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Abstract

The probability distributions of the real and imaginary parts of atomic scattering lengths a are derived, in a two-channel

model that allows for inelastic scattering to occur. While the real part of a remains Cauchy-distributed, as predicted for single

channel scattering in the classic work of Gribakin and Flambaum, the imaginary part of a is seen to be strongly peaked near

zero. Two-body inelastic scattering rates may therefore be smaller in general than a naive estimate would suggest.
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1. Introduction

This note serves as both a greeting to Ravi Rau and a dis-

patch from the world of dilute, ultracold gases, where neu-

tral atoms and molecules collide at typically sub-microKelvin

temperatures. Even though Ravi never explicitly published in

this area, nevertheless his inüuence is strongly felt.

The atoms and molecules in these gases collide at suo-

ciently low energy that they are in the Wigner threshold

limit; hence, their scattering is strongly dominated by the

familiar threshold laws. Ravi has been a tireless champion

of threshold physics, summarized in his famous work with

Fano [1], and in an inüuential review article [2]. His classic

treatment of the Wannier threshold law for double ioniza-

tion highlights the ability of a single quantity, the exponent

characterizing the energy dependence Eα of the process, to

reveal information on detailed correlations of the charged

particles [3].

In the somewhat more pedestrian world of ultracold colli-

sions of neutral atoms, the relevant Wigner threshold laws

are well known. Very typically, the collision is dominated by

the lowest, s partial wave, and the elastic scattering phase

shift is linear in wave number, δ0 = −ak. This k-dependence

is standard; what varies from atom to atom, and what mat-

ters most in the context of ultracold gases, is the value of the

prefactor, the scattering length a.

At stake is the nature of the scattering cross section, which

is responsible for bringing the gas to thermal equilibrium,

and which therefore determines the ability to make an ul-

tracold gas at all. Famously, the scattering length of 87Rb is

approximately a = 100a0, a0 being the Bohr radius. This value

is suociently large that evaporative cooling of this atom

successfully led to the ûrst Bose–Einstein condensate [4]. By

contrast, the isotope 85Rb has a negative naturally-occurring

scattering length [5]. This leads to an unfortunately-placed

Ramsauer–Townsend minimum in its cross section, limiting

evaporative cooling [6]. (By various devices, scattering lengths

can be altered to necessary values, but that is a diferent story

for another Fetschrift.)

Scattering lengths tend to be extremely sensitive functions

of the potential energy surface, meaning that even for al-

kali atoms, they cannot be predicted from ab initio theory

(with the exception of one heroic recent result in [7]). Gen-

erally, they are determined by thoughtful iterations of the-

ory and experiment. In this way, scattering lengths for most

combinations of alkali atoms are now known, some to high

precision. To do so requires the evaluation of two scattering

lengths, for the singlet and triplet Born–Oppenheimer po-

tentials existing between these atoms. By extension, three

scattering lengths of higher-spin chromium atoms have also

been extracted [8, 9], and have proven adequate for describing

data.

Beyond this, the situation quickly becomes untenable. Cer-

tain lanthanide atoms are perfectly amenable to laser cool-

ing, yet their interactions are quite complex. For example,

interactions of open-shell dysprosium atoms would require

81 distinct Born–Oppenheimer potentials, each with its own

scattering length that presumably contributes to observed

scattering [10]. Extracting a quantitative model from data is,

at present, considered inconceivable. Even more challenging

will be the equivalent procedure in collisions of ultracold

molecules, which represents a rapidly growing area of en-

deavor.

Faced with the dioculties of detailed analysis, it may prove

useful to consider instead trends that one could follow over

the breadth of possibilities amongmany collision partners. In

the present note wewill consider a statistical overview. Statis-

tics in ultracold collisions was introduced by Gribakin and

Flambaum [11], who derived, from semiclassical theory, the

most likely value of the scattering length for long-range po-

tentials that fall of as a power law, −1/rn, of the distance r be-

tween to atoms. The true scattering lengths of various species

should vary around this most-likely value, in such a way that,
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according to Gribakin and Flambaum, three-quarters of all

naturally occurring scattering lengths should be positive, for

an ordinary van der Waals potential with n = 6. What these

authors did not quite do (but surely could have) is to describe

the full distribution function of scattering lengths. In Section

2 we will complete this derivation, in preparation for the re-

mainder of the article.

In addition to elastic scattering, it is extremely important

to track inelastic scattering in the ultracold environment.

Even the smallest of atomic energy spacings, say hyperûne

energies, are orders of magnitude larger than the transla-

tional temperature of the gas. Thus, an inelastic collision that

releases this energy is a disaster: the products either leave the

trap, or, perhaps worse, heat the remaining gas. The atoms

are like waiters in a busy restaurant, delicately balancing

trays full of cocktails. Should they collide, there will be a real

mess.

In the argot of cold collisions, these disruptive events are

denoted by the technical term <bad=. Generally, it is accepted

that any bad collisions that are allowed by energy conserva-

tion and symmetry considerations tend to happen at high

collision rates, and should therefore be avoided if possible.

(Much ingenuity has gone toward ûnding ways to mitigate

bad collisions, but again, this is not our story here.) Excep-

tions of course exist. In a serendipitous experiment at JILA, it

was found that a mixture of 87Rb atoms in two distinct hyper-

ûne states not only survived evaporative cooling, but could

be simultaneously Bose-condensed [12]. The anomalously low

inelastic spin-exchange rate that allowed this miracle was

quickly understood to rely on an interference between sin-

glet and triplet scattering, that is, on the near-coincidence of

singlet and triplet scattering lengths for this isotope [13–15].

Here was a statistical outlier.

In the context of ultracold atoms, it is worthwhile to know

how likely it is that such a calamitous event will occur. That

is, the question is one of probabilities. To this end, in Section

3 we extend the Gribakin–Flambaummodel to a two-channel

case that allows for inelastic scattering. We will cast the in-

elastic loss in terms of the imaginary part of the scattering

length, and determine an approximate probability distribu-

tion for this quantity.

To do so requires welding together the long-range physics

that determines the threshold law, with the short-range

physics that governs the change in state. Here Ravi has

also paved the way, stressing that multichannel quantum

defect theory (MQDT) is an extremely versatile tool, far

beyond its initial application to Rydberg atoms [1]. The

ideas and notations that ground our theory in the follow-

ing are rooted in the seminal work of Greene, Rau, and

Fano [16].

2. Single channel scattering lengths

We ûrst consider s-wave scattering in a single channel with

potential V(r), governed by the Schrödinger equation

(
−

�
2

2mr

d2

dr2
+V

)
ψ = Eψ (1)

where mr is the reduced mass of the collision partners. For

purposes of statistics, we envision an assembly of potentials

V, collected from an ensemble of potential collision partners

across the periodic table. This variety can also include various

Born–Oppenheimer curves for given partners, for example,

the singlet and triplet curves of the alkalis, assumed to give

scattering phase shifts independent of each other. Diferent

isotopes of the same element are not considered to have in-

dependent phase shifts as they are, to a good approximation,

related by simple mass scaling [17].

To include this variety of potentials as our ensemble, it is es-

sential to reduce them to a common system of reduced units.

For threshold scattering, a relevant set of natural units is ob-

tained from the long-range behavior. In this note we restrict

attention to those potentials with long-range van der Waals

behavior characterized by the form V(r) ≈ −C6/r
6. The corre-

sponding natural unit of length is

r6 =
(
2mrC6

�2

)1/4

(2)

This scale tends to be of the order ≈100a0 for many atoms;

for Rb it is 165a0. The short-range physics is not necessarily

amenable to a simple scaling between species; indeed, this is

where the joy of variety comes from. Such a scaling will not

be necessary in the QDT picture we employ.

In the spirit of quantumdefect theory, we identify standard

solutions for the long-range potential, denoted f̂ and ĝ. These

are given a useful standardized form in the magnum opus of

Ruzic et al. [18], which we follow throughout. The functions

are chosen so that the irregular function ĝ → 0 as r → ∞ in

the zero-energy limit, a choice that maximizes the linear in-

dependence of f̂ and ĝ in numerical applications. With this

choice, the reference function f̂ has phase shift η = −āk de-

ûned by the scattering length

ā = r6

(
π

23/2� (5/4)� (1/2)

)2

≈ 0.4780 r6 (3)

which coincides exactly with the Gribakin–Flambaum most-

likely scattering length [11].

The reference functions f̂ and ĝ are related to the energy-

normalized reference functions f and g in the usual way [16]:

(
f

g

)
=

(
A1/2 0

A−1/2
G A−1/2

) (
f̂

ĝ

)
(4)

This deûnes two more QDT parameters, which Ruzic works

out explicitly in the s-wave threshold limit:

A1/2 = −(āk)1/2 (5a)

G = (āk)2
[
−1 +

1

3

( r6
ā

)2
]

(5b)

The statistical model is derived in QDT as follows. For a

given potential V, one would solve the Schrödinger equation,

matching its solution ψ to the reference functions at a con-
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venient radius r = r0,

ψ = f̂ − K̃ĝ (6)

This would deûne the short-range K-matrix

K̃ = tan (πμ) (7)

in terms of a quantum defect μ. In the statistical model we

do not consider any explicit potential V, but rather assume

that the quantum defects from such a process would be uni-

formly distributed on the interval μ ∈ [ − 1/2, 1/2]. In this way

the vast diferences in depth and shape of the potentials for

many diferent atoms are rendered irrelevant. Whatever the

atoms are actually doing down there, the net result is always

encapsulated in the quantum defect μ.

By the rules of QDT, one then constructs the short-range

phase shift δsr via

tan δsr =
A1/2K̃A1/2

1 + GK̃
≈ K̃āk (8)

here ignoring GK̃ as small compared to unity. This quantity

will become relevant if and when we consider the efective

range. The physical scattering phase shift is given by the sum

of long- and short-range contributions,

δ0 = η + δsr ≈
(
−1 + K̃

)
āk (9)

whereby the scattering length in units of ā is given by

a

ā
= −

1

āk
δ0 = 1 − K̃ (10)

To ûnd the distribution of scattering lengths, we beginwith

the distribution of quantum defects,

P (μ) =

§
¨
©
1, −

1

2
≤ μ ≤

1

2
0, otherwise

(11)

This assumption along with eq. (7) implies a distribution of

short-range K-matrices related to the former by

P
(
K̃
)

=
1

π

1

K̃2 + 1
(12)

Thus, the short-range K-matrix is distributed as a Lorentzian

or, in the language of probability theory, a Cauchy distri-

bution. (That the tangent of a uniform distribution yields a

Cauchy distribution is well known. Nevertheless, this result

and all the others that we use below are derived in Appendix

A.)

Restoring the units, the distribution of scattering lengths

is given by

P (a) =
1

π

ā

(a − ā)2 + ā2
(13)

Signiûcantly, the Cauchy distribution has neither a well-

deûned mean nor a well-deûned standard deviation. It is,

rather, characterized by its mode (most likely value) and its

full-width at half-maximum (FWHM), which are ā and 2ā, re-

spectively. From this distribution we evaluate the fraction of

scattering lengths that are positive,
∫ ∞

0

daP (a) =
3

4
(14)

just as prophesied by Gribakin and Flambaum. Having

this distribution, we can say other things, for example,

half of all scattering lengths should lie within ā/2 of the

mode ā.

3. Two channels: scattering and loss

Inelastic collisions that lead to bad outcomes are somewhat

less universal than potential scattering, and in principle de-

pend on the mechanism by which channel coupling occurs.

Nevertheless, for the kinds of collisions envisioned here, this

mechanism may be assumed to lie at short range and to be

subsumed in the short-range K-matrix, regarded as a set of

parameters of the theory. We therefore disregard, e.g., col-

lisions of dipolar molecules, where torques exerted by the

dipoles when they are far apart can drive inelastic scattering

at large r [19].

3.1. Model and QDT
For the sake of simplicity, we consider a two-channel sys-

tem, where the incident channel 1 is at threshold, while the

other channel 2 is exothermic by some energy much greater

than the collision energy; in particular it is not at threshold.

The long-range potentials in both channels are assumed to

scale as −C6/r
6, whereby the QDT functions are computed for

each channel as above. In the incident channel near thresh-

old, η1 = −āk, A
1/2
1 = −(āk)1/2, and as above we will not con-

cern ourselves with G1. In the outgoing channel which is far

from threshold, A
1/2
2 = 1 and the values of η2 and G2 are irrel-

evant.

These two asymptotic channels are presumed to become

coupled at short range, in a way that is well-approximated by

a frame transformation. It is assumed that the short-range

physics is described by two alternative channels, each with

its own quantum defect μλ. In this approximation the short-

range K-matrix is diagonal in the short-range basis and has

the form

K̃sr =

⎛
¿
tan (πμ1 ) 0

0 tan (πμ2 )

À
⎠ (15)

Signiûcantly, we do not perform the usual MQDT step of elim-

inating closed channels, as there are none in this example.

It should be remembered that we seek here the statistics of

scattering lengths away from resonances.

In this 2 × 2 example the transformation between basis

sets is a simple rotation through an angle θ . For any given

collision, the value of θ will be determined by exactly what

the short-range and asymptotic channels are, including the

spin structure of the atoms and the mixing of channels by

ambient electromagnetic ûelds. To simplify the treatment we

do not consider these details and assume that, across the en-

semble of species and conditions considered, θ is uniformly

distributed in θ ∈ [ −π /2, π /2].

C
an

. 
J.

 P
h
y
s.

 D
o
w

n
lo

ad
ed

 f
ro

m
 c

d
n
sc

ie
n
ce

p
u
b
.c

o
m

 b
y
 U

n
iv

er
si

ty
 o

f 
C

o
lo

ra
d
o
 L

ib
ra

ri
es

 o
n
 0

8
/1

4
/2

4
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



Canadian Science Publishing

4 Can. J. Phys. 00: 1–8 (2024) | dx.doi.org/10.1139/cjp-2023-0263

Expressed in the asymptotic basis, the short-range K-matrix

in this notation then becomes

K̃ =

(
cos2θ tan (πμ1 ) + sin2

θ tan (πμ2 ) cos θ sin θ [tan (πμ2 ) − tan (πμ1 )]

cos θ sin θ [tan (πμ2 ) − tan (πμ1 )] sin
2
θ tan (πμ1 ) + cos2θ tan (πμ2 )

)
(16)

This leads to the asymptotic K-matrix

K = A1/2K̃A1/2

=

(
ākK̃11 −(āk)1/2K̃12

−(āk)1/2K̃21 K̃22

)
(17)

followed by the S-matrix,

S =

(
e−iāk 0

0 eiη2

)
(I + iK ) (I − iK )−1

(
e−iāk 0

0 eiη2

)
(18)

Writing the resulting phase shift in channel 1 as S11 =
exp (2iδ1), we deûne the complex scattering length in this

channel via

a = ā (α − iβ ) = −
1

k
δ1 (19)

This deûnes the dimensionless quantities α and β, regarded

as real and imaginary parts of the scattering length in units

of ā. Expanding S11 to linear order in k, these quantities are

given by

α = 1 − K̃11 +
K̃2
12

K̃2
22 + 1

K̃22 (20a)

β =
K̃2
12

K̃2
22 + 1

(20b)

3.2. Probability distributions
The scattering observables α and β are functions of the

fundamental parameters of the model, μ1, μ2, θ , which are

treated as random variables. By the standard formalism for

transforming and composing random variables, one can then

ûnd the probability distributions for α and β. These trans-

formations are carried out in detail in Appendix A. Here we

present and explore the results. For purposes of illustration,

we have run a simulation choosing 10 000 triples (μ1, μ2, and

θ ) from their uniform distributions. The subsequent quan-

tities of the theory can then be calculated and displayed as

histograms.

We begin with the distribution of elements of the short-

range K-matrix, K̃. The model predicts that these are dis-

tributed according to

P
(
K̃11

)
=

1

π

1

K̃2
11 + 1

(21a)

P
(
K̃12

)
=

2

π2

1√(
K̃12

)2 + 1

sinh−1

(
1

|K̃12|

)
(21b)

Histograms of the numerical simulations of these quantities

are plotted in Fig. 1, alongwith (red lines) the formulas in (21).

In the upper panel we see that the distribution of the diago-

nal matrix element K̃11 is very well-described by the ordinary

Cauchy distribution from the one-channel case. While not

shown, the distribution of K̃22 is the same. Each diagonal ma-

trix element is the weighted sum of variables tan (πμλ) that

are Cauchy-distributed. The weights add to unity, whereby

the average is also Cauchy distributed. This is shown in de-

tail in Appendix A.

More interesting, and somewhat unexpected, is the distri-

bution of of-diagonal elements shown in the lower panel.

This distribution is far more strongly peaked near zero than

the Cauchy distribution, a result captured in the analytical

formula (21b). The most likely value of K̃12 is zero, but a

FWHM is not possible to deûne here, as the distribution suf-

fers a logarithmic divergence:

lim
K̃12→0

P
(
K̃12

)
=

2

π2
ln

(
2

K̃12

)
(22)

One can, however, make the following comparison. For the

Cauchy distribution that deûnes P
(
K̃11

)
, half the distribution

lies within ±ā of zero; for the distribution P
(
K̃12

)
, half the

distribution is within±0.55ā. Thus, in spite of the divergence,

ā is still a relevant scale onwhich to consider the distribution.

Wenow turn to the ûnal results, the distributions of dimen-

sionless real and imaginary parts of the scattering length.

These are displayed in Fig. 2, with α in the upper panel and β

in the lower, and are compared to the approximate analytical

formulas

P (α) =
1

π

1

(α − 1)2 + 1
(23a)

P (β ) =
1

π2

1
√

β

[
sinh−1

(
1

√
β

)]2

(23b)

These two formulas are the main result of this note.

The real part, α is well-described by the same Cauchy distri-

bution (13) as for the single channel case. The reason for this

is clear from the formula (21a). The main contribution to α is

given simply by 1 − K̃11, whereby the result follows trivially

just as in the one-channel case. The correction to this result,

the second term of (20a), is proportional to K̃2
12, hence is heav-

ily peaked around zero and changes the scattering length but

little. In practice, this works out so that (23a) is an excellent

approximation.We conclude that, away from resonances, the

two-channel elastic scattering length is distributed the same

as a single-channel scattering length.

As for the imaginary part β, it is by its nature strictly non-

negative, and is distributed sharply near zero, an expected

behavior it inherits from K̃12. The analytical formula for the

distribution is approximate, but seems to describe the peak

at zero quite well. The inset in the lower panel of Fig. 2 is
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Fig. 1. Probability distributions of the diagonal (upper) and

of-diagonal (lower) elements of the short-range K-matrix. In

each case, the histogram is numerically sampled from the

model in the text. The red curves are the analytical formulas

for the distributions, given in (21). The analytical curves are

re-normalized to give the same integral as the histogram over

the range shown.

the same histogram, but plotted with counts on a logarith-

mic scale, to better emphasize the tail of the distribution. As

can be seen, the formula somewhat underestimates the true

distribution at large values of β, but we will not concern our-

selves with this detail.

4. Discussion

Within the model presented, a message stands out. In the

case of scattering in a single potential, we know that the real

part of the scattering length is Cauchy distributed as given

above, and that the imaginary part is rigorously zero. The

present results note that, if an additional channel is added

into which scattering can occur, the real part of the scatter-

ing length remains Cauchy distributed, while the imaginary

part still tries very hard to remain close to zero.

It is not hard to imagine that the result for elastic scattering

generalizes. Consider scattering in some asymptotic channel

i in a multichannel system. Within the frame transformation

approximation assumed in this model, the non-resonant K-

matrix in this channel will be given by the weighted average

of diagonal K-matrices in each of the short-range channels λ:

K̃ii =
∑

λ

〈i|λ〉 tan (πμλ ) 〈λ|i〉 (24)

And since the sum of squares of the coeocients of transfor-

mation is unity, we again recollect the Cauchy distribution

Fig. 2. Probability distributions of the real (upper) and imag-

inary (lower) parts of the normalized scattering length a/ā =
α − iβ. In each case, the histogram is numerically sampled

from the model in the text. The red curves are the analyti-

cal formulas for the distributions, given in (23). The inset in

the lower panel represents the same data, but with the verti-

cal axis on a logarithmic scale, to better show the tail of the

distribution.

from the single-channel case. Thus, the Gribakin–Flambaum

result is generalized to non-resonant multichannel scatter-

ing.

Finally, let us put the result for the imaginary part of the

scattering length into practical terms. The role of β is to track

the üux that enters in channel 1 but departs in channel 2.

Using the unitarity of the S-matrix,

|S12|2 = 1 − |S11|2 = 1 − | exp (−2ākβ ) |2 ≈ 4ākβ (25)

giving the collision rate constant for inelastic collisions (re-

garded as bad),

Kbad = gv
π

k2
|S12|2 = g

(
�k

mr

)
π

k2
(4ākβ ) = g

4π�

mr

āβ (26)

Here v = �k/mr is the collision velocity, and g is a factor that

accounts for symmetrization: g = 1 unless the initial channel

contains two identical atoms in identical internal states, in

which case g = 2. In the event that these bad collisions lead

to loss from the trap, their number density n diminishes in

time according to

dn

dt
= −Kbadn

2 (27)

assuming that the loss is dominated by two-body scattering

events.

To put the result into perspective, consider the following.

Suppose you are building a new laboratory to cool and trap
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Fig. 3. Cumulative probability distribution for the rate con-

stant Kbad for <bad= collisions, normalized by the reference

rate Kref = g (4π�/mr ) ā.

an atomic or molecular species that has not been trapped be-

fore, so that nothing is known about its collision properties.

(I do not think this is something Ravi is likely to do, but one

never knows!) Suppose, further, that some kind of bad colli-

sion process is possible, and that it occurs at short range. This

may include spin-exchange for atoms, chemical reactions for

molecules, or perhaps light-assisted collisions for either. In

the context of collisions, all you know are the reduced mass

and the C6 coeocient, which can often be estimated in per-

turbation theory.

From this, you would like some sense of the size of the

rate constant for bad collisions. You can construct a typical

scale for this quantity by disregarding the inüuence of β, thus

deûning a reference rate constant

Kref = g
4π�

mr

ā (28)

In terms of this reference value, the true rate constant will

be given by

Kbad = Kref β (29)

That is, the values ofKbad, in units of the reference valueKref ,

are distributed just as the value of β is in eq. (23b).

In this spirit, we present in Fig. 3 the cumulative probabil-

ity distribution for the normalized bad rate constant. From

this ûgure we read that there is an approximately 80% prob-

ability that the actual rate constant is smaller than Kref ; the

easiest estimate is likely an over-estimate. Even better, the

odds are about 34% that the actual rate constant is 100 times

smaller than Kref ; thus, bad scattering has at least a ûghting

chance of not being as bad as feared. This is the ultimate con-

sequence of the peaking of β around zero.

To return to the context of the mixed-BEC experiment

in [12], for rubidium we expect a reference rate constant

of Kref ,Rb = 7.7 × 10−11 cm3/s. The observed value, K = 2.2 ×
10−14 cm3/s, is 3500 times smaller. From our simple theory,

ûnding a rate this small or smaller is an event with probabil-

ity ≈12%.

The simple distributions presented here are of course sub-

ject to assumptions of the model. For example, they refer to

scattering with only a single loss channel. More signiûcantly,

the result assumes that the rotation angle θ is uniformly dis-

tributed. Nonetheless, the results are emblematic of future

possibilities, where statistical understanding of ultracold col-

lisions can be explored through the lens of MQDT.
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Appendix A. Transformation of

probability distributions

Given certain variables with deûned probability distribu-

tions functions (pdfs), it is a standard matter to ûnd the pdfs

of combinations of these variables. The results used here are

as follows. Suppose X is a random variable with probability

distribution PX(x). We now change variables to a new random

variable Y = Y(X), given as a function of the original. Then the

new pdf is

PY (y) = PX (x)

∣∣∣∣
dy

dx

∣∣∣∣
−1

(A1)

where on the right the inversion x = x(y) is implied.

Given two pdfs, PX(x), PY(y), assumed to by independent, the

pdf of their sum Z = X + Y is given by

PZ (z) =
∫

dx

∫
dyPX (x) PY (y) δ (x + y − z) (A2)

=
∫

dxPX (x) PY (z − x) (A3)

while the pdf of their product W = XY is given by

PW (w) =
∫

dx

∫
dyPX (x) PY (y) δ (w − xy) (A4)

=
∫

dxPX (x) PY

(w
x

) 1

|x|
(A5)

In both cases the limits of integration are those appropriate

to the ranges of the original pdfs. In practice, we evaluate

these integrals in Mathematica, at least up to the point where

the resulting expression, even if in principle analytic, is no

longer useful to look at. In the following we will omit the

subscript on P, the random variable being assumed identiûed

by the argument.

For example, we have a quantum defect distributed accord-

ing to P(μ)= 1, forμ ∈ [− 1/2, 1/2], the corresponding K-matrix

K̃ = tan (πμ) has pdf

P
(
K̃
)

= P
(
μ

(
K̃
)) ∣∣∣∣

dK̃

dμ

∣∣∣∣
−1

=
1

π

(
1√

1 + K̃2

)2

=
1

π

1

K̃2 + 1
(A6)

Next we construct the pdf for the short-range K-matrix. For

example,

K̃11 = cos2θ tan (πμ1 ) + sin2
θ tan (πμ2 ) (A7)

Each random variable ti = tanπμi is Cauchy distributed. Scal-

ing these variables to, for example, ta = at yields the distribu-

tion

P (ta ) =
1

π

|a|
t2a + a2

(A8)

with FWHM |a|. Thus, if ta = atan (πμ1) and tb = btan (πμ2) are

two such scaled variables, their sum tab = ta + tb has distribu-

tion

P (tab) =
∫ ∞

−∞
dta

1

π

|a|
t2a + a2

1

π

|b|
(tab − ta )

2 + b2

=
1

π

|a| + |b|
z2 + (|a| + |b|)2

(A9)

From this it follows that, for our matrix element K̃11, with a

= cos 2θ , b = sin 2θ , we have

P
(
K̃11

)
=

1

π

1

K̃2
11 + 1

(A10)

The same is true for K̃22.

The of-diagonal element of the short-range K-matrix is dis-

tributed quite diferently.

K̃12 =
1

2
sin (2θ ) (t2 − t1 ) (A11)

with θ distributed uniformly through θ ∈ [ − π /2, π /2]. The

pdf for u = sin (2θ )/2 (u ∈ [ − 1/2, 1/2]) is given by

P (u) =
1

π
× |cos 2θ |−1

=
1

π

1√
1 − sin22θ

=
1

π

1
√
1 − 4u2

(A12)
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Meanwhile, the pdf of the diference t = t2 − t1 is

P (t ) =
∫ −∞

−∞
dt1

1

π

1

t21 + 1

1

π

1

(t − t1 )
2 + 1

=
2

π

1

t2 + 4
(A13)

This is another Cauchy distribution, but one with twice the

FWHM; this is a special case of A9. Finally, the product is com-

posed to give

P
(
K̃12

)
∝

∫ 1/2

−1/2

du
1

√
1 − 4u2

1
(
u/K̃12

)2 + 4

1

|u| (A14)

P
(
K̃12

)
=

2

π2

1√(
K̃12

)2 + 1

sinh−1

(
1

|K̃12|

)
(A15)

Here the argument of the inverse hyperbolic sine function

makes the distribution divergent at K̃12 = 0, emphasizing

small values of this parameter. Yet, the divergence is loga-

rithmic, thus maintaining normalizability.

To get to the distributions for the imaginary part of the

scattering length requires yet a few more steps. Given that

x = K̃22 is Cauchy distributed as above, deûne v = 1/(x2 + 1).

Well,

dv

dx
=

2x

x2 + 1
= 2xv2 (A16)

P (v) ∝ v
1

xv2
(A17)

=
1

π

1√
v (1 − v)

(A18)

where v ∈ [0, 1]. Similarly, setting y = K̃12 andw = y2, we have

P (w) =
2

π2

1√
w (w + 1)

sinh−1

(
1

√
w

)
(A19)

In this notation, we have

β =
1

K̃2
22 + 1

K̃2
12 = vw (A20)

Then the distribution of β is given formally by

P (β ) =
∫ 1

0

dv
1

π

1√
v (1 − v)

2

π2

1√
(β/v) (β/v + 1)

× sinh−1

(
1

√
β/v

)
1

v

=
1

√
β

2

π3

∫ 1

0

dv
1√

v (1 − v)

1
√
v + β

sinh−1

(√
v

β

)
(A21)

this expression is somewhat intractable, or at least, Mathe-

matica could not seem to tract it.

We therefore make an approximation. We regard β as fun-

damentally determined by the factor K̃2
12, as modiûed some-

what by v = 1/
(
K̃2
22 + 1

)
. The probability distribution for v is

seen to be strongly peaked around v = 0 and v = 1. For val-

ues of v near unity, K̃2
22 is hardly changed, whereas when v ≈

0, the value of K̃2
22 is dramatically reduced. the inüuence of

v is therefore approximately accounted for by the simpliûed

distribution

P′ (v) =
1

2

1
√
v
, v ∈ [0, 1] (A22)

With this approximation, the probability distribution for β

becomes relatively simple:

P (β ) ≈
1

√
β

1

π2

∫ 1

0

dv
1

√
v

1
√
v + β

sinh−1

(√
v

β

)

=
1

π2

1
√

β

[
sinh−1

(
1

√
β

)]2

(A23)

This formula does a reasonable job of focusing the probability

heavily toward β = 0.
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