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We establish cartesian model structures for variants of 2n-spaces in which we

replace some or all of the completeness conditions by discreteness conditions. We

prove that they are all equivalent to each other and to the 2n-space model, and

we give a criterion for which combinations of discreteness and completeness give

nonoverlapping models. These models can be thought of as generalizations of

Segal categories in the framework of 2n-diagrams. In the process, we give a char-

acterization of the Dwyer±Kan equivalences in the 2n-space model, generalizing

the one given by Rezk for complete Segal spaces.
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1. Introduction

An (∞, n)-category should be a higher categorical structure with objects and i-

morphisms for all i ≥ 1, satisfying weak associativity and unitality, and such that all

i-morphisms are weakly invertible for i > n. There have been a number of different

approaches to modeling such a structure as a concretely-defined mathematical

object, including the Segal n-categories of Hirschowitz and Simpson [20] and

Pelissier [31], the n-fold complete Segal spaces of Barwick and Lurie [26], and the

2n-spaces of Rezk [35]. Models that blend features of multiple of these models

have been given by the author and Rezk [10; 12] and by Moser, Rasekh, and

Rovelli [28]. Other models include the n-relative categories of Barwick and Kan [3]

and the 2n-sets of Ara [1]. More recently, models based on Verity’s complicial

sets [38] have been developed and compared by Ozornova and Rovelli [29; 30] and

Loubaton [24]; and Campion, Kapulkin, and Maehara have made progress with

cubical models [14]. Further comparisons between models have been given by

Haugseng [18], by Doherty, Kapulkin, and Maehara [15], and, using an axiomatic

approach, by Barwick and Schommer-Pries [4]. In the special case when n = 2,

there are further results by the author with Ozornova and Rovelli [13], and by

Gagna, Harpaz, and Lanari [17]. Results when n = 1 are now well established,

and include the comparisons of Barwick and Kan [2], the author [6], Dugger and

Spivak [16], Joyal [22], Joyal and Tierney [23], Lurie [25], and the axiomatic

approach of Toën [37].

Many of these models are given by some kind of diagram of simplicial sets; for

example, n-fold complete Segal spaces and Segal n-categories are given by multi-

simplicial diagrams, and 2n-spaces are given by functors out of the category 2
op
n .

Such diagrams are required to satisfy n different Segal conditions, which essentially

encode an up-to-homotopy composition for each of the n levels of (not necessarily

invertible) morphisms.

However, Segal diagrams without further assumptions do not quite model (∞, n)-

categories, which should behave like iterated enriched categories and, in particular,

have a discrete space of objects and discrete spaces of k-morphisms for all 1≤ k < n.

Without such assumptions, we get structures more reflective of n-categories internal

to spaces.

In general, there are two ways to impose extra structure on Segal diagrams to

get models for (∞, n)-categories. The first is straightforward: simply ask that

the desired spaces in the diagram be discrete. This approach was the one taken

by Hirschowitz and Simpson in their definition of Segal n-categories [20]. This

simplicity of definition, however, comes at a cost. Being discrete is a rather

unnatural condition from the perspective of homotopy theory, and as such, causes

many complications in setting up appropriate model structures.
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Rezk took a different approach in his development of complete Segal spaces

as models for (∞, 1)-categories, and asked instead for a completeness condition,

which essentially asks that the space of objects be weakly equivalent to the subspace

of morphisms that behave suitably like homotopy equivalences. Thus, the data of

the whole object space is already encoded in the space of morphisms, and does

not give substantially new information. This approach was generalized to higher

(∞, n)-categories via the n-fold complete Segal space and 2n-space models, in

which n different completeness conditions are assumed. For example, the space of 1-

morphisms is required to be weakly equivalent to the space of 2-morphisms that are

homotopy equivalences in an appropriate sense, and similarly for higher morphisms.

Thus, when we look at existing diagrammatic models for (∞, n)-categories,

taking multisimplicial models has an accompanying choice of whether to impose

discreteness or completeness conditions, whereas thus far the 2n-model has only

been considered with completeness conditions. A natural question is whether there

is a corresponding model given by 2n-diagrams with discreteness conditions, and

answering it is the primary motivation for this paper.

However, another question arises: do we need to make a single choice of either

discreteness or completeness conditions everywhere, or can these conditions be

ªmixed and matchedº? In [10], we show that Segal category objects in 2n−1-spaces

give a model for (∞, n)-categories; such objects have one discreteness condition

and (n−1)-completeness conditions in the setting of 1×2n−1-diagrams. Here we

address this question for 2n-diagrams, and show that discreteness can be imposed

ªfrom the bottom upº: we get distinct models for (∞, n)-categories by taking 2n-

diagrams of simplicial sets with discreteness imposed at level k, for some fixed

0 ≤ k < n, and completeness imposed for any k < i < n. Essentially, if we ask

for discreteness at a given level of morphism, the spaces of all lower levels of

morphisms are forced to be discrete also.

This answer in the 2n-diagram setting naturally leads us back to ask the analogous

question in the context of multisimplicial diagrams, as well as hybrid diagrams,

indexed by categories of the form 1i ×2n−i for some 0 < i < n, of which Segal

category objects in 2n−1-spaces are an example. In a sequel paper [9], we address

such models, and in particular, give an explicit comparison between n-fold complete

Segal spaces and Segal n-categories via these hybrids, a result that has been assumed

but that does not seem to be in the literature.

The idea that 2n-diagrams with discreteness assumptions should be a viable

model for (∞, n)-categories developed at the early stages of the comparison of

2n-spaces with categories enriched in 2n−1-spaces, which the author established

with Rezk. However, complications with understanding Dwyer±Kan equivalences,

and a suitable completion functor generalizing the one for complete Segal spaces

in [34] seemed prohibitively difficult. Fortunately, results from that comparison
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program with Rezk have greatly facilitated the development of this model and its

comparison with 2n-spaces, as we show here.

Our motivation for this work is primarily aesthetic, in that we believe that estab-

lishing all possible options for these kind of models results in a satisfying picture

of the choices we have for this flavor of models for (∞, n)-categories. However, it

also seems that the restriction of the models here to the case of (∞, n)-categories

with a single object provide a good way to think about monoidal (∞, n − 1)-

categories, a project currently being undertaken by Valentina Zapata Castro. It

would also be worth investigating whether examples originally modeled by Segal

n-categories might be more compactly described using 2n-diagrams rather than

multisimplicial ones.

After some general background in Section 2, we review the Segal category and

complete Segal space models in Section 3. In Section 4, we recall Rezk’s 2n-

space model, and in Section 5, we recall the development of Segal and complete

Segal objects in 2n-spaces. We devote Section 6 to understanding Dwyer±Kan

equivalences in 2n-spaces. In Section 7, we give a general treatment of making

objects in general diagrams discrete, which we then use in Section 8 to give a model

structure on the category of 2n-diagrams with certain objects discrete. In Section 9,

we give our comparison result between these models and Rezk’s original 2n-space

model. Finally, in Section 10, we give the proof of a deferred technical result.

2. Some background

Our goal is to put model structures on certain categories of functors in such a way

that the objects that are both fibrant and cofibrant give models for (∞, n)-categories.

Here, we give a brief review of some of the model category tools that we need.

The models that we consider in this paper are all given by functors from some

small category to the category of simplicial sets. Recall that a simplicial set is a

functor 1op→ Sets, where 1op is the opposite of the category of finite ordered

sets and Sets denotes the category of sets. We denote by SSets the category of

simplicial sets.

First, we recall the classical model structure on the category of simplicial sets,

originally due to Quillen [32]. The weak equivalences are the maps whose geometric

realizations are weak homotopy equivalences of topological spaces, the cofibrations

are the monomorphisms, and the fibrations are the Kan fibrations. Since this model

structure is the only one that we consider on the category of simplicial sets, we

simply use the notation SSets to refer to it.

Given a small category C, there are two canonical model structures on the cate-

gory SSetsC of functors C→ SSets, both of which have weak equivalences given

by levelwise weak equivalences of simplicial sets. In the injective model structure,
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we take the cofibrations to be given levelwise, whereas in the projective model

structure, we take the fibrations to be given levelwise. In this paper, we are primarily

interested in the injective model structure. Notice, in particular, that all objects are

cofibrant in this model structure. However, the disadvantage of the injective model

structure is that we generally do not have explicit descriptions of sets of generating

cofibrations and acyclic cofibrations, only arguments for their existence.

When C has the additional structure of a Reedy category, there is a third option:

the Reedy model structure, which also has levelwise weak equivalences but fibrations

and cofibrations defined in terms of matching and latching objects [33; 19, Theo-

rem 15.3.4]. In the particularly nice situation when C has the structure of an elegant

Reedy category in the sense of [11], the Reedy model structure coincides with the

injective structure. Thus, we have both advantages: the cofibrancy of all objects

from the injective model structure but also the explicit generating cofibrations and

acyclic cofibrations for the Reedy model structure. All of the indexing categories

that we consider in this paper, specifically the categories 2
op
n for all n ≥ 0, are

elegant Reedy categories.

In nice cases, models for (∞, n)-categories can be obtained by localizing this

Reedy model structure with respect to a set of maps in such way that the fibrant

objects are the local objects with respect to these maps. Let us recall this process

briefly.

Recall that in any model category, there is a notion of homotopy mapping space

Maph(X, Y ) between any two objects X and Y . When the model category in

question is simplicial, then the homotopy mapping spaces can be obtained by taking

the simplicial mapping spaces of cofibrant-fibrant replacements of X and Y , but

they can be defined more generally [19, §17].

Now, let M be a model category and S be a set of maps in M. A fibrant object

Z of M is S-local if, for any map A→ B in S, the induced map

Maph(B, Z)→Maph(A, Z)

is a weak equivalence of simplicial sets. An arbitrary map X → Y of M is an

S-local equivalence if, for any S-local object Z , the induced map

Maph(Y, Z)→Maph(X, Z)

is a weak equivalence of simplicial sets. If M is a sufficiently nice model category,

then there exists a model structure LSM on the underlying category of M in which

the weak equivalences are the S-local equivalences, the cofibrations are the same

as those of M, and the fibrant objects are the S-local objects [19, Theorem 4.1.1].

However, in many examples we consider in this paper, we do not have a suit-

able model structure from which we can obtain our desired model structure as a

localization. We, thus, have to prove the existence of such a model structure from
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scratch. Therefore, we include the following recognition principle for cofibrantly

generated model categories, originally due to Kan.

Theorem 2.1 [19, Theorem 11.3.1]. Let M be a category that has all small limits

and colimits. Suppose that M has a class of weak equivalences that satisfies the

two-out-of-three property and that is closed under retracts. Let I and J be sets of

maps in M that satisfy the following conditions.

(i) Both I and J permit the small object argument [19, Definition 10.5.15].

(ii) Every J -cofibration is an I -cofibration and a weak equivalence.

(iii) Every I -injective is a J -injective and a weak equivalence.

(iv) One of the following conditions holds:

(a) a map that is an I -cofibration and a weak equivalence is a J -cofibration, or

(b) a map that is both a J -injective and a weak equivalence is an I -injective.

Then there is a cofibrantly generated model category structure on M in which I is

a set of generating cofibrations and J is a set of generating acyclic cofibrations.

Finally, we consider the additional structure of cartesian model categories. We

take the following definition from [34, Section 2.2]; the version there includes an

additional equivalent formulation of the last condition, but we omit it as we do not

need it here.

Definition 2.2. A model category M is cartesian if the underlying category is

cartesian closed, its terminal object is cofibrant, and, if f : X→ X ′ and g : Y → Y ′

are cofibrations in M, then the pushout-corner map

X × Y ′⨿X×Y X ′× Y → X ′× Y ′

is a cofibration that is a weak equivalence if either f or g is.

3. Complete Segal spaces and Segal categories

In this section, we recall the complete Segal space and Segal category models for

(∞, 1)-categories. All the models for (∞, n)-categories that we develop in this

paper can be regarded as suitable generalizations of one, or both, of these models.

To start, for any k ≥ 0, consider the k-simplex, or representable simplicial set

1[k] = Hom1(− , [k]). We are interested in the inclusion of the subsimplicial

set G[k], defined to be the colimit of the diagram

1[1]
d0 //1[0] 1[1]

d1oo d0 // · · · 1[1]
d1oo ,

in which there are k copies of 1[1] glued together along copies of 1[1]. We can

depict G[k] as a string of k consecutive arrows

•→ •→ · · · → • ,
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but with no higher simplices. This simplicial set G(k) is sometimes called the spine

of 1[k].

Now we would like to regard these simplicial sets as discrete simplicial spaces,

or functors 1op→ SSets; given a simplicial set K , we denote the corresponding

discrete simplicial space by K t . In particular, (K t)k= Kk for each k≥0. In contrast,

the constant simplicial space, also denoted by K , is given by the simplicial set K

as each level. The two are ªtransposeº to one another by reversing the role of the

two simplicial directions, but they should be regarded as different from one another.

In particular, the simplicial spaces 1[k]t are representable simplicial spaces, and

so for any simplicial space X , we have

Map(1[k]t , X)∼= Xk .

Given any simplicial space X , and any k ≥ 0, consider the Segal map induced

by the inclusion G[k]t →1[k]t ,

Xn =Map(1[k]t , X)→Map(G[k]t , X)∼= X1×X0
· · · ×X0

X1
︸ ︷︷ ︸

k

.

These maps are isomorphisms for k = 0, 1, so we restrict our attention to k ≥ 2.

Definition 3.1. A Reedy fibrant simplicial space X is a Segal space if, for all k ≥ 2,

the Segal maps are all weak equivalences of simplicial sets.

The following model structure can be obtained by localizing the Reedy model

structure on simplicial spaces with respect to the maps G[k]t →1[k]t for k ≥ 2.

Theorem 3.2 [34, Theorem 7.1]. There is a cartesian model structure SeS p on

the category of simplicial spaces in which the fibrant objects are precisely the

Segal spaces.

Remark 3.3. We follow the convention of Rezk and require that a Segal space be

Reedy fibrant, so that we have the above concise description of the fibrant objects

in the corresponding model structure. Doing so additionally permits us to consider

the Segal maps as we have described them, rather than taking homotopy mapping

spaces, and hence a homotopy limit in the definition of Segal maps.

Segal spaces behave like categories up to homotopy, an idea that can be made

precise in the following way. We can define the set of objects of a Segal space to

be X0,0. Given two objects x, y of X , the mapping space between x and y in X is

defined as the pullback

mapX (x, y) //

��

X1

(d1,d0)

��
{(x, y)} // X0× X0

Since X is assumed to be Reedy fibrant, the right-hand vertical map is a fibration,

so the mapping space is, in fact, a homotopy pullback of this diagram.
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The definition of a Segal space in terms of the Segal maps guarantees the existence

of an up-to-homotopy composition on mapping spaces: again, because we have

assumed that X is Reedy fibrant, the left-hand map in the diagram

X1×X0
X1 X2

(d1,d0)oo d1 //X1

is an acyclic fibration and hence has a section which serves as a homotopy inverse.

We can also define the homotopy category Ho(X) of a Segal space X , whose objects

are those of X and whose morphisms are the path components of the mapping

spaces of X .

However, in the above definition, we have only used the 0-simplices of X0 as the

objects, so in some sense the additional simplicial data of X0 is extraneous. Indeed,

to get an (∞, 1)-category, we want to have a discrete space of objects, rather than an

arbitrary space as in a general Segal space. There are two approaches to remedying

this situation. We start with the simplest: requiring that X0 be discrete, so that all

its higher simplices are degenerate.

Definition 3.4. A Segal category is a Segal space X such that X0 is discrete.

Remark 3.5. Note that here we have assumed that a Segal category is Reedy

fibrant. This assumption is not made in many other treatments of Segal categories,

for example, in [6]. In some situations, we want to consider Segal categories that

are projective fibrant, rather than Reedy fibrant, and hence do not specify one or

the other in the basic definition. In this paper, we only consider Segal categories

and generalizations that are Reedy fibrant, so to be as streamlined as possible we

include this assumption here.

For many homotopy-theoretic purposes, however, requiring that a space be

discrete is unnatural. An alternative approach is to require X0 to be equivalent to

the space of homotopy equivalences in X1, as described by Rezk [34, §5.7]. Since

a Segal space has a notion of up-to-homotopy composition, as well as identity

maps defined by those in the image of the degeneracy map X0→ X1, there is a

natural definition of homotopy equivalences as those maps that have an inverse

up to homotopy. They form a subspace Xheq ⊆ X1, and indeed comprise some of

the path components of X1 [34, Lemma 5.8]. The degeneracy map s0 : X0→ X1

factors through Xheq, allowing for the following definition.

Definition 3.6. A Segal space X is complete if the map s0 : X0→ Xheq is a weak

equivalence of simplicial sets.

The proof that Segal categories and complete Segal spaces are equivalent mod-

els for (∞, 1)-categories is given by a Quillen equivalence of appropriate model

categories. The model structure for complete Segal spaces is obtained as a further

localization of the Segal space model structure SeS p. We localize with respect



DISCRETENESS AND COMPLETENESS FOR 2n -MODELS OF (∞, n)-CATEGORIES 57

to the map E t → 1[0]t , where E is the simplicial set given by the nerve of the

category with two objects and a single isomorphism between them. One can check

that Map(E t , X)≃ Xheq, verifying that the local objects with respect to this map

are indeed complete.

Theorem 3.7 [34, Theorem 7.2]. There is a cartesian model structure CSS on

the category of simplicial spaces such that the fibrant objects are the complete

Segal spaces.

For Segal categories, the underlying category for the model structure is the

category of Segal precategories, or simplicial spaces X with X0 discrete, such

that the fibrant objects are the Segal categories. However, since this category does

not admit a Reedy-like model structure with levelwise weak equivalences, we

cannot obtain the Segal category model structure as a localization; see [6, §3.12]

for more details. Roughly speaking, the problem is that if we want levelwise weak

equivalences and cofibrations that are monomorphisms, it is impossible to have the

necessary factorizations. Thus, to establish the desired model structure, we need a

precise definition of the appropriate weak equivalences.

To this end, let us return to the Segal space model structure for a moment. Given

any simplicial space X , we can take a functorial fibrant replacement of it in the model

structure SeS p, in which the fibrant objects are the (not necessarily complete) Segal

spaces. Denoting this fibrant replacement by LSe, we make the following definition.

Definition 3.8. A map f : X→Y of simplicial spaces is a Dwyer±Kan equivalence if:

• for any x, y ∈ ob(X), the map

mapLSe X (x, y)→mapLSeY ( f x, f y)

is a weak equivalence of simplicial sets; and

• the induced functor

Ho(LSe X)→ Ho(LSeY )

is essentially surjective.

This definition can be adapted to the setting of Segal precategories, using a

suitable modification of the functor LSe that retains the necessary discreteness

condition [6, §5]; see also the arguments in Proposition 8.5.

The importance of Dwyer±Kan equivalences is illustrated in the following results

of Rezk.

Theorem 3.9 [34, Proposition 7.6 and Theorem 7.7]. (1) A map X→ Y of Segal

spaces is a Dwyer±Kan equivalence if and only if it is a weak equivalence

in CSS.

(2) A map X→ Y of complete Segal spaces is a Dwyer±Kan equivalence if and

only if it is a levelwise weak equivalence of simplicial sets.
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In particular, if we want a model structure whose weak equivalences between

Segal categories behave like the weak equivalences of CSS, the Dwyer±Kan equiv-

alences provide good candidates.

Theorem 3.10 ([6, Theorem 5.1] and [31]). There is a cartesian model structure

SeCat on the category of Segal precategories in which the weak equivalences are

the Dwyer±Kan equivalences and the fibrant objects are the Segal categories.

The common notion of Dwyer±Kan equivalence in the model structures CSS

and SeCat is key to the proof of the following theorem.

Theorem 3.11 [6, Theorem 6.3]. The inclusion functor from the category of Segal

precategories into the category of all simplicial spaces has a right adjoint, and this

adjunction induces a Quillen equivalence

SeCat ⇄ CSS.

The right adjoint functor R serves as a discretization functor, and can be described

on objects as follows. Let W be a simplicial space. Let U = cosk0(W ) be the

0-coskeleton of W and V = U∗,0 be the discrete simplicial space given by the

0-simplices in each degree of U . Alternatively, V = cosk0(W∗,0), where W∗,0

denotes the discrete simplicial space consisting of the zero simplices in each degree

of W . Then RW is defined to be the pullback

RW //

��

V

��
W // U

where V→U is the inclusion and W→U is the canonical map from the coskeleton.

4. 2n-spaces

In this section, we review the definition of 2n-spaces, which serve as a model for

higher-categorical complete Segal spaces, and summarize some of the key con-

structions that we need here. The categories 2n were originally described by Joyal,

using a direct definition [21]. Here we have chosen to use their inductive description

via the 2-construction of Berger [5], which is also described by Rezk [35, §3.2].

Definition 4.1. Let C be a small category. Define 2C to be the category with

objects [m](c1, . . . , cm), where [m] is an object of 1 and each ci is an object of C.

A morphism

[q](c1, . . . , cq)→ [m](d1, . . . , dm)

is given by (δ, { fi j }), where δ : [q] → [m] in 1, and fi j : ci → d j are morphisms

in C indexed by 1≤ i ≤ q and 1≤ j ≤ m, where δ(i − 1) < j ≤ δ(i).
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Let us use this definition to describe our categories of interest here.

Definition 4.2. Let 20 be the terminal category with a single object and no non-

identity morphisms. Inductively define 2n =22n−1.

Observe that 21 =1. To build some intuition about 2n for higher n, let us look

more closely at 22=21. Its objects are of the form [q]([c1], . . . , [cq ]), where [q],

as well as each [ci ], is an object of 1. We can think of this object as being a copy

of the diagram [q] whose arrows are labeled by [c1], . . . , [cq ]. For example, the

object [4]([2], [3], [0], [1]) can be depicted as

0
[2] //1

[3] //2
[0] //3

[1] //4.

Since these labels themselves can be visualized as strings of arrows, we can further

illustrate our object as

0
��
//
HH

��

��

1
��!!
>> KK

��

��

��

2 // 3
!!
>>��
4

This diagram can be regarded as generating a strict 2-category by composing 1-cells

and 2-cells whenever possible. In other words, the objects of 22 can be seen as

encoding all possible finite composites, whether horizontal or vertical, that can take

place in a 2-category, much as the objects of 1 can be thought of as listing all the

finite composites that can occur in an ordinary category.

Example 4.3. Of key importance in this paper are the objects of 2n given by a

single morphism, or free-standing ªcell", of each dimension up to n. For example,

we have a single object • , a single 1-cell •→ • , and a single 2-cell

•
��
>>��
•

These objects are denoted by [0], [1]([0]), and [1]([1]) as objects of 22. More

generally, in 2n we have objects [1]([1]( · · · ([0])) · · · ) where we have up to n− 1

occurrences of [1] concluding with a [0], and finally the object

[1]
(

[1]( · · · [1]) · · ·
)

.

These objects can be depicted as the free-standing cells of increasing dimension,

starting with dimension 0 (an ªobjectº) and going up through dimension n (an

ªn-morphismº or ªn-cellº).

To simplify the notation, we often write [1](0) for [0], and then [1](i)=[1]([1](i−1))

for any 0 < i < n. Observe that [0] is the terminal object in any 2n , and likewise,

that [1](i) can be considered as an object of 2n for any n > i . While there is some
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ambiguity here about what n is, the idea is simply that we have i-morphisms in any

n-category for n > i .

We include in our notation the free-standing n-cell, which corresponds to the

object [1]([1]( · · · [1]) · · · ) of 2n , and denote this object by [1](n). This notation

is in potential conflict with the above, if we move from 2n to 2k for some k > n,

but the context should make this distinction, especially since the essential shape

remains the same. Indeed, this object is simply given by

[1]
(

[1]( · · · [1]
︸ ︷︷ ︸

n

([0])) · · ·
)

in 2k when k > n.

Consider 2n-sets, which are functors 2
op
n →Sets. For any object [q](c1, . . . , cq),

let 2[q](c1, . . . , cq) denote the representable functor Hom2n
(− , [q](c1, . . . , cq)).

Since we want to generalize complete Segal spaces, we are more interested in

functors 2
op
n →SSets. Observe that any simplicial set can be regarded as a constant

functor of this kind, and any functor 2
op
n → Sets, in particular the representable

functors just described, can be regarded as levelwise discrete functors to SSets.

The category 2
op
n is a Reedy category, with the degree of an object [m](c1, . . . ,cm)

defined inductively as the sum of m with the degrees of the objects ci in 2n−1 [5,

Proposition 3.14]. Hence, the functor category SSets2
op
n can be equipped with the

Reedy model structure, which we prove in [11, §3.10] agrees with the injective

model structure. In particular, the cofibrations are the levelwise monomorphisms of

simplicial sets, and every object is cofibrant.

We recall from [10, §6.1] that a set of generating cofibrations of this model

structure are given by

∂1[m]×2[q](c1, . . . ,cq)∪1[m]×∂2[q](c1, . . . ,cq)→1[m]×2[q](c1, . . . ,cq),

where m, q≥ 0 and c1, . . . , cq ∈ ob(2n1
), and where ∂2[q](c1, . . . , cq) denotes the

boundary of the representable object 2[q](c1, . . . , cq), defined by mapping out of

objects of strictly lower degree than that of [q](c1, . . . , cq). The domain of this map

is the union along the intersection of the two spaces, ∂1[m]× ∂2[q](c1, . . . , cq),

but here and in what follows, we omit this additional notation for the sake of

brevity. Note that the simplicial sets and 2n-sets appearing in this definition are

appropriately constant in the 2n and simplicial directions, respectively. A set of

generating acyclic cofibrations can be defined similarly, replacing the boundaries

∂1[m] with horns 3k[m] for m ≥ 1 and 0≤ k ≤ m.

To obtain models for (∞, n)-categories, we want to ask for appropriate Segal

maps to be weak equivalences, and so we generalize the development of Segal

spaces as follows. Given q ≥ 2 and c1, . . . , cq objects of 2n−1, define the object

G[m](c1, . . . , cm)= colim
(

2[1](c1)←2[0] → · · · ←2[0] →2[1](cm)
)

.
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There is an inclusion map

se(c1,...,cq ) : G[q](c1, . . . , cq)→2[q](c1, . . . , cq).

Now define the set

Se2n
= {se(c1,...,cq ) | q ≥ 2, c1, . . . cq ∈ ob(2n−1)}.

Example 4.4. Referring to the example of the object

[4]([2], [3], [0], [1])

of 22 above, we have the representable functor

2[4]([2], [3], [0], [1]).

The corresponding functor

G[4]([2], [3], [0], [1])

consists of the union of the representable functors 2[1]([2]), 2[1]([3]), 2[1]([0]),

and 2[1]([1]), glued together along the representable functors corresponding to the

intersection points, each given by 2[0]. If we localize with respect to the inclusion

G[4]([2], [3], [0], [1])→2[4]([2], [3], [0], [1]),

then an object X is local if having these vertical composites guarantees the existence

of all horizontal composites of 1-cells and 2-cells. Namely, the induced map

X [4]([2], [3], [0], [1])→ X [1]([2])×X [0] X [1]([3])×X [0] X [1]([0])×X [0] X [1]([1])

is a weak equivalence of simplicial sets.

However, such a localization only gives us horizontal composition, not vertical

composition. For example, we also want the map

X [1]([2])→ X [1]([1])×X [1]([0]) X [1]([1])

to be a weak equivalence of simplicial sets.

The previous example illustrates that being local with respect to the maps in Se2n

is not sufficient when n > 1, as it only gives an up-to-homotopy composition

horizontally. Encoding other levels of composition is achieved inductively, making

use of the intertwining functor V [1] : SSets2
op

n−1 → SSets2
op
n to translate a set S

of maps in SSets2
op

n−1 into a set V [1](S) of maps in SSets2
op
n . Let us briefly recall

this functor; full details can be found in [35, §4.4].

Given a functor A : 2
op

n−1→ SSets, define V [1](A) : 2
op
n → SSets by

[q](c1, . . . , cq) 7→
∐

δ : [q]→[1]

q
∏

i=1

A(ci ).

The idea is that V [1](A) models a category enriched in SSets2
op

n−1 , with two objects

x and y and one nontrivial mapping object from x to y given by A. The mapping
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object from y to x is empty, and the mapping objects at x and y each consist of an

identity morphism only.

Let S1 = Se1 = {G(n)t → 1[n]t | n ≥ 2}, and for n ≥ 2, inductively define

Sn = Se2n
∪V [1](Sn−1). Thus, in SSets2

op
n , we have n different Segal conditions,

corresponding to the desired composition in each of the n categorical levels.

Theorem 4.5 [35, Proposition 8.5]. Localizing the Reedy model structure SSets2
op
n

with respect to Sn results in a cartesian model category whose fibrant objects are

higher-order analogues of Segal spaces.

We denote this model structure by 2nSeS p and refer to its fibrant objects as

2n-Segal spaces.

However, to get models for (∞, n)-categories, we want to incorporate higher-

order completeness conditions as well. Again, we localize with respect to some

maps, and to do so, we make use of the underlying simplicial space of a functor

2
op
n → SSets.

Consider the functor τ2 : 1→2n , defined by

τ2[k] = [k]([0], . . . , [0]),

which by [35, §4.1] induces a Quillen pair on Reedy model structures

(τ2)# : SSets1op

⇄ SSets2
op
n : τ ∗2. (4.6)

The functor τ ∗2 takes a functor X : 2
op
n → SSets to its underlying simplicial space.

Recalling that complete Segal spaces are defined by localizing with respect to

Cpt1 = {E
t →1[0]t },

for n ≥ 2 we use the left adjoint functor (τ2)# to define

Cpt2n
=

{

(τ2)# E t → (τ2)#1[0]
t
}

.

Just as for the Segal conditions, localizing with respect to this map only encodes

one completeness condition. Specifically, an object X : 2
op
n → SSets is local with

respect to this map when

X [0] ≃ X [1]([0])heq,

where the space on the right-hand side is a suitable space of homotopy equivalences.

It can be defined directly in a way similar to the definition for complete Segal spaces,

or more formally as Map((τ2)# E, X). To capture the other necessary completeness

conditions, namely that

X [1](i) ≃ X [1]
(i+1)

heq
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for 0 < i < n, we use the intertwining functor. For example, when i = 2, we can

define

X [1]
(2)

heq =Map
(

V [1]((τ2)# E t), X
)

.

Combining with the Segal maps, let

T1 = Se1 ∪Cpt1

and, for n ≥ 2,

Tn = Se2n
∪Cpt2n

∪V [1](Tn−1),

again recalling that 21 =1.

Theorem 4.7 [35, Theorem 8.1]. Localizing SSets2
op
n with respect to the set Tn

results in a cartesian model category that we denote by 2nCSS.

We would like to have a good description of the fibrant objects in this model

structure. To this end, we first define mapping objects.

Definition 4.8. Given a functor X : 2
op
n →SSets and any (x0, x1)∈ X [0]0×X [0]0,

we define the mapping object M2
X (x0, x1) : 2

op

n−1→SSets, evaluated at any object c

of 2n−1, as the pullback of the diagram

{(x0, x1)} → X [0]× X [0] ← X [1](c).

Revisiting the adjunction (4.6), the functor

τ ∗2 : SSets2
op
n → SSets1op

is given by (τ ∗2X)m = 2[n]([0], . . . , [0]), where here [0] is the terminal object

of 2n−1.

We have the following explicit description of the fibrant objects of the model

structure 2nCSS that we use, for example, in [12].

Definition 4.9. A 2n-space is a functor X : 2
op
n → SSets such that

(1) X is Reedy fibrant;

(2) for every m ≥ 2 and c1, . . . , cm ∈ ob(2n−1), the Segal map

X [m](c1, . . . , cm)→ X [1](c1)×X [0] · · · ×X [0] X [1](cm)

is a weak equivalence of simplicial sets;

(3) the underlying simplicial space τ ∗2X is a complete Segal space; and

(4) for every (x0, x1) ∈ X [0]0× X [0]0, the mapping object M2
X (x0, x1) is a 2n−1-

space.
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Remark 4.10. We have chosen to follow Rezk’s original terminology and refer to

these objects as 2n-spaces. It is arguably more accurate to call them ªcomplete

Segal 2n-spacesº, a convention we adopt in [8]. For the purposes of this paper,

however, this specification leads to unwieldy terminology; to avoid having to refer

repeatedly to atrocities such as ªcomplete Segal objects in complete Segal 2n-

spacesº in what follows, we have chosen to revert back to the more concise name.

We retain the specification of ª2n-Segal spaceº when we refer to an object that

satisfies the Segal condition but no completeness assumptions.

We conclude this section by recalling two different ways to think of a homotopy

category of a 2n-Segal space.

Definition 4.11. Let X be a 2n-Segal space. Then its enriched homotopy category

Ho(X) has object set X [0] and mapping object

MapHo(X)(x0, x1)= M2
X (x0, x1) : 2

op

n−1→ SSets.

Its (ordinary) homotopy category Ho2(X) has the same objects, but has

HomHo2(X)(x0, x1)= Hoτ ∗2 X (x0, x1).

Alternatively described, Ho2(X) is the homotopy category of the underlying

Segal space of X , in the sense described in Section 3.

We would like to use these definitions to generalize Definition 3.8 to a notion of

Dwyer±Kan equivalence for 2n-spaces, and then prove the analogue of Theorem 3.9

in this context. Because we have need of them in the proof, we first take a detour

to review complete Segal objects in 2n-spaces and the notion of Dwyer±Kan

equivalence in that context.

5. Segal and complete Segal objects in 2n-spaces

One feature of 2n-spaces is that they are suitably equivalent to categories enriched

in 2n−1-spaces, following the general principle that (∞, n)-categories should be

equivalent to categories enriched in (∞, n − 1)-categories. One way to model

categories weakly enriched in 2n−1-spaces is via the structure of a complete Segal

object in 2n−1-spaces. We give a brief review here, and refer the reader to [12] for

more details.

The main idea is that, just as a complete Segal space can be thought of as a

category weakly enriched in spaces and is given by a functor W : 1op→ SSets, we

can describe a complete Segal object in 2n-spaces as a functor W : 1op→2nCSS.

We emphasize the model structure 2nCSS here because it determines the weak

equivalences we use for our Segal conditions, but the objects of the underlying

category are functors W : 1op→ SSets2
op
n .
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As with complete Segal spaces and 2n-spaces, it is helpful to look first at

objects that satisfy only the relevant Segal condition. Our first approach uses a

straightforward generalization of the definition of Segal space.

Definition 5.1. A Reedy fibrant functor W : 1op→ SSets2
op
n such that, for every

m ≥ 2, the Segal map

Wm→W1×W0
· · · ×W0

W1
︸ ︷︷ ︸

m

is a weak equivalence in the model structure 2nCSS is called a Segal object in

2n-spaces.

It can be helpful here to think of such functors as W : 1op→2nCSS to emphasize

the model structure on the target category. We often refer to Segal objects in 2n-

spaces simply as Segal objects for simplicity.

However, there is an equivalent definition that is more widely used in the

literature, and that enables a cleaner description of the completeness condition.

Here it is helpful to regard functors W : 1op → SSets2
op
n instead as functors

W : 1op×2
op
n → SSets.

For our alternate definition, which is closely related to Definition 4.9, we need a

notion of mapping object that is analogous to the one given in Definition 4.8 for

2n-spaces.

Definition 5.2. Given a functor W :1op×2
op
n →SSets and any x0, x1∈W([0], [0])0,

the mapping object M1
W (x0, x1) : 2

op
n → SSets is defined levelwise by pullbacks

M1
W (x0, x1)(c) //

��

W ([1], c)

��
{(x0, x1)} // W ([0], c)×W ([0], c)

(5.3)

The following result is known to experts, but we are not aware of a proof in the

literature, so we include one here. It is of interest in part due to the subtle role of

the two different Reedy structures involved.

Proposition 5.4. A Reedy fibrant functor W : 1op×2
op
n → SSets is a Segal object

in 2n-spaces if and only if the following conditions hold:

(1) for any m ≥ 2 and c ∈ ob(2n), the Segal map

W ([m], c)→W ([1], c)×W ([0],c) · · · ×W ([0],c) W ([1], c)

is a weak equivalence of simplicial sets; and

(2) for any x0, x1 ∈W ([0], [0])0, the mapping object M1
W (x0, x1) is a 2n-space.
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Proof. Suppose that W is a Segal object in 2n-spaces, so for each m ≥ 2, the map

Wm→W1×W0
· · · ×W0

W1

is a weak equivalence in 2nCSS. Since W is assumed to be Reedy fibrant, Wm is a

2n-space for each m ≥ 0 [19, Corollary 15.3.12]. Since 2nCSS is obtained as a

localized model category, and local weak equivalences between fibrant objects are

levelwise weak equivalences, each Segal map above is a levelwise weak equiva-

lence of functors 2
op
n → SSets, i.e., the maps as in (1) are weak equivalences of

simplicial sets.

To check (2), consider M1
W (x, y) for fixed x, y ∈ W ([0], [0])0. Since W is

assumed to be Reedy fibrant, the right vertical map in (5.3) is a fibration between

2n-spaces, which are the fibrant objects in 2nCSS. Since the discrete object

{(x, y)} is also a fibrant object in 2nCSS, the pullback must be as well. It follows

that M1
W (x, y) is fibrant, namely, a 2n-space.

Conversely, suppose conditions (1) and (2) hold. We first want to show that W

is Reedy fibrant as a functor W : 1op→2nCSS. For any m ≥ 0, let Mm W denote

the m-th matching object of W ; using the definition of Reedy fibration [19, Defini-

tion 15.3.3], we need to show that the map Wm→ Mm W is a fibration in 2nCSS.

Observe that Wm =Map(1[m], W ), the functor 2
op
n → SSets defined by

[p](c1, . . . , cp) 7→W ([m], [p](c1, . . . , cp)).

Similarly, Mm W = Map(∂1[m], W ). Using the inclusion ∂1[m] → 1[m], one

can check that the map Wm→ Mm W is indeed a fibration in 2nCSS.

Finally, we need to check that for any m ≥ 2, the Segal map

Wm→W1×W0
· · · ×W0

W1
︸ ︷︷ ︸

m

is a weak equivalence in 2nCSS. We know by assumption that for any m ≥ 2 and

any object c of 2
op
n , the map

W ([m], c)→W ([1], c)×W ([0],c) · · · ×W ([0],c) W ([1], c)
︸ ︷︷ ︸

m

is a weak equivalence of simplicial sets. It follows that the Segal map above is

a levelwise weak equivalence of simplicial sets, hence also a weak equivalence

in 2nCSS. □

We now incorporate the completeness condition by modifying this second equiv-

alent definition of Segal objects. Analogously to the setting of 2n-spaces, we

make use of an underlying simplicial space functor that we define as follows.

Let τ1 : 1→ 1×2n be given by [k] 7→ ([k], [0]). The desired functor is the

induced map
τ ∗1 : SSets1op×2

op
n → SSets1op

.
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Definition 5.5. A Reedy fibrant functor W : 1op ×2
op
n → SSets is a complete

Segal object in 2n-spaces if:

(1) for all m ≥ 2 and c ∈ ob(2n), the map

W ([m], c)→W ([1], c)×W ([0],c) · · · ×W ([0],c) W ([1], c)
︸ ︷︷ ︸

m

is a weak equivalence of spaces;

(2) for all x0, x1 ∈ W ([0], [0]), the functor M1
W (x0, x1) : 2

op
n → SSets is a 2n-

space;

(3) the underlying simplicial space τ ∗1W is a complete Segal space; and

(4) for all objects c ∈2n , the map W ([0], [0])→W ([0], c) is a weak equivalence.

Again, we typically refer to these objects simply as complete Segal objects.

Theorem 5.6 [12, Proposition 5.9]. There is a model structure CSS(2nCSS) on

the category of functors 1op×2
op
n → SSets in which the fibrant objects are the

complete Segal objects, obtained by a localization of the Reedy model structure.

Using the mapping objects M1
W (x, y), we can generalize Definition 3.8 as follows.

Here, we define the homotopy category of a Segal object W to be the homotopy

category of the underlying Segal space τ ∗1W , and denote it by Ho1(W ).

Definition 5.7. A map f : W → Z of Segal objects in 2nCSS is a Dwyer±Kan

equivalence if:

• for any objects x and y of W , the induced map M1
W (x, y)→ M1

Z ( f x, f y) is

a weak equivalence in 2nCSS, and

• the induced functor Ho1(W )→ Ho1(Z) is essentially surjective.

The following theorem is a generalization of Theorem 3.9(1).

Theorem 5.8 [12, §8.18]. A map f : U→V of Segal objects is a Dwyer±Kan equiv-

alence if and only if it is a weak equivalence in the model category CSS(2nCSS).

6. Dwyer±Kan equivalences for 2n-spaces

Of key importance in the theory of complete Segal spaces and their relationship

with Segal categories are the Dwyer±Kan equivalences, which mirror the natural

weak equivalences of simplicial categories that share the same name. The main

idea is to generalize the notion of equivalence of categories, namely being fully

faithful and essentially surjective, to a more general context.

We would like to have a similar notion for 2n-spaces. While the appropriate defi-

nition was given by Rezk [35], trying to establish a result analogous to Theorem 3.9

presented some technical difficulties. In this section, we establish these properties,



68 JULIA E. BERGNER

avoiding some of the technical obstacles by using the Quillen equivalence between

2n-spaces and complete Segal objects in 2n−1-spaces from [12, Corollary 7.2].

The following definitions for 2n-Segal spaces are given in [35]. We start with

homotopically fully faithful maps, which make use of the mapping objects described

in the previous section.

Definition 6.1. Let X and Y be 2n-Segal spaces. A morphism f : X→ Y is homo-

topically fully faithful if for every x0, x1 ∈ X [0] and every c ∈ ob(2n−1), the map

M2
X (x0, x1)(c)→ M2

X ( f x0, f x1)(c)

is a weak equivalence in SSets.

We define essential surjectivity in terms of the homotopy category.

Definition 6.2. Let X and Y be 2n-Segal spaces. A morphism X→Y is essentially

surjective if Ho2( f ) : Ho2(X)→ Ho2(Y ) is an essentially surjective functor of

categories.

We want to consider these notions for more general functors 2
op
n → SSets,

which we can accomplish via a localization functor. Let us denote by LSe X the

functorial localization of X in the model structure 2nSeS p.

Definition 6.3. Suppose X, Y : 2
op
n → SSets. A map X → Y is a Dwyer±Kan

equivalence if the associated map LSe X → LSeY is homotopically fully faithful

and essentially surjective.

The following result is the analogue of Theorem 3.9.

Theorem 6.4. Let X, Y : 2
op
n → SSets be 2n-Segal spaces. A map X → Y is a

Dwyer±Kan equivalence if and only if it is a weak equivalence in 2nCSS.

Proving this theorem using the same strategy as the analogous result for complete

Segal spaces [34, Theorem 7.7] seems challenging, although of interest for the

constructions that would need to be made along the way. In that case, Rezk gives an

explicit description of a fibrant replacement functor of a Segal space via a Dwyer±

Kan equivalence. The higher categorical version of this construction seems quite

difficult to produce, although it is being investigated for n = 2 by Miika Tuominen.

However, we can prove the above theorem more efficiently, using the fact that the

analogous result is true in the context of complete Segal objects in 2n−1CSS.

Consider the functor d : 1×2n−1→2n , given by ([m], c) 7→ [m](c, . . . , c). It

induces the functor

d∗ : SSets2
op
n → SSets1op×2

op

n−1, X 7→
(

([m], c) 7→ X [m](c, . . . , c)
)

,

which has a right adjoint d∗ given by right Kan extension.

Theorem 6.5 [12, §7.1]. The adjoint pair (d∗, d∗) induces a Quillen equivalence

d∗ : 2nCSS ⇄ CSS(2n−1CSS) : d∗.
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In these two equivalent model structures, we have respective notions of Dwyer±

Kan equivalence. The functor d∗ is well behaved with respect to the two, in the

following sense.

Proposition 6.6. A map f : X→Y of 2n-Segal spaces is a Dwyer±Kan equivalence

if and only if d∗ f : d∗X→ d∗Y is a Dwyer±Kan equivalence in CSS(2n−1CSS).

Proof. We prove in [12, Proposition 6.3] that the functor d∗ preserves fibrant objects;

looking at the appropriate parts of that proof shows that it takes 2n-Segal spaces to

Segal objects in 2n−1CSS. Thus, since we have assumed that X and Y are fibrant,

d∗ f : d∗X→ d∗Y is a Dwyer±Kan equivalence if and only if it is homotopically

fully faithful and essentially surjective, without having to apply the localization

functor LSe.

First, observe that Ho2(X) ∼= Ho1(d∗X), since both are defined in terms of

the underlying Segal space of X . Therefore, Ho2(X)→ Ho1(Y ) is essentially

surjective precisely when Ho1(d∗X)→ Ho1(d∗Y ) is.

In [12, Proposition 3.10], we prove that there is a natural isomorphism of mapping

objects
M2

X (x0, x1)(c)∼= M1
d∗X (x0, x1)(c)

for any x0, x1 ∈ X [0] = (d∗X)0 and c ∈ ob(2n−1). It follows that the map

M2
X (x0, x1)(c)→ M2

Y ( f x0, f x1)(c)

is a weak equivalence in 2n−1CSS if and only if the following map is:

M1
d∗X (x0, x1)(c)→ M1

d∗Y ( f x0, f x1)(c). □

Proof of Theorem 6.4. By the previous proposition, we know that f : X→ Y is a

Dwyer±Kan equivalence in 2nCSS if and only if d∗( f ) : d∗X→ d∗Y is a Dwyer±

Kan equivalence in CSS(2n−1CSS). Theorem 6.4 says that the latter statement is

true if and only if d∗X→ d∗Y is a weak equivalence in CSS(2n−1CSS). Thus, it

suffices to prove that f : X → Y is a weak equivalence in 2nCSS if and only if

d∗ f : d∗X→ d∗Y is a weak equivalence in CSS(2n−1CSS).

First, suppose that f is a weak equivalence in 2nCSS. By definition of weak

equivalences in a localized model structure, and using the fact that all objects are

cofibrant in CSS(2n−1CSS), it suffices to show that

Map(d∗Y, Z)→Map(d∗X, Z)

is a weak equivalence of simplicial sets for every complete Segal object Z . Using

the adjunction (d∗, d∗), we can consider instead the map of simplicial sets

Map(Y, d∗Z)→Map(X, d∗Z).

We proved in [12, Proposition 6.1] that if Z is a complete Segal object, then d∗Z is

a 2n-space. Since we assumed that f : X→ Y is a weak equivalence in 2nCSS,

this map is a weak equivalence of simplicial sets, as we needed to show.



70 JULIA E. BERGNER

Conversely, suppose that d∗ f is a weak equivalence in CSS(2n−1CSS), so for

any complete Segal object Z , we have a weak equivalence of simplicial sets

Map(d∗Y, Z)→Map(d∗X, Z).

We need to show that

Map(Y, W )→Map(X, W )

is a weak equivalence for any 2n-space W . Again using the adjunction (d∗, d∗), it

suffices to show that any 2n-space W can be obtained as d∗Z for some complete

Segal object Z . Again using the fact that d∗ takes complete Segal objects to 2n-

spaces, define Z by Z([1], c) = W [1](c) for any c ∈ ob(2n−1); the rest of the

structure is thus determined by the Segal and completeness conditions. In particular,

Z([0], c) = W [0] for any c ∈ ob(2n−1). Since the functor d∗ is defined via right

Kan extension, and we are applying it to a Segal object, we obtain

(d∗Z)[1](c)= lim
[1](c)→[p](b,...b)

Z([p], b)

≃ lim
[1](c)→[p](b,...b)

(

Z([1], b)×Z([1],b) · · · ×Z([0],b) Z([1], b)
)

= lim
[1](c)→[p](b,...b)

(

W [1](b)×W [0] · · · ×W [0]W [1](b)
)

≃ lim
[1](c)→[p](b,...b)

W [p](b, . . . , b)

=W [1](c).

Thus d∗Z =W , as we wished to show. □

Now we can prove the following characterization of Dwyer±Kan equivalences

between 2n-spaces, which is a generalization of Theorem 3.9(2). In the proof, we

make use of the objects [1](i) from Example 4.3.

Theorem 6.7. A map f : X→ Y of 2n-spaces is a Dwyer±Kan equivalence if and

only if it is a levelwise weak equivalence.

Proof. First, observe that any levelwise weak equivalence is necessarily a Dwyer±

Kan equivalence, so we need only prove the converse statement.

Suppose that f : X→ Y is a Dwyer±Kan equivalence between 2n-spaces. Then

for any x, y ∈ X [0]0, we have that

M2
X (x, y)→ M2

Y ( f x, f y)

is a weak equivalence in 2n−1CSS, and that the map X [0]→Y [0] is an isomorphism

on components.
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Recall that M2
X (x, y) is a functor 2

op

n−1→ SSets, in fact a 2n−1-space when X

is a 2n-space, defined objectwise via pullbacks

M2
X (x, y)(c) //

��

X [1]([c])

��
{(x, y)} // X [0]× X [0]

In particular, we can understand M2
X (x, y) by evaluating at the objects [1](i) for

0≤ i ≤ n, using the Segal conditions. Furthermore, the completeness conditions

give us weak equivalences

X [1](n−1) ≃ X [1]
(n)

heq

for 0 < i ≤ n. Thus, it suffices to prove that the maps X [1](n) → Y [1](n) and

X [1](n−1)→ Y [1](n−1) are weak equivalences of simplicial sets.

Restricting to homotopy equivalences, we take the pullback

hM2
X (x, y)[1](n−1) //

��

X [1]
(n)

heq

��
{(x, y)} // X [0]× X [0]

which is a homotopy pullback since the right-hand map is a fibration, following

from the Reedy fibrancy of X . Since weak equivalences are preserved by passing

to subspaces of homotopy equivalences, by our assumption we know that

hM2
X (x, y)[1](n−1) ≃ hM2

Y ( f x, f y)[1](n−1).

If we precompose with the weak equivalence X [1](n−1) → X [1]
(n)

heq and the

corresponding map for Y , we get a commutative square

X [1](n−1) //

��

X [0]× X [0]

��
Y [1](n−1) // Y [0]× Y [0]

Since the fibers of the horizontal maps are weakly equivalent, we can conclude that

this diagram is a homotopy pullback square. By our assumption that X [0]→Y [0] in-

duces an isomorphism on components, it follows that the map X [1](n−1)→Y [1](n−1)

is a weak equivalence.

Finally, we consider the diagram

X [1](n) //

��

X [0]× X [0]

��
Y [1](n) // Y [0]× Y [0]
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which is a pullback with horizontal maps fibrations, since X and Y are assumed to

be Reedy fibrant. Therefore, we obtain that the map X [1](n)→ Y [1](n) is a weak

equivalence. □

7. Results on diagram categories with discreteness assumptions

Since our goal is to develop models for (∞, n)-categories using 2
op
n -diagrams

with discreteness conditions, generalizing the Segal category model, we need to

prove analogues of several results that were used to establish a model structure for

Segal categories. Especially because we want to develop several different variants,

in which we require discreteness at some levels but completeness at others, it is

convenient to prove more general results. In this section we consider functors

C→ SSets for some small category C, and require the images of some specified

objects of C to be discrete. For specificity, we give examples throughout this section

of how this theory can be applied to the case when C =2
op

2 .

We begin with the following result that can be obtained via the existence of a

left Kan extension.

Proposition 7.1. Let C be a small category and T ⊆ ob(C). Consider the full

subcategory of SSetsC consisting all functors X : C → SSets such that X (c) is

discrete for all c ∈ T . The inclusion of this subcategory into SSetsC admits a left

adjoint that we denote by (−)T .

Definition 7.2. Let C be a small category and T ⊆ ob(C). Let X : C→ SSets. The

T -discretization of X is the functor XT : C→ SSets given by the image of X under

the left adjoint to the inclusion functor from Proposition 7.1.

Roughly speaking, the passage from X to XT takes each space X (c) to the

discrete space π0 X (c) for each c ∈ T . For c /∈ T , the spaces X (c) may or may not

be affected, depending on how they interact with the spaces that are discretized.

Example 7.3. For Segal categories, we considered functors X : 1op→ SSets for

which X0 is discrete. For C =1op and T = {[0]}, the T -discretization is the functor

which is denoted by (−)r in [6, §4]. In particular, in this case (XT )0=π0 X0 and for

n ≥ 1, (XT )n consists of the quotient space of Xn given by collapsing the subspace

in the image of iterated degeneracy maps from X0 to its components.

This discretization functor is used in [6, §5] to modify a set of generating

cofibrations in the Reedy model structure to serve as a generating set for the model

structure for Segal categories; we apply a similar procedure for our model structures

in Section 8.

A different method of discretization is used in [6, §6] to describe the adjunction

between the complete Segal space and Segal category model structures, and we
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generalize this approach in Section 9. In preparation, we want to develop a general

theory of skeleta and coskeleta to be used there.

More specifically, given a subset T of the objects of a small category C, the

skeleton and coskeleton of a functor X : C→ SSets are given by the left and right

adjoint, respectively, of a truncation functor that restricts to diagrams on the full

subcategory of C with objects in T . To that end, we make the following preliminary

definition.

Definition 7.4. Let C be a small category and T a subset of ob(C). Let CT de-

note the full subcategory of C whose objects are those in T . The T -truncation

trT : SSetsC→SSetsCT is the functor induced by precomposition with the inclusion

CT → C.

The category SSets is sufficiently well behaved that we can invoke the theory

of Kan extensions to get the following result.

Proposition 7.5. The functor trT admits a left adjoint sT and a right adjoint cT .

The following definition allows us to think of these left and right adjoints as

functors SSetsC→ SSetsC .

Definition 7.6. Let C be a small category, X : C→ SSets a functor, and T ⊆ ob(C).

The T -skeleton of X is skT (X) := sT ◦ trT (X) and the T -coskeleton of X is

coskT (X)= cT ◦ trT (X).

Proposition 7.7. The T -skeleton and T -coskeleton functors define an adjoint pair

skT : SSetsC ⇄ SSetsC : coskT .

Proof. Using the above adjunction, for any X, Y : C→ SSets, we obtain natural

isomorphisms

HomSSetsC (skT (X), Y )∼= HomSSetsC (sT ◦ trT (X), Y )

∼= HomSSetsCT (trT (X), trT (Y ))

∼= HomSSetsC (X, cT ◦ trT (Y ))

∼= HomSSetsC (X, coskT (Y )). □

Example 7.8. When C =1op and T = {[k] | 0≤ k ≤ m} for some m ≥ 0, then we

recover the usual m-skeleton skm(X) and m-coskeleton coskm(X) of a simplicial

space. When m = 0, the 0-skeleton of X is the constant simplicial space on the

simplicial set X0, whereas the 0-coskeleton is given by cosk0(X)k = (X0)
k+1 for

each k ≥ 0.

Example 7.9. Suppose that C =2
op

2 , and let us consider the coskeleta associated

to subsets T of

S =
{

[0], [1]([0])
}

⊆ ob(2
op

2 ).
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We start with the case when T is the subset consisting of the object [0]; we denote

the associated coskeleton functor by cosk[0]. Given a functor X : 2
op

2 → SSets, we

can use the fact that 22 is built from 1 in particular ways to describe cosk[0](X).

First, when we evaluate at any object of the form [q]([0], . . . , [0]), we can use

the description of the 0-coskeleton of a simplicial space to see that

(cosk[0] X)[q]([0], . . . , [0])∼= X [0]q+1.

In particular, we have

(cosk[0] X)[1]([0])∼= X [0]2.

Now, we can make use of the simplicial structure built into the objects [1]([c]) to

observe that

(cosk[0] X)[1]([c])∼= X [0]2c+2.

Generalizing to higher q, one can check that

(cosk[0] X)[q]([c1], . . . , [cq ])∼= (X [0]q+1)c1+···+cq+q .

Now, let us consider instead the case when T is the subset containing only the

object [1]([0]). In this situation, the simplicial 0-coskeleton appears in the objects

[1]([c]), for any c ≥ 0, in that

(cosk[1]([0]) X)[1]([c])∼= X [1]([0])c+1.

At the object [0], we must have

(cosk[1]([0]) X)[0] ∼=1[0].

For the objects [q]([0], . . . , [0]), we must get

(cosk[1]([0]) X)[q]([0], . . . , [0])∼= X [1]([0])q .

The rest of the structure can be deduced combinatorially.

Finally, we consider the coskeleton associated to S itself. Here, we get

(coskS X)[0] = X [0],

(coskS X)[1]([0])= X [1]([0]).

It is not hard to check that

(coskS X)[q]([0], . . . , [0])∼= X [1]([0])×X [0] · · · ×X [0] X [1]([0])

and that

(coskS X)[1]([c])∼= X [1]([0])c+1.

We leave the descriptions upon evaluating at a general [q]([c1], . . . , [cq ]) to the

reader.
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8. Model structures for 2n-models with discreteness assumptions

Now we turn to our question of having models for (∞, n)-categories given by func-

tors 2
op
n →SSets that satisfy some discreteness conditions. The first such condition

we could ask for is on the level of objects, namely that a functor X : 2
op
n → SSets

have X [0] a discrete simplicial set. In other words, we want the simplicial set

X [1]([0])= X [1](0) to be discrete, but we also want to ask the same of other X [1](i)

for any 0≤ i < n.

Let us apply the results of Section 7 to the category C =2
op
n and the set

S = {[1](i) | 0≤ i < n}.

Definition 8.1. A 2n-Segal precategory is a functor X : 2
op
n → SSets such that

X [1](i) is discrete for all [1](i) in S. It is a 2n-Segal category if it is additionally a

2n-Segal space.

Remark 8.2. Observe that this definition includes an assumption that a 2n-Segal

precategory is Reedy fibrant. As discussed in Remark 3.5, this choice is less

common for Segal categories and their generalizations, but it is convenient for us

here, given what we want to prove.

As for Segal categories, the model structures that we develop here, with fibrant

objects the Reedy fibrant 2n-Segal precategories, have counterparts whose fibrant

objects are projective fibrant instead. We have chosen not to elaborate on this point

in this paper, however.

However, we can also restrict ourselves only to the objects in some subset T ⊆ S;

indeed, we give our proofs in this generality. In what follows, we assume that the

set S is fixed to be as defined above, but that T is an arbitrary nonempty subset

of S; we impose further conditions on T momentarily.

Definition 8.3. Let T ⊆ S. A 2n-T -Segal precategory is a functor X : 2
op
n →SSets

such that X [1](i) is discrete for all [1](i) in T . It is a 2n-T -Segal category if it is

additionally a 2n-Segal space that is complete for objects [1](i) in S \ T , in the

sense that the map X [1](i) ≃ X [1]
(i+1)

heq is a weak equivalence.

We denote the category of 2n-T -Segal precategories by SSets2
op
n

T .

Remark 8.4. In principle, this definition is sensible for any subset T ⊆ S. However,

we claim that for many choices of T , we recover the same objects. Suppose

that [1](i) is an object of T . Then if X is a 2n-T -Segal category, it follows from the

definition that X [1](i) is a discrete simplicial set, and hence X [1]
(i)
heq must also be

discrete. Since we also assume that X [1](i−1) ≃ X [1]
(i)
heq, it follows that X [1](i−1)

is homotopy discrete. Indeed, since this weak equivalence is given by a degeneracy

map, X [1](i−1) is a retract of the discrete space X [1]
(i)
heq, hence also discrete.
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Therefore, it suffices to consider 2n-T -Segal precategories for which discretiza-

tion is made ªfrom the bottom upº. Consequently, in what follows, we assume that

T = {[1](0), . . . , [1]( j)} for some 0≤ j ≤ n− 1.

A key feature that we want for our model structure is that the weak equivalences be

the Dwyer±Kan equivalences. To make sense of such maps for arbitrary diagrams,

we need an appropriate localization functor taking a diagram to one that is a

2n-T -Segal category. Thus, we need to verify that such a localization results

in a 2n-T -Segal precategory rather than a more general diagram 2
op
n → SSets,

generalizing the argument for Segal categories in [6, §5].

Proposition 8.5. If X is a 2n-T -Segal precategory, then there exists a functor

L : SSets2
op
n

T → SSets2
op
n

T

such that L X is a 2n-T Segal category that is weakly equivalent to X in 2nSeS p.

Proof. Let us first suppose that T = S, so that we discretize at every level. We want

to modify the localization functor L in 2nSeS p in such a way that if X [1](i) is

discrete for some i , then so is (L X)[1](i).

We can think of this original localization as occurring in two stages: first, it

provides a Reedy fibrant replacement of an object X , and then it gives an additional

localization so that the resulting object satisfies the Segal conditions. Let us first

look at the Reedy fibrant replacement process.

Recall from Section 4 that the generating acyclic cofibrations for the Reedy

structure can be taken to be those of the form

∂2[q](c1, . . . , cq)×1[m]∪2[q](c1, . . . , cq)×3k[m] →2[q](c1, . . . , cq)×1[m],

where m ≥ 1, 0≤ k ≤m, and [q](c1, . . . , cq)∈ ob(2n). Thus, a functorial Reedy fi-

brant replacement in SSets2
op
n is given by taking iterated pushouts along these maps.

However, when [q](c1, . . . , cq)= [1](i) for some 0≤ i < n, the resulting pushouts

may not satisfy the required discreteness condition on X [1](i).

For example, if q = 0, taking a pushout of X along such a map to get some X ′

is effectively given by taking a pushout

3k[m] //

��

X [0]

��
1[m] // X ′[0]

Such a pushout need not be discrete. On the other hand, if X [0] is discrete, then the

image of 3k[m] is one of the points of X [0] and therefore this map extends to a

map 1[m]→ X [0]. In other words, X already satisfies the desired lifting condition
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with respect to the generating acyclic cofibrations for which q = 0, so there is no

harm in omitting these maps when taking the localization.

A similar argument works for any [q](c1, . . . , cq)= [1](i), so we obtain a Reedy

fibrant replacement for X by taking iterated pushouts along the maps

∂2[q](c1, . . . ,cq)×1[m]∪2[q](c1, . . . , cq)×V [m,k]→2[q](c1, . . . , cq)×1[m],

where m ≥ 1, 0≤ k ≤ m, and [q](c1, . . . , cq) ∈ ob(2n) is not an object [1](i) of T .

Now, let us turn to the localization to obtain a Segal 2n-space. Let us first

consider the maps

G[q](c1, . . . , cq)→2[q](c1, . . . , cq)

for any q ≥ 0 and ci ∈ ob(2n−1). Since these maps are cofibrations between

cofibrant objects in the Reedy model structure, and X can now be assumed to be

Reedy fibrant, we know that X is local with respect to these maps precisely when a

lift exists in any diagram

∂1[m] //

��

Map(2[q](c1, . . . , cq), X)

��
1[m] //

55l
l

l
l

l
l

l
l

Map(G[q](c1, . . . , cq), X)

The existence of such a lift is equivalent to the existence of a lift in the diagram

G[q](c1, . . . , cq)×1[m] ∪2[q](c1, . . . , cq)× ∂1[m] //

��

X

2[q](c1, . . . , cq)×1[m]

33h
h

h
h

h
h

h
h

h
h

h
h

h

Thus, it is these maps on the left-hand side that we take pushouts along to obtain a

local object. There is potential concern when q = 0, but in that case these maps

are the identity, since G[0] = 1[0]. Therefore, no problems arise when we take

pushouts along such maps. When q = 1, taking pushouts along these maps again

has no effect because G[1](c)=2[1](c) for any c ∈ ob(2n−1).

The other maps used in the localization can be shown similarly to present no

difficulties, since they are inductively defined, essentially again using the fact that

G[1](c)=2[1](c) for any c. By way of illustration, if

G[r ](d1, . . . , dr )→2[r ](d1, . . . , dr )

are the analogous maps in SSets2
op

n−1 , then we need to localize SSets2
op
n with

respect to the maps

V [1](G[r ](d1, . . . , dr ))→ V [1](2[r ](d1, . . . , dr )).
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These maps are the identity upon evaluation at [0], so taking a pushout along

them presents no problem at that level. The argument that taking pushouts along

these maps when [r ](d1, . . . , dr )= [1]
(1) = [1]([0]) does not alter discreteness is

essentially the same as the argument above for q = 0, and with a similar shift for

the other [1](i).

Thus, we have that applying the described modification of Reedy fibrant replace-

ment, followed by the usual 2n-Segal localization, results in a 2n-Segal category,

as we wished to show.

Finally, we consider the case when T ̸= S, so that T ={[1](i) | 0≤ i ≤ j} for some

fixed j < n. Now, we need to localize further so that at the levels corresponding to

elements of S \ T , we have that L X satisfies completeness. Recalling the notation

set up in the paragraph before Theorem 4.7, we define the set

T
′

n, j = Cpt2n
∪V [1](Cpt2n−1

)∪ · · · ∪ V [1]n− j−1(Cpt2 j+1
).

A similar argument as above shows that localizing with respect to these maps does

not affect discreteness at the previously indicated levels, and results in an object

with the required completeness conditions, namely, a 2n-T Segal category. □

We use this result to make sense of Dwyer±Kan equivalences X→ Y between

functors 2
op
n → SSets that are required to be discrete at those objects [1](i) in T ,

but that may not be Segal 2n-spaces.

Definition 8.6. A map X→ Y in SSets2
op
n

T is a Dwyer±Kan equivalence if the map

L X→ LY is fully faithful and essentially surjective, i.e., a Dwyer±Kan equivalence

in the sense of Segal 2n-spaces.

Theorem 8.7. There is a model structure 2nSeCatT on the category of 2n-T -Segal

precategories in which

(1) the weak equivalences are the Dwyer±Kan equivalences;

(2) the cofibrations are the monomorphisms; and

(3) the fibrant objects are the 2n-T -Segal categories that are complete at every

element [1](i) of S \ T .

The last condition means that a fibrant object X has X [1](i) discrete when [1](i)

is an element of T , i.e., when 0 ≤ i ≤ j , but for j > i we have that X [1](i) is

weakly equivalent to the space of homotopy equivalences in X [1](i+1), just as for

2n-spaces.

Our proof follows the general strategy used to establish the model structure

for Segal categories in [6, §5]. Some of the proofs there are fairly formal and

can be applied nearly identically, so we leave modifying them to our context here

as an exercise for the reader. We give proofs, however, for those results whose

generalization is less clear, as well as some for which we have found more efficient
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proofs than the originals. In [10, §6], we proved an analogous result using a different

method, and one could take the same approach here. We have chosen former method

here because it gives more explicit descriptions of some of the maps used.

The first step in proving this theorem is to find candidates for the generating cofi-

brations and generating acyclic cofibrations. We apply the techniques of Section 7

to modify the Reedy generating cofibrations so that they satisfy the necessary

discreteness assumptions. Using the notation there, we let C =2
op
n and

T = {[1](i) | 0≤ i ≤ j}

for some fixed j < n.

We define a set I n,T of proposed generating cofibrations, consisting of the maps
(

∂1[m]×2[q](c1, . . . , cq)∪1[m]× ∂2[q](c1, . . . , cq)
)

T

→
(

1[m]×2[q](c1, . . . , cq)
)

T

for all m, q ≥ 0 and (c1, . . . , cq) ∈ ob(2n−1)
q+1, where (−)T is the discretization

functor from Definition 7.2.

We do not expect such a nice description for the generating acyclic cofibrations,

so in line with the approach we used for Segal categories we take J n,T to be the set

of isomorphism classes of maps A→ B such that

(1) the map A→ B is a monomorphism and a Dwyer±Kan equivalence, and

(2) for all m, q ≥ 0 and (c1, . . . , cq)∈ ob(2n−1), the simplicial sets A[q](c1,...,cq ),m

and B[q](c1,...,cq ),m have only countably many simplices.

Observe that J n,T does not at first glance seem to depend on the set T , but the maps

in this set are between objects that satisfy the required discreteness conditions at

the objects of T . Thus, these sets are in fact different for varying T .

The proof of the following result involves some additional techniques, so we

defer it to Section 10.

Proposition 8.8. Maps with the right lifting property with respect to I n,T are

precisely the maps that are both fibrations and weak equivalences.

We turn to some properties of the set J n,T .

Proposition 8.9. (1) Any map that is both a cofibration and a weak equivalence

can be written as a directed colimit of pushouts along maps in J n,T .

(2) Pushouts along maps in J n,T are cofibrations and weak equivalences.

(3) Any J n,T -cofibration is an I n,T -cofibration and a weak equivalence.

Proof. The proof of (1) is technical but follows the same line of argument as [6,

Proposition 5.7], so we do not repeat it here.

To prove (2), first notice that any j : A→ B in J n,T is an acyclic cofibration

in 2nCSS. Since pushouts along maps in SSets
2

op
n

T preserve the required dis-

creteness conditions, the resulting map is still in SSets
2

op
n

T . Furthermore, it is
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an acyclic cofibration in 2nCSS, so a monomorphism which is a Dwyer±Kan

equivalence, as we wished to show.

Finally, we prove (3). By definition and (1), a J n,T -cofibration is a map with the

left lifting property with respect to the fibrations. Similarly, using Proposition 8.8, an

I n,T -cofibration is a map with the left lifting property with respect to the fibrations

which are Dwyer±Kan equivalences. Any map with the left lifting property with

respect to the fibrations also has the left lifting property with respect to the fibrations

that are also weak equivalences, so we only need to check that such a map is a

weak equivalence.

Let f : A→ B be such a map. By (2), a pushout along maps of J n,T is an acyclic

cofibration. Therefore, we can use the small object argument to factor f : A→ B

as A
≃

↪→A′↠ B, so there exists a lift in the diagram

A
≃ //

��

A′

��
B

id //

>>
~

~

~

~

B

Therefore, A→ B is a retract of A→ A′, and hence a weak equivalence. □

We now have all the ingredients we need to establish the model structure.

Proof of Theorem 8.7. We apply the conditions of Theorem 2.1. The category of

2n-T -Segal precategories has all small limits and colimits, since they are taken

levelwise, and therefore do not affect the discreteness assumptions. Similarly,

Dwyer±Kan equivalences satisfy the two-out-of-three property and are closed under

retracts.

The set I n,T permits the small object argument because the generating cofibrations

in the Reedy model structure do, and applying the discretization functor does not

affect this property. The objects A that appear as the sources of the maps in J n,T

are small using the same argument as for Segal categories [6, Theorem 5.1], so the

set J n,T permits the small object argument. Thus, Condition (i) is satisfied.

Condition (ii) is precisely the statement of Proposition 8.9(3). Condition (iii)

and Condition (iv)(b) are together precisely the statement of Proposition 8.8. □

Finally, we conclude with establishing some additional structure that this model

structure possesses.

Proposition 8.10. The model structure 2nSeCatT is simplicial and cartesian.

Proof. We give the proof that the model structure is cartesian; the proof that it is

simplicial can be proved similarly, or using an argument like the one used for Segal

categories in [7, Proposition 6.3].

We know that every object in 2nSeCatT , in particular the terminal object, is

cofibrant, so it remains to check the other two conditions of Definition 2.2.
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Consider the category SSets2
op
n with the model structure whose fibrant objects

satisfy the Segal conditions at all levels and completeness conditions at each ob-

ject [1](i) in S \ T . This model category, that we denote by M here for simplicity,

is cartesian, using [35, Proposition 6.1 and Theorem 8.1]. Note that every weak

equivalence in 2nSeCatT is also a weak equivalence in M, and similarly for

cofibrations, so we can use this structure on M to establish the conditions we need.

To show that the underlying category SSets2
op
n

T is cartesian closed, note that if X

and Y are discrete at some level [1](i), then so is their product X × Y . We claim

the same is true of the mapping object Y X , which is defined by

(Y X )[m](c1,...,cm) =Map(X ×2[m](c1, . . . , cm), Y ).

A straightforward computation shows that if X[1](i) and Y[1](i) are both discrete,

then so is (Y X )[1](i) . The required compatibility between the cartesian product and

mapping object follows because it holds in M.

Similarly, suppose that f : X→ X ′ and g : Y→Y ′ are cofibrations in 2nSeCatT ,

and in particular discrete at every [1](i) in T . Then the pushout-corner map is again

a monomorphism that is discrete at the same levels. Using left properness, which

follows since all objects are cofibrant, and the two-out-of-three property, one can

check that this map is a weak equivalence if either f or g is. □

Remark 8.11. When n= 1, the previous proposition recovers the result of Simpson

that the model structure for Segal categories is cartesian [36, 19.3.3].

9. Comparison of models

In this section, we establish Quillen equivalences between the different model

structures from the previous section, for varying T , and with 2nCSS. The strategy

of proof is very similar to the comparison between the model structures for Segal

categories and complete Segal spaces in [6, §6].

In this section, let T j = {[1]
(i) | 0≤ i ≤ j} for a fixed j < n. We want to prove

that the inclusion I of the category of 2n-T j -Segal precategories into the category

of 2n-T j−1-Segal precategories has a right adjoint, and further that this adjoint

pair induces a Quillen equivalence between the model structures for 2n-T j -Segal

categories and 2n-T j−1-Segal categories. In other words, for that value of j , we

drop the assumption that X ([1]( j)) be discrete, but ask instead for the corresponding

completeness condition. If j = 0, then we take T−1 = ∅, in which case we get

the comparison with 2n-spaces, for which no spaces in the diagram are required

to be discrete. In light of Remark 8.4, we thus obtain all the comparisons we are

interested in.
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Let W be an object of SSets2
op
n

T j−1
. Consider the objects U = cosk[1]( j)(W ) and

V =cosk0
[1]( j)(W ), where the latter is defined to be the coskeleton of the discrete func-

tor 2
op
n →SSets given by [q](c1, . . . , cq) 7→W [q](c1, . . . , cq)0. Define RW to be

the pullback in the diagram

RW //

��

V

��
W // U

Note that RW is a 2n-T j -Segal precategory, since the effect of this process is to

discretize W at the object [1]( j). Observe that this construction defines a functor

R : SSets
2

op
n

T j−1
→ SSets

2
op
n

T j
.

Now, we want to prove the higher analogue of Theorem 3.11, that this functor R

is the right adjoint of a Quillen equivalence. Verifying the following result is a

straightforward generalization of the argument used to prove [6, Proposition 6.1].

Proposition 9.1. The functor R : SSets
2

op
n

T j−1
→ SSets

2
op
n

T j
is right adjoint to the

inclusion I .

Now, we need to show that this adjoint pair respects the model structures of

interest.

Theorem 9.2. The adjoint pair

I : 2nSeCatT j

//
2nSeCatT j−1

: Roo

is a Quillen equivalence.

Proof. To show that (I, R) is a Quillen pair, we to show that the inclusion map I

preserves cofibrations and acyclic cofibrations. It preserves cofibrations because

they are precisely the monomorphisms in each model structure; it preserves all

weak equivalences, and in particular the acyclic cofibrations, since a map is a weak

equivalence in either model structure if and only if it is a Dwyer±Kan equivalence.

To show that this Quillen pair is a Quillen equivalence, we need to show that I

reflects weak equivalences between cofibrant objects and that for any 2n-T j−1-Segal

category W , the map I ((RW )c)= I RW→W is a weak equivalence in 2nSeCatT j
.

The fact that I reflects weak equivalences between cofibrant objects follows from the

fact that the weak equivalences in each model structure are precisely the Dwyer±Kan

equivalences.

It remains to show that the map RW →W in the pullback diagram

RW //

j
��

V

��
W // U
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is a Dwyer±Kan equivalence. By the definition of RW , we have (RW )[0]0=W [0]0,

so induced map Ho2(RW )→ Ho2(W ) is a bijection on objects, hence essentially

surjective.

Finally, we need to show that, for any x, y ∈W [0]0 = (RW )[0]0, the map

M2
RW (x, y)→ M2

W (x, y)

is a weak equivalence in 2n−1CSS. We claim that it is in fact a levelwise weak

equivalence of functors 2
op

n−1 → SSets. Since W is assumed to be fibrant, it

satisfies the Segal conditions; it follows from the pullback defining it that RW does

as well. Thus, it suffices to verify that the map

M2
RW (x, y)[1](i)→ M2

W (x, y)[1](i)

is a weak equivalence of simplicial sets for any 0≤ i < n− 1. We, hence, consider

the diagram of homotopy fibers

M2
RW (x, y)[1](i) //

��

(RW )[1](i) //

��

(RW )[0]× (RW )[0]

=

��
M2

W (x, y)[1](i) // W [1](i) // W [0]×W [0]

(9.3)

First, let us consider T0={[0]} and T−1=∅. Then (RW )[1](i) and W [1](i) differ

only in that the former contains degeneracies of the higher-dimensional simplices

of W [0]. Since we are taking the homotopy fiber over a 0-simplex of W [0]×W [0],

however, these degeneracies do not appear in that homotopy fiber. It follows that

the middle vertical map of (9.3) is a weak equivalence, hence the left-hand vertical

map is also.

Now consider T j for j ≥ 1. Then W [1](i) is already discrete for each 0≤ i < j ,

and (RW )[1](i) = W [1](i) for these values of i . When i = j , the middle vertical

map of (9.3) is given by the inclusion of the discrete subspace W [1]
( j)

0 →W [1]( j),

and an argument similar to the one for T0 shows that the induced map on homotopy

fibers is a weak equivalence. Finally, when i > j , the middle vertical map of (9.3)

is given by the inclusion of a subspace that does not include higher degenerate

elements coming from W [1]( j). It follows that this map is a weak equivalence,

hence the left-hand vertical map in (9.3) is also, as we needed to show. □

10. Proof of Proposition 8.8

In this section, we complete the proof of Proposition 8.8, which tells us that maps

with the right lifting property with respect to I n,T are precisely the maps that

are both fibrations and Dwyer±Kan equivalences. Because the two implications

are proved quite differently, for clarity we separate them into the following two

propositions.
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Proposition 10.1. If f : X → Y is a map of 2n-T -Segal precategories with the

right lifting property with respect to the maps in I n,T , then it is a fibration and a

Dwyer±Kan equivalence.

Proposition 10.2. If f : X→ Y is a map of 2n-T -Segal precategories that is both

a fibration and a Dwyer±Kan equivalence, then it has the right lifting property with

respect to the maps in I n,T .

The more difficult of the two is Proposition 10.1, which requires several prepara-

tory lemmas. For the beginning steps we work incrementally, starting with small

values of n, to build intuition for the complicated notation we must inevitably use.

Before delving into the details, recall that the definition of Dwyer±Kan equiv-

alence is given in terms of mapping objects in a 2n-space. For the arguments

we make in this section, we want to reformulate this definition somewhat. Given

X : 2
op
n → SSets, c ∈ ob(2n−1), and (v0, v1)∈ X [0]0× X [0]0, let X [1](c)(v0, v1)

be the fiber of the map X [1](c)→ X [0]× X [0] over (v0, v1). Then it is straightfor-

ward to check that

X [1](c)(v0, v1)= M2
X (v0, v1)(c).

We use this notation, rather than the mapping object notation, for the remainder of

this section.

We want to understand the behavior of maps with the right lifting property with

respect to maps in I n,T . However, it is easier to get a handle on maps with the right

lifting property with respect to the maps in a related set that we denote by I
n,T
f , so

we first consider these maps, which we develop in some detail.

Given any object [1](i) in T , any representable functor 2[q](c1, . . . , cq) can

be evaluated at [1](i) to obtain a set that we think of as a doubly constant functor

2
op
n ×1op→Sets, and we denote it by 2[q](c1, . . . , cq)[1](i) . When i = 0, we have

2[q](c1, . . . , cq)[0] = Hom([0], [q](c1, . . . , cq)),

which is the set consisting of q + 1 elements.

For any m ≥ 0, object [q](c1, . . . , cq) of 2n , and element [1](i) in T , we have

the projection and inclusion maps

2[q](c1, . . . , cq)[1](i)←1[m]×2[q](c1, . . . , cq)[1](i)→1[m]×2[q](c1, . . . , cq).

Keeping m and [q](c1, . . . , cq) fixed but varying over all [1](i) in T , take the diagram

given by all such maps and denote its colimit by Qn,T
m,c . Denote the colimit of the

analogous diagram with 1[m] replaced by ∂1[m] by Pn,T
m,c . There are natural maps

Pn,T
m,c → Qn,T

m,c , and it is this collection of maps we want to consider. Specifically,

define

I
n,T
f = {P

n,T
m,c → Qn,T

m,c | m ≥ 0, [q](c1, . . . , cq) ∈ ob(2n)}.
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Remark 10.3. This set of maps can be regarded as a set of generating cofibrations

for a model structure for 2n-T -Segal precategories that is more closely related to

the projective model structure. Indeed, these maps are designed to be an appropri-

ate discretization of the generating cofibrations of the projective model structure

on SSets2
op
n . The subscript f is meant to be suggestive of this fact, even though

we have removed the corresponding c subscript from the corresponding injective or

Reedy version. We refer the reader to [6, §6] for a more detailed motivation for

these kinds of maps in the case of Segal categories.

Our first step is to obtain a good description of maps Pn,T
m,c → X and Qn,T

m,c→ X

for general X . Let us first recall the case where n = 1, namely Segal categories,

which was treated in [6, §4]. With a view toward generalization to higher n, and

recalling that 21 = 1, we denote the representable functor 1op → Sets on the

object [q] by 2[q], rather than 1[q]. Here, we regard it as a discrete functor

1op→ SSets; we similarly treat the representable simplicial set 1[m] as a constant

functor 2
op
n → SSets. In this case, there is only one object whose image we

discretize, namely [0], so there is no need to consider different choices of subsets T .

We simplify the notation for the moment and simply write Pm,q and Qm,q . Let us

recall some notation. If X is a Segal precategory and (v0, . . . , vq) ∈ X
q+1

0 , let

Xq(v0, . . . , vq) denote the fiber of the natural map Xq → X
q+1

0 given by iterated

face maps.

The following lemma was proved in [6, §4]; we sketch a proof here for the

purposes of guiding our generalizations of it.

Lemma 10.4. When n = 1, for fixed m, q ≥ 0 and Segal precategory X , there are

isomorphisms

Hom(Pm,q , X)∼=
∐

(v0,...,vq )

Hom(∂1[m], Xq(v0, . . . , vq))

and

Hom(Qm,q , X)∼=
∐

(v0,...,vq )

Hom(1[m], Xq(v0, . . . , vq)),

where (v0, . . . , vq) ∈ X [0]
q+1

0 .

Sketch of proof. We summarize the argument for Qm,q ; the one for Pm,q is similar.

We have defined Qm,q as the pushout in the diagram

1[m]×2[q]0 //

��

1[m]×2[q]0

��
2[q]0 // Qm,q
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Applying the functor Hom(− , X), we obtain a pullback diagram of sets

Hom(Qm,q , X) //

��

Hom(1[m]×2[q], X)= X [q]m

��

X [0]
q+1

0 = Hom(2[q]0, X) // Hom(1[m]×2[q]0, X)= X [0]
q+1
m

But, this pullback can also be described as
∐

(v0,...,vq )

Hom(1[m], Xq(v0, . . . , vq)). □

Now, we want to generalize this argument. Not surprisingly, the combinatorics

get quite complicated as we require that more levels of X be discrete. Let us start

with n = 2 and the set S = {[0], [1]([0])} before attempting a full generalization to

higher n and proper subsets of S.

For a fixed m ≥ 0 and [q](c1, . . . cq), we have defined Q2,S
m,c to be the colimit of

the diagram

1[m]×2[q](c1, . . . , cq)

1[m]×2[q](c1, . . . , cq)[0]

66

��

1[m]×2[q](c1, . . . , cq)[1]([0])

hh

��
2[q](c1, . . . , cq)[0] 2[q](c1, . . . , cq)[1]([0])

(10.5)

If we focus on the two arrows on the left-hand side of this diagram, and take the

pushout thereof, the situation is very similar to the one from the n= 1 case. Namely,

if we apply the functor Hom(− , X) to these two arrows, we get a diagram

Hom(1[m]×2[q](c1, . . . , cq), X)

��
Hom(2[q](c1, . . . , cq)[0], X) // Hom(1[m]×2[q](c1, . . . , cq)[0], X)

that can be rewritten as

X [q](c1, . . . , cq)m

��

X [0]
q+1

0
// X [0]

q+1
m

The pullback of this diagram is given by
∐

(v0,...,vq )

X [q](c1, . . . , cq)(v0, . . . , vq)m,
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where similarly to above, X [q](c1, . . . , cq)(v0, . . . , vq) is the fiber of the map

X [q](c1, . . . , cq)→ X
q+1

0 . This pullback is isomorphic to

∐

(v0,...,vq )

Hom(1[m], X [q](c1, . . . , cq)(v0, . . . , vq)).

Now, let us treat the pushout of the two right-hand arrows of (10.5) analogously.

We first apply the functor Hom(− , X) and then describe the pullback of the resulting

diagram. So, our first step is to describe the objects of

Hom
(

1[m]×2[q](c1, . . . , cq), X
)

��
Hom

(

2[q](c1, . . . , cq)[1]([0]), X
)

// Hom
(

1[m]×2[q](c1, . . . , cq)[1]([0]), X
)

Looking at the bottom row, these sets should be described as some coproduct

of copies of X [1]([0])0 and X [1]([0])m , respectively, that are indexed by the maps

[1]([0])→ [q](c1, . . . , cq) in 22. We denote by θ(1, c) the number of such maps.

Thus, we can describe this diagram instead as

X [q](c1, . . . , cq)m

��

X [1]([0])
θ(1,c)

0
// X [1]([0])

θ(1,c)
m

whose pullback is

∐

(w1,...,wθ(1,c))

X [q](c1, . . . , cq)(w0, . . . , wθ(1,c))m .

This pullback can be written alternatively as

∐

(w1,...,wθ(1,c))

Hom
(

1[m], X [q](c1, . . . , cq)(w1, . . . , wθ(1,c))
)

.

Now, if we want to take the colimit of the diagram (10.5), then we can merge

these two descriptions to see that Hom(Q2,S
m,c, X) is isomorphic to

∐

(v0,...,vq )

∐

(w1,...,wθ(q,c))

Hom
(

1[m], X [q](c1, . . . , cq)(v0, . . . , vq)(w1, . . . , wθ(1,c))
)

.

We summarize these findings, and the analogous result for P2,S
m,c , as well as

generalizations for T ⊆ S, in the following lemma. For notational simplicity, we

write v = (v0, . . . , vq) and w = (w1, . . . , wθ(1,c)).
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Lemma 10.6. When n = 2, for a fixed m ≥ 0, object [q](c1, . . . , cq) of 22, and

functor X : 2
op

2 → SSets, there are natural isomorphisms

Hom(P2,S
m,c , X)∼=

∐

v

∐

w

Hom
(

∂1[m], X [q](c1, . . . , cq)(v)(w)
)

and

Hom(Q2,S
m,c, X)∼=

∐

v

∐

w

Hom
(

1[m], X [q](c1, . . . , cq)(v)(w)
)

.

Discretizing only at T = {[0]}, we have

Hom(P2,T
m,c , X)∼=

∐

v

Hom
(

∂1[m], X [q](c1, . . . , cq)(v)
)

and

Hom(Q2,T
m,c, X)∼=

∐

v

Hom
(

1[m], X [q](c1, . . . , cq)(v)
)

.

Now let us consider the general case of Qn,T
m,c for general n. To this end, let us

denote the number of maps [1](i)→ [q](c1, . . . , cq) by θ(i, c). We further denote

an element of the set (X [1]
(i)
0 )θ(i,c) by v(i)= (v

(i)
1 , . . . , v

(i)
θ(i,c)). The argument above

generalizes to give a proof of the following lemma.

Lemma 10.7. Let X : 2
op
n → SSets, and let T = {[1](i) | 0 ≤ i ≤ j} ⊆ S. There

are natural isomorphisms

Hom(Pn,T
m,c , X)∼=

∐

v(0)

· · ·
∐

v( j)

Hom
(

∂1[m], X [q](c1, . . . , cq)(v(0)) · · · (v( j))
)

and

Hom(Qn,T
m,c, X)∼=

∐

v(0)

· · ·
∐

v( j)

Hom
(

1[m], X [q](c1, . . . , cq)(v(0)) · · · (v( j))
)

.

Now, for the general case, for any n and T , consider the set

I
n,T
f =

{

Pn,T
m,c → Qn,T

m,c | m ≥ 0, [q](c1, . . . , cq) ∈ ob(2n)
}

.

The following result is the main technical point we need to prove Proposition 10.1.

Lemma 10.8. Let T = {[1](i) | 0 ≤ i ≤ j} ⊆ S, and suppose that f : X → Y is a

map of 2n-T -Segal precategories with the right lifting property, with respect to the

maps in I
n,T
f . Then the map X [0] → Y [0] is surjective and each map

X [q](c1, . . . , cq)(v(0)) · · · (v( j))→ Y [q](c1, . . . , cq)( f v(0)) · · · ( f v( j))

is an acyclic fibration of simplicial sets for any object [q](c1, . . . , cq) of 2n and

every choice of v(i) ∈ (X [1]
(i)
0 )θ(i,c) for each 0≤ i ≤ j .
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Proof. The fact that X [0] → Y [0] is surjective follows from the fact that f has the

right lifting property with respect to the map ∅→2[0]. Thus, we need to show

that there is a lift in any diagram

∂1[m] //

��

X [q](c1, . . . , cq)(v(0)) · · · (v( j))

��
1[m] //

44h
h

h
h

h
h

h
h

Y [q](c1, . . . , cq)( f v(0)) · · · ( f v( j))

By assumption, we know there exist lifts for diagrams

Pn,T
m,c

//

��

X

��
Qn,T

m,c
//

??
~

~

~

~

~

Y

Equivalently, in the diagram

Hom(Qn,T
m,c, X) // P //

��

Hom(Pn,T
m,c , X)

��
Hom(Qn,T

m,cY ) // Hom(Pn,T
m,c , Y )

where P denotes the pullback of the right-hand square, the top left-hand map is

surjective. Using Lemma 10.7, we can write P as the pullback of the diagram

∐

v(0) · · ·
∐

v( j) Hom
(

1[m], Y [q](c1, . . . , cq)( f v(0)) · · · ( f v( j))
)

��
∐

v(0) · · ·
∐

v( j) Hom
(

∂1[m], Y [q](c1, . . . , cq)( f v(0)) · · · ( f v( j))
)

∐

v(0) · · ·
∐

v( j) Hom
(

∂1[m], X [q](c1, . . . , cq)(v(0)) · · · (v( j))
)

OO

On each component, i.e., fixing each v(i), the surjectivity of the map from

∐

v(0)

· · ·
∐

v( j)

Hom
(

1[m], X [q](c1, . . . , cq)(v(0)) · · · (v( j))
)

to the appropriate component of P produces exactly our desired lift. □

Now we use this result to shift our attention back to the maps I n,T .

Lemma 10.9. Let T = {[1](i) | 0 ≤ i ≤ j} ⊆ S, and suppose that f : X → Y is a

map of 2n-T -Segal precategories with the right lifting property with respect to the
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maps in I n,T . Then f0 : X [0] → Y [0] is surjective and the maps

X [q](c1, . . . , cq)(v(0)) · · · (v( j))→ Y [q](c1, . . . , cq)( f v(0)) · · · ( f v( j))

are acyclic fibrations for any object [q](c1, . . . , cq) of 2n and every choice of

v(i) ∈ (X [1]
(i)
0 )θ(i,c) for each 0≤ i ≤ j .

Proof. If f has the right lifting property with respect to the maps in I n,T , then it

has the right lifting property with respect to all cofibrations. In particular, it has the

right lifting property with respect to the maps in I
n,T
f , since it is not hard to check

that these maps are all levelwise monomorphisms of simplicial sets. Therefore, the

result follows from Lemma 10.8. □

Finally, we can prove Proposition 10.1. Note that the proof strategy is substan-

tially different from the one used for Segal categories in [6, §5].

Proof of Proposition 10.1.. Suppose that f : X→ Y is a map with the right lifting

property with respect to the maps in I n,T . It follows that f has the right lifting

property with respect to all cofibrations, in particular those that are also weak

equivalences. Therefore, f is a fibration. We need to show that it is a Dwyer±Kan

equivalence.

First consider the case where X and Y are 2n-T -Segal categories. Then applying

Lemma 10.9 when q=1 gives the desired result, after observing that X [1](c)(v0, v1)

is the union of all the X [1](c)(v0, v1)(v
(1)) · · · (v( j)), and that fibrations are pre-

served under disjoint union.

If X and Y are not 2n-T -Segal categories, then a Dwyer±Kan equivalence

between them is defined in terms of their localizations L X and LY . Therefore, we

need to show that the required condition still holds after localizing.

Let us recall how the localization is obtained. If X is not local, then we take

iterated pushouts

∂1[n]×2[q](c1, . . . , cq)∪1[m]×G[q](c1, . . . , cq) //

��

X

��
1[m]×2[q](c1, . . . , cq) // X ′

as well as the analogous pushouts along the localizing maps V [1](Sn−1) and T ′n, j ;

recall that the latter were defined just before Definition 8.6. We want to show that

the induced square on mapping objects is still a pushout square; for simplicity, let

us denote the left-hand map above, or any of its analogues for maps in V [1](Sn−1)

and T ′n, j , as A→ B, so that we consider the maps on components

A[1](c)(v0, v1) //

��

X [1](c)(v0, v1)

��
B[1](c)(v0, v1) // X ′[1](c)(v0, v1)
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We show that this diagram is a homotopy pushout square via an application of

Mather’s Cube Theorem [27, Theorem 25] to the following diagram:

A[1](c)(v0, v1) //

((

��

X [1](c)(v0, v1)

��

((
A[1](c) //

��

X [1](c)

��

B[1](c)(v0, v1) //

((

X ′[1](c)(v0, v1)

((
B[1](c) // X ′[1](c)

We know that the front square is a homotopy pushout, and we want to know that the

back square is also; it suffices to show that the top, bottom, and sides of the cube

are all homotopy pullback squares. We verify this fact for the top square, namely,

A[1](c)(v0, v1) //

��

X [1](c)(v0, v1)

��
A[1](c) // X [1](c)

and leave the argument for the others as an exercise for the reader. First, observe

that the right-hand map is an inclusion of components and therefore a fibration, so

it suffices to show that the square is an ordinary pullback. Using the descriptions

of A[1](c)(v0, v1) and X [1](c)(v0, v1) as pullbacks, one can check the necessary

universal property for A[1](c)(v0, v1).

Now, after applying the functorial localization functor to the map X→ Y , we

obtain that the induced map on mapping objects

(L X)[1](c)(v0, v1)→ (LY )[1](c)(v0, v1)

is necessarily a weak equivalence, completing the proof. □

Now we need to prove the converse, namely Proposition 10.2. To do so, we can

generalize a construction used for the analogous proof when n = 1.

Proof of Proposition 10.2. Suppose f : X→Y is a fibration and a weak equivalence,

and that T = {[1](i) | 0≤ i ≤ j}, for some j < n. We need to show that f has the

right lifting property with respect to the maps in I n,T . First consider the case in

which, for every [1](i) in T , the induced map of discrete simplicial sets

f : X [1](i)→ Y [1](i)

is an isomorphism.
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First, let us factor f in the Reedy model structure SSets2
op
n as

X ↪→ Y ′
≃
↠Y

in such a way that Y ′ still has the required components discrete, for example as in

the proof of Proposition 8.5. Since the map Y ′→ Y is a Reedy weak equivalence

and therefore a Dwyer±Kan equivalence, we can conclude by the two-out-of-three

property that X→ Y ′ is also a Dwyer±Kan equivalence.

Since f is assumed to be a fibration, a lift exists in the diagram

X
= //

≃

��

X

f

��
Y ′ //

>>
~

~

~

~

Y

Therefore, f is a retract of Y ′ → Y , and therefore a Reedy acyclic fibration.

Thus f has the right lifting property with respect to monomorphisms, and in

particular, to the maps in I n,T . Thus, our result holds when X and Y have isomorphic

discrete components.

Now, we consider the general case, where for each [1](i) in T the maps of

discrete spaces X [1](i)→ Y [1](i) are surjective but not necessarily isomorphisms.

Define 8Y to be the pullback of the diagram

8Y //

��

Y

��
coskT (X) // coskT (Y )

Observe that

(8Y )[1](i) ∼= X [1](i)

for every 0 ≤ i < n, and that for every [q](c1, . . . , cq) ∈ ob(2n) and every

v(i) ∈ (X [1]
(i)
0 )θ(i,c) for each 0≤ i ≤ j , the map

(8Y )[q](c1, . . . , cq)(v(0)) · · · (v( j))→ Y [q](c1, . . . , cq)(v(0)) · · · (v( j))

is a weak equivalence of simplicial sets.

We claim that X → 8Y is both a fibration and a weak equivalence. It is not

hard to show that it is a Dwyer±Kan equivalence, so let us show that X→8Y is a

fibration. Let A→ B be a generating acyclic cofibration, so we know that a lift

exists in any diagram

A

≃

��

// X

f

��
B //

??
~

~

~

~

Y
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since X → Y is assumed to be a fibration. But we want to know that this lift is

compatible with the factorization of B→ Y as the composite B→8Y → Y , so

we want to know that the lift exists in the diagram

A //

≃

��

X

��

f

!!
B //

==
{

{

{

{

8Y // Y

Since X→ Y is assumed to be a fibration, we know that the indicated lift exists,

but we want to know that it makes the top left-hand square commute as well,

namely that the lift is compatible with the factorization of B→ Y as the composite

B→8Y → Y .

We know that 8Y agrees with Y except possibly on the spaces corresponding

to [1](i). Since A→ B is a monomorphism and

X [1](i) ∼= (8Y )[1](i)

for all 0≤ i < n, a lift exists in any diagram

A[1](i) //

��

X [1](i)

��
B[1](i) //

99
r

r

r

r

r

(8Y )[1](i)

This lift, together with the lift B→ X in the previous diagram, guarantees that the

latter lift is compatible with the factorization of B→ Y through 8Y . It follows

that X→8Y is a fibration.

Now, since X→8Y is a fibration and a weak equivalence that is the identity on

objects, we know from the first part of the proof that it has the right lifting property

with respect to the maps in I n,T .

Finally, we want to show that the map 8Y → Y has the right lifting property

with respect to the maps in I n,T . Thus, we want to show that a lift exists in any

diagram of the form

(

∂1[m]×2[q](c1, . . . , cq)∪1[m]× ∂2[q](c1, . . . , cq)
)

T
//

��

8Y

��(

1[m]×2[q](c1, . . . , cq)
)

T
//

33g
g

g
g

g
g

g
g

g
g

g
g

g

Y

We work levelwise, evaluating at objects of 2
op
n .

If we evaluate at an object [1](i) of T , then using the fact that we have discretized

at such an object, one can check that the left-hand map is an isomorphism of discrete

simplicial sets. Hence, the desired lift exists.
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If we evaluate at any other object of 2
op
n , namely one at which we have not

discretized, then it follows from the definition of 8Y that the right-hand vertical

map is an isomorphism of simplicial sets. Thus, we again get the desired lift.

Thus 8Y → Y has the right lifting property with respect to the maps in I n,T ;

since we have established the same property for the map X→8Y , we can conclude

that the composite X→ Y has the right lifting property with respect to the maps

in I n,T , completing the proof. □
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