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We establish cartesian model structures for variants of ®,-spaces in which we
replace some or all of the completeness conditions by discreteness conditions. We
prove that they are all equivalent to each other and to the ®,-space model, and
we give a criterion for which combinations of discreteness and completeness give
nonoverlapping models. These models can be thought of as generalizations of
Segal categories in the framework of ©,-diagrams. In the process, we give a char-
acterization of the Dwyer—Kan equivalences in the ®,-space model, generalizing
the one given by Rezk for complete Segal spaces.
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1. Introduction

An (00, n)-category should be a higher categorical structure with objects and i-
morphisms for all i > 1, satisfying weak associativity and unitality, and such that all
i-morphisms are weakly invertible for i > n. There have been a number of different
approaches to modeling such a structure as a concretely-defined mathematical
object, including the Segal n-categories of Hirschowitz and Simpson [20] and
Pelissier [31], the n-fold complete Segal spaces of Barwick and Lurie [26], and the
®,-spaces of Rezk [35]. Models that blend features of multiple of these models
have been given by the author and Rezk [10; 12] and by Moser, Rasekh, and
Rovelli [28]. Other models include the n-relative categories of Barwick and Kan [3]
and the ®,-sets of Ara [1]. More recently, models based on Verity’s complicial
sets [38] have been developed and compared by Ozornova and Rovelli [29; 30] and
Loubaton [24]; and Campion, Kapulkin, and Maehara have made progress with
cubical models [14]. Further comparisons between models have been given by
Haugseng [18], by Doherty, Kapulkin, and Maehara [15], and, using an axiomatic
approach, by Barwick and Schommer-Pries [4]. In the special case when n = 2,
there are further results by the author with Ozornova and Rovelli [13], and by
Gagna, Harpaz, and Lanari [17]. Results when n = 1 are now well established,
and include the comparisons of Barwick and Kan [2], the author [6], Dugger and
Spivak [16], Joyal [22], Joyal and Tierney [23], Lurie [25], and the axiomatic
approach of Toén [37].

Many of these models are given by some kind of diagram of simplicial sets; for
example, n-fold complete Segal spaces and Segal n-categories are given by multi-
simplicial diagrams, and ©,-spaces are given by functors out of the category ©,".
Such diagrams are required to satisfy n different Segal conditions, which essentially
encode an up-to-homotopy composition for each of the n levels of (not necessarily
invertible) morphisms.

However, Segal diagrams without further assumptions do not quite model (0o, n)-
categories, which should behave like iterated enriched categories and, in particular,
have a discrete space of objects and discrete spaces of k-morphisms for all 1 <k < n.
Without such assumptions, we get structures more reflective of n-categories internal
to spaces.

In general, there are two ways to impose extra structure on Segal diagrams to
get models for (oo, n)-categories. The first is straightforward: simply ask that
the desired spaces in the diagram be discrete. This approach was the one taken
by Hirschowitz and Simpson in their definition of Segal n-categories [20]. This
simplicity of definition, however, comes at a cost. Being discrete is a rather
unnatural condition from the perspective of homotopy theory, and as such, causes
many complications in setting up appropriate model structures.
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Rezk took a different approach in his development of complete Segal spaces
as models for (oo, 1)-categories, and asked instead for a completeness condition,
which essentially asks that the space of objects be weakly equivalent to the subspace
of morphisms that behave suitably like homotopy equivalences. Thus, the data of
the whole object space is already encoded in the space of morphisms, and does
not give substantially new information. This approach was generalized to higher
(o0, n)-categories via the n-fold complete Segal space and ©®,-space models, in
which n different completeness conditions are assumed. For example, the space of 1-
morphisms is required to be weakly equivalent to the space of 2-morphisms that are
homotopy equivalences in an appropriate sense, and similarly for higher morphisms.

Thus, when we look at existing diagrammatic models for (oo, n)-categories,
taking multisimplicial models has an accompanying choice of whether to impose
discreteness or completeness conditions, whereas thus far the ®,-model has only
been considered with completeness conditions. A natural question is whether there
is a corresponding model given by ®,-diagrams with discreteness conditions, and
answering it is the primary motivation for this paper.

However, another question arises: do we need to make a single choice of either
discreteness or completeness conditions everywhere, or can these conditions be
“mixed and matched”? In [10], we show that Segal category objects in ®,_;-spaces
give a model for (oo, n)-categories; such objects have one discreteness condition
and (n — 1)-completeness conditions in the setting of A x ®,_;-diagrams. Here we
address this question for ®,-diagrams, and show that discreteness can be imposed
“from the bottom up”: we get distinct models for (oo, n)-categories by taking ©,-
diagrams of simplicial sets with discreteness imposed at level &, for some fixed
0 < k < n, and completeness imposed for any k < i < n. Essentially, if we ask
for discreteness at a given level of morphism, the spaces of all lower levels of
morphisms are forced to be discrete also.

This answer in the ®,,-diagram setting naturally leads us back to ask the analogous
question in the context of multisimplicial diagrams, as well as hybrid diagrams,
indexed by categories of the form A’ x ®,_; for some 0 < i < n, of which Segal
category objects in ®,_j-spaces are an example. In a sequel paper [9], we address
such models, and in particular, give an explicit comparison between n-fold complete
Segal spaces and Segal n-categories via these hybrids, a result that has been assumed
but that does not seem to be in the literature.

The idea that ®,,-diagrams with discreteness assumptions should be a viable
model for (oo, n)-categories developed at the early stages of the comparison of
®,-spaces with categories enriched in ®,_;-spaces, which the author established
with Rezk. However, complications with understanding Dwyer—Kan equivalences,
and a suitable completion functor generalizing the one for complete Segal spaces
in [34] seemed prohibitively difficult. Fortunately, results from that comparison
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program with Rezk have greatly facilitated the development of this model and its
comparison with ®,-spaces, as we show here.

Our motivation for this work is primarily aesthetic, in that we believe that estab-
lishing all possible options for these kind of models results in a satisfying picture
of the choices we have for this flavor of models for (oo, n)-categories. However, it
also seems that the restriction of the models here to the case of (0o, n)-categories
with a single object provide a good way to think about monoidal (oo, n — 1)-
categories, a project currently being undertaken by Valentina Zapata Castro. It
would also be worth investigating whether examples originally modeled by Segal
n-categories might be more compactly described using ®,-diagrams rather than
multisimplicial ones.

After some general background in Section 2, we review the Segal category and
complete Segal space models in Section 3. In Section 4, we recall Rezk’s ©,,-
space model, and in Section 5, we recall the development of Segal and complete
Segal objects in ®,-spaces. We devote Section 6 to understanding Dwyer—Kan
equivalences in ®,-spaces. In Section 7, we give a general treatment of making
objects in general diagrams discrete, which we then use in Section 8 to give a model
structure on the category of ®,-diagrams with certain objects discrete. In Section 9,
we give our comparison result between these models and Rezk’s original ®,-space
model. Finally, in Section 10, we give the proof of a deferred technical result.

2. Some background

Our goal is to put model structures on certain categories of functors in such a way
that the objects that are both fibrant and cofibrant give models for (co, n)-categories.
Here, we give a brief review of some of the model category tools that we need.

The models that we consider in this paper are all given by functors from some
small category to the category of simplicial sets. Recall that a simplicial set is a
functor AP — Sets, where AP is the opposite of the category of finite ordered
sets and Sets denotes the category of sets. We denote by SSets the category of
simplicial sets.

First, we recall the classical model structure on the category of simplicial sets,
originally due to Quillen [32]. The weak equivalences are the maps whose geometric
realizations are weak homotopy equivalences of topological spaces, the cofibrations
are the monomorphisms, and the fibrations are the Kan fibrations. Since this model
structure is the only one that we consider on the category of simplicial sets, we
simply use the notation SSets to refer to it.

Given a small category C, there are two canonical model structures on the cate-
gory SSets® of functors C — SSets, both of which have weak equivalences given
by levelwise weak equivalences of simplicial sets. In the injective model structure,
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we take the cofibrations to be given levelwise, whereas in the projective model
structure, we take the fibrations to be given levelwise. In this paper, we are primarily
interested in the injective model structure. Notice, in particular, that all objects are
cofibrant in this model structure. However, the disadvantage of the injective model
structure is that we generally do not have explicit descriptions of sets of generating
cofibrations and acyclic cofibrations, only arguments for their existence.

When C has the additional structure of a Reedy category, there is a third option:
the Reedy model structure, which also has levelwise weak equivalences but fibrations
and cofibrations defined in terms of matching and latching objects [33; 19, Theo-
rem 15.3.4]. In the particularly nice situation when C has the structure of an elegant
Reedy category in the sense of [11], the Reedy model structure coincides with the
injective structure. Thus, we have both advantages: the cofibrancy of all objects
from the injective model structure but also the explicit generating cofibrations and
acyclic cofibrations for the Reedy model structure. All of the indexing categories
that we consider in this paper, specifically the categories ®," for all n > 0, are
elegant Reedy categories.

In nice cases, models for (oo, n)-categories can be obtained by localizing this
Reedy model structure with respect to a set of maps in such way that the fibrant
objects are the local objects with respect to these maps. Let us recall this process
briefly.

Recall that in any model category, there is a notion of homotopy mapping space
Map”(X, Y) between any two objects X and Y. When the model category in
question is simplicial, then the homotopy mapping spaces can be obtained by taking
the simplicial mapping spaces of cofibrant-fibrant replacements of X and Y, but
they can be defined more generally [19, §17].

Now, let M be a model category and S be a set of maps in M. A fibrant object
Z of M is S-local if, for any map A — B in S, the induced map

Map"(B, Z) — Map" (A, Z)

is a weak equivalence of simplicial sets. An arbitrary map X — Y of M is an
S-local equivalence if, for any S-local object Z, the induced map

Map" (Y, Z) — Map" (X, Z)

is a weak equivalence of simplicial sets. If M is a sufficiently nice model category,
then there exists a model structure £g.M on the underlying category of M in which
the weak equivalences are the S-local equivalences, the cofibrations are the same
as those of M, and the fibrant objects are the S-local objects [19, Theorem 4.1.1].

However, in many examples we consider in this paper, we do not have a suit-
able model structure from which we can obtain our desired model structure as a
localization. We, thus, have to prove the existence of such a model structure from
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scratch. Therefore, we include the following recognition principle for cofibrantly
generated model categories, originally due to Kan.

Theorem 2.1 [19, Theorem 11.3.1]. Let M be a category that has all small limits
and colimits. Suppose that M has a class of weak equivalences that satisfies the
two-out-of-three property and that is closed under retracts. Let I and J be sets of
maps in M that satisfy the following conditions.

(1) Both I and J permit the small object argument [19, Definition 10.5.15].
(i1) Every J-cofibration is an I-cofibration and a weak equivalence.
(iii) Every I-injective is a J-injective and a weak equivalence.
(iv) One of the following conditions holds:

(a) amap that is an I-cofibration and a weak equivalence is a J -cofibration, or
(b) a map that is both a J-injective and a weak equivalence is an I -injective.

Then there is a cofibrantly generated model category structure on M in which I is
a set of generating cofibrations and J is a set of generating acyclic cofibrations.

Finally, we consider the additional structure of cartesian model categories. We
take the following definition from [34, Section 2.2]; the version there includes an
additional equivalent formulation of the last condition, but we omit it as we do not
need it here.

Definition 2.2. A model category M is cartesian if the underlying category is
cartesian closed, its terminal object is cofibrant, and, if f: X — X' and g: Y —> Y’
are cofibrations in M, then the pushout-corner map

XxY Uxyy X' xY - X' xY'

is a cofibration that is a weak equivalence if either f or g is.

3. Complete Segal spaces and Segal categories

In this section, we recall the complete Segal space and Segal category models for
(00, 1)-categories. All the models for (co, n)-categories that we develop in this
paper can be regarded as suitable generalizations of one, or both, of these models.

To start, for any k£ > 0, consider the k-simplex, or representable simplicial set
Alk] = Homa (—, [k]). We are interested in the inclusion of the subsimplicial
set G[k], defined to be the colimit of the diagram

AL Afo <AL DA,

in which there are k copies of A[1] glued together along copies of A[1]. We can
depict G[k] as a string of k consecutive arrows

e—>e—> ... >e,
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but with no higher simplices. This simplicial set G (k) is sometimes called the spine
of A[k].

Now we would like to regard these simplicial sets as discrete simplicial spaces,
or functors A — SSets; given a simplicial set K, we denote the corresponding
discrete simplicial space by K’. In particular, (K"); = K for each k > 0. In contrast,
the constant simplicial space, also denoted by K, is given by the simplicial set K
as each level. The two are “transpose” to one another by reversing the role of the
two simplicial directions, but they should be regarded as different from one another.
In particular, the simplicial spaces A[k]" are representable simplicial spaces, and
so for any simplicial space X, we have

Map(A[k]', X) = X;.

Given any simplicial space X, and any k > 0, consider the Segal map induced
by the inclusion G[k]" — A[k]',

X, =Map(A[k]", X) - Map(G[k]', X) = X xx, -+ Xx, X1 -

k
These maps are isomorphisms for k =0, 1, so we restrict our attention to k > 2.
Definition 3.1. A Reedy fibrant simplicial space X is a Segal space if, for all k > 2,
the Segal maps are all weak equivalences of simplicial sets.

The following model structure can be obtained by localizing the Reedy model
structure on simplicial spaces with respect to the maps G[k]" — A[k]’ for k > 2.

Theorem 3.2 [34, Theorem 7.1]. There is a cartesian model structure SeSp on
the category of simplicial spaces in which the fibrant objects are precisely the
Segal spaces.

Remark 3.3. We follow the convention of Rezk and require that a Segal space be
Reedy fibrant, so that we have the above concise description of the fibrant objects
in the corresponding model structure. Doing so additionally permits us to consider
the Segal maps as we have described them, rather than taking homotopy mapping
spaces, and hence a homotopy limit in the definition of Segal maps.

Segal spaces behave like categories up to homotopy, an idea that can be made
precise in the following way. We can define the set of objects of a Segal space to
be Xo,0. Given two objects x, y of X, the mapping space between x and y in X is
defined as the pullback

mapy (x, y) X

l l(dl do)

{(x, )} —— Xo x Xo

Since X is assumed to be Reedy fibrant, the right-hand vertical map is a fibration,
so the mapping space is, in fact, a homotopy pullback of this diagram.
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The definition of a Segal space in terms of the Segal maps guarantees the existence
of an up-to-homotopy composition on mapping spaces: again, because we have
assumed that X is Reedy fibrant, the left-hand map in the diagram

X1 xx, X1<szd—l>xl
is an acyclic fibration and hence has a section which serves as a homotopy inverse.
We can also define the homotopy category Ho(X) of a Segal space X, whose objects
are those of X and whose morphisms are the path components of the mapping
spaces of X.

However, in the above definition, we have only used the O-simplices of Xg as the
objects, so in some sense the additional simplicial data of X is extraneous. Indeed,
to get an (oo, 1)-category, we want to have a discrete space of objects, rather than an
arbitrary space as in a general Segal space. There are two approaches to remedying
this situation. We start with the simplest: requiring that X be discrete, so that all
its higher simplices are degenerate.

Definition 3.4. A Segal category is a Segal space X such that X is discrete.

Remark 3.5. Note that here we have assumed that a Segal category is Reedy
fibrant. This assumption is not made in many other treatments of Segal categories,
for example, in [6]. In some situations, we want to consider Segal categories that
are projective fibrant, rather than Reedy fibrant, and hence do not specify one or
the other in the basic definition. In this paper, we only consider Segal categories
and generalizations that are Reedy fibrant, so to be as streamlined as possible we
include this assumption here.

For many homotopy-theoretic purposes, however, requiring that a space be
discrete is unnatural. An alternative approach is to require Xg to be equivalent to
the space of homotopy equivalences in X, as described by Rezk [34, §5.7]. Since
a Segal space has a notion of up-to-homotopy composition, as well as identity
maps defined by those in the image of the degeneracy map Xy — Xy, there is a
natural definition of homotopy equivalences as those maps that have an inverse
up to homotopy. They form a subspace Xneq € X1, and indeed comprise some of
the path components of X; [34, Lemma 5.8]. The degeneracy map so: X9 — X;
factors through Xpeq, allowing for the following definition.

Definition 3.6. A Segal space X is complete if the map so: Xo — Xpeq is a weak
equivalence of simplicial sets.

The proof that Segal categories and complete Segal spaces are equivalent mod-
els for (0o, 1)-categories is given by a Quillen equivalence of appropriate model
categories. The model structure for complete Segal spaces is obtained as a further
localization of the Segal space model structure SeSp. We localize with respect
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to the map E' — A[0]’, where E is the simplicial set given by the nerve of the
category with two objects and a single isomorphism between them. One can check
that Map(E’, X) =~ Xpeq, verifying that the local objects with respect to this map
are indeed complete.

Theorem 3.7 [34, Theorem 7.2]. There is a cartesian model structure CSS on
the category of simplicial spaces such that the fibrant objects are the complete
Segal spaces.

For Segal categories, the underlying category for the model structure is the
category of Segal precategories, or simplicial spaces X with Xy discrete, such
that the fibrant objects are the Segal categories. However, since this category does
not admit a Reedy-like model structure with levelwise weak equivalences, we
cannot obtain the Segal category model structure as a localization; see [6, §3.12]
for more details. Roughly speaking, the problem is that if we want levelwise weak
equivalences and cofibrations that are monomorphisms, it is impossible to have the
necessary factorizations. Thus, to establish the desired model structure, we need a
precise definition of the appropriate weak equivalences.

To this end, let us return to the Segal space model structure for a moment. Given
any simplicial space X, we can take a functorial fibrant replacement of it in the model
structure SeS p, in which the fibrant objects are the (not necessarily complete) Segal
spaces. Denoting this fibrant replacement by Ls., we make the following definition.

Definition 3.8. A map f: X — Y of simplicial spaces is a Dwyer—Kan equivalence if:

« for any x, y € ob(X), the map

mapLsCX(x’ y) - mapLSCY(fxa f)’)
is a weak equivalence of simplicial sets; and
o the induced functor
Ho(LseX) — Ho(Ls.Y)
is essentially surjective.
This definition can be adapted to the setting of Segal precategories, using a
suitable modification of the functor Lg that retains the necessary discreteness
condition [6, §5]; see also the arguments in Proposition 8.5.

The importance of Dwyer—Kan equivalences is illustrated in the following results
of Rezk.

Theorem 3.9 [34, Proposition 7.6 and Theorem 7.7]. (1) Amap X — Y of Segal
spaces is a Dwyer—Kan equivalence if and only if it is a weak equivalence
inCSS.

(2) Amap X — Y of complete Segal spaces is a Dwyer—Kan equivalence if and
only if it is a levelwise weak equivalence of simplicial sets.
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In particular, if we want a model structure whose weak equivalences between
Segal categories behave like the weak equivalences of CSS, the Dwyer—Kan equiv-
alences provide good candidates.

Theorem 3.10 ([6, Theorem 5.1] and [31]). There is a cartesian model structure
SeCat on the category of Segal precategories in which the weak equivalences are
the Dwyer—Kan equivalences and the fibrant objects are the Segal categories.

The common notion of Dwyer—Kan equivalence in the model structures CSS
and SeCat is key to the proof of the following theorem.

Theorem 3.11 [6, Theorem 6.3]. The inclusion functor from the category of Segal
precategories into the category of all simplicial spaces has a right adjoint, and this
adjunction induces a Quillen equivalence

SeCat = CSS.

The right adjoint functor R serves as a discretization functor, and can be described
on objects as follows. Let W be a simplicial space. Let U = coskq(W) be the
0-coskeleton of W and V = U, o be the discrete simplicial space given by the
O-simplices in each degree of U. Alternatively, V = cosko(W, ), where W, o
denotes the discrete simplicial space consisting of the zero simplices in each degree
of W. Then RW is defined to be the pullback

RW —V

b

W —U

where V — U is the inclusion and W — U is the canonical map from the coskeleton.

4. ©O,-spaces

In this section, we review the definition of ®,-spaces, which serve as a model for
higher-categorical complete Segal spaces, and summarize some of the key con-
structions that we need here. The categories ®, were originally described by Joyal,
using a direct definition [21]. Here we have chosen to use their inductive description
via the ®-construction of Berger [5], which is also described by Rezk [35, §3.2].

Definition 4.1. Let C be a small category. Define ®C to be the category with
objects [m](cy, ..., cm), where [m] is an object of A and each ¢; is an object of C.
A morphism

lglct, ..., cq) = [m]dy, ..., dn)

is given by (6, { fi;}), where §: [q] — [m] in A, and f;;: ¢; — d; are morphisms
inCindexedby 1 <i <gand1<j <m,where (i —1) < j<4(@).
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Let us use this definition to describe our categories of interest here.

Definition 4.2. Let ® be the terminal category with a single object and no non-
identity morphisms. Inductively define ®, = 0, _;.

Observe that ®; = A. To build some intuition about ®,, for higher n, let us look
more closely at @, = ®A. Its objects are of the form [g]([c1], ..., [c4]), where [¢],
as well as each [c;], is an object of A. We can think of this object as being a copy
of the diagram [¢] whose arrows are labeled by [c1], ..., [c,]. For example, the
object [4]([2], [3], [0], [1]) can be depicted as

2 3 0 1
O[] 1[]2[]3[]4‘

Since these labels themselves can be visualized as strings of arrows, we can further
illustrate our object as

This diagram can be regarded as generating a strict 2-category by composing 1-cells
and 2-cells whenever possible. In other words, the objects of ®; can be seen as
encoding all possible finite composites, whether horizontal or vertical, that can take
place in a 2-category, much as the objects of A can be thought of as listing all the
finite composites that can occur in an ordinary category.

Example 4.3. Of key importance in this paper are the objects of ®, given by a
single morphism, or free-standing “cell”, of each dimension up to n. For example,
we have a single object e, a single 1-cell ¢ — «, and a single 2-cell

/F
Y 7
These objects are denoted by [0], [1]([0]), and [1]([1]) as objects of ®,. More

generally, in ®,, we have objects [1]([1](--- ([0])) - --) where we have upton — 1
occurrences of [1] concluding with a [0], and finally the object

(-1 ---).

These objects can be depicted as the free-standing cells of increasing dimension,
starting with dimension O (an “object”) and going up through dimension n (an
“n-morphism” or “n-cell”).

To simplify the notation, we often write [119 for [0], and then [1]® =[1]([1]¢~D)
for any 0 < i < n. Observe that [0] is the terminal object in any ®,,, and likewise,
that [1]%¥) can be considered as an object of ®, for any n > i. While there is some
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ambiguity here about what n is, the idea is simply that we have i-morphisms in any
n-category for n > i.

We include in our notation the free-standing n-cell, which corresponds to the
object [1]([1](--- [1]) - - -) of ©,, and denote this object by [1]?. This notation
is in potential conflict with the above, if we move from ©®,, to ®; for some k > n,
but the context should make this distinction, especially since the essential shape
remains the same. Indeed, this object is simply given by

(I([11C- - - [1(0D) - - -)
— ———

n

in ®; when k > n.

Consider ©,,-sets, which are functors ©,F — Sets. For any object [g](c1, ..., ¢q),
let ®[g](cy, ..., cq) denote the representable functor Homeg, (—, [g](c1, ..., ¢g)).

Since we want to generalize complete Segal spaces, we are more interested in
functors @," — SSets. Observe that any simplicial set can be regarded as a constant
functor of this kind, and any functor ®," — Sets, in particular the representable
functors just described, can be regarded as levelwise discrete functors to SSets.

The category @, is a Reedy category, with the degree of an object [m](c1, .. ., )
defined inductively as the sum of m with the degrees of the objects ¢; in ®,_; [,
Proposition 3.14]. Hence, the functor category SSets®" can be equipped with the
Reedy model structure, which we prove in [11, §3.10] agrees with the injective
model structure. In particular, the cofibrations are the levelwise monomorphisms of
simplicial sets, and every object is cofibrant.

We recall from [10, §6.1] that a set of generating cofibrations of this model
structure are given by

0A[m]x®[gl(cy, ..., cp)UA[Mm]xdO[g](cy, ..., cq) > Alm]xOg](cy, ..., cq),

where m,g>0and ¢y, ..., c; €0b(0Oy,,), and where 0O[g](c, ..., ¢;) denotes the
boundary of the representable object O[q](cy, ..., ¢,), defined by mapping out of
objects of strictly lower degree than that of [g](cy, ..., ¢4). The domain of this map
is the union along the intersection of the two spaces, dA[m] x dO[q](c1, ..., ¢y),
but here and in what follows, we omit this additional notation for the sake of
brevity. Note that the simplicial sets and ®,-sets appearing in this definition are
appropriately constant in the ®,, and simplicial directions, respectively. A set of
generating acyclic cofibrations can be defined similarly, replacing the boundaries
d A[m] with horns A¥[m] form > 1and 0 <k <m.

To obtain models for (0o, n)-categories, we want to ask for appropriate Segal
maps to be weak equivalences, and so we generalize the development of Segal
spaces as follows. Given g > 2 and cy, ..., ¢4 objects of ®,_1, define the object

Glml(cy, ..., cm) = colim(O[1](c;) < O[0] — - -+ < B[0] = O[1](cp))-
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There is an inclusion map
sel¢): Glgl(et, - .., ¢g) = Olgllcr, .. ., ¢g).
Now define the set
Seo, = {se“%) | g >2,¢1,...cq € 0b(O,_1)}.
Example 4.4. Referring to the example of the object
[41([2], [31, [O], [1D)

of ®, above, we have the representable functor

O[41(21. (3], [0], [1D.

The corresponding functor

G[4]1((2], [3], [0], [1D)
consists of the union of the representable functors ®[1]([2]), O[1]([3]), ®[1]([0]),

and ©[1]([1]), glued together along the representable functors corresponding to the
intersection points, each given by ®[0]. If we localize with respect to the inclusion

G[41(12], [31, [0], [1]) — ©[4]([2], [3], [0], [1D),

then an object X is local if having these vertical composites guarantees the existence
of all horizontal composites of 1-cells and 2-cells. Namely, the induced map

X[41(121, [31, [0, [1D — XT1IA2D) x x101 X [11([3]) X x 7071 X [1I([O]) X x 701 X [1I([1])

is a weak equivalence of simplicial sets.
However, such a localization only gives us horizontal composition, not vertical
composition. For example, we also want the map

XTH(2D — XA x xpuop XT1LT)
to be a weak equivalence of simplicial sets.

The previous example illustrates that being local with respect to the maps in Seg,
is not sufficient when n > 1, as it only gives an up-to-homotopy composition
horizontally. Encoding other levels of composition is achieved inductively, making
use of the intertwining functor V[1]: SS etsO1 > SSets®" to translate a set S
of maps in SSets©i1 into a set V[1](S) of maps in SSets®" . Let us briefly recall
this functor; full details can be found in [35, §4.4].

Given a functor A: ©° | — SSets, define V[1](A): ©," — SSets by

q
lqlcr.....cp~> ] J]Ae.

§: [ql—[1]i=1
The idea is that V[1](A) models a category enriched in SSetsOn , with two objects
x and y and one nontrivial mapping object from x to y given by A. The mapping
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object from y to x is empty, and the mapping objects at x and y each consist of an
identity morphism only.

Let S = Sex = {G(n)" — A[n]" | n > 2}, and for n > 2, inductively define
Sy = Seg, UVI[1](S,—1). Thus, in SSets(")zp, we have n different Segal conditions,
corresponding to the desired composition in each of the n categorical levels.

Theorem 4.5 [35, Proposition 8.5]. Localizing the Reedy model structure SSetsOr
with respect to S, results in a cartesian model category whose fibrant objects are
higher-order analogues of Segal spaces.

We denote this model structure by ®,SeS p and refer to its fibrant objects as
®,-Segal spaces.

However, to get models for (co, n)-categories, we want to incorporate higher-
order completeness conditions as well. Again, we localize with respect to some
maps, and to do so, we make use of the underlying simplicial space of a functor
O, — SSets.

Consider the functor 7¢: A — ©,,, defined by

telk] = [£1([0], ..., [OD),

which by [35, §4.1] induces a Quillen pair on Reedy model structures
(to)y: SSets®™ = SSets®" : 1. (4.6)

The functor 7 takes a functor X : 0,0 — SSets to its underlying simplicial space.
Recalling that complete Segal spaces are defined by localizing with respect to

Cpty = {E" — A[O]'},
for n > 2 we use the left adjoint functor (te)s# to define
Cpte, = {(te)+E" — (t0)+A[0]'}.

Just as for the Segal conditions, localizing with respect to this map only encodes
one completeness condition. Specifically, an object X : ®," — SSets is local with
respect to this map when

X[0] =~ XT11([0Dheq.

where the space on the right-hand side is a suitable space of homotopy equivalences.
It can be defined directly in a way similar to the definition for complete Segal spaces,
or more formally as Map((te)4E, X). To capture the other necessary completeness
conditions, namely that

X[1® ~ XY
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for 0 <i < n, we use the intertwining functor. For example, when i = 2, we can
define

X[ 1], = Map(V11((ze)+E"), X).
Combining with the Segal maps, let
Ti =Sea UCpty,
and, for n > 2,
Tn = See, UCptg, UVI1](Tp-1),
again recalling that ®; = A.

Theorem 4.7 [35, Theorem 8.1]. Localizing SSets®" with respect to the set T,
results in a cartesian model category that we denote by ©,CSS.

We would like to have a good description of the fibrant objects in this model
structure. To this end, we first define mapping objects.

Definition 4.8. Given a functor X : ©," — SSets and any (xo, x1) € X[0]o x X[0]o,
we define the mapping object M f? (xg, x1): @2‘: | —> SS8ets, evaluated at any object ¢
of ®,_1, as the pullback of the diagram

{(x0, x1)} = X[0] x X[0] <= X[1](c).
Revisiting the adjunction (4.6), the functor
TG SSetsO" — SSets™”

is given by (t5X),, = ©[n]([0], ..., [0]), where here [0] is the terminal object
of @n, 1.

We have the following explicit description of the fibrant objects of the model
structure ®,CSS that we use, for example, in [12].

Definition 4.9. A ©,,-space is a functor X : ®," — SSets such that

(1) X is Reedy fibrant;

(2) foreverym >2 and ¢y, ..., ¢ € 0b(®,_1), the Segal map

X[ml(ci, ..., cm) — X[11(c1) X xq07 - - - X x10] X[11(cm)

is a weak equivalence of simplicial sets;
(3) the underlying simplicial space 75X is a complete Segal space; and

(4) for every (xo, x1) € X[0]o x X[0]o, the mapping object M)(?(xo, xX1)isa®,_;-
space.
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Remark 4.10. We have chosen to follow Rezk’s original terminology and refer to
these objects as ®,-spaces. It is arguably more accurate to call them “complete
Segal ©,-spaces”, a convention we adopt in [8]. For the purposes of this paper,
however, this specification leads to unwieldy terminology; to avoid having to refer
repeatedly to atrocities such as “complete Segal objects in complete Segal ®,,-
spaces” in what follows, we have chosen to revert back to the more concise name.
We retain the specification of “®,-Segal space” when we refer to an object that
satisfies the Segal condition but no completeness assumptions.

We conclude this section by recalling two different ways to think of a homotopy
category of a ®,-Segal space.

Definition 4.11. Let X be a ®,-Segal space. Then its enriched homotopy category
Ho(X) has object set X[0] and mapping object

Mapkio(x) (X0, X1) = MY (xo, x1): ©," | — SSets.
Its (ordinary) homotopy category Ho® (X) has the same objects, but has
Homy e x)(x0, x1) = Horg x (x0, x1).

Alternatively described, Ho®(X) is the homotopy category of the underlying
Segal space of X, in the sense described in Section 3.

We would like to use these definitions to generalize Definition 3.8 to a notion of
Dwyer—Kan equivalence for ®,-spaces, and then prove the analogue of Theorem 3.9
in this context. Because we have need of them in the proof, we first take a detour
to review complete Segal objects in ®,-spaces and the notion of Dwyer—Kan
equivalence in that context.

5. Segal and complete Segal objects in ©®,-spaces

One feature of ®,-spaces is that they are suitably equivalent to categories enriched
in ®,_1-spaces, following the general principle that (co, n)-categories should be
equivalent to categories enriched in (oo, n — 1)-categories. One way to model
categories weakly enriched in ®,_-spaces is via the structure of a complete Segal
object in ®,,_-spaces. We give a brief review here, and refer the reader to [12] for
more details.

The main idea is that, just as a complete Segal space can be thought of as a
category weakly enriched in spaces and is given by a functor W: A°® — SSets, we
can describe a complete Segal object in ®,-spaces as a functor W: A® — 0,CSS.
We emphasize the model structure ®,CSS here because it determines the weak
equivalences we use for our Segal conditions, but the objects of the underlying
category are functors W: A%? — SSetsOr .
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As with complete Segal spaces and ®,-spaces, it is helpful to look first at
objects that satisfy only the relevant Segal condition. Our first approach uses a
straightforward generalization of the definition of Segal space.

Definition 5.1. A Reedy fibrant functor W: A® — SSets®" such that, for every
m > 2, the Segal map
Wm—> Wl XWO"‘XWOWI

m
is a weak equivalence in the model structure ®,CSS is called a Segal object in
®,-spaces.

It can be helpful here to think of such functors as W: A°? — ®,,CSS to emphasize
the model structure on the target category. We often refer to Segal objects in ©,,-
spaces simply as Segal objects for simplicity.

However, there is an equivalent definition that is more widely used in the
literature, and that enables a cleaner description of the completeness condition.
Here it is helpful to regard functors W: A? — SSets®" instead as functors
W: A% x @ — SSets.

For our alternate definition, which is closely related to Definition 4.9, we need a
notion of mapping object that is analogous to the one given in Definition 4.8 for
®,-spaces.

Definition 5.2. Given a functor W: A’ x @, — SSets and any xg, x; € W([0], [0])o,
the mapping object M VAV (x0, x1): ©,F — SSets is defined levelwise by pullbacks

My (x0, x1)(€) W([l], c)
L l (5.3)
{(x0, x1)} ——— W([0], ©) x W([0], )

The following result is known to experts, but we are not aware of a proof in the
literature, so we include one here. It is of interest in part due to the subtle role of
the two different Reedy structures involved.

Proposition 5.4. A Reedy fibrant functor W : A% x ®,° — SSets is a Segal object
in ®,-spaces if and only if the following conditions hold.:

(1) for any m > 2 and c € ob(®,,), the Segal map
W(lm], c) —> W([1], ¢) Xwore) - - Xworc) W([1], ¢)

is a weak equivalence of simplicial sets; and

(2) for any xg, x; € W([0], [0])o, the mapping object M‘%, (xg, x1) is a ®,-space.
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Proof. Suppose that W is a Segal object in ®,,-spaces, so for each m > 2, the map
Wm—> Wl XWO“'XWOWI

is a weak equivalence in ®,CSS. Since W is assumed to be Reedy fibrant, W,, is a
®,-space for each m > 0 [19, Corollary 15.3.12]. Since ®,,CSS is obtained as a
localized model category, and local weak equivalences between fibrant objects are
levelwise weak equivalences, each Segal map above is a levelwise weak equiva-
lence of functors ©,° — SSets, i.e., the maps as in (1) are weak equivalences of
simplicial sets.

To check (2), consider MVAV(x, y) for fixed x,y € W([0], [0])g. Since W is
assumed to be Reedy fibrant, the right vertical map in (5.3) is a fibration between
®,-spaces, which are the fibrant objects in ®,CSS. Since the discrete object
{(x, y)} is also a fibrant object in ®,CSS, the pullback must be as well. It follows
that M‘%, (x, y) is fibrant, namely, a ®,,-space.

Conversely, suppose conditions (1) and (2) hold. We first want to show that W
is Reedy fibrant as a functor W: A°®® — ©,CSS. For any m > 0, let M,, W denote
the m-th matching object of W; using the definition of Reedy fibration [19, Defini-
tion 15.3.3], we need to show that the map W,, — M,, W is a fibration in ®,CSS.

Observe that W,,, = Map(A[m], W), the functor O,° — SSets defined by

[p](cls LI ] C[)) = W([m]7 [p](cl7 ceey C[J))

Similarly, M,, W = I\@(BA[m], W). Using the inclusion dA[m] — A[m], one
can check that the map W,, - M,, W is indeed a fibration in ®,CSS.
Finally, we need to check that for any m > 2, the Segal map

Wi — Wi Xw, - Xw, Wi

m
is a weak equivalence in ®,CSS. We know by assumption that for any m > 2 and
any object ¢ of ©,", the map

W([m], c) — W([1], ¢) xw(ol,c) - - - Xwo1,e) W1, ¢)

m
is a weak equivalence of simplicial sets. It follows that the Segal map above is

a levelwise weak equivalence of simplicial sets, hence also a weak equivalence
in ®,CSS. (]

We now incorporate the completeness condition by modifying this second equiv-
alent definition of Segal objects. Analogously to the setting of ®,-spaces, we
make use of an underlying simplicial space functor that we define as follows.
Let to: A — A x ®, be given by [k] — ([k], [0]). The desired functor is the

induced map - o
5 SSets® O 5 SSers™”.
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Definition 5.5. A Reedy fibrant functor W: A% x ©," — SSets is a complete
Segal object in ®,-spaces if:

(1) for all m > 2 and ¢ € ob(®,,), the map

W([m], c) — W([1], ¢c) Xxw(olc) - - - Xwo1,e) W1, ¢)

m

is a weak equivalence of spaces;

(2) for all xo, x; € W([0], [0]), the functor M§ (xo, x1): O, — SSets is a ©,-
space;

(3) the underlying simplicial space 75 W is a complete Segal space; and

(4) for all objects ¢ € ®,,, the map W ([0], [0]) — W([O0], c) is a weak equivalence.

Again, we typically refer to these objects simply as complete Segal objects.

Theorem 5.6 [12, Proposition 5.9]. There is a model structure CSS(0,CSS) on
the category of functors AP x @,F — SSets in which the fibrant objects are the
complete Segal objects, obtained by a localization of the Reedy model structure.

Using the mapping objects M @ (x, y), we can generalize Definition 3.8 as follows.
Here, we define the homotopy category of a Segal object W to be the homotopy
category of the underlying Segal space tX W, and denote it by Ho®(W).

Definition 5.7. A map f: W — Z of Segal objects in ©,CSS is a Dwyer—Kan
equivalence if:

o for any objects x and y of W, the induced map M‘%,(x, y) — MZA(fx, fy)is
a weak equivalence in ®,CSS, and

« the induced functor Ho® (W) — Ho?(Z) is essentially surjective.
The following theorem is a generalization of Theorem 3.9(1).

Theorem 5.8 [12, §8.18]. Amap f: U — V of Segal objects is a Dwyer—Kan equiv-
alence if and only if it is a weak equivalence in the model category CSS(0©,CSS).

6. Dwyer—Kan equivalences for ®,-spaces

Of key importance in the theory of complete Segal spaces and their relationship
with Segal categories are the Dwyer—Kan equivalences, which mirror the natural
weak equivalences of simplicial categories that share the same name. The main
idea is to generalize the notion of equivalence of categories, namely being fully
faithful and essentially surjective, to a more general context.

We would like to have a similar notion for ®,-spaces. While the appropriate defi-
nition was given by Rezk [35], trying to establish a result analogous to Theorem 3.9
presented some technical difficulties. In this section, we establish these properties,
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avoiding some of the technical obstacles by using the Quillen equivalence between
®,-spaces and complete Segal objects in ®,,_1-spaces from [12, Corollary 7.2].

The following definitions for ®,-Segal spaces are given in [35]. We start with
homotopically fully faithful maps, which make use of the mapping objects described
in the previous section.

Definition 6.1. Let X and Y be ®,-Segal spaces. A morphism f: X — Y is homo-
topically fully faithful if for every xg, x; € X[0] and every ¢ € ob(®,,_1), the map

MY (xo, x1)(¢) = MY (fxo. fx1)(©)
is a weak equivalence in SSets.
We define essential surjectivity in terms of the homotopy category.

Definition 6.2. Let X and Y be ©,-Segal spaces. A morphism X — Y is essentially
surjective if Ho®( f): Ho®(X) — Ho®(Y) is an essentially surjective functor of
categories.

We want to consider these notions for more general functors @, — SSets,
which we can accomplish via a localization functor. Let us denote by Lgs. X the
functorial localization of X in the model structure ®,SeS p.

Definition 6.3. Suppose X, Y: ©," — SSets. A map X — Y is a Dwyer—Kan
equivalence if the associated map Ls.X — Ls.Y is homotopically fully faithful
and essentially surjective.

The following result is the analogue of Theorem 3.9.

Theorem 6.4. Let X, Y: ®,° — SSets be ©,-Segal spaces. Amap X — Y isa
Dwyer—Kan equivalence if and only if it is a weak equivalence in ©,CSS.

Proving this theorem using the same strategy as the analogous result for complete
Segal spaces [34, Theorem 7.7] seems challenging, although of interest for the
constructions that would need to be made along the way. In that case, Rezk gives an
explicit description of a fibrant replacement functor of a Segal space via a Dwyer—
Kan equivalence. The higher categorical version of this construction seems quite
difficult to produce, although it is being investigated for n = 2 by Miika Tuominen.
However, we can prove the above theorem more efficiently, using the fact that the
analogous result is true in the context of complete Segal objects in ®,_;CSS.

Consider the functor d: A x ®,_; — ©,, given by ([m], ¢) — [m](c,...,c). It
induces the functor

d*: SSets®" —> SSets™ <O, X 1> ((Im], ©) > X[ml(c, ..., 0)),
which has a right adjoint d, given by right Kan extension.
Theorem 6.5 [12, §7.1]. The adjoint pair (d*, d,) induces a Quillen equivalence
d*: 0,88 = (CS8S8(0,-1CSS): d..
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In these two equivalent model structures, we have respective notions of Dwyer—
Kan equivalence. The functor d* is well behaved with respect to the two, in the
following sense.

Proposition 6.6. Amap f: X — Y of ®,-Segal spaces is a Dwyer—Kan equivalence
if and only if d* f . d*X — d*Y is a Dwyer—Kan equivalence in CS§S(0®,,_1CSS).

Proof. We prove in [12, Proposition 6.3] that the functor d* preserves fibrant objects;
looking at the appropriate parts of that proof shows that it takes ®,,-Segal spaces to
Segal objects in ®,_;CSS. Thus, since we have assumed that X and Y are fibrant,
d*f:d*X — d*Y is a Dwyer—Kan equivalence if and only if it is homotopically
fully faithful and essentially surjective, without having to apply the localization
functor Lge.

First, observe that Ho®(X) & Ho? (d*X), since both are defined in terms of
the underlying Segal space of X. Therefore, Ho®(X) — Ho?(Y) is essentially
surjective precisely when Ho® (d*X) — Ho®(d*Y) is.

In [12, Proposition 3.10], we prove that there is a natural isomorphism of mapping
objects 6 A
My (xo0, x1)(c) = M s x (x0, x1)(c)
for any xg, x| € X[0] = (d*X)o and ¢ € ob(®,,_1). It follows that the map

M (x0, x1)(¢) = My (fxo. fx1)(c)
is a weak equivalence in ®,_1CSS if and only if the following map is:
My (0, x1)(¢) = My (fxo. fx1)(e). O
Proof of Theorem 6.4. By the previous proposition, we know that f: X — Y isa
Dwyer—Kan equivalence in ®,CSS if and only if d*(f): d*X — d*Y is a Dwyer—
Kan equivalence in C§5(®,_1CSS). Theorem 6.4 says that the latter statement is
true if and only if d*X — d*Y is a weak equivalence in CSS(®,,_;CSS). Thus, it
suffices to prove that f: X — Y is a weak equivalence in ®,CSS if and only if
d*f:d*X — d*Y is a weak equivalence in C§S(0,,_CSS).
First, suppose that f is a weak equivalence in ®,CSS. By definition of weak

equivalences in a localized model structure, and using the fact that all objects are
cofibrant in CSS(0,,_{CSS), it suffices to show that

Map(d*Y, Z) — Map(d* X, Z)

is a weak equivalence of simplicial sets for every complete Segal object Z. Using
the adjunction (d*, d,), we can consider instead the map of simplicial sets

Map(Y, d.Z) — Map(X, d. 7).

We proved in [12, Proposition 6.1] that if Z is a complete Segal object, then d,. Z is
a ®,-space. Since we assumed that f: X — Y is a weak equivalence in ®,CSS,
this map is a weak equivalence of simplicial sets, as we needed to show.
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Conversely, suppose that d, f is a weak equivalence in CS§S(0,,_1CSS), so for
any complete Segal object Z, we have a weak equivalence of simplicial sets

Map(d*Y, Z) — Map(d* X, Z).
We need to show that
Map(Y, W) — Map(X, W)

is a weak equivalence for any ®,-space W. Again using the adjunction (d*, d), it
suffices to show that any ®,-space W can be obtained as d,Z for some complete
Segal object Z. Again using the fact that d, takes complete Segal objects to ®,,-
spaces, define Z by Z([1], c) = W[1](c) for any ¢ € ob(®,_); the rest of the
structure is thus determined by the Segal and completeness conditions. In particular,
Z([0], c) = W]O] for any ¢ € ob(®,,_1). Since the functor d, is defined via right
Kan extension, and we are applying it to a Segal object, we obtain

(d:2)[1](c) =

S

)Z([p], b)

~ lim Z([1],b) x cee X Z(1],b
[1](c)—>[p](b,...b)( ([11, b) X z(11.6) zqonpy Z([11, b))

lim
[11(e)—[pl(b,...

= lim WI[1](b) x cee X WI1](b
[1](c)—>[p](b,...b)( [11(b) xwio) wio] WI11(b))
~ lim w b,....,b
[11(c)—[pI(b,...b) LpX( )
= W[1](c).
Thus d.Z = W, as we wished to show. O

Now we can prove the following characterization of Dwyer—Kan equivalences
between ®,-spaces, which is a generalization of Theorem 3.9(2). In the proof, we
make use of the objects [1]¥) from Example 4.3.

Theorem 6.7. Amap f: X — Y of ®,-spaces is a Dwyer—Kan equivalence if and
only if it is a levelwise weak equivalence.

Proof. First, observe that any levelwise weak equivalence is necessarily a Dwyer—
Kan equivalence, so we need only prove the converse statement.

Suppose that f: X — Y is a Dwyer—Kan equivalence between ®,-spaces. Then
for any x, y € X[0]o, we have that

MR (x,y) > My (fx, fy)

is a weak equivalence in ®,_;CSS, and that the map X[0] — Y[0] is an isomorphism
on components.
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Recall that M)(? (x, y) is a functor ®Zp_1 — SS8ets, in fact a ®,_;-space when X
is a ®,-space, defined objectwise via pullbacks

MR (x, y)(e) —= X[1]1([c])

l l

{(x, y)} —— X[0] x X[0]

In particular, we can understand M)(? (x, y) by evaluating at the objects [1]%) for
0 <i <n, using the Segal conditions. Furthermore, the completeness conditions
give us weak equivalences

X[1®=D ~ X1y

for 0 < i < n. Thus, it suffices to prove that the maps X[1]® — Y[1]® and
X[117=D = y[1]®~D are weak equivalences of simplicial sets.
Restricting to homotopy equivalences, we take the pullback

hM (x, )Y —— X (1150

|

{(x, ¥)} —— X[0] x X[0]

which is a homotopy pullback since the right-hand map is a fibration, following
from the Reedy fibrancy of X. Since weak equivalences are preserved by passing
to subspaces of homotopy equivalences, by our assumption we know that

AMS (x, "D = hMP (fx, fy)11D.

If we precompose with the weak equivalence X[1]"*") — X [1]1(1'2l and the

corresponding map for Y, we get a commutative square

X[11=D — X[0] x X[0]

l l

Y[1]%=D — Y[0] x Y[0]

Since the fibers of the horizontal maps are weakly equivalent, we can conclude that
this diagram is a homotopy pullback square. By our assumption that X[0] — Y'[0] in-
duces an isomorphism on components, it follows that the map X[1]#~1 — y[1]¢—D
is a weak equivalence.

Finally, we consider the diagram

X[11" — X[0] x X[0]

l l

Y[11™ — Y[0] x Y[0]
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which is a pullback with horizontal maps fibrations, since X and Y are assumed to
be Reedy fibrant. Therefore, we obtain that the map X[1]™ — Y[1]™ is a weak
equivalence. ([

7. Results on diagram categories with discreteness assumptions

Since our goal is to develop models for (oo, n)-categories using ®,"-diagrams
with discreteness conditions, generalizing the Segal category model, we need to
prove analogues of several results that were used to establish a model structure for
Segal categories. Especially because we want to develop several different variants,
in which we require discreteness at some levels but completeness at others, it is
convenient to prove more general results. In this section we consider functors
C — SSets for some small category C, and require the images of some specified
objects of C to be discrete. For specificity, we give examples throughout this section
of how this theory can be applied to the case when C = @gp.

We begin with the following result that can be obtained via the existence of a
left Kan extension.

Proposition 7.1. Let C be a small category and T C ob(C). Consider the full
subcategory of SSets® consisting all functors X : C — SSets such that X (c) is
discrete for all ¢ € T. The inclusion of this subcategory into SSetsC admits a left
adjoint that we denote by (—)t.

Definition 7.2. Let C be a small category and T C ob(C). Let X : C — SSets. The
T -discretization of X is the functor X7 : C — SSets given by the image of X under
the left adjoint to the inclusion functor from Proposition 7.1.

Roughly speaking, the passage from X to Xr takes each space X(c) to the
discrete space mwoX (c) for each c € T'. For ¢ ¢ T, the spaces X (¢) may or may not
be affected, depending on how they interact with the spaces that are discretized.

Example 7.3. For Segal categories, we considered functors X : A°? — SSets for
which X is discrete. For C = A°P? and T' = {[0]}, the T-discretization is the functor
which is denoted by (—), in [6, §4]. In particular, in this case (X 7)o = o X¢ and for
n > 1, (Xr), consists of the quotient space of X, given by collapsing the subspace
in the image of iterated degeneracy maps from Xy to its components.

This discretization functor is used in [6, §5] to modify a set of generating
cofibrations in the Reedy model structure to serve as a generating set for the model
structure for Segal categories; we apply a similar procedure for our model structures
in Section 8.

A different method of discretization is used in [6, §6] to describe the adjunction
between the complete Segal space and Segal category model structures, and we
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generalize this approach in Section 9. In preparation, we want to develop a general
theory of skeleta and coskeleta to be used there.

More specifically, given a subset T of the objects of a small category C, the
skeleton and coskeleton of a functor X : C — SSets are given by the left and right
adjoint, respectively, of a truncation functor that restricts to diagrams on the full
subcategory of C with objects in T'. To that end, we make the following preliminary
definition.

Definition 7.4. Let C be a small category and T a subset of ob(C). Let Cr de-
note the full subcategory of C whose objects are those in 7. The T-truncation
trr : SSets® — SSetsCT is the functor induced by precomposition with the inclusion
CT — C.

The category SSets is sufficiently well behaved that we can invoke the theory
of Kan extensions to get the following result.

Proposition 7.5. The functor try admits a left adjoint s and a right adjoint cy.

The following definition allows us to think of these left and right adjoints as
functors SSets¢ — SSetsC.

Definition 7.6. Let C be a small category, X : C — SSets a functor, and T C ob(C).
The T-skeleton of X is skp(X) := sy o trp(X) and the T-coskeleton of X is
cosky (X) = cr otrp (X).

Proposition 7.7. The T -skeleton and T -coskeleton functors define an adjoint pair

skr: SSets® = SSetsC: coskr .

Proof. Using the above adjunction, for any X, Y: C — SSets, we obtain natural
isomorphisms
Homgg,;sc (skr(X), Y) = Homgg,;sc (s7 o trr (X), Y)

= Homgg,,cr (trr (X)), trr (Y))

= Homgg,sc (X, cr otrp(Y))

= Homgg,;sc (X, cosky (Y)). ([
Example 7.8. When C = A°? and T = {[k] | 0 < k < m} for some m > 0, then we
recover the usual m-skeleton sk, (X) and m-coskeleton cosk,, (X) of a simplicial
space. When m = 0, the O-skeleton of X is the constant simplicial space on the

simplicial set X, whereas the O-coskeleton is given by cosky(X)x = (Xo)k*! for
each k > 0.

Example 7.9. Suppose that C = ©®F, and let us consider the coskeleta associated
to subsets T of
$ = {[01. [11([0D)} S ob(®3).



74 JULIA E. BERGNER

We start with the case when T is the subset consisting of the object [0]; we denote
the associated coskeleton functor by coskjo. Given a functor X : ®(2)p — SSets, we
can use the fact that ®; is built from A in particular ways to describe cosk(X).

First, when we evaluate at any object of the form [¢]([0], ..., [0]), we can use
the description of the 0-coskeleton of a simplicial space to see that

(coskjo; X)[¢g1([0], . .., [0]) = X[0]9T".

In particular, we have
(coskqo; X)[11([0]) = X[0]%.

Now, we can make use of the simplicial structure built into the objects [1]([c]) to
observe that
(coskgoy X)[11([c]) = X[0]>F2,

Generalizing to higher g, one can check that
(coskio) X)[g]([e]. .., [eg]) = (X[O]7F o+ teaa,

Now, let us consider instead the case when T is the subset containing only the
object [1]([0]). In this situation, the simplicial O-coskeleton appears in the objects
[1]([c]), for any ¢ > 0, in that

(coskqnqop X)[11([c]) = X[1]([ODH.
At the object [0], we must have
(coskiop X)[0] = A[O].
For the objects [¢]([0], ..., [0]), we must get
(coskpiyop X)[g1([0], ..., [O]) = X[1]([0])?.

The rest of the structure can be deduced combinatorially.
Finally, we consider the coskeleton associated to S itself. Here, we get

(cosks X)[0] = X[O0],
(cosks X)[1]([0]) = X[1]([O]).
It is not hard to check that
(cosks X)[g1([0], ..., [0]) = X[11([0]) x x{o - - - X x701 X[11([O])

and that
(cosks X)[1]([c]) = X[1]([0D .

We leave the descriptions upon evaluating at a general [g]([c1], ..., [¢4]) to the
reader.
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8. Model structures for ®,-models with discreteness assumptions

Now we turn to our question of having models for (oo, n)-categories given by func-
tors ©,7 — SSets that satisfy some discreteness conditions. The first such condition
we could ask for is on the level of objects, namely that a functor X : ©," — SSets
have X[0] a discrete simplicial set. In other words, we want the simplicial set
X[11([0]) = X[1]© to be discrete, but we also want to ask the same of other X[1])
forany 0 <i <n.

Let us apply the results of Section 7 to the category C = ®," and the set

S={11910<i<n).

Definition 8.1. A ©,-Segal precategory is a functor X : ®,’ — SSets such that
X[1]19 is discrete for all [1]® in S. It is a ©,-Segal category if it is additionally a
®,-Segal space.

Remark 8.2. Observe that this definition includes an assumption that a ®,-Segal
precategory is Reedy fibrant. As discussed in Remark 3.5, this choice is less
common for Segal categories and their generalizations, but it is convenient for us
here, given what we want to prove.

As for Segal categories, the model structures that we develop here, with fibrant
objects the Reedy fibrant ®,-Segal precategories, have counterparts whose fibrant
objects are projective fibrant instead. We have chosen not to elaborate on this point
in this paper, however.

However, we can also restrict ourselves only to the objects in some subset 7 C §;
indeed, we give our proofs in this generality. In what follows, we assume that the
set S is fixed to be as defined above, but that T is an arbitrary nonempty subset
of §; we impose further conditions on 7 momentarily.

Definition 8.3. Let T C S. A ©,,-T-Segal precategory is a functor X : ©,° — SSets
such that X[1]? is discrete for all [1]® in T'. It is a ©,-T-Segal category if it is
additionally a ©,-Segal space that is complete for objects [1]%) in S\ T, in the

sense that the map X[1]?) ~ X[1]}(l"+1)

eq 152 weak equivalence.

We denote the category of ®,,-T-Segal precategories by SSets(T")zp.

Remark 8.4. In principle, this definition is sensible for any subset T C S. However,
we claim that for many choices of T, we recover the same objects. Suppose
that [1]) is an object of 7. Then if X is a ®,-T-Segal category, it follows from the
definition that X[1]® is a discrete simplicial set, and hence X [1]l(1lgq must also be
discrete. Since we also assume that X[1]¢—D ~ X[l]l(;)q, it follows that X[1]¢—D
is homotopy discrete. Indeed, since this weak equivalence is given by a degeneracy

map, X [11¢=D is a retract of the discrete space X [l]ggq, hence also discrete.
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Therefore, it suffices to consider ®,,-T-Segal precategories for which discretiza-
tion is made “from the bottom up”. Consequently, in what follows, we assume that
T={19,...,[11¥} forsome 0 < j <n—1.

A key feature that we want for our model structure is that the weak equivalences be
the Dwyer—Kan equivalences. To make sense of such maps for arbitrary diagrams,
we need an appropriate localization functor taking a diagram to one that is a
®,-T-Segal category. Thus, we need to verify that such a localization results
in a ®,-T-Segal precategory rather than a more general diagram ©," — SSets,
generalizing the argument for Segal categories in [6, §5].

Proposition 8.5. If X is a ©,-T-Segal precategory, then there exists a functor
L: ‘S’Sets?'gp — SSets?gp

such that LX is a ©,-T Segal category that is weakly equivalent to X in ®,SeS p.

Proof. Let us first suppose that T = §, so that we discretize at every level. We want
to modify the localization functor L in ®,SeSp in such a way that if X[1]® is
discrete for some i, then so is (L X)[1]®.

We can think of this original localization as occurring in two stages: first, it
provides a Reedy fibrant replacement of an object X, and then it gives an additional
localization so that the resulting object satisfies the Segal conditions. Let us first
look at the Reedy fibrant replacement process.

Recall from Section 4 that the generating acyclic cofibrations for the Reedy
structure can be taken to be those of the form

00[gl(cy, ..., cg)xA[m]UB[g](cy, ..., cq)xAk[m] — Olgl(cy, ..., cg)xAlm],

where m > 1,0 <k <m, and [g](cy, ..., ¢4) € 0b(®,). Thus, a functorial Reedy fi-
brant replacement in SS etsOn is given by taking iterated pushouts along these maps.
However, when [g](cy, ..., ¢cq) = [1]1D for some 0 <i < n, the resulting pushouts
may not satisfy the required discreteness condition on X[1]®.

For example, if ¢ = 0, taking a pushout of X along such a map to get some X’
is effectively given by taking a pushout

A¥[m] —— X[0]

L

Alm] — X'[0]

Such a pushout need not be discrete. On the other hand, if X[0] is discrete, then the
image of A¥[m] is one of the points of X[0] and therefore this map extends to a
map Al[m] — X[0]. In other words, X already satisfies the desired lifting condition
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with respect to the generating acyclic cofibrations for which g = 0, so there is no
harm in omitting these maps when taking the localization.

A similar argument works for any [¢](c1, ..., ¢;) = [1]?), so we obtain a Reedy
fibrant replacement for X by taking iterated pushouts along the maps

00[gl(ct, ..., cg)xA[m]UB[q](c, ..., cg)xV[m, k]— Blgl(c, ..., cy) xAlm],

where m > 1,0 <k <m, and [g](c1, ..., c;) € 0b(®,) is not an object [1]%) of 7.
Now, let us turn to the localization to obtain a Segal ®,-space. Let us first
consider the maps

Glql(ct, ..., cq) = Olgl(cy, ..., cq)

for any ¢ > 0 and ¢; € ob(®,_;). Since these maps are cofibrations between
cofibrant objects in the Reedy model structure, and X can now be assumed to be
Reedy fibrant, we know that X is local with respect to these maps precisely when a
lift exists in any diagram

dA[m] —= Map(®[ql(ci. ..., cy). X)

-7
—
—~
—
—
—~

Afm] — Map(Glgl(ct, ..., ¢q), X)
The existence of such a lift is equivalent to the existence of a lift in the diagram

Glgl(cy, ..., cq) Xx Alm]UBI[g](cy, ..., cq) X dA[m] —= X

—
—
—
—
—
—
—
—
—
—

Olgl(cy, ..., cq) X Alm]

Thus, it is these maps on the left-hand side that we take pushouts along to obtain a
local object. There is potential concern when g = 0, but in that case these maps
are the identity, since G[0] = A[O]. Therefore, no problems arise when we take
pushouts along such maps. When ¢ = 1, taking pushouts along these maps again
has no effect because G[1](c) = ®[1](c) for any c € ob(®,_).

The other maps used in the localization can be shown similarly to present no
difficulties, since they are inductively defined, essentially again using the fact that
G[1](c) = O[1](c) for any c. By way of illustration, if

Glrld,, ...,d) — Olrlld, ..., d,)

. P . op .
are the analogous maps in SSets®»1, then we need to localize SSets®" with
respect to the maps

VI1(GIrldy, ..., dr)) — VI1I®lr]ld, ..., d)).
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These maps are the identity upon evaluation at [0], so taking a pushout along
them presents no problem at that level. The argument that taking pushouts along
these maps when [r](di, ..., d,) =[1]1" =[1]([0]) does not alter discreteness is
essentially the same as the argument above for ¢ = 0, and with a similar shift for
the other [1]?.

Thus, we have that applying the described modification of Reedy fibrant replace-
ment, followed by the usual ®,-Segal localization, results in a ®,-Segal category,
as we wished to show.

Finally, we consider the case when T # S, so that T = {(11910<i< j} for some
fixed j < n. Now, we need to localize further so that at the levels corresponding to
elements of S\ 7, we have that L X satisfies completeness. Recalling the notation
set up in the paragraph before Theorem 4.7, we define the set

T, ; = Cpte, UV[11(Cpty, YU---UV[I]"/~(Cpte. ).

A similar argument as above shows that localizing with respect to these maps does
not affect discreteness at the previously indicated levels, and results in an object
with the required completeness conditions, namely, a ®,-T Segal category. ([

Jj+l1

We use this result to make sense of Dwyer—Kan equivalences X — Y between
functors ©,F — SSets that are required to be discrete at those objects [1]1 in T,
but that may not be Segal ®,-spaces.

Definition 8.6. A map X — Y in SSets?gp is a Dwyer—Kan equivalence if the map
LX — LY is fully faithful and essentially surjective, i.e., a Dwyer—Kan equivalence
in the sense of Segal ®,-spaces.

Theorem 8.7. There is a model structure ©,SeCatr on the category of ®,-T-Segal
precategories in which

(1) the weak equivalences are the Dwyer—Kan equivalences:;
(2) the cofibrations are the monomorphisms; and

(3) the fibrant objects are the ©,-T -Segal categories that are complete at every
element [11% of S\ T.

The last condition means that a fibrant object X has X[1]® discrete when [1]®
is an element of 7', i.e., when 0 < i < j, but for j > i we have that X[1]® is
weakly equivalent to the space of homotopy equivalences in X[1]¢*D, just as for
®,-spaces.

Our proof follows the general strategy used to establish the model structure
for Segal categories in [6, §5]. Some of the proofs there are fairly formal and
can be applied nearly identically, so we leave modifying them to our context here
as an exercise for the reader. We give proofs, however, for those results whose
generalization is less clear, as well as some for which we have found more efficient
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proofs than the originals. In [10, §6], we proved an analogous result using a different
method, and one could take the same approach here. We have chosen former method
here because it gives more explicit descriptions of some of the maps used.

The first step in proving this theorem is to find candidates for the generating cofi-
brations and generating acyclic cofibrations. We apply the techniques of Section 7
to modify the Reedy generating cofibrations so that they satisfy the necessary
discreteness assumptions. Using the notation there, we let C = ®," and

T={1"10<i<j}
for some fixed j < n.
We define a set I of proposed generating cofibrations, consisting of the maps

(0A[m] x Olgl(ct, ..., cg) UAIm] x 38[gl(ci, ..., ¢q)),
— (A[m] x Olgl(cy, .. ., cq))T
forall m,q >0and (c1,...,¢q) € ob(®,_9t!, where (—)7 is the discretization

functor from Definition 7.2.

We do not expect such a nice description for the generating acyclic cofibrations,
so in line with the approach we used for Segal categories we take J™ to be the set
of isomorphism classes of maps A — B such that

(1) the map A — B is a monomorphism and a Dwyer—Kan equivalence, and
(2) forallm, g >0and (cy, ..., cy) €0b(O,_1), the simplicial sets Ay,
and By(,.....c,).m have only countably many simplices.
Observe that J™7 does not at first glance seem to depend on the set 7', but the maps
in this set are between objects that satisfy the required discreteness conditions at
the objects of T. Thus, these sets are in fact different for varying 7.
The proof of the following result involves some additional techniques, so we
defer it to Section 10.

Proposition 8.8. Maps with the right lifting property with respect to I'"T are
precisely the maps that are both fibrations and weak equivalences.

We turn to some properties of the set J™ 7.

Proposition 8.9. (1) Any map that is both a cofibration and a weak equivalence
can be written as a directed colimit of pushouts along maps in J™7.

(2) Pushouts along maps in J™1 are cofibrations and weak equivalences.

(3) Any J™T-cofibration is an I'>T -cofibration and a weak equivalence.

Proof. The proof of (1) is technical but follows the same line of argument as [6,
Proposition 5.7], so we do not repeat it here.

To prove (2), first notice that any j: A — B in .IO”’T is an acyclic cofibration
in ®,CSS. Since pushouts along maps in SSets;) " preserve the required dis-
creteness conditions, the resulting map is still in SSets(T") "p. Furthermore, it is
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an acyclic cofibration in ®,CSS, so a monomorphism which is a Dwyer—Kan
equivalence, as we wished to show.

Finally, we prove (3). By definition and (1), a J™7 -cofibration is a map with the
left lifting property with respect to the fibrations. Similarly, using Proposition 8.8, an
1T -cofibration is a map with the left lifting property with respect to the fibrations
which are Dwyer—Kan equivalences. Any map with the left lifting property with
respect to the fibrations also has the left lifting property with respect to the fibrations
that are also weak equivalences, so we only need to check that such a map is a
weak equivalence.

Let f: A— B be such amap. By (2), a pushout along maps of J™7 is an acyclic
cofibration. Therefore, we can use the small object argument to factor f: A — B
as A— A’ — B, so there exists a lift in the diagram

A—s A

]

id

Therefore, A — B is a retract of A — A’, and hence a weak equivalence. O
We now have all the ingredients we need to establish the model structure.

Proof of Theorem 8.7. We apply the conditions of Theorem 2.1. The category of
®,-T-Segal precategories has all small limits and colimits, since they are taken
levelwise, and therefore do not affect the discreteness assumptions. Similarly,
Dwyer—Kan equivalences satisfy the two-out-of-three property and are closed under
retracts.

The set 1T permits the small object argument because the generating cofibrations
in the Reedy model structure do, and applying the discretization functor does not
affect this property. The objects A that appear as the sources of the maps in J™T
are small using the same argument as for Segal categories [6, Theorem 5.1], so the
set J™T permits the small object argument. Thus, Condition (i) is satisfied.

Condition (ii) is precisely the statement of Proposition 8.9(3). Condition (iii)
and Condition (iv)(b) are together precisely the statement of Proposition 8.8. [J

Finally, we conclude with establishing some additional structure that this model
structure possesses.

Proposition 8.10. The model structure ®,SeCatr is simplicial and cartesian.

Proof. We give the proof that the model structure is cartesian; the proof that it is
simplicial can be proved similarly, or using an argument like the one used for Segal
categories in [7, Proposition 6.3].

We know that every object in ®,SeCatr, in particular the terminal object, is
cofibrant, so it remains to check the other two conditions of Definition 2.2.
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Consider the category SSets®" with the model structure whose fibrant objects
satisfy the Segal conditions at all levels and completeness conditions at each ob-
ject [11%) in S\ T. This model category, that we denote by M here for simplicity,
is cartesian, using [35, Proposition 6.1 and Theorem 8.1]. Note that every weak
equivalence in ®,SeCatr is also a weak equivalence in M, and similarly for
cofibrations, so we can use this structure on M to establish the conditions we need.

To show that the underlying category S‘S'ets;)gp is cartesian closed, note that if X
and Y are discrete at some level [1]), then so is their product X x Y. We claim
the same is true of the mapping object Y¥, which is defined by

YV mleroncny =Map(X x O[m](cy, ..., cm), Y).

A straightforward computation shows that if X[;o» and Y}jo are both discrete,
then so is (Y )11 The required compatibility between the cartesian product and
mapping object follows because it holds in M.

Similarly, suppose that f: X — X" and g: Y — Y’ are cofibrations in ®,SeCatr,
and in particular discrete at every [1]%) in 7. Then the pushout-corner map is again
a monomorphism that is discrete at the same levels. Using left properness, which
follows since all objects are cofibrant, and the two-out-of-three property, one can
check that this map is a weak equivalence if either f or g is. U

Remark 8.11. When n = 1, the previous proposition recovers the result of Simpson
that the model structure for Segal categories is cartesian [36, 19.3.3].

9. Comparison of models

In this section, we establish Quillen equivalences between the different model
structures from the previous section, for varying 7', and with ©,CSS. The strategy
of proof is very similar to the comparison between the model structures for Segal
categories and complete Segal spaces in [6, §6].

In this section, let T; = {11910 <i < j} for a fixed j <n. We want to prove
that the inclusion I of the category of ®,-T;-Segal precategories into the category
of ®,-T;_;-Segal precategories has a right adjoint, and further that this adjoint
pair induces a Quillen equivalence between the model structures for ®,-T;-Segal
categories and ®,-T;_1-Segal categories. In other words, for that value of j, we
drop the assumption that X ([1]¢)) be discrete, but ask instead for the corresponding
completeness condition. If j = 0, then we take 7_; = &, in which case we get
the comparison with ®,-spaces, for which no spaces in the diagram are required
to be discrete. In light of Remark 8.4, we thus obtain all the comparisons we are
interested in.
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Let W be an object of SSetsT " . Consider the objects U = cosk{ji (W) and
V= cosk[ 1o (W), where the latter is deﬁned to be the coskeleton of the discrete func-
tor @,° — SSets given by [g](c1, ..., cq) = Wlgql(ci, ..., cg)o. Define RW to be
the pullback in the diagram

RW —V

b

W—U

Note that RW is a ©,-T;-Segal precategory, since the effect of this process is to
discretize W at the object [1]¢). Observe that this construction defines a functor

ey ey
R: SSets;." — SSets;" .
T T;

Now, we want to prove the higher analogue of Theorem 3.11, that this functor R
is the right adjoint of a Quillen equivalence. Verifying the following result is a
straightforward generalization of the argument used to prove [6, Proposition 6.1].

"‘Op "‘Op . . . .
Proposition 9.1. The functor R: SSetsg_ "L SSets%” is right adjoint to the
inclusion I.

Now, we need to show that this adjoint pair respects the model structures of
interest.

Theorem 9.2. The adjoint pair
I: @nSeCatTj — @,,‘S'eCatTF1 R
is a Quillen equivalence.

Proof. To show that (I, R) is a Quillen pair, we to show that the inclusion map [
preserves cofibrations and acyclic cofibrations. It preserves cofibrations because
they are precisely the monomorphisms in each model structure; it preserves all
weak equivalences, and in particular the acyclic cofibrations, since a map is a weak
equivalence in either model structure if and only if it is a Dwyer—Kan equivalence.

To show that this Quillen pair is a Quillen equivalence, we need to show that /
reflects weak equivalences between cofibrant objects and that for any ©,,-T;_;-Segal
category W, the map I ((RW)“) =1RW — W is a weak equivalence in ®,SeCatr;.
The fact that I reflects weak equivalences between cofibrant objects follows from the
fact that the weak equivalences in each model structure are precisely the Dwyer—Kan
equivalences.

It remains to show that the map RW — W in the pullback diagram

RW —V

N

W —U
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is a Dwyer—Kan equivalence. By the definition of RW, we have (RW)[0]o = W[0]j,
so induced map Ho®(RW) — Ho® (W) is a bijection on objects, hence essentially
surjective.

Finally, we need to show that, for any x, y € W[0]p = (RW)[0]p, the map

MRy (x, y) = M (x, y)

is a weak equivalence in ®,_;CSS. We claim that it is in fact a levelwise weak
equivalence of functors @2"_ | —> SSets. Since W is assumed to be fibrant, it
satisfies the Segal conditions; it follows from the pullback defining it that RW does
as well. Thus, it suffices to verify that the map

M2y x, MY — M (x, »[1]9

is a weak equivalence of simplicial sets for any 0 <i < n — 1. We, hence, consider
the diagram of homotopy fibers

My (e, MIND —— (RW)[1]O —— (RW)[0] x (RW)[0]

R

My (x, P ——— wi1® W[0] x W[0]

First, let us consider Ty = {[0]} and 7_; = @. Then (RW)[1]¥) and W[1]® differ
only in that the former contains degeneracies of the higher-dimensional simplices
of W[0]. Since we are taking the homotopy fiber over a 0-simplex of W[0] x W[0],
however, these degeneracies do not appear in that homotopy fiber. It follows that
the middle vertical map of (9.3) is a weak equivalence, hence the left-hand vertical
map is also.

Now consider 7; for j > 1. Then W11 is already discrete for each 0 <i < j,
and (RW)[119) = W[1]® for these values of i. When i = J» the middle vertical
map of (9.3) is given by the inclusion of the discrete subspace W[l](()] ) WY,
and an argument similar to the one for 7 shows that the induced map on homotopy
fibers is a weak equivalence. Finally, when i > j, the middle vertical map of (9.3)
is given by the inclusion of a subspace that does not include higher degenerate
elements coming from W[1]%). It follows that this map is a weak equivalence,
hence the left-hand vertical map in (9.3) is also, as we needed to show. O

10. Proof of Proposition 8.8

In this section, we complete the proof of Proposition 8.8, which tells us that maps
with the right lifting property with respect to I">T are precisely the maps that
are both fibrations and Dwyer—Kan equivalences. Because the two implications
are proved quite differently, for clarity we separate them into the following two
propositions.
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Proposition 10.1. If f: X — Y is a map of ©,-T-Segal precategories with the
right lifting property with respect to the maps in 1T, then it is a fibration and a
Dwyer—Kan equivalence.

Proposition 10.2. If f: X — Y is a map of ®,,-T-Segal precategories that is both
a fibration and a Dwyer—Kan equivalence, then it has the right lifting property with
respect to the maps in 17 .

The more difficult of the two is Proposition 10.1, which requires several prepara-
tory lemmas. For the beginning steps we work incrementally, starting with small
values of n, to build intuition for the complicated notation we must inevitably use.

Before delving into the details, recall that the definition of Dwyer—Kan equiv-
alence is given in terms of mapping objects in a ®,-space. For the arguments
we make in this section, we want to reformulate this definition somewhat. Given
X: O, — SSets, c €0b(®,_1), and (vg, v1) € X[0]o x X[0]o, let X[1](c)(vo, v1)
be the fiber of the map X[1](c) — X[0] x X[0] over (vp, vy). Then it is straightfor-
ward to check that

X[11(c)(vo, v1) = M (vo, v1)(c).

We use this notation, rather than the mapping object notation, for the remainder of
this section.

We want to understand the behavior of maps with the right lifting property with
respect to maps in 1”7 . However, it is easier to get a handle on maps with the right
lifting property with respect to the maps in a related set that we denote by I?’T, SO
we first consider these maps, which we develop in some detail.

Given any object [119 in T, any representable functor ®[q](cy, ..., ¢;) can
be evaluated at [1]) to obtain a set that we think of as a doubly constant functor
O x AP — Sets, and we denote it by ®[g](ct1, ..., cg)pyo. Wheni =0, we have

Olgl(ct, - - ., cg)io = Hom([0], [g](ct, ..., cg)),

which is the set consisting of g 4+ 1 elements.
For any m > 0, object [¢g](cy, ..., ¢g) of ®,, and element [119 in T, we have
the projection and inclusion maps

Olgl(cy, ..., cq)m@ «~— A[m]x0®[g]l(cy, ..., Cq)[ll("> — Alm]xO[q](cy, ..., cq).

Keeping m and [g](cy, . . ., ¢4) fixed but varying over all [1]9) in T, take the diagram
given by all such maps and denote its colimit by Q%{ Denote the colimit of the
analogous diagram with A[m] replaced by 0 A[m] by Pn’;:gT. There are natural maps
P,:’l:g — Q%C and it is this collection of maps we want to consider. Specifically,
define

I;’T ={Ppl— 0BT |m>0,[ql(c1,....cq) €0b(®,)}.

m,c
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Remark 10.3. This set of maps can be regarded as a set of generating cofibrations
for a model structure for ®,-T-Segal precategories that is more closely related to
the projective model structure. Indeed, these maps are designed to be an appropri-
ate discretization of the generating cofibrations of the projective model structure
on SSets®" . The subscript f is meant to be suggestive of this fact, even though
we have removed the corresponding ¢ subscript from the corresponding injective or
Reedy version. We refer the reader to [6, §6] for a more detailed motivation for
these kinds of maps in the case of Segal categories.

Our first step is to obtain a good description of maps Pyl — X and Q1T — X
for general X. Let us first recall the case where n = 1, namely Segal categories,
which was treated in [6, §4]. With a view toward generalization to higher n, and
recalling that ®; = A, we denote the representable functor A°® — Sets on the
object [¢g] by O[q], rather than A[g]. Here, we regard it as a discrete functor
A°? — SSets; we similarly treat the representable simplicial set A[m] as a constant
functor ©," — SSets. In this case, there is only one object whose image we
discretize, namely [0], so there is no need to consider different choices of subsets 7.

We simplify the notation for the moment and simply write P, , and Q,, 4. Let us

recall some notation. If X is a Segal precategory and (vo, ..., vy) € Xg“, let
X, (vo, ..., vy) denote the fiber of the natural map X, — Xg+l given by iterated
face maps.

The following lemma was proved in [6, §4]; we sketch a proof here for the
purposes of guiding our generalizations of it.

Lemma 10.4. When n = 1, for fixed m, g > 0 and Segal precategory X, there are
isomorphisms

Hom(Py g, X)= [] Hom(dA[m], X4 (vo. ... vy))

and

where (vo, ..., vy) € X[O]g“.

Sketch of proof. We summarize the argument for Q,, ,; the one for P, , is similar.
We have defined Q,, 4 as the pushout in the diagram

Alm] x BO[glo — A[m] x O[q]o

| |

Olglo ————— Omyq
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Applying the functor Hom(—, X), we obtain a pullback diagram of sets

Hom(Qp.4, X) Hom(A[m] x ®[q], X) = X[q]n

l l

X[0]¢*! = Hom(®[g]o, X) — Hom(A[m] x ®[qlo, X) = X[0]%""

But, this pullback can also be described as

[[ Hom(A[m], X (vo. ... vy)). O

(V0,1 Vg)

Now, we want to generalize this argument. Not surprisingly, the combinatorics
get quite complicated as we require that more levels of X be discrete. Let us start
with n = 2 and the set S = {[0], [1]([0])} before attempting a full generalization to
higher n and proper subsets of S.

For a fixed m > 0 and [g](cy, ... cq4), we have defined Q,%isc to be the colimit of
the diagram 7

Alm]x®lgl(cy, ..., cq)
Alm]xO[ql(ct, ..., oo Alm]x®lgl(ct, ..., cgmqop (10.5)
Olgl(cy, ..., oo Olgl(cy, ..., cy)niqon

If we focus on the two arrows on the left-hand side of this diagram, and take the
pushout thereof, the situation is very similar to the one from the n =1 case. Namely,
if we apply the functor Hom(—, X) to these two arrows, we get a diagram

Hom(A[m] x ®[g](cy, ..., ¢cq), X)

|

Hom(®[gl(c1, ..., cgio), X) —= Hom(A[m] x O[g](c1, ..., cgo), X)
that can be rewritten as

X[gl(ct, ..., Cq)m

l

x[01§ " —— xqo1;"’
The pullback of this diagram is given by

]_[ Xlgl(ers - eqg) o, s Vg)m,
(UOa---»Uq)
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where similarly to above, X[ql(ci, ..., cy)(vo, ..., vy) is the fiber of the map
Xlgl(er, ..., cq) = XgH. This pullback is isomorphic to

[[ Hom(A[m], X[gl(ci. ....co)(o, ..., vy)).

(vo,...,Vq)

Now, let us treat the pushout of the two right-hand arrows of (10.5) analogously.

We first apply the functor Hom(—, X)) and then describe the pullback of the resulting
diagram. So, our first step is to describe the objects of

Hom(A[m] x ®[gl(ci, . .., ¢q), X)

l

Hom(®[g](c1, - . ., c¢o)pqop. X) —= Hom(A[m] x ©[g](ci,

-5 Cons X)
Looking at the bottom row, these sets should be described as some coproduct
of copies of X[1]([0])o and X[1]([0]),., respectively, that are indexed by the maps

[11([0OD — [g](c1, ..., cg) in ®y. We denote by O(1, ¢) the number of such maps.
Thus, we can describe this diagram instead as

Xlgl(er, .-, Cq)m

l

m

whose pullback is

]_[ X[q](C1,...,Cq)(w(),...,U)Q(l,g))m.

(wr,...,wo(1,¢))

This pullback can be written alternatively as

]_[ Hom(A[m],X[q](cl,...,cq)(wl,

(wr,...,we(1,¢))

ey U)9(1,§))).

Now, if we want to take the colimit of the diagram (10.5), then we can merge

these two descriptions to see that Hom(Qf,;i., X) is isomorphic to

11 [[ Hom(Alm]. X[gl(ci. ... cg)(vo.

ey vq)(wl, ey wg(l,g))).
(V05 ..., Vg) (W1,...,Wa(q,c))
We summarize these findings, and the analogous result for Pn%”f, , as well as

generalizations for 7 C S, in the following lemma. For notational simplicity, we

write v = (vg, ..., vy) and w = (wy, ..., Wo(1,¢))-
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Lemma 10.6. When n = 2, for a fixed m > 0, object [q](c1, ..., cy) of ©2, and
functor X : @;p — SS8ets, there are natural isomorphisms

Hom(P3, X) = [ [ [ [Hom(dA[m], X[g)(ct. ..., cg) (@) (w))

v ow

and

Hom(QmL,X)N]_[]_[Hom [ml, X[ql(ct, ..., cg) (@) (w)).

Discretizing only at T = {[0]}, we have

Hom(P, T, X) = [ [Hom(dA[m], X[gl(ci. ... co)(v))

m,c’
v

and

Hom(Q5;%, X) = | [Hom(A[m], X[gl(ci. ... cg)(w).

Now let us consider the general case of Q. T for general n. To this end, let us
denote the number of maps 119 — [g1(cy, .. cq) by 6(i, ¢). We further denote

an element of the set (X[1 ](’))9(’ 9 by v = (v; ), .. vé()l,c)) The argument above
generalizes to give a proof of the following lemma.

Lemma 10.7. Let X : ©,° — SSets, and let T = {[11¥) |0 <i < j} C S. There
are natural isomorphisms

Hom(Pp !, X) =] [---] [Hom(a Alm], X[gl(c1, ..., c) @) - @)
RO
and
Hom(Qy; % X) = [ [+ ] [Hom(Alm], XIgl(cr. ... cp@®) - D).
NG I)

Now, for the general case, for any n and T, consider the set

13" ={Pyi — Onl Im =0, [gl(c1. ..., ¢q) € b(Oy)}.

The following result is the main technical point we need to prove Proposition 10.1.

Lemma 10.8. Let T = {[1]9 |0 <i < j} C S, and suppose that f : X — Y isa
map of ©,-T-Segal precategories with the right lifting property, with respect to the
maps in I;’T. Then the map X[0] — Y[0] is surjective and each map

X[ql(et, -, c)@P) - @) = YIqller, ..., c) (F D) - (FoD)

is an acyclic fibration of simplicial sets for any object [q](c1, ..., ¢;) of O, and
every choice of vV € (X[l]él))e(i’g) foreach0<i <j.
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Proof. The fact that X[0] — Y[0] is surjective follows from the fact that f has the
right lifting property with respect to the map & — ®[0]. Thus, we need to show
that there is a lift in any diagram

IA[m] — Xl[ql(ci, ..., cg) @) -+ D)

_— 7
—
—
—
—

Alm] = Y[gl(er, ..., c)(fv@) -+ (fu)
By assumption, we know there exist lifts for diagrams

PpT —— X
= K4

Equivalently, in the diagram

Hom(Q%T, X) P Hom(P™T, X)

m,c’ m,c o

| |

Hom(Q}, 1Y) — Hom(Pp!, Y)

m,c>

where P denotes the pullback of the right-hand square, the top left-hand map is
surjective. Using Lemma 10.7, we can write P as the pullback of the diagram

1,0 - 1,0 Hom(A[m], Ylgl(ct, . ... c) (fv@) -+ (fvD))

|

[Tyo - Lo Hom(dA[m], Y[gl(ct, ..., c)(fv@)--- (ful))

!

1,0 - LI,» Hom(dA[m], X[g](c1, . ... c) @) --- @)
On each component, i.e., fixing each v(¥), the surjectivity of the map from

[1- [ [Hom(Alm], Xgl(er, ... e)@®) - - @)

V@ ()
to the appropriate component of P produces exactly our desired lift. U
Now we use this result to shift our attention back to the maps I™7.

Lemma 10.9. Let T = {[1]9 |0 <i < j} C S, and suppose that f: X — Y isa
map of ©,,-T-Segal precategories with the right lifting property with respect to the
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maps in I""T. Then fo: X[0] — Y[O] is surjective and the maps

X[ql(et, ..., ) @) - @) = YIql(er, ..., c) (Fv D) - (FuD)

are acyclic fibrations for any object [q](c1, ..., cq) of O, and every choice of
v® e (X[11$)049 for each 0 < i < j.

Proof. If f has the right lifting property with respect to the maps in 17, then it
has the right lifting property with respect to all cofibrations. In particular, it has the
right lifting property with respect to the maps in / ;’T, since it is not hard to check
that these maps are all levelwise monomorphisms of simplicial sets. Therefore, the
result follows from Lemma 10.8. ]

Finally, we can prove Proposition 10.1. Note that the proof strategy is substan-
tially different from the one used for Segal categories in [6, §5].

Proof of Proposition 10.1.. Suppose that f: X — Y is a map with the right lifting
property with respect to the maps in 17 . It follows that f has the right lifting
property with respect to all cofibrations, in particular those that are also weak
equivalences. Therefore, f is a fibration. We need to show that it is a Dwyer—Kan
equivalence.

First consider the case where X and Y are ®,,-T-Segal categories. Then applying
Lemma 10.9 when g =1 gives the desired result, after observing that X[1](c) (v, v1)
is the union of all the X[1](c)(vo, v1)(v") - - (v"), and that fibrations are pre-
served under disjoint union.

If X and Y are not ®,-T-Segal categories, then a Dwyer—Kan equivalence
between them is defined in terms of their localizations L X and LY. Therefore, we
need to show that the required condition still holds after localizing.

Let us recall how the localization is obtained. If X is not local, then we take
iterated pushouts

0A[n] x Olgl(cy, ..., cg) UA[m] x Glgl(cy, ..., cqy) —= X

l

Alm] x Olgl(cy, ..., cq) X’

as well as the analogous pushouts along the localizing maps V[1](S,—1) and 7;:’1.;
recall that the latter were defined just before Definition 8.6. We want to show that
the induced square on mapping objects is still a pushout square; for simplicity, let
us denote the left-hand map above, or any of its analogues for maps in V[1](S,—1)
and 7;/7 jasA— B, so that we consider the maps on components

A[1](c)(vo, v1) —= X[1](c)(vo, v1)

l |

B[1](c)(vo, vi) — X'[1]1(c)(vo, v1)
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We show that this diagram is a homotopy pushout square via an application of
Mather’s Cube Theorem [27, Theorem 25] to the following diagram:

A[1](c)(vo, v1) X[1](c)(vo, v1)
\A[I](C) l \X[l](C)

B[1](c)(vo, v1) X'[11(c) (vo, v1)
\B[l](c‘) \X’[l](C)

We know that the front square is a homotopy pushout, and we want to know that the
back square is also; it suffices to show that the top, bottom, and sides of the cube
are all homotopy pullback squares. We verify this fact for the top square, namely,

A[1](c)(vo, v1) — X[1](c)(vo, v1)

l |

A[1](c) X[1](c)

and leave the argument for the others as an exercise for the reader. First, observe
that the right-hand map is an inclusion of components and therefore a fibration, so
it suffices to show that the square is an ordinary pullback. Using the descriptions
of A[1](c)(vog, v1) and X[1](c)(vo, v1) as pullbacks, one can check the necessary
universal property for A[1](c) (v, v1).

Now, after applying the functorial localization functor to the map X — Y, we
obtain that the induced map on mapping objects

(LX)[1](c) (v, v1) = (LY)[1]1(c)(vo, v1)
is necessarily a weak equivalence, completing the proof. U

Now we need to prove the converse, namely Proposition 10.2. To do so, we can
generalize a construction used for the analogous proof when n = 1.

Proof of Proposition 10.2. Suppose f: X — Y is a fibration and a weak equivalence,
and that 7 = {[1]%¥) | 0 < i < j}, for some j < n. We need to show that f has the
right lifting property with respect to the maps in I">7. First consider the case in
which, for every [1]%) in T, the induced map of discrete simplicial sets

£ X9 - y[®

is an isomorphism.
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First, let us factor f in the Reedy model structure SSets®" as
X Y5y

in such a way that Y still has the required components discrete, for example as in
the proof of Proposition 8.5. Since the map Y’ — Y is a Reedy weak equivalence
and therefore a Dwyer—Kan equivalence, we can conclude by the two-out-of-three
property that X — Y’ is also a Dwyer—Kan equivalence.

Since f is assumed to be a fibration, a lift exists in the diagram

X —sX

/1
:l P lf
v/

Y —=Y

Therefore, f is a retract of Y/ — Y, and therefore a Reedy acyclic fibration.
Thus f has the right lifting property with respect to monomorphisms, and in
particular, to the maps in I"™>7. Thus, our result holds when X and Y have isomorphic
discrete components.

Now, we consider the general case, where for each [1]%) in T the maps of
discrete spaces X[1]®) — Y[1]®¥) are surjective but not necessarily isomorphisms.
Define @Y to be the pullback of the diagram

oY Y

| |

cosky (X) —— cosky(Y)

Observe that
@)1 = x[11%

for every O <i<n, and that for every [g](c1,...,¢c;) € ob(®,) and every
v e (X[l](()l))g(i’g) for each 0 <i < j, the map
(@V)glct,....c) @) - @) = YIgl(er, ... c)) @) - - @)

is a weak equivalence of simplicial sets.

We claim that X — ®Y is both a fibration and a weak equivalence. It is not
hard to show that it is a Dwyer—Kan equivalence, so let us show that X — ®Y is a
fibration. Let A — B be a generating acyclic cofibration, so we know that a lift
exists in any diagram
—_—

7

X
v
7
Y

~

_—

<~
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since X — Y is assumed to be a fibration. But we want to know that this lift is
compatible with the factorization of B — Y as the composite B — &Y — Y, so
we want to know that the lift exists in the diagram

A——X
:l /L\
s
Ve
B—— Y ——=Y

Since X — Y is assumed to be a fibration, we know that the indicated lift exists,
but we want to know that it makes the top left-hand square commute as well,
namely that the lift is compatible with the factorization of B — Y as the composite
B— oY —>Y.

We know that @Y agrees with Y except possibly on the spaces corresponding
to [1]®. Since A — B is a monomorphism and

X9 = @y)[®
for all 0 <i < n, a lift exists in any diagram

A X[1®

|

B[]V —— (®V)[1]®

This lift, together with the lift B — X in the previous diagram, guarantees that the
latter lift is compatible with the factorization of B — Y through ®Y. It follows
that X — @Y is a fibration.

Now, since X — @Y is a fibration and a weak equivalence that is the identity on
objects, we know from the first part of the proof that it has the right lifting property
with respect to the maps in 17 .

Finally, we want to show that the map ®Y — Y has the right lifting property
with respect to the maps in ">, Thus, we want to show that a lift exists in any
diagram of the form

(0A[m] x Olgl(ct, ..., cg) UA[m] x 3O[ql(ct, ..., cg)), —=z oY

—
—
—
—
—
—

(Alm] x ®lgl(cr, ... cg)) Y

We work levelwise, evaluating at objects of ®,".

If we evaluate at an object [1]®) of T, then using the fact that we have discretized
at such an object, one can check that the left-hand map is an isomorphism of discrete
simplicial sets. Hence, the desired lift exists.
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If we evaluate at any other object of ®,", namely one at which we have not
discretized, then it follows from the definition of @Y that the right-hand vertical
map is an isomorphism of simplicial sets. Thus, we again get the desired lift.

Thus ®Y — Y has the right lifting property with respect to the maps in I"7;
since we have established the same property for the map X — ®Y, we can conclude
that the composite X — Y has the right lifting property with respect to the maps
in 1T, completing the proof. U
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