for the 9 clusters, indicating a strong positive correspondence between
the clusters and the original dissimilarity matrix. These clusters include:

– Cluster 1: high-fiving, handshaking, fist bumping, and finger interlocking
– Cluster 2: hugging, kissing, nuzzling, stroking, rubbing, massaging, and tick-

ling
– Cluster 3: rocking, cradling, and holding
– Cluster 4: patting and tapping
– Cluster 5: poking, scratching, pinching, slapping, hitting, kicking, pushing,
pulling, and grabbing

– Cluster 6: pressing, squeezing, and squishing
– Cluster 7: picking, lifting up, picking up, tossing, and swinging
– Cluster 8: shaking and trembling
– Cluster 9: contacting without movement

To test the effect of cultural background and English proficiency in our
results, we repeated the above clustering analysis on data from 32 participants
from the US. The analysis led to similar clusters with the exception that clusters
2 and 3 were merged into one cluster. Thus, we decided to continue with the
above 9 clusters in our further analysis.
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4.4 Interpreting the Clusters

We calculated the distribution of our codes for the descriptive names across
these clusters to interpret the reason behind the groups. Table 2 presents the
five frequent codes for the gestures in each cluster.

We named the clusters based on the distribution of their five top codes. For
clusters 1 and 5, the majority of the codes (≥ 50%) are ‘social’ and ‘aggressive’.
Thus, we call these clusters Social and Aggression respectively. Clusters 2, 7,
8, and 9 have one frequent code (≥ 24%), followed by one or two codes with
≥ 10% frequency. For cluster 2, the top code is ‘romance’ followed by ‘care-
giving’, both of which reflect the affective nature of touch. Thus, we name this
group as Romantic Affection. For cluster 7, the top code is ‘functional’, followed
by ‘vague’. This cluster includes a set of gestures that involve lifting and moving
an object or person. Thus, we name it Functional Movement. Cluster 8 has a
top code of ‘nervous’, followed by ‘aggressive’. Thus, we call it Nervous Contact.
Cluster 9 includes the single gesture of contacting without movement. This ges-
ture was often put in a separate group by the participants and we coded it as
‘single action’. Thus, we name this cluster as Contact w/o Movement to reflect
its distinct nature in the participants’ minds. Finally, clusters 3, 4, and 6 have
a relatively flat code distribution. Cluster 3 has the same two top codes as clus-
ter 2, representing affect, but in the reverse order. Thus, we name it Caregiving
Affection. Cluster 4 has two codes of ‘force’ and ‘hands’ with more than 10% fre-
quency. With two gestures of patting and tapping, we name this cluster as Hand
Contact. The top codes (≥ 10%) for cluster 6 are ‘aggressive’, ‘functional’, and
‘squeezing’. Since the top labels indicate both the ‘aggressive’ and ‘functional’
aspects of the gestures in this cluster, we use a neutral label and call this cluster
Forceful Press. Next, we discuss these clusters and their implications for HRI
research.

5 Discussion

In this study, we present data on the user perception and description of touch
gestures. Our findings indicate that users tend to assess the similarity of touch
gestures based on their emotional and social connotations, in addition to the
functional and contact characteristics. Specifically, cluster 1 includes touch ges-
tures that are frequently annotated with ‘social’ names. Clusters 2 and 3 include
gestures that are mainly coded with positive associations of ‘romance’ and ‘care-
giving’. Similarly, clusters 5 and 8 are coded with negative descriptors of ‘aggres-
sive’ and ‘nervous’. Finally, four clusters (i.e., 4, 6, 7, 9) seem to be mainly
described based on the characteristics of the contact such as the body part
(cluster 4), force (cluster 6), and whether the touch involved movement (clus-
ter 7) or not (cluster 9). These clusters emerged without providing information
on the context of interaction, suggesting that users have strong social, positive,
negative, and functional associations with touch gestures even without context.
Some clusters have a flat distribution of codes and show a notable mix of affec-
tive and functional interpretations (e.g., cluster 6 with pressing, squeezing, and
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squishing) suggesting that an individual’s background or interaction context may
notably shift their meaning. Interestingly contacting without movement was often
regarded as different from the other gestures, which could be due to its neutral
emotional content as well as the static nature of the touch.

These user-generated clusters are a step toward a framework for the analysis
and understanding of social touch and can inform research on sensing, designing,
and analyzing human-robot touch interactions. We anticipate the following use
cases of the touch clusters for HRI:
(1) Sensing touch from humans. A desirable factor for robotic touch sensors
is their ability to recognize a variety of gestures [11]. These clusters can aid
researchers in selecting gestures that are different in their semantic and contact
characteristics. For instance, the co-location of stroking and rubbing gestures in
cluster 2 suggests that it might be appropriate to choose one of the two gestures.
Relatedly, when evaluating the efficacy of a touch-sensing algorithm [3,5,11],
HRI researchers can weigh misclassifications according to these semantic clusters.
For example, misclassifying stroking with slapping should be penalized more than
mistaking stroking with rubbing or nuzzling.
(2) Interpreting and responding to touch from humans. The proposed touch ges-
ture clusters can aid robots in responding intelligently to human touch. These
clusters can help robots identify the intention behind touch gestures. While the
significance and purpose of social touch gestures may depend on the context,
these clusters and their labels can help develop a probabilistic mental model for
robots about a user’s intent of a touch gesture. During an interaction episode,
the robot can update these probabilities based on other contextual parameters
and modes of communication such as the user’s verbal utterances and body pose.
(3) Touching people to communicate. The semantic clusters can help design and
evaluate robots that touch humans to communicate information or emotion [23].
Specifically, to evaluate the efficacy of a robot in using touch gestures, HRI
researchers can determine the degree of dissimilarity between the intended touch
gesture and the one identified by the human. Also, depending on the purpose
of the interaction (e.g., social, emotional, or functional), the robot may use the
clusters to select and use alternative gestures with similar connotations.
(4) Analyzing human-robot touch interactions. HRI researchers can use these
clusters to code video recordings of touch interactions with a robot and aggregate
touch interaction into higher-level themes. To support this, our work builds on
the touch dictionary [28] by providing data on the relationship between touch
gestures. Thus, these clusters provide an initial framework for the analysis of
social touch interactions with robots.

6 Conclusion and Future Work

Our work is a first step toward charting the relationship of touch gestures for
HRI. We anticipate that our results can pave the way for future work on designing
and evaluating robots that use touch as a non-verbal communication channel.

We see several avenues for extending this work. First, the relationship
between the user-generated clusters for touch gestures and signals produced by
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the gestures on different touch sensors is an open question. A good touch sensor
should be able to create distinct signals for gestures that are in different clus-
ters according to user perception. Also, robots should be able to create distinct
sensations when touching users with gestures in different clusters.

Second, future work can examine the impact of presentation modality on the
semantic relationship of touch gestures. In this paper, we presented text labels
for social touch gestures, following the common procedure in user studies of
touch sensing for social robots. This approach helped abstract different styles of
applying the gestures and study the user’s mental representations of archetypal
touch gestures. Future studies can examine how people group the touch gestures
using videos or by applying robot touch on the user’s body and compare the
results to the clusters we found in this work. These studies should capture a
wide range of touch styles (e.g., contact, force) for each gesture to avoid biasing
the results to a small sample.

Finally, the meaning of touch can vary based on contexts, cultures, and indi-
viduals. As a first step, we examined if any generalizable patterns could be found
about the relationships between various touch gestures. Our study population
primarily consisted of individuals that grew up in the United States. Participants
from other cultures often fell into cluster 3 and around the borders of cluster
2. It is unclear whether this result is due to their lack of familiarity with touch
labels or the difference in their cultural background. Future studies can examine
how the clusters of social touch gestures differ across cultures by translating the
text labels into different languages. A larger dataset can also allow future work
to look into individual differences in perception of social touch.
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