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ABSTRACT

We present the first study of the robustness of existing watermarking techniques
on Python code generated by large language models. Although existing works
showed that watermarking can be robust for natural language, we show that it is
easy to remove these watermarks on code by semantic-preserving transformations.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) like GPT and Codex in understanding and
generating code holds transformative potential for software engineering (Chen et al., 2021} |OpenAl,
2023} [Ugare et al., [2024b). However, it raises concerns about misuse such as code plagiarism and
malware generation. Combating misuse requires accurate detection of LLM-generated code, which
is challenging as LLMs are designed to produce realistic output that mimics human-generated code.

To address this issue, researchers have developed various watermarking techniques, which inject
hidden patterns in the generated output based on a hash or cryptographic key (Kirchenbauer et al.,
2023a}; [Zhao et al., 2023} [Kuditipudi et al.| [2023). A critical challenge lies in potential human or
automated modifications that can erase the patterns, undermining the watermark’s detectability.

Motivation. Previous studies have shown that at least 50% of LLM-generated tokens need to be
modified to remove a watermark (Kuditipudi et al., 2023)). In plain text, this task is inherently chal-
lenging, requiring extensive human paraphrasing or the use of another language model (Kirchen-
bauer et al.,[2023b)). On the other hand, code is significantly easier to modify. For instance, changes
to one part of a program (e.g., renaming a variable), can impact the whole program. Likewise,
semantic-preserving modifications like adding dead code or employing obfuscation do not alter pro-
gram behavior, enabling adversaries to easily make significant changes without compromising code
quality and thereby reducing the detectability of watermarks.

This Work. We are the first to investigate the robustness of watermarking Python code generated
by LLMs. We propose an algorithm that walks the Abstract Syntax Tree (AST) of the watermarked
code and randomly applies semantic-preserving program modifications. We observe significantly
lower true-positive rate (TPR) of detection even under simple modifications, underscoring the need
for robust LLM watermarks tailored specifically for code.

Our code is available at https://github.com/uiuc—arc/llm—code—-watermark.

2 ROBUSTNESS OF WATERMARKED CODE

Let  denote the sequence of tokens of length m. For an auto-regressive language model M, the
objective of watermarking is to generate a watermarked completion y* given x by embedding a hid-
den pattern based on a hash or cryptographic key (. A detector can then check if y* is watermarked
or not using ¢. A watermarking scheme consists of the following two algorithms:

e Watermark (M, x, ¢): Let p; := Py [y: = - | y1:0—1] represent the conditional probability
distribution over V of the t-th token generated by M. The algorithm uses a function I'({, p;) that
maps ¢ and p; to a modified distribution p, over the next token. Output y* generated by iteratively
sampling y;* from p; = I'({, p;) using any of the standard decoding techniques.

e Detect (y, {): Given a completion y and key ¢, compute a p-value p with respect to the null
hypothesis that y was generated independently of . Return 1,<p,. ...

In practice, a user may transform a watermarked code y* ~ Watermark(M, z, ¢) into a seman-
tically equivalent y4 such that Detect(y4,() = 0. We consider that the user has only black-box
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input-output access to M and has no knowledge of the watermarking algorithm, ¢, or the detection

threshold. The user can apply a series of d semantic-preserving transformations {77, 7%, . .

. 7Td}7

e.g., inserting print statements or renaming variables, to modify the code.

We replicate these realistic program modifications in
Algorithm [I] The algorithm takes the watermarked
code y" and the number of transformations d to ap-
ply as input. The algorithm parses y* to obtain the
AST representation of the code. At each iteration k,
a transform 7}, is selected at random. The algorithm
traverses the AST to determine the set of all possi-
ble insertion, deletion, or substitution locations S for
T}. It then transforms AST at a randomly selected
s ~ & subtree by T}, by replacing the subsequence of
terminals with a ’hole” and then completing it with
a random syntactically-valid sequence n; ~ X*.

3 EVALUATION

Algorithm 1 Watermarked Program Trans-

formation

Inputs: y“: watermarked code, 7 set of trans-
formations, d: number of transformations to apply
1: function PERTURB(y", d, T)
2: AST < parse(y®)

3
4
5:
6:
7
8

for k <+ 1toddo

Ty ~T

S  visit(AST, Ty,)

s~8S;m ~ X"

AST < transform(AST, Tk, s, k)

return convertToCode(AST)

We implement several transformations: InsertDeadCode, Rename, InsertPrint, WrapTryCatch, and
Mixed. Appendix [A.T|presents details about our experimental setup and the transformations.

We generate Python code completions using the
LlamA-7B (Touvron et al., 2023)) and CodeLLlamA-
7B (presented in Appendix [A.2)) models on the Hu-
manEval (Chen et al.|[2021)) dataset. We watermark
the code with state-of-the-art algorithms UMD and
Unigram (Zhao et all 2023; Kirchenbauer et al.|
2023a). We describe these baselines with the hy-
perparameter values that we used in Appendix[A.3]
We sequentially apply each program transformation
d = 5 times on the watermarked code.
transformation procedure is randomized, we run
this experiment 3 times and compute the average
of the results. Table[T] presents our main results for
LlamA-7B. It shows that the program transforma-
tions greatly corrupt watermark detectability. Even

Table 1: Watermark detectability results

Algorithm  Transformation  Detection Metrics
TPR FPR
Original 0.79 0
Rename 0.57 0.01
UMD AddDeadCode  0.38 0.06
InsertPrint 0.58 0.06
WrapTryCatch  0.22 0.01
Mixed 0.34 0.01
As our Original 0.76 0.01
Rename 0.20 0
Unigram AddDeadCode  0.01 0
InsertPrint 0.32 0
WrapTryCatch  0.11 0
Mixed 0.14 0

the simplest transformations InsertPrint and Rename reduce the TPR by at least 1.3x. Complex
alterations (e.g., WrapTryCatch and AddDeadCode) reduce the TPR much more significantly.
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Figure 1: TPR vs the number of
transformations d: UMD (above),
Unigram (below).

Varying the Number of Transformations We further show
the robustness of the watermark techniques by varying the
number of modifications d applied to the watermarked code
from O to 5. Figure [I] shows that the TPR declines as d in-
creases. For instance, when employing 5 WrapTryCatch mod-
ifications, the TPR dropped to 0.22 for the UMD watermark
and fell to 0.11 for the Unigram watermark. AddDeadCode
and WrapTryCatch modifications exhibit a more pronounced
impact on TPR, requiring fewer modifications to reduce TPR
by over 2x compared to the other two modifications.

4  DISCUSSION

We are the first to study the robustness of existing watermark
techniques for LLM-generated Python code. We demonstrate
that realistic program modifications can easily corrupt water-
mark detectability. We urge future work to develop resilient
detection schemes for LLM-generated code, potentially by wa-
termarking the syntax tree of the generated code, ensuring
code quality, security, and reliability in the rapidly evolving
landscape of LLMs.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

We ran experiments on a 48-core Intel Xeon Silver 4214R CPU with 2 NVidia RTX A5000 GPUs.
Our program transformations are implemented using the Python LibCST library. In our experiments,
we sequentially apply each program transformation d = 5 times on the watermarked code.

Let X denote the vocabulary of words that can be inserted
or substituted into the program. In our implementation, Taple 2: Watermark detectability results
we use the NLTK WordNet Python library for the vocab-

ulary (Miller, |1994). Transformation ~ Proportion of

AddDeadCode A dead-code statement of the form i, = AddDeadCode tOkenB (;h6anged

rand() if (i1 != i1): 49 = 0 is inserted at some random InsertPrint 0:12

location in the program where i1,72 ~ 3*. We sample Rename 0.05

11, %2 until we get a valid variable name. WrapTryCatch 0.27
Mixed 0.22

Rename A single, randomly selected, formal identifier
in the target program has its name replaced by a random
word i ~ ¥*. We sample ¢ until we get a valid variable
name.

InsertPrint A single print statement print(¢), is inserted  Taple 3: Watermark detectability results
at some random location in the program where ¢ is a string

; *
sequence of words such that ¢ ~ X*. Algorithm  Transformation  Detection Metrics

WrapTryCatch A random statement in the program is _ TPR FPR

wrapped by a try-catch block. Original 0.82 0.01

Rename 0.70 0.03

Mixed Apply d of the aforementioned randomly selected UMD AddDeadCode  0.45 0.04

transformations with replacement. InsertPrint 0.61 0.04

) WrapTryCatch  0.28 0.01

Table [2]shows the mean proportion of tokens changed af- Mixed 0.35 0.03

ter applying each transformation. Each AddDeadCode Original 0.72 0.01
and WrapTryCatch transformation modifies over 20% of Rename 0.25 0
the tokens in the code. Consequently, in practice, it is ex- Unigram  AddDeadCode  0.03 0
tremely easy for the watermark to be erased away after InsertPrint 0.26 0
even a few modifications by the user. WrapTryCatch  0.09 0
Mixed 0.12 0

A.2 EVALUATION FOR CODELLAMA

Table [3] presents the results of our evaluation on

CodeLlamA-7B. Similar to LlamA-7B, we observe that

the program transformations greatly reduce watermark detectability. Simple transformations like
InsertPrint and Rename reduce the TPR by at least 1.4x. We observe even larger reductions for
more complex modifications (e.g., WrapTryCatch and AddDeadCode).

A.3 WATERMARK BASELINES

Denote |z as the number of green list tokens for a generated text with length 7. We experiment
with the following two popular watermark schemes.

* UMD (Kirchenbauer et al.||2023a)) involves selecting a randomized set of “green” tokens
before a word is generated, and then biasing green tokens during sampling. Detection is

performed using the one proportion z-test, where z = 2 (|z|¢ — T//2) /v/T. to evaluate the
null hypothesis Hy:The text sequence is generated with no knowledge of the red list rule.

* Unigram (Zhao et al., |2023)) is proposed as a watermark robust to edit property. Detection
is performed by calculating the z-statistic z = (|z|g — vT) //Tv(1 — 7).

For both UMD and Unigram, we set v = 0.25, where ~y represents the fraction of the vocabulary
included in the green list. For the Unigram watermark, we set the strength parameter § = 2, where
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the larger 9 is, the lower the quality of the watermarked LM output, but the easier it is to detect. We
observe empirically each function completion only has around 100 tokens on average and the TPR
< 0.3. To increase the number of tokens and thus the TPR, after generating the watermarked code
completions, we select 3 random function completions at a time and run detection collectively on
the 3 functions. We reject the null hypothesis if z > 3. We show that the TPR > 0.70 and the FPR
< (.01 for the baseline by adopting this approach.

A.4 RELATED WORK

LLM-generated text detection One approach to Al-generated text detection involves looking for
features or statistical outliers that distinguish Al-generated text from human text. These features
include entropy, perplexity, n-gram frequencies, rank, and, in the case of DetectGPT (Mitchell et al.,
2023)), the observation that minor perturbations of a LLM-generated text have lower log probability
under the LLM on average than the original text. However, these zero-shot statistical detectors often
require white-box access to model parameters, fail to detect texts generated by advanced LLMs, and
rely on many text perturbations generated by another LLM, which is computationally expensive.

Another common approach is to train a binary classifier to distinguish between human and LLM-
generated text. This approach assumes that LLM-generated text has distinguishing features that
the trained model can identify. The fundamental problem with this is that generative models are
designed with the intent of producing realistic output that is extremely hard to distinguish from that
generated by humans. Specifically, recent advancements, including GPT-4 and other state-of-the-
art models, are rapidly narrowing the gap between Al-generated and human-written text. As these
generative models become more and more realistic, any black-box text distinguishers would incur
large Type 1 and Type 2 errors. Distinguishers such as GPTZero (Tian & Cui, [2023), Sniffer (Li
et al.|[2023), and LMDNet (Wu et al.| [2023) have no guarantee of correctness and are susceptible to
issues such as out-of-distribution problems, adversarial attacks, and poisoning.

LLM Watermarking Schemes Recently, Kirchenbauer et al.| (2023a) gave the first LLM water-
marking scheme with formal guarantees. Their watermark divides the vocabulary into a red list and
a green list based on a hash of the previous tokens and biases sampling the next token from the green
list during the decoding stage. Then, a detector can count the number of green list tokens and check
whether this number is statistically significant to determine whether the model output is generated
without knowledge of the red-green rule.

In practice, the text generated by a language model is likely modified by a user before being fed to
a detector. As a result, a line of work has focused on designing robust watermarks for text that are
detectable even if the original LLM output was changed. For instance, |Zhao et al.|(2023)) simplify
the soft watermarking scheme by consistently using a fixed red-green split and demonstrate that
this new watermark is twice as robust to modifications as the baseline. Kirchenbauer et al discuss
more robust detection schemes for when watermarked text is embedded in a larger human-written
document. Additionally, Kuditipudi et al.|(2023)) propose a watermarking scheme that uses a key that
is as large as the LLM-generated text and then aligns that key with the text to compute an alignment
cost. Recently, (Christ et al.| (2023) and [Fairoze et al.| (2023) proposed cryptographic watermarking
schemes for text that achieve robustness properties.

However, these works focus mainly on watermarking LLM-generated text. They do not evaluate or
provide formal guarantees on the performance of watermarks for LLM-generated code. Recently,
Lee et al.| (2023)) proposed a new approach to watermark to LLM-generated code. They noticed that
the performance of existing watermarking approaches does not transfer well to code generation tasks
and attributed this to the fact that the entropy in the code generation is lower compared to that of plain
text generation. They proposed a watermarking scheme called Selective Watermarking via Entropy
Thresholding (SWEET) that only watermarks tokens with high enough entropy given a threshold.
However, to compute the entropy of tokens at the time of detection, SWEET requires re-generating
the entire code completion using the language model, which is computationally expensive.

DNN Robustness A large body of research has focused on the robustness of LLMs and other DNNs
against adversarial attacks (Zou et al.|, 2023} [Ugare et al.| [2024a}, [Zhang et al.l [2023 |[Laurel et al.,
2022; Ugare et al., 2023). This line of work is orthogonal to our investigation as we instead focus
on the robustness of whether LLM-generated output (code) can be reliably detected.
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