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Abstract
Cardiovascular disease is a major life-threatening condition that is commonly monitored using elec-
trocardiogram (ECG) signals. However, these signals are often contaminated by various types of
noise at different intensities, significantly interfering with downstream tasks. Therefore, denoising
ECG signals and increasing the signal-to-noise ratio is crucial for cardiovascular monitoring. In
this paper, we propose a deep learning method that combines one-dimensional convolutional layers
with Transformer architecture for denoising ECG signals. The convolutional layers process the
ECG signal by various kernel/patch sizes and generate an embedding called multi-scale patch em-
bedding. The embedding then is used as the input of a Transformer-based network and enhances
the capability of the Transformer for denoising the ECG signal.

1. Introduction

The electrocardiogram (ECG) signal is a readily accessible physiological signal that can be used to
assess human health [20] and monitor cardiovascular disease [7]. With the advancements in wear-
able sensors and devices, acquiring daily ECG signals has become simple and feasible. However,
with the increasing variety of data acquisition scenarios, the noise characteristics in the acquired
ECG signals have evolved, differing from those observed in the past. This can make subsequent
health monitoring tasks difficult.

Numerous methods exist for reducing noise in ECG signals. Traditional approaches primarily
employ fixed or adaptive filtering for denoising [1, 12]. However, these methods often focus on the
characteristics of specific frequencies, such as high or low frequencies. Recent research has demon-
strated promising results using deep learning methods for image denoising, and these approaches
have been extended to denoise ECG signals as well. Most of these approaches are based on Denois-
ing Autoencoders (DAEs), which transform the ECG signals into high-level feature representations
before reconstructing the denoised signals from these features. While there have been numerous
studies on deep learning-based denoising of ECG signals, many of these methods are tailored to
specific types of noise and may not perform well on signals with low signal-to-noise ratios. In par-
ticular, the following noise types exhibit different frequencies and intensities, and we need a method
that can capture each noise component, Baseline Wander: This type of noise is caused mainly by
respiration or body movement and is usually present in the original signal in a low-frequency form.
Powerline Interference: This type of noise is caused by inductive and capacitive couplings of
50/60 Hz power lines during ECG signal acquisition. Electrode Contact Noise: These noises are
caused by improper contact between the body and electrodes. Muscle Contraction: This type of
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noise is caused by electrical activities in muscles or other tissues of the human body such as the
physiological electrical signals generated by muscle contraction. This type of noise has a frequency
ranging from 0.01 Hz to 100 Hz and it tends to distort local waves of the ECG signals.

In this paper, we introduce a new method of time series denoising and conduct experiments on
ECG data. Our method combines one-dimensional convolutional layers with Transformer architec-
ture. The convolutional layers processe the time series data and generate embedding used as the
input of the Transformer network. We will show that if the convolutional layer uses different ker-
nel sizes, it can capture different types of noise and artifacts and enable the Transformer to better
denoise the ECG signals compared to existing baselines.
Related Work. Conventional ECG noise reduction methods tend to be performed using filtering,
generally utilizing a thresholding approach for certain signals. These thresholding methods include
the Fourier transform, Principal Component Analysis (PCA) [4], Empirical Mode Decomposition
(EMD) [9], Discrete Wavelet Transform (DWT) [12]. Although these methods can partly reduce
ECG noise, hyperparameter tuning requires significant domain knowledge [9], furthermore, these
methods cannot reduce various types of noise in tandem. Additionally, a significant challenge with
these methods is effectively partitioning the signal into sub-signals to ensure that the original signal’s
information is preserved during the thresholding process without losing information.

Moreover, expeditious development of deep learning methods [3, 6, 10, 18] has resulted in the
emergence of promising solutions to ECG noise reduction[19]. Some of these methods are based
on the autoencoder (AE) architecture, which can regenerate the original signal without requiring
extensive domain knowledge [19]. Poungponsri and Yu in [14] proposed a wavelet neural network
for ECG noise reduction. This work first decomposed the signal into multiple components using
wavelets and then reconstructed the signal in a six-layer convolutional encoder-decoder network.
Antczak [2] proposed a Deep Recurrent Neural Network (DRNN) to denoise ECG signals. The
model is a hybrid of DRNN and a denoising autoencoder, which is trained to recreate noisy input
data and achieved better results than traditional methods. Qiu et al. [15] presented a two-stage
denoising method for removing noise from ECG signals. It included an improved one-dimensional
U-net, which enhances the size of the convolution kernel, and a DR-net for detailed restoration in the
second stage. He et al. [8] proposed a dual attention convolutional neural network based on adaptive
parametric ReLU for denoising ECG signals with strong noise. The network is designed with a dual
attention module and a modified activation function, resulting in significant noise reduction. Singh
and Sharma [17] introduced a novel attention-based convolutional denoising autoencoder (ACDAE)
model that employs an attention module and skip-layer to reconstruct the ECG signal. Additionally,
the intermediate layer features are utilized to train a classifier in this study.

2. Methodology

Overall Architecture. To denoise time-series signals, our proposed model is based on a U-shaped
[16] network architecture comprising an encoder, a decoder, and two convolutional layers (one
before the encoder and one after the decoder). The encoder and decoder are built based on the
Transformer architecture and include several skip connections. The time series data first passes
through a convolutional layer with different kernel sizes to generate embedding (we call this layer a
multi-scale patch embedding layer). The embedding then will pass through the encoder and decoder
which contain several Transformer blocks. Between these blocks, patch merging and separating are
used to operate on features to reshape them. After the decoder, there is another convolutional layer
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(i.e., Multi-scale patch embedding layer) to reconstruct the time-series data. Figure 1 illustrates the
proposed architecture. We use Mean Squared Error as the loss function to train the proposed model.
Multi-scale Patch Embedding Layer. Frequency is an important factor in time series, especially
in electrocardiogram (ECG) signals, where different regions exhibit distinct frequency characteris-
tics. In ECG signals, different regions of the heart exhibit unique frequency characteristics, which
can be critical for accurate diagnosing and monitoring. These distinct frequency features can help
identify various cardiac conditions, enabling more effective and targeted medical interventions. Un-
derstanding and analyzing these frequency variations within ECG signals is essential for healthcare
professionals to make informed decisions regarding patient care. We propose utilizing a multi-scale
patch embedding layer to capture these distinct frequency characteristics. This layer employs con-
volutional operation with different kernel/patch sizes (e.g., in our experiment, we use kernel sizes
3, 5, 7, 9). The choice of patch sizes depends on the temporal granularity we aim to capture. The
parameters of the embedding layer can be initialized randomly or using pre-trained kernels. The
embeddings from patches of different sizes are concatenated to create a multi-scale representation.
This approach enables the model to leverage information from multiple temporal resolutions. The
multi-scale representation then can be used as an input for the encoder. We use a similar multi-scale
patch embedding to process the output of the decoder and generate the final denoised signal.
Patch Merging/Separating. As shown in Figure 1, each encoder block includes a patch merging
module that reshapes the signal by decreasing the length and increasing the channel size. The
decoder block includes a patch separating module which increases the length and decreases the
channel size.
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Figure 1: Proposed architecture for denoising. Each encoder block consists of two Transformer
blocks and a patch merging module. The decoder block consists of two Transformer
blocks and a patch separating module. Each Transformer block consists of two layer nor-
malization, a Multi-Head Self-Attention (MHSA), and a Feed Forward Network (FFN).
The embedding layer consists of four convolutional operations with different kernel sizes.

Masked Input. Recent studies show masking the input during the training can improve the model
performance [11]. Masks are binary matrices/tensors and generated randomly for each data point in
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each iteration during the training. In each iteration, there will be an element-wise product between
each data point and its mask before the forward and backward propagation. We use masked input
during the training of the proposed network to improve the denoising performance of our model.

3. Experiments

Datasets and Settings. In our experiment, we utilize the MIT-BIH Arrhythmia Dataset [13], a well-
known ECG signal dataset. This dataset comprises 48 two-channel clean ECG recordings from
47 patients, with each recording containing 650,000 samples at a sampling frequency of 360Hz
(approximately half an hour of data). This data serves as the predicted output for our model. To
simulate real-world conditions, we manually added noise to the dataset using real ECG noise from
the MIT-BIH Stress Test Database. This dataset includes three types of noise: baseline wander,
muscle artifact, and electrode motion artifact, represented as ’bw’, ’ma’, and ’em’, respectively.
Both datasets are available for download from PhysioNet [5].

Each time series ECG signal is segmented into smaller parts, each containing 256 samples,
which corresponds to one heartbeat. We do the same for the MIT-BIH Stress Test Dataset to create
noise samples with a length of 256. To generate a training dataset, we pick a heartbeat segment
and a noise segment randomly and add them to generate a noisy input. The noise signal strength
is adjusted by a constant to meet the specified signal-to-noise ratio (SNR). The noisy heartbeat
segment will be the input of our network. The original ECG segment is used as the target output.

The noise ECG signals for the experiment consist of four distinct classes: the first three represent
individual noise types (’bw’, ’ma’, and ’em’), and the fourth class, ’emb’, is a combination of all
three noise types. The generated dataset contains 103,091 data points of length 256, which are
partitioned into training and testing sets at a ratio of 4:1.

We employ two metrics to evaluate the network model: Root Mean Square Error (RMSE) and
Signal to Noise Ratio (SNR). For RMSE, a smaller value indicates better performance, while for
SNR, a higher value indicates better performance. We provide a description of the hyper-parameters
used in our model in the appendix.
Denoising Performance of the Proposed Model. We perform denoising experiments on different
types of noise, specifically baseline wander (bw), electrode motion (em), muscle artifact (ma), and
a combination of these three types, all at a noise intensity of -4dB.

Table 1: Performance under different types of noise
Methods Signal to Noise Ratio(dB) Root Mean Squared Error

bw em ma ebm bw em ma ebm
DWT 1.00 1.25 1.32 1.23 1.58 1.55 1.58 1.58

U-Net[16] 10.71 7.90 8.16 7.82 0.32 0.42 0.41 0.42
DACNN[8] 13.1 9.46 9.30 9.18 0.25 0.36 0.36 0.37

Ours 14.84 12.75 12.11 12.62 0.21 0.26 0.28 0.27

For comparison, we test traditional denoising methods, specifically discrete wavelet transform
(DWT) thresholding, as well as U-Net [16] and DACNN [8], alongside our model. For the DWT
method, we select ’db8’ as the wavelet base and apply soft thresholding. It can be seen in Table
1 that our method achieves the lowest RMSE and the highest SNR under different noise types.
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Additionally, we can see that all methods perform well under ’bw’ noise. This is because ’bw’
noise has a relatively single frequency, making it easier for different methods to eliminate.
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4. Appendix

Hyper-parameters in the Experiment As shown in Figure 1, we use an architecture with four
encoder and decoder blocks. The input size of multi-scale patch embedding is 2 by 256 (there are
two channels. The length of signal in each channel is 256). The size of the generated embedding is
8 by 256. We have the following hyper-parameters for the encoder and decoder blocks, Multi-Head
Self-Attention (MHSA) modules in Encoder Block 1 and Decoder Block 4 have an embedding size
of 8 and include two heads. MHSA modules in Encoder Block 2 and Decoder Block 3 have an
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embedding size of 16 and include four heads. MHSA modules in Encoder Block 3 and Decoder
Block 2 have an embedding size of 32 and include eight heads. Lastly, MHSA modules in Encoder
Block 4 and Decoder Block 1 have an embedding size of 64 and include 16 heads. The patch
merging module would double the number of channels and reduce the length by half, and the patch
separating module double the length and decrease the the number of channels by half. The learning
rate is 0.001 and we trained for 100 epochs.

Classification of the Denoised Data To measure the impact of denoised signals on downstream
tasks, in this part, we use the denoised ECG signals for classification. In this experiment, these
signals are contaminated with mixed ’em’, ’bw’, and ’ma’ noise at a strength of -4 SNR.

We train a ResNet network using the clean ECG data and then use the denoised signals to make
predictions through the network. To create a dataset, we randomly select 7,000 samples of N-type
ECG data representing normal beats, and 7,000 samples of V-type ECG data representing abnormal
beats. The label indicates the type of ECG data (N-type and V-type). We pick 5,000 samples of each
category for the training set, while 2,000 samples of each category are set aside as the test set. The
classifier is trained using clean training data, comprising a total of 10,000 samples. The training
process for the classifier was conducted over 20 epochs.

In table 2, the first line includes the performance of the classifier on the clean test data, the
second line includes the performance of the classifier on noisy test data, and the other lines include
the performance of the classifier after denoising the input data.

Table 2: Classification experiments based on different denoising methods.
Methods accuracy precision f1-score

original data 0.809 0.916 0.781
NOP 0.599 0.642 0.528
DWT 0.597 0.639 0.527
U-Net 0.684 0.827 0.596

DACNN 0.672 0.819 0.573
Ours 0.794 0.886 0.766

Table 2 shows that our denoising approach can lead to better classification accuracy compared
to baselines.
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