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Abstract

The probability distributions of the real and imaginary parts of atomic scattering lengths a are derived, in a two-channel
model that allows for inelastic scattering to occur. While the real part of a remains Cauchy-distributed, as predicted for single
channel scattering in the classic work of Gribakin and Flambaum, the imaginary part of a is seen to be strongly peaked near
zero. Two-body inelastic scattering rates may therefore be smaller in general than a naive estimate would suggest.
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1. Introduction

This note serves as both a greeting to Ravi Rau and a dis-
patch from the world of dilute, ultracold gases, where neu-
tral atoms and molecules collide at typically sub-microKelvin
temperatures. Even though Ravi never explicitly published in
this area, nevertheless his influence is strongly felt.

The atoms and molecules in these gases collide at suffi-
ciently low energy that they are in the Wigner threshold
limit; hence, their scattering is strongly dominated by the
familiar threshold laws. Ravi has been a tireless champion
of threshold physics, summarized in his famous work with
Fano [1], and in an influential review article [2]. His classic
treatment of the Wannier threshold law for double ioniza-
tion highlights the ability of a single quantity, the exponent
characterizing the energy dependence E* of the process, to
reveal information on detailed correlations of the charged
particles [3].

In the somewhat more pedestrian world of ultracold colli-
sions of neutral atoms, the relevant Wigner threshold laws
are well known. Very typically, the collision is dominated by
the lowest, s partial wave, and the elastic scattering phase
shift is linear in wave number, §o = —ak. This k-dependence
is standard; what varies from atom to atom, and what mat-
ters most in the context of ultracold gases, is the value of the
prefactor, the scattering length a.

At stake is the nature of the scattering cross section, which
is responsible for bringing the gas to thermal equilibrium,
and which therefore determines the ability to make an ul-
tracold gas at all. Famously, the scattering length of 8’Rb is
approximately a = 100ay, ao being the Bohr radius. This value
is sufficiently large that evaporative cooling of this atom
successfully led to the first Bose-Einstein condensate [4]. By
contrast, the isotope 3°Rb has a negative naturally-occurring
scattering length [5]. This leads to an unfortunately-placed
Ramsauer-Townsend minimum in its cross section, limiting
evaporative cooling [6]. (By various devices, scattering lengths
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can be altered to necessary values, but that is a different story
for another Fetschrift.)

Scattering lengths tend to be extremely sensitive functions
of the potential energy surface, meaning that even for al-
kali atoms, they cannot be predicted from ab initio theory
(with the exception of one heroic recent result in [7]). Gen-
erally, they are determined by thoughtful iterations of the-
ory and experiment. In this way, scattering lengths for most
combinations of alkali atoms are now known, some to high
precision. To do so requires the evaluation of two scattering
lengths, for the singlet and triplet Born—-Oppenheimer po-
tentials existing between these atoms. By extension, three
scattering lengths of higher-spin chromium atoms have also
been extracted [8, 9], and have proven adequate for describing
data.

Beyond this, the situation quickly becomes untenable. Cer-
tain lanthanide atoms are perfectly amenable to laser cool-
ing, yet their interactions are quite complex. For example,
interactions of open-shell dysprosium atoms would require
81 distinct Born-Oppenheimer potentials, each with its own
scattering length that presumably contributes to observed
scattering [10]. Extracting a quantitative model from data is,
at present, considered inconceivable. Even more challenging
will be the equivalent procedure in collisions of ultracold
molecules, which represents a rapidly growing area of en-
deavor.

Faced with the difficulties of detailed analysis, it may prove
useful to consider instead trends that one could follow over
the breadth of possibilities among many collision partners. In
the present note we will consider a statistical overview. Statis-
tics in ultracold collisions was introduced by Gribakin and
Flambaum [11], who derived, from semiclassical theory, the
most likely value of the scattering length for long-range po-
tentials that fall off as a power law, —1/r", of the distance r be-
tween to atoms. The true scattering lengths of various species
should vary around this most-likely value, in such a way that,
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according to Gribakin and Flambaum, three-quarters of all
naturally occurring scattering lengths should be positive, for
an ordinary van der Waals potential with n = 6. What these
authors did not quite do (but surely could have) is to describe
the full distribution function of scattering lengths. In Section
2 we will complete this derivation, in preparation for the re-
mainder of the article.

In addition to elastic scattering, it is extremely important
to track inelastic scattering in the ultracold environment.
Even the smallest of atomic energy spacings, say hyperfine
energies, are orders of magnitude larger than the transla-
tional temperature of the gas. Thus, an inelastic collision that
releases this energy is a disaster: the products either leave the
trap, or, perhaps worse, heat the remaining gas. The atoms
are like waiters in a busy restaurant, delicately balancing
trays full of cocktails. Should they collide, there will be a real
mess.

In the argot of cold collisions, these disruptive events are
denoted by the technical term “bad”. Generally, it is accepted
that any bad collisions that are allowed by energy conserva-
tion and symmetry considerations tend to happen at high
collision rates, and should therefore be avoided if possible.
(Much ingenuity has gone toward finding ways to mitigate
bad collisions, but again, this is not our story here.) Excep-
tions of course exist. In a serendipitous experiment at JILA, it
was found that a mixture of 3’Rb atoms in two distinct hyper-
fine states not only survived evaporative cooling, but could
be simultaneously Bose-condensed [12]. The anomalously low
inelastic spin-exchange rate that allowed this miracle was
quickly understood to rely on an interference between sin-
glet and triplet scattering, that is, on the near-coincidence of
singlet and triplet scattering lengths for this isotope [13-15].
Here was a statistical outlier.

In the context of ultracold atoms, it is worthwhile to know
how likely it is that such a calamitous event will occur. That
is, the question is one of probabilities. To this end, in Section
3 we extend the Gribakin-Flambaum model to a two-channel
case that allows for inelastic scattering. We will cast the in-
elastic loss in terms of the imaginary part of the scattering
length, and determine an approximate probability distribu-
tion for this quantity.

To do so requires welding together the long-range physics
that determines the threshold law, with the short-range
physics that governs the change in state. Here Ravi has
also paved the way, stressing that multichannel quantum
defect theory (MQDT) is an extremely versatile tool, far
beyond its initial application to Rydberg atoms [1]. The
ideas and notations that ground our theory in the follow-
ing are rooted in the seminal work of Greene, Rau, and
Fano [16].

2. Single channel scattering lengths

We first consider s-wave scattering in a single channel with
potential V(r), governed by the Schroédinger equation

2 2
( ff97+v)sz¢ )

" 2m, dr2

where m, is the reduced mass of the collision partners. For
purposes of statistics, we envision an assembly of potentials
V, collected from an ensemble of potential collision partners
across the periodic table. This variety can also include various
Born-Oppenheimer curves for given partners, for example,
the singlet and triplet curves of the alkalis, assumed to give
scattering phase shifts independent of each other. Different
isotopes of the same element are not considered to have in-
dependent phase shifts as they are, to a good approximation,
related by simple mass scaling [17].

To include this variety of potentials as our ensemble, it is es-
sential to reduce them to a common system of reduced units.
For threshold scattering, a relevant set of natural units is ob-
tained from the long-range behavior. In this note we restrict
attention to those potentials with long-range van der Waals
behavior characterized by the form V(r) ~ —Cg/r°. The corre-
sponding natural unit of length is

1/4
re = <2er5) (2)

This scale tends to be of the order ~100a, for many atoms;
for Rb it is 165a,. The short-range physics is not necessarily
amenable to a simple scaling between species; indeed, this is
where the joy of variety comes from. Such a scaling will not
be necessary in the QDT picture we employ.

In the spirit of quantum defect theory, we identify standard
solutions for the long-range potential, denoted f and g These
are given a useful standardized form in the magnum opus of
Ruzic et al. [18], which we follow throughout. The functions
are chosen so that the irregular function g — 0 as r — oo in
the zero-energy limit, a choice that maximizes the linear in-
dependence of f and g in numerical applications. With this
choice, the reference function f has phase shift n = —dk de-
fined by the scattering length

T

2
az“(ﬂﬂfﬁMﬂWU%)

~ 0.4780 t¢ (3)

which coincides exactly with the Gribakin-Flambaum most-
likely scattering length [11].

The reference functions f and g are related to the energy-
normalized reference functions fand g in the usual way [16]:

f A2 0\ (F
()=(5 ) ()

This defines two more QDT parameters, which Ruzic works
out explicitly in the s-wave threshold limit:

AV? = —(ak)'/? (5a)
G = (ak)? [—1 + %(%)2} (5b)

The statistical model is derived in QDT as follows. For a
given potential V, one would solve the Schrédinger equation,
matching its solution  to the reference functions at a con-
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venient radius r = ry,

y=F-keg (6)
This would define the short-range K-matrix

K =tan(wp) (7)

in terms of a quantum defect p. In the statistical model we
do not consider any explicit potential V, but rather assume
that the quantum defects from such a process would be uni-
formly distributed on the interval u € [ — 1/2, 1/2]. In this way
the vast differences in depth and shape of the potentials for
many different atoms are rendered irrelevant. Whatever the
atoms are actually doing down there, the net result is always
encapsulated in the quantum defect u.
By the rules of QDT, one then constructs the short-range
phase shift & via
1/277A1/2
tan ; = M ~ Kak (8)
1+ 3gK
here ignoring GK as small compared to unity. This quantity
will become relevant if and when we consider the effective
range. The physical scattering phase shift is given by the sum
of long- and short-range contributions,

S0 =n+ 8y~ (-1 +K)ak 9)
whereby the scattering length in units of a is given by

1 .
s =1-K (10)
a ak

To find the distribution of scattering lengths, we begin with
the distribution of quantum defects,

1, ! <pu= 1
P(u) = 2 2 (11)

0, otherwise

This assumption along with eq. (7) implies a distribution of
short-range K-matrices related to the former by

- 1 1
PK)=——
T K241
Thus, the short-range K-matrix is distributed as a Lorentzian
or, in the language of probability theory, a Cauchy distri-
bution. (That the tangent of a uniform distribution yields a
Cauchy distribution is well known. Nevertheless, this result
and all the others that we use below are derived in Appendix
A)
Restoring the units, the distribution of scattering lengths
is given by
1 a
Pla)=—-———F——
7 (a—a)” + a?

(12)

(13)

Significantly, the Cauchy distribution has neither a well-
defined mean nor a well-defined standard deviation. It is,
rather, characterized by its mode (most likely value) and its
full-width at half-maximum (FWHM), which are a and 24, re-
spectively. From this distribution we evaluate the fraction of
scattering lengths that are positive,

o 3
/0 daP (a) = n (14)
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just as prophesied by Gribakin and Flambaum. Having
this distribution, we can say other things, for example,
half of all scattering lengths should lie within a/2 of the
mode a.

3. Two channels: scattering and loss

Inelastic collisions that lead to bad outcomes are somewhat
less universal than potential scattering, and in principle de-
pend on the mechanism by which channel coupling occurs.
Nevertheless, for the kinds of collisions envisioned here, this
mechanism may be assumed to lie at short range and to be
subsumed in the short-range K-matrix, regarded as a set of
parameters of the theory. We therefore disregard, e.g., col-
lisions of dipolar molecules, where torques exerted by the
dipoles when they are far apart can drive inelastic scattering
at large r [19].

3.1. Model and QDT

For the sake of simplicity, we consider a two-channel sys-
tem, where the incident channel 1 is at threshold, while the
other channel 2 is exothermic by some energy much greater
than the collision energy; in particular it is not at threshold.
The long-range potentials in both channels are assumed to
scale as —Cg[r®, whereby the QDT functions are computed for
each channel as above. In the incident channel near thresh-
old, n; = —dk, A}”> = —(ak)'/?, and as above we will not con-
cern ourselves with G;. In the outgoing channel which is far
from threshold, A;/ 2 — 1 and the values of n and G, are irrel-
evant.

These two asymptotic channels are presumed to become
coupled at short range, in a way that is well-approximated by
a frame transformation. It is assumed that the short-range
physics is described by two alternative channels, each with
its own quantum defect u;. In this approximation the short-
range K-matrix is diagonal in the short-range basis and has
the form

- tan (1) 0
K" = (15)
0 tan (7 iuz)

Significantly, we do not perform the usual MQDT step of elim-
inating closed channels, as there are none in this example.
It should be remembered that we seek here the statistics of
scattering lengths away from resonances.

In this 2 x 2 example the transformation between basis
sets is a simple rotation through an angle 6. For any given
collision, the value of 6 will be determined by exactly what
the short-range and asymptotic channels are, including the
spin structure of the atoms and the mixing of channels by
ambient electromagnetic fields. To simplify the treatment we
do not consider these details and assume that, across the en-
semble of species and conditions considered, 6 is uniformly
distributed in 6 € [ —7/2, /2]
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Expressed in the asymptotic basis, the short-range K-matrix
in this notation then becomes

7 <c0520 tan (7 11) + sin®6 tan (7 113) cos 6 sin 6 [tan (7 uz) — tan (7 uq)]

(16)
cos 6 sin 6 [tan (7 j12) — tan (7 ;1)) sin®6 tan (7 11) + cos®6 tan (nu2)>

This leads to the asymptotic K-matrix
K = Al /2 KAl /2

C_leu —(dk)l/ZKH
= 125 > (17)
—(ak)'*RKa1 Ky
followed by the S-matrix,
e—idk e—idk o
S = ( _ ) (I +iK) (I — iK)™* ( . ) (18)
0 e 0 e

Writing the resulting phase shift in channel 1 as S;; =
exp (2i81), we define the complex scattering length in this
channel via

a=d(a—iB) = —%51 (19)

This defines the dimensionless quantities ¢ and 3, regarded
as real and imaginary parts of the scattering length in units
of a. Expanding S;; to linear order in k, these quantities are
given by

1—Ki + Ky Kk
o = — =~
11 I<222 I 1 22

(20a)

KZ
ﬂ — — 12
K5, +1

(20b)

3.2. Probability distributions

The scattering observables « and B are functions of the
fundamental parameters of the model, 1, uz, 6, which are
treated as random variables. By the standard formalism for
transforming and composing random variables, one can then
find the probability distributions for « and g. These trans-
formations are carried out in detail in Appendix A. Here we
present and explore the results. For purposes of illustration,
we have run a simulation choosing 10 000 triples (111, 12, and
0) from their uniform distributions. The subsequent quan-
tities of the theory can then be calculated and displayed as
histograms.

We begin with the distribution of elements of the short-
range K-matrix, K. The model predicts that these are dis-
tributed according to

. 1 1
P (K1) = AR 41 (21a)
. 2 1
P (Ryz) = 77311111*1( E )
( 12) 2 (Klz)z 1 |K12| (21b)

Histograms of the numerical simulations of these quantities
are plotted in Fig. 1, along with (red lines) the formulas in (21).

In the upper panel we see that the distribution of the diago-
nal matrix element Ky, is very well-described by the ordinary
Cauchy distribution from the one-channel case. While not
shown, the distribution of K, is the same. Each diagonal ma-
trix element is the weighted sum of variables tan (7 u;) that
are Cauchy-distributed. The weights add to unity, whereby
the average is also Cauchy distributed. This is shown in de-
tail in Appendix A.

More interesting, and somewhat unexpected, is the distri-
bution of off-diagonal elements shown in the lower panel.
This distribution is far more strongly peaked near zero than
the Cauchy distribution, a result captured in the analytical
formula (21b). The most likely value of K;, is zero, but a
FWHM is not possible to define here, as the distribution suf-
fers a logarithmic divergence:

. - 2 2
dimp (o) = Zin () 22
One can, however, make the following comparison. For the
Cauchy distribution that defines P (K;;), half the distribution
lies within +a of zero; for the distribution P (K;>), half the
distribution is within +0.554d. Thus, in spite of the divergence,
ais still arelevant scale on which to consider the distribution.

We now turn to the final results, the distributions of dimen-
sionless real and imaginary parts of the scattering length.
These are displayed in Fig. 2, with « in the upper panel and g
in the lower, and are compared to the approximate analytical
formulas

1 1
T(ae—172+1

oo ()]

These two formulas are the main result of this note.

The real part, « is well-described by the same Cauchy distri-
bution (13) as for the single channel case. The reason for this
is clear from the formula (21a). The main contribution to « is
given simply by 1 — Ky, whereby the result follows trivially
just as in the one-channel case. The correction to this result,
the second term of (20a), is proportional to KZ,, hence is heav-
ily peaked around zero and changes the scattering length but
little. In practice, this works out so that (23a) is an excellent
approximation. We conclude that, away from resonances, the
two-channel elastic scattering length is distributed the same
as a single-channel scattering length.

As for the imaginary part g, it is by its nature strictly non-
negative, and is distributed sharply near zero, an expected
behavior it inherits from K;,. The analytical formula for the
distribution is approximate, but seems to describe the peak
at zero quite well. The inset in the lower panel of Fig. 2 is

P(a) = (23a)

(23b)
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Fig. 1. Probability distributions of the diagonal (upper) and
off-diagonal (lower) elements of the short-range K-matrix. In
each case, the histogram is numerically sampled from the
model in the text. The red curves are the analytical formulas
for the distributions, given in (21). The analytical curves are
re-normalized to give the same integral as the histogram over
the range shown.
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the same histogram, but plotted with counts on a logarith-
mic scale, to better emphasize the tail of the distribution. As
can be seen, the formula somewhat underestimates the true
distribution at large values of 8, but we will not concern our-
selves with this detail.

4. Discussion

Within the model presented, a message stands out. In the
case of scattering in a single potential, we know that the real
part of the scattering length is Cauchy distributed as given
above, and that the imaginary part is rigorously zero. The
present results note that, if an additional channel is added
into which scattering can occur, the real part of the scatter-
ing length remains Cauchy distributed, while the imaginary
part still tries very hard to remain close to zero.

Itis not hard to imagine that the result for elastic scattering
generalizes. Consider scattering in some asymptotic channel
iin a multichannel system. Within the frame transformation
approximation assumed in this model, the non-resonant K-
matrix in this channel will be given by the weighted average
of diagonal K-matrices in each of the short-range channels A:

Ki =) _(il3) tan (m ;) (A1i) (24)
A

And since the sum of squares of the coefficients of transfor-
mation is unity, we again recollect the Cauchy distribution
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Fig. 2. Probability distributions of the real (upper) and imag-
inary (lower) parts of the normalized scattering length a/a =
a —ip. In each case, the histogram is numerically sampled
from the model in the text. The red curves are the analyti-
cal formulas for the distributions, given in (23). The inset in
the lower panel represents the same data, but with the verti-
cal axis on a logarithmic scale, to better show the tail of the
distribution.
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from the single-channel case. Thus, the Gribakin-Flambaum
result is generalized to non-resonant multichannel scatter-
ing.

Finally, let us put the result for the imaginary part of the
scattering length into practical terms. The role of 3 is to track
the flux that enters in channel 1 but departs in channel 2.
Using the unitarity of the S-matrix,

S121* =1 — [Sul* = 1 — | exp (—2akp) |* ~ 4akp (25)

giving the collision rate constant for inelastic collisions (re-
garded as bad),

T hk\ & 4 h
Khbad =gvk—2|8u|2 :g(ﬁ> 2 (4akB) =g .

ap (26)
(

Here v = hk/m, is the collision velocity, and g is a factor that
accounts for symmetrization: g = 1 unless the initial channel
contains two identical atoms in identical internal states, in
which case g = 2. In the event that these bad collisions lead
to loss from the trap, their number density n diminishes in
time according to

dn

i —Kpaant® (27)

assuming that the loss is dominated by two-body scattering
events.

To put the result into perspective, consider the following.
Suppose you are building a new laboratory to cool and trap
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Fig. 3. Cumulative probability distribution for the rate con-
stant Kpaq for “bad” collisions, normalized by the reference
rate Crer = g(4h/m,)a.

Cumulative Probability
© o o o o o
w N (31 o)) ~ (o]

o
N

0.1

0 1 1
107 107 10° 102
’Cbad/K:ref

an atomic or molecular species that has not been trapped be-
fore, so that nothing is known about its collision properties.
(I do not think this is something Ravi is likely to do, but one
never knows!) Suppose, further, that some kind of bad colli-
sion process is possible, and that it occurs at short range. This
may include spin-exchange for atoms, chemical reactions for
molecules, or perhaps light-assisted collisions for either. In
the context of collisions, all you know are the reduced mass
and the Cq coefficient, which can often be estimated in per-
turbation theory.

From this, you would like some sense of the size of the
rate constant for bad collisions. You can construct a typical
scale for this quantity by disregarding the influence of g, thus
defining a reference rate constant

4 h

Kres =8 a (28)

r

In terms of this reference value, the true rate constant will
be given by

K:bad = ICref :8 (29)

That is, the values of y.4, in units of the reference value /Cyef,
are distributed just as the value of 8 is in eq. (23b).

In this spirit, we present in Fig. 3 the cumulative probabil-
ity distribution for the normalized bad rate constant. From
this figure we read that there is an approximately 80% prob-
ability that the actual rate constant is smaller than /Cp.f; the
easiest estimate is likely an over-estimate. Even better, the
odds are about 34% that the actual rate constant is 100 times
smaller than KCr.r; thus, bad scattering has at least a fighting
chance of not being as bad as feared. This is the ultimate con-
sequence of the peaking of 8 around zero.

To return to the context of the mixed-BEC experiment
in [12], for rubidium we expect a reference rate constant
of Krefrp = 7.7 x 10711 cm3[s. The observed value, K = 2.2 x
107 cm3[s, is 3500 times smaller. From our simple theory,
finding a rate this small or smaller is an event with probabil-
ity ~12%.

The simple distributions presented here are of course sub-
ject to assumptions of the model. For example, they refer to
scattering with only a single loss channel. More significantly,
the result assumes that the rotation angle 6 is uniformly dis-
tributed. Nonetheless, the results are emblematic of future
possibilities, where statistical understanding of ultracold col-
lisions can be explored through the lens of MQDT.
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Appendix A. Transformation of
probability distributions

Given certain variables with defined probability distribu-
tions functions (pdfs), it is a standard matter to find the pdfs
of combinations of these variables. The results used here are
as follows. Suppose X is a random variable with probability
distribution Px(x). We now change variables to a new random
variable Y = Y(X), given as a function of the original. Then the
new pdf'is

-1
B ) =P ()| A1)

where on the right the inversion x = x(y) is implied.
Given two pdfs, Px(x), Py(y), assumed to by independent, the
pdf of their sum Z = X + Y is given by

2o(e) = [ ax [ aypc R ()5 (x+y -2 (A2)

— [ @ e-x) (A3)
while the pdf of their product W = XY is given by
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B () = [ ax [ ayp 0B 05w —9) (A4)

- / axby (x) B () ;7

In both cases the limits of integration are those appropriate
to the ranges of the original pdfs. In practice, we evaluate
these integrals in Mathematica, at least up to the point where
the resulting expression, even if in principle analytic, is no
longer useful to look at. In the following we will omit the
subscript on P, the random variable being assumed identified
by the argument.

For example, we have a quantum defect distributed accord-
ingtoP(u) =1, for u € [ — 1/2, 1/2], the corresponding K-matrix
K = tan (7 ) has pdf

(A5)

PR) =P (u ()| 0|

2
11
T /1+K2
1 1
== (A6)
T K2+1

Next we construct the pdf for the short-range K-matrix. For
example,

K11 = cos?6 tan (7 1) + sin6 tan (7 i) (A7)

Each random variable t; = tan  i; is Cauchy distributed. Scal-
ing these variables to, for example, t, = at yields the distribu-
tion

1 Jal
712+ a?

P(t,) = (A8)
with FWHM |a|. Thus, if t, = atan (7 1) and t, = btan (7 u,) are
two such scaled variables, their sum t,;, = t, + t;, has distribu-
tion

o 1 1 b
Plta) = [t P
o WE2Ha T (ty —t,)* + b2
1 Jal+ b

™ 22 + (la| + |b])? "

From this it follows that, for our matrix element K;;, with a
= cos 20, b = sin 20, we have

. 1 1
P (K11)

TaR 1 .

The same is true for K.
The off-diagonal element of the short-range K-matrix is dis-
tributed quite differently.

. 1
Riz =  sin (20) (12 — 1) (A11)

with 6 distributed uniformly through 6 € [ — 72, n/2]. The
pdf for u = sin (20)/2 (u € [ — 1/2, 1/2]) is given by

P(u) x |cos 20|71

1
V1 —sin?26
1
V1 — 4u?

Q)= | ==

(A12)
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Meanwhile, the pdf of the difference t =t, — t; is
- 1 1 1 1
P(t) = / di — — 5
= TR +1n(t-t4) +1

_2
T at24+4

(A13)

This is another Cauchy distribution, but one with twice the
FWHM,; this is a special case of A9. Finally, the product is com-
posed to give

(Re2) 172 d 1 1 1
P 1<12 X u = — Al4
172 V1 —4u? (U/K12)2 + 4 [u] (A14)
_ 2 1 1
P(Kp)==-—sinh ! —
(Kiz) 7 [z )2 (|K12|> (A15)

(Ki2)" +1

Here the argument of the inverse hyperbolic sine function
makes the distribution divergent at K, = 0, emphasizing
small values of this parameter. Yet, the divergence is loga-
rithmic, thus maintaining normalizability.

To get to the distributions for the imaginary part of the
scattering length requires yet a few more steps. Given that
x = Ky, is Cauchy distributed as above, define v = 1/(x*> + 1).
Well,

dv 2X
Pl — 2xy? Al6
dx x2+1 i (A16)
1
P — A17
(V) ocv—; (A17)
1 1
= A18
T Jv(1l—v) (A18)

where v € [0, 1]. Similarly, setting y = K;, and w = y?, we have

P(w) = 2 (A19)

\/mﬁsinh_1 (%)

In this notation, we have

1 2

h= K2, + Rt (A20)

Then the distribution of 8 is given formally by

11 1 2 1
= av= =
P(f) /0 N RN Ty

1 )1
ﬁ/v v

,w/ mwT 1(/%) (A21)

this expression is somewhat intractable, or at least, Mathe-
matica could not seem to tract it.

We therefore make an approximation. We regard § as fun-
damentally determined by the factor KZ,, as modified some-
what by v = 1/ (K2, + 1). The probability distribution for v is
seen to be strongly peaked around v = 0 and v = 1. For val-
ues of v near unity, K, is hardly changed, whereas when v ~
0, the value of K2, is dramatically reduced. the influence of
v is therefore approximately accounted for by the simplified
distribution

x sinh™? (

P (v)= velo,1] (A22)

11
2.
With this approximation, the probability distribution for g
becomes relatively simple:

_ v
PO~ s | fd_81nh1<ﬁ>

o ()]

This formula does a reasonable job of focusing the probability
heavily toward g = 0.

(A23)
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