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Abstract

How do we transfer the relevant knowledge from
ever larger foundation models into small, task-
specific downstream models that can run at much
lower costs? Standard transfer learning using
pre-trained weights as the initialization transfers
limited information and commits us to often mas-
sive pre-trained architectures. This procedure also
precludes combining multiple pre-trained models
that learn complementary information. To ad-
dress these shortcomings, we introduce Adaptive
Feature Transfer (AFT). Instead of transferring
weights, AFT operates purely on features, thereby
decoupling the choice of the pre-trained model
from the smaller downstream model. Rather than
indiscriminately compressing all pre-trained fea-
tures, AFT adaptively transfers pre-trained fea-
tures that are most useful for performing the
downstream task, using a simple regularization
that adds minimal overhead. Across multiple vi-
sion, language, and multi-modal datasets, AFT
achieves significantly better downstream perfor-
mance compared to alternatives with a similar
computational cost. Furthermore, AFT reliably
translates improvement in pre-trained models into
improvement in downstream performance, even if
the downstream model is over 50x smaller, and
can effectively transfer complementary informa-
tion learned by multiple pre-trained models.

1. Introduction

Despite the growing importance of transfer learning, it
remains standard practice to simply start with some pre-
trained weights as an initialization for fine-tuning on down-
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stream data. This procedure only transfers generic and
limited information and the computational burden of fine-
tuning and deploying pre-trained models is quickly becom-
ing prohibitive with increases in model size (Bommasani
et al., 2021; Brown et al., 2020; Dosovitskiy et al., 2020;
Zhai et al., 2022). Furthermore, this approach precludes
transferring from multiple pre-trained models that learn
complementary information due to different pre-training
strategies, when a variety of distinctly pre-trained models
have become available, especially in domains like computer
vision (Oquab et al., 2023; Radford et al., 2021; Kolesnikov
et al., 2020; Chen et al., 2020b).

In principle, however, this transfer from large foundation
models to small downstream models should not only be
possible but also natural, since the downstream models need
not indiscriminately compress all knowledge learned by pre-
training, but only inherit the task-revelant knowledge. Lever-
aging this insight, we propose Adaptive Feature Transfer
(AFT), illustrated in Figure 1a, a simple, general, and effi-
cient method to adaptively transfer task-relevant knowledge
from a set of pre-trained models into a small downstream
model, with negligible cost compared to standard training.
Viewing pre-trained features as a compressed representa-
tion of the input containing highly relevant information for
downstream predictions, AFT steers the downstream model
to prioritize learning the task-relevant subset of pre-trained
features over entirely new features representing informa-
tion about the raw input but not preserved by pre-training.
Crucially, recognizing not all pre-trained features are rele-
vant for a specific downstream task, AFT discourages the
downstream model from learning irrelevant features.

Across multiple vision, language, and multi-modal datasets,
we show AFT delivers a substantial performance improve-
ment when transferring from some of the strongest open-
source vision and language foundation models, compared
to alternatives with a similar computational cost: direct
fine-tuning of the downstream model with standard trans-
fer learning, B-Tuning (You et al., 2022), an efficient
method multi-source and cross-architecture transfer learn-
ing, and knowledge distillation from the pre-trained to the
downstream model (Hinton et al., 2015; Romero et al.,
2014; Park et al., 2019; Kim et al., 2018). Moreover,
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(a) Information diagram for AFT

(b) Aggregated performance (c) Using stronger pre-trained models

Figure 1: Adaptive Feature Transfer (AFT) transfers knowledge from large foundation models into small downstream
models, improving downstream performance with minimal cost. (a) AFT regularizes the downstream model to prioritize
learning the task-relevant subset of pre-trained features (blue N red) over entirely new features (red \ blue). The blue
region represents information in pre-trained features, red represents information in downstream features, and inside the
square boundary represents all information in the raw, uncompressed input. (b) Over 6 vision datasets and 8 NLP datasets,
AFT significantly outperforms standard transfer learning (STL), knowledge distillation (KD) (Hinton et al., 2015; Romero
et al., 2014), including its more sophisticated variants relational knowledge distillation (RKD) (Park et al., 2019) and factor
transfer (FT) (Kim et al., 2018), and B-Tuning (You et al., 2022). Error is normalized by STL error and averaged over
datasets and downstream models, including ViT-S, MLP Mixer-B, ResNet-50, BERT-S, and DistillBERT. Error bars show
standard errors across models and datasets. (¢) AFT is the most effective at translating improvements in pre-trained models

to improvements in downstream performance. See Section 4 for experiment details.

we find AFT is particularly effective at translating im-
provements in pre-trained models into improvements in
downstream performance (Figure 1). Our code is avail-
able at https://github.com/amazon-science/
adaptive-feature-transfer.

2. Related Work

We review the standard transfer learning approach and meth-
ods that enable efficient transfer learning from multiple
sources and across architectures.

Transfer learning. Standard transfer learning (STL) pro-
ceeds by loading a pre-trained parameter vector as the ini-
tialization for parameters 6 of a downstream model with the
same architecture, followed by updating 6 by minimizing
the downstream loss L(6), known as fine-tuning (Zhuang
et al., 2019). This simple approach has enabled state-of-the-
art performances on a wide range of vision (Dosovitskiy
et al., 2020; Oquab et al., 2023; He et al., 2015) and lan-
guage tasks (Devlin et al., 2018; Touvron et al., 2023).

Shwartz-Ziv et al. (2022) note that STL merely transfers
an initialization, and that our knowledge of the source
task should affect the shapes and locations of optima on
the downstream task. To transfer additional information,
Shwartz-Ziv et al. (2022) propose a Bayesian transfer learn-
ing approach by regularizing the downstream model with a
Gaussian prior centered at the pre-trained weights, with a
covariance matrix such that 6 is allowed large variance in
directions where pre-training loss increases slowly.

Efficient multi-source transfer learning. To transfer
from multiple sources without fine-tuning many pre-trained
models, Lee et al. (2019) propose to learn a classifier defined
as a weighted combination of frozen pre-trained features,
where the weights are derived from non-linear maximal
correlation analysis. Chang et al. (2022) uses a mixture-
of-experts model to combine complementary information
across different models and datasets in material sciences.
Shu et al. (2021) develops Zoo-Tuning to aggregate the
parameters from multiple pre-trained models into a single
downstream model, all assumed to have the same architec-
ture. In addition, several works propose to rank and select
in advance a subset of pre-trained models or features for
transferring to a specific downstream task (You et al., 2022;
Fumero et al., 2023; Deshpande et al., 2021), thus reducing
the cost of exploration when a large number of pre-trained
models are available. As these methods still reuse the pre-
trained architecture for the downstream task, they are only
useful for reducing the cost of training, but not the cost of
deploying large pre-trained architectures. Moreover, meth-
ods such as Zoo-Tuning cannot be applied to transfer across
architectures, limiting the choice of pre-trained models.

Cross-architecture transfer learning. B-Tuning (You
etal., 2022) is a recently proposed method that enables cross-
architecture transfer by regularizing the downstream model
with a prior defined by the approximate posterior of a linear
model conditioned on pre-trained features. Unlike the prior
in Shwartz-Ziv et al. (2022), this prior is defined in function
space rather than parameter space, and can therefore be used
for downstream models of any architecture. On transferring
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from multiple pre-trained vision models, You et al. (2022)
shows B-Tuning outperforms both knowledge distillation
and Zoo-Tuning.

An alternative approach to cross-architecture transfer is
knowledge distillation (KD) (Hinton et al., 2015). While
the original KD trains the student to perform the same task
as the teacher, feature-based KD can be applied to transfer
the knowledge learned by a teacher pre-trained on a dif-
ferent but related task to a downstream student model, by
training it to predict the teacher’s features rather than logits
(Romero et al., 2014; Heo et al., 2019a; Huang & Wang,
2017; Heo et al., 2019b; Gu et al., 2023; Yim et al., 2017;
Ahn et al., 2019; You et al., 2022). In this approach, the
student is usually trained to minimize a regression objec-
tive |, [H(bT(x) — V(bs(x)H;}, where ¢5 and ¢ denote
the student and teacher features, and V' is a learned transfor-
mation that can account for the difference in dimensionality
and the arbitrariness of the choice of coordinates. Many
works have proposed more sophisticated version of feature-
based KD, such as relational knowledge distillation (RKD)
(Park et al., 2019) that aims to capture the relation between
the features of different inputs rather than their absolute
values, and factor transfer (Kim et al., 2018), which trains
the student to predict a compressed version of the teacher
features learned through an autoencoder. Other works, such
as Jang et al. (2019); Ji et al. (2021), focus on incorporating
features from many intermediate layers.

Difference between AFT and prior works. As we shall
explain in detail in Section 3, AFT is conceptually distinct
from B-Tuning and KD, though they all use pre-trained
features to regularize the downstream model. The main
difference between our approach and B-Tuning is that 1) we
regularize the downstream model’s features rather than pre-
dictions, which allows more information to be transferred
into the downstream model (features are often higher dimen-
sional than the outputs), and 2) we learn the importance of
each pre-trained feature during training on the downstream
task rather than determining it ahead of time based purely on
the posterior predictive mean of pre-trained models, which
fails to take into account any property of the downstream
model. In contrast to KD, AFT does not penalize the down-
stream model (student) from forgetting some of the pre-
trained (teacher) features, and only penalizes learning extra
features not extracted from pre-training.

3. Adaptive Feature Transfer

We now introduce Adaptive Feature Transfer (AFT), a
method that adaptively transfers task-relevant knowledge
from large foundation models to a small downstream model
with negligible overhead compared to standard training.

3.1. An informative prior from pre-trained features

The core intuition behind AFT is that we want the down-
stream model to prefer making predictions based on in-
formation already present in the pre-trained features, as
they are highly likely to contain useful knowledge for the
downstream task, but without necessarily using all pre-
trained features, since not all of them will be relevant to
the downstream task. We now formalize this simple intu-
ition mathematically by defining a prior for downstream
learning. Let § € R be the downstream model parameters,
the random variable X € R%= be the downstream inputs,
® = ¢y(X) € R be the features of the downstream
model, Y = W® € Rénut be the downstream model out-
puts, and ¥ = 1)(X) € R?% be a list of frozen pre-trained
features, formed by concatenating the last layer features
from an arbitrary number of pre-trained models. To encour-
age the desired behavior, we define a prior that favors low
mutual information between downstream features ® and the
input X conditioned on the pre-trianed features W,

p(0) oc exp(—pI(P; X|T)), )

where the I(®; X |¥) measures the amount of information
about X encoded in downstream features ¢ but not in the
pre-trained features W, visualized in Figure 1 as the area
of red \ blue, and 8 > 0 controls the strength of this prior.
The mutual information is given by

1(®; X|0) = H(®[w) — H(3|X, V) @
= Eo¢,u[~logp(®|¥)] + ¢ 3)
< mﬂinEQ\y[— log g, (®|¥)] +¢, @)

where H denotes the conditional entropy. H(®|X, V) is
some constant c¢ since P is deterministic given X and we
used a variational distribution g, (®|¥) with variational pa-
rameters p to approximate the inaccessible conditional den-
sity p(®|¥) and thus bound the mutual information.

To train the downstream model, we seek the most likely
parameters conditioned on the data under this prior, by min-
imizing the bound on the negative log posterior, equal to
L(6) + BR(0), where L(0) is the unregularized loss (e.g.
cross-entropy loss) and R(0) is the bound on the mutual
information given by

R(0) = m}anqw[— log ¢, (®[¥)], (5)

where the expectation can only be estimated using train-
ing samples. The effect of optimizing this objective is to
maximize the downstream data fit while minimizing the in-
formation in downstream features ¢ that cannot be decoded
from the pre-trained features ¥ via the map ¢, (®|¥), af-
ter optimizing for variational parameters p. We consider a
simple Gaussian parameterization ¢, (®|¥) = N (®|p¥, I),
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where 11 : R% — R% is an affine transformation, which
leads to:

R(0) = minEq.y || - p¥]. ©)

after ignoring some 6—independent constants. Since the
minimization over the offsets in the affine transformation
is equivalent to subtracting the mean from both ® and U,
we will henceforth assume that & and ¥ have been pre-
processed to have zero-mean and assume ;. € R% <9 to be
a linear transformation.

By comparison, the KD objective is equivalent to
Ryp(f) = minEq v “\V‘I’ - ‘I/HQ}» ©)

with V' € R% >4 The regularization we introduce moves
the learnable transformation to act on the pre-trained fea-
tures instead of the downstream features. This simple modi-
fication makes the objective more suitable for transfer learn-
ing. While minimizing the KD objective requires the down-
stream @ features to contain all information needed to pre-
dict the pre-trained features ¥, even if some are irrelevant
or harmful to the downstream task, our objective R(¢) only
requires the downstream features ® to lie in the span of the
pre-trained features W, allowing ® to encode only a subset of
information in W. With this simple but significant change to
the knowledge distillation objective, we incentivize an adap-
tive transfer of pre-trained features to the downstream task.
As we will show, this objective leads to significant perfor-
mance gains for transfer learning with almost no additional
cost and is particularly effective at translating improvements
in pre-trained models to downstream performance.

3.2. Improving the objective using kernels

While conceptually straightforward, evaluating and mini-
mizing the regularization R(f) in Eq. 6 introduces both
optimization and statistical challenges: 1) since evaluating
R(#) requires finding the optimal variational parameters /i,
which changes every time we update 6, we want to simplify
the optimization problem for x4 to minimize its computa-
tional overhead, and 2) since we wish to estimate the true
R(6) whose exact value is given by an expectation over the
true rather than empirical distribution of ® and ¥, we want
to avoid over-fitting to the training data when optimizing for
1 once we replace the expectation in Eq. 6 with its empirical
estimate, especially since transfer learning often involves
small downstream datasets.

We now show how to exploit a kernel formulation of the
objective to further mitigate both challenges. Recall that
the behavior of a linear model f(-) = w " ¢(-) is completely
characterized by its kernel kg (7, 2') = ¢(x) " ¢(2'). From
a kernel perspective, the existence of 1 € R%*% such
that ® = p U is equivalent to the existence of ji € R%s*d

such that kg = k. Therefore, we replace the ¢, distance
between the features with a distance between their kernel
functions,

RapT(0) = HLII’I \/IE [(k:@(X, X)) = kyu(X, X’))QL
3

where X and X' are drawn from the input distribution. As
with the previous objective in Eq. 6, this objective achieves a
minimum value of 0 if and only if each ¢;(-),i =1, ..., dy,
is in the span of {ﬁ’z()}?ll However, the kernel formu-
lation has the key advantage that part of the optimization
problem over p is done automatically since the kernel is in-
variant under any orthogonal transformation of the features,
implying that we only need to optimize y up to an orthogo-
nal transformation, significantly reducing the complexity of
the inner optimization. This reduction of complexity simply
reflects the fact there is no substantive difference between
two models whose features only differ by an orthogonal
transformation, e.g. a permutation or rotation of the feature
dimensions.

To prevent over-fitting the variational parameters p to the
empirical distribution of the features, we parameterize p as a
diagonal matrix diag(o(s)), i.e. ps; = o(s;), where o is the
sigmoid function and s is a d,-dimensional vector. Doing
so greatly reduces the number of variational parameters to
optimize, while retaining the ability for the model to weigh
each dimension of the pre-trained features differently. Note
that choosing a diagonal p is always admissible in the kernel
formulation, which does not require the features to have the
same dimensions. Furthermore, due to the invariance of the
kernel under orthogonal transformations, we are effectively
searching over all i/ = Uy = Udiag(s) € R% *9v where
U € R%>*dv is any orthogonal matrix, without actually
optimizing the dense matrix U which has significantly more
parameters than p. Finally, we normalize the features to
have unit /5 norm before computing the respective kernels,
ie., ka(z,2') = o(x)To(z')/]|o(x)|]|o(z")], to reduce

the variance in the kernel entries.

In Section 5.3, we compare AFT with its other variants and
show that both using the kernel formulation and learning a
diagonal p are essential to its performance (Section 5.2). We
also verify that the learned p indeed places higher weights
on more informative features (Figure 6¢), allowing AFT to
achieve robust performance even when a significant fraction
of the pre-trained features is noise (Figure 6b).

Stochastic kernel distance estimation. For an effi-
cient implementation, we estimate the kernel distance

\/E [(kq)(X, X') =k, (X, X'))?| with a mini-batch es-

=P S (ke (@i, 2)) — ko (i, 25))* =

timate
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Algorithm 1 Adaptive Feature Transfer (AFT)

Require: Pre-computed pre-trained features, downstream data,
downstream model fy = W o ¢,
downstream loss function L, batch size B, learning rates
(n1,m2), regularization coefficient 3
1: for each mini-batch Xpaten € REXdin s Ybateh €
]RBXdOUty qIbatch S RBde do
2:  Compute features Ppaten = 0o (Xpaten) € RP*% and
OUtPUIS Ybatch = q)batchWT
3:  Scale pre-trained features Wpaen <— Whatchfd |
4: Subtract the mini-batch mean from ®y,,tcn and Uy a¢cn and
normalize each row
5:  Compute B x B mini-batch kernels K&,

T N T
Dpatch Ppatchs K{fmh = Ypatch Phatch
6:  Compute mini-batch loss L(0) = L(0, Yoatch, Ybatch) and
the kernel distance estimate:

1
50,10 = L [ — K22

7:  Update 6 and p:

0« 0—mVo (i(G) + B4(6, u))7 14— =2V ,,6(6, 1)

8: end for

d w¥
‘ = where K3, and Ky,

% HKg)atch - K{)La\ich are ker-
nel matrices evaluated on a batch of B inputs. We then
perform gradient-descent over (6, (1) jointly. Algorithm 1
details the training procedure, simplifying the update ex-

pression assuming SGD.

Negligible training overhead. We compute and cache
the pre-trained features on the training set once and simply
retrieve them during training without spending additional
time to compute them. Table 1 compares the runtime on an
NVIDIA A100 GPU for training ViT-S/16 (22M parameters)
for one epoch on CIFAR-100 using STL and AFT, where
AFT uses pre-trained features from OpenCLIP ViT-L/14
(303M parameters) (Cherti et al., 2023). As expected, the
overhead of retrieving pre-computed features and comput-
ing the kernel distance is negligible compared to standard
training. Pre-computing the features incurs only a one-time
cost, which takes about 9 minutes for OpenCLIP ViT-L/14
on the CIFAR-100 training set.

Table 1: AFT has negligible training overhead compared to
standard transfer learning. We report 1 epoch training time
on CIFAR-100 for ViT-S/16 with STL and AFT, where AFT
transfers features from OpenCLIP ViT-L/14.

Method  Pre-trained (v)) Downstream (¢)  Time (min)
STL N/A ViT-S/16 1.74
AFT OpenCLIP ViT-L/14  ViT-S/16 1.77

4. Experiments

We evaluate the proposed method Adaptive Feature Trans-
fer (AFT) across a variety of vision, language, and multi-
modal datasets. To probe the effectiveness of the method
in the most impactful and practically relevant scenario, we
transfer from some of the largest and strongest open-source
pre-trained vision and language models such as ViT-G/14
trained with DINOv2 (Oquab et al., 2023) and LLaMA-
2 (Touvron et al., 2023). For AFT, we start with a pre-
trained version of the downstream architecture and optimize
the training loss plus the regularization term in Eq. 8. We
compare AFT against the following methods with compara-
ble computational costs:

e Standard Transfer Learning (STL). STL simply
transfers an initialization from the pre-trained model
for fine-tuning on the downstream task. This approach
prevents the use of any additional pre-trained mod-
els that either differ in architecture or size from the
downstream model. Therefore we transfer from a pre-
trained version of the same downstream architecture
with standard fine-tuning.

e B-Tuning (You et al., 2022). In addition to initial-
izing with a pre-trained version of the downstream
architecture, B-Tuning uses an approximate posterior
predictive distribution of a linear model on top of the
features from all other additional pre-trained models as
a prior. This method demonstrated state-of-the-art per-
formance when transferring from multiple pre-trained
vision models up to ResNet-152 (He et al., 2015) size.
Its effectiveness has yet to be tested for modern mas-
sively pre-trained vision foundation models such as
Vision Transformers (Dosovitskiy et al., 2020).

L]

Knowledge distillation (KD). In addition to initial-
izing with a pre-trained version of the downstream
architecture, we optimize the feature-based KD objec-
tive, which trains the downstream model (student) to fit
the pre-trained (teacher) features (Romero et al., 2014),
with the objective given by Eq. 7. We also include two
more sophisticated variants of KD, relational knowl-
edge distillation (RKD) (Park et al., 2019), which aims
to capture the relation between the features of differ-
ent inputs rather than their absolute values, and factor
transfer (Kim et al., 2018), which trains the student
to predict a highly compressed version of the teacher
features, where the compression is learned by training
an unsupervised autoencoder on the teacher features.

All methods start with the same pre-trained initialization
of the downstream architecture. AFT, B-Tuning, and KD
additionally optimize their respective regularization objec-
tive weighted by a hyperparameter 5 > 0, which is tuned
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Figure 2: Evaluation on 6 vision datasets using ViT-S, MLP-Mixer-B, and ResNet-50 as downstream models. (a) AFT
achieves the lowest normalized error, averaged across all 6 datasets, 3 downstream models, and 3 seeds when transferring
from DINOv2 ViT-G/14. The error is normalized by the STL error before averaging. Error bars show standard errors of the
aggregated performance. (b) Breakdown of unnormalized error for each downstream model and dataset. Error bars show
standard errors across 3 seeds. (¢, d) On CIFAR-100, AFT further improves from combining multiple pre-trained models.

on the validation set. We will use the term ‘“pre-trained
models” to refer to models whose features v are used to
define the regularization objectives, rather than being used
as the initialization for the downstream model. We include
full experiment details, including hyperparameters, in Ap-
pendix A. We report the mean and standard errors computed
across 3 runs for each method.

4.1. Image Classification

Effective transfer from SOTA vision foundation models.
We evaluate AFT’s ability to transfer from state-of-the-art
vision foundation models into commonly used downstream
architectures, including ViT-S (Dosovitskiy et al., 2020),
MLP-Mixer-B (Tolstikhin et al., 2021), and ResNet-50 (He
et al., 2015). We initialize the downstream models with
ImageNet-1K checkpoints for all methods. In Figure 2a
and 2b, we show performance when transferring from DI-
NOv2 ViT-G/14, the largest model in the DINOv2 family
with over a billion parameters, on CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), Oxford
Flowers-102 (Nilsback & Zisserman, 2008), Oxford-IIIT
Pets (Parkhi et al., 2012), Describable Textures Dataset
(DTD) (Cimpoi et al., 2014) and Food-101 (Bossard et al.,
2014) datasets. We find AFT significantly boosts the perfor-
mance of all three models, reducing the error by an average
of over 15% relative to STL performance (Figure 2a), and
outperforms alternatives in most cases. The main exception
is ResNet-50, where KD tends to slightly outperform AFT.

Transfer from multiple pre-trained models In Figure 2¢
and 2d, we show the performance on CIFAR-100 when
transferring from various vision foundation models, includ-
ing BiT ResNet-101x3 (Kolesnikov et al., 2020) (denoted
BiT), OpenCLIP ViT-G (Cherti et al., 2023; Radford et al.,

BN BT WM DINO BN BiT+DINO+CLIP
BN CLIP WM DINO+CLIP
AFT B-Tuning KD
_, 885
< o= 0097 ‘ 0= 064 p=072
o 88.0
Q (¢]
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Linear Probe Accuracy

Figure 3: CIFAR-100 downstream accuracy vs linear
probe accuracy of pre-trained features, averaged across
3 downstream models. AFT most effectively translates
improvements in pre-trained models to improvements in
downstream performance. Marker size is proportional to
the number of parameters in the pre-trained models, ranging
from 87 million to 2.7 billion.

2021) (denoted CLIP) and DINOv2 ViT-G/14 (Oquab et al.,
2023) (denoted DINO). AFT significantly outperforms com-
peting methods. Moreover, AFT consistently achieves the
best performance by transferring from multiple pre-trained
models such as DINO + CLIP or BIT + DINO + CLIP. This
result shows AFT can effectively combine complementary
features learned by these models due to different inductive
biases, pre-training objectives, and pre-training data.

Performance improves with stronger pre-trained models.
With an effective method, we wish the downstream perfor-
mance to consistently improve by transferring from stronger
pre-trained models. A method that successfully transfers
from large to small models at a particular scale may fail
to translate further improvements in pre-trained models to
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improvements in downstream performance.

To test the scalability with respect to pre-trained model qual-
ity, we compare the downstream performance achieved by
each method to the linear probe accuracy of the pre-trained
features, i.e., the accuracy achieved by logistic regression
on the pre-trained features. We use linear probe accuracy
as it measures the amount of useful information we can
extract from large pre-trained models on the downstream
task without expensive fine-tuning, and is widely used as a
metric to estimate the quality of pre-traiend representations
as the models are scaled up (Radford et al., 2021; Oquab
et al., 2023; Chen et al., 2020a; Dosovitskiy et al., 2020).
Figure 3 shows AFT is significantly more effective than
alternatives at translating improvements in pre-trained mod-
els to improvements in downstream performance, with the
highest correlation (0.97) between the downstream accuracy
and pre-trained linear probe accuracy. By comparison, other
methods’ performance saturates early and correlates less
well with the linear probe accuracy, showing the unique
scalability of AFT with respect to pre-trained model quality.

Inference time savings. Table 2 shows the inference time
on CIFAR-100 test set using an NVIDIA A100 GPU for
various ViT models. We have shown that AFT effectively
transfers from pre-trained models as large as DINOv2 ViT-
G/14 to ViT-S/16, which has 50x fewer parameters and
100 x faster inference time.

While the linear probe accuracy of a sufficiently large pre-
trained model can exceed the accuracy of AFT, the linear
probe is only efficient to train (via logistic regression) but
still expensive to deploy, as it requires inference with the
original pre-trained model, and is therefore not a viable
alternative to the methods considered here. For example,
the linear probe accuracy of OpenCLIP ViT-L/14 roughly
matches AFT accuracy when transferred to ViT-S/16 on
CIFAR-100 (Figure 3), but OpenCLIP ViT-L/14 is 20x
larger than ViT-S/16 and is 4.4 x slower to run.

Table 2: Inference times on CIFAR-100 test set. Transfer-
ring from DINOv2 ViT-G/14 to ViT-S/16 reduces inference
times by 100x.

Model Params (M) Inference time (min)
ViT-S/16 22 0.33
OpenCLIP ViT-L/14 303 1.45
DINOvV2 ViT-G/14 1136 34.2

4.2. Natural Language Processing

We explore transferring from larger open-source large lan-
guage models, such as GPT-2 (Radford et al., 2019), Flan-
T5 (Chung et al., 2022), and LLaMA 2 (Touvron et al.,

2023), into much smaller language models, namely BERT
Small (Devlin et al., 2018) and DistillBERT (Sanh et al.,
2020). We follow common practices for extracting input-
level features: using the embedding of the [CLS] token for
BERT models and the decoder’s embedding of the last token
for GPT-2, Flan-TS5, and LLaMA. In Appendix A.2, we pro-
vide details on input formatting and discuss memorization
concerns.

We evaluate the performance of AFT and competing meth-
ods at transferring from Flan-T5 Large to BERT Small
and DistillBERT on 8 datasets: Large Movie Review
(IMDB)(Maas et al., 2011), BoolQ (Wang et al., 2019),
MNLI (Williams et al., 2018), SST-2 (Socher et al., 2013),
MRPC (Dolan & Brockett, 2005), QQP (Wang et al., 2018),
QNLI (Rajpurkar et al., 2016), and RTE (Wang et al., 2018).
In Figures 4a and 4b, we show that AFT significantly out-
performs the competing methods. As in the vision datasets,
AFT most effectively translates improvements in pre-trained
models to improvements in downstream performance. In
Figure 5, we observe that using AFT with instruction-tuned
pre-trained language models like Flan-T5 and LLaMA Chat
leads to the best post-transfer performance, aligning with
their superior zero-shot question answering capabilities
(Chung et al., 2022).

In Figure 5, unlike in vision datasets, we find that combining
multiple pre-trained models often does not improve their
linear probe accuracy or the accuracy achieved by AFT, sug-
gesting little complementary information is learned between
these pre-trained language models. This may be due to the
high similarity in pre-training datasets, objectives, and archi-
tectures among these transformer-based generative models,
which are predominantly trained with next or masked token
prediction on similar distributions of internet text.

4.3. Multi-modality

AFT’s ability to efficiently transfer from multiple models
makes it well-suited for multi-modal applications. In these
settings, modality-specific sub-components, such as im-
age and text encoders in CLIP (Radford et al., 2021), can
benefit from transferring complementary features learned
by pre-trained models in each modality. We demonstrate
this on SNLI-VE (Xie et al., 2019; 2018), a visual en-
tailment dataset where the goal is to determine if a text
corresponds to an image. Using ResNet-50 CLIP as the
downstream model, we construct a classifier fp(xy, x7) =
Wo(xy, xr) with features ¢(xy, xr) given by the tensor
product ¢;(x;) ® ¢r(xr), representing pairwise interac-
tions between image and text features. Table 3 shows that
AFT improves CLIP’s performance by simultaneously trans-
ferring from a ViT-L/14 trained with DINOv2 and LLaMA
13B.
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Figure 4: Evaluation on 8 language dataset using BERT Small and DistillBert as downstream models. (a) AFT
achieves the lowest normalized error, averaged across 6 datasets, 2 downstream models, and 3 seeds, when transferring from
Flan-T5 Large. The error is normalized by the STL error before averaging. The error is normalized by the STL error before
averaging. Error bars show standard errors of the aggregated performance. (b) Breakdown of unnormalized error for each
downstream model and dataset. Error bars show standard errors across 3 seeds.
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Figure 5: BoolQ downstream accuracy v.s. linear probe
accuracy of pre-trained features, averaged across two
downstream models on BoolQ. AFT most effectively trans-
lates improvements in pre-trained models to improvements
in downstream performance. Marker size is proportional
to the log of the number of parameters in the pre-trained
models, ranging from 61 million to 14 billion.

Table 3: AFT improves CLIP’s accuracy on SNLI-VE by
transferring from DINOv2 and LLaMA 13B.

AFT
74.39+0.18

STL
73.69+0.28

KD
74.0540.05

Method
SNLI-VE Acc.

5. Analyzing Why AFT works

Having demonstrated AFT as a highly effective method,
we now perform experiments to verify our understanding
of why AFT works and reveal which design decisions are
important.

5.1. AFT upweights features that generalize better

If the learned weights 1 in AFT indeed upweight the more
informative features, then we expect a linear probe trained
on the weighted features 1) should outperform one trained
on the original features . In Figure 6a, we show the lin-
ear probe error on CIFAR-100 with the original pre-trained
features v from BiT 50x3, OpenCLIP ViT-G, or DINOv2
ViT-G, and on the weighted features p1), where the weights
w are learned by AFT when transferring to ViT-S. We find
weighing the pre-trained features by the AFT weights im-
proves the linear probe performance for all pre-trained mod-
els, showing that AFT indeed identifies and upweights pre-
trained features that leads to better generalization on the
downstream task.

5.2. AFT is robust to uninformative features

As the adaptive nature of AFT enables it to automati-
cally downweight irrelevant features without any inter-
vention, we expect it to perform well even when a large
number of pre-trained features are completely uninfor-
mative of the downstream task. To test this hypothesis,
we transfer from DINOv2 ViT-G/14 and a random noise
model whose features are drawn from A'(0, I, ... ), where
dnoise € {0,512,2048} is its feature dimension, into ViT-
S/16 on CIFAR-100.

Results in Figure 6b clearly illustrate the limitations of
compression-based objectives like KD, whose performance
quickly degrades to near STL level as we introduce the
noise features, since the downstream model is trained to
learn many useless features. By constrast, AFT performance
is nearly unaffected by the presence of noise features. In
Figure 6¢, we show this robustness because the learned
weights 1; in AFT are much smaller for the noise features.
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Figure 7: Ablation experiments. Using the kernel and
learning p is essential for AFT’s performance, whereas
using an RBF kernel and bi-level optimization over (u, 6)
barely impacts performance. Making y dense slightly hurts
performance.

5.3. Ablation experiments

We investigate the impact of key design choices in AFT
on its performance on CIFAR-100 and BoolQ. We com-
pare AFT with four other variants where we a) do not use
the kernel formulation and instead use the {2 objective in
Eq. 6 (No kernel), b) disable the ability to learn p and
fix it to be the identity (Identity u), ¢) Use a dense rather
than diagonal p (Dense 1), d) replace the linear kernel
k(z,2") = ¢(z) " () with radial basis function (RBF)
kernel k(z,z') = exp(—||¢(ar) - ¢(m’)||2) (RBF), and e)
use bi-level optimization over 6 and . by performing 5 inner
updates for i per update of 6 (Bi-level).

We find using the kernel formulation and learning the feature
weights p are essential to AFT’s performance, while the
use of alternative kernels such as the RBF kernel and bi-
level optimization does not impact the performance in any

significant way. Learning a dense rather than diagonal p
slightly hurts performance.

6. Discussion

Transfer learning — pre-training then fine-tuning — is be-
coming the mainstream paradigm for deploying deep learn-
ing models. However, the default approach to transfer
learning remains surprisingly naive, transferring limited
and generic information: simply use the pre-trained weights
as an initialization for the downstream loss optimization.
There is therefore a great need to develop transfer learning
procedures more tailored to the task at hand.

Through AFT, we have shown that a simple, general, and
computationally efficient approach exists for transferring
knowledge from large models to small models. An impor-
tant takeaway from AFT is that aligning what is transferred
to the small downstream model with the specific down-
stream task is crucial for effective transfer learning, showing
this large-to-small transfer fundamentally differs from just
model compression. As future works uncover even more ef-
fective methods for large-to-small transfer, our fundamental
understanding of transfer learning will further advance.

AFT offers a trade-off between reducing the cost of trans-
fer learning and the potential performance improvements.
AFT is inherently limited by the reduced representational
capacity of small downstream models. This limitation can
be mitigated by selecting more expressive downstream mod-
els, albeit at the cost of diminished savings in training and
inference. Furthermore, the current formulation of AFT pri-
oritizes simplicity, generality, and computational efficiency
by restricting the transfer to only the last layer features.
Expanding and optimizing the set of features transferred
via AFT is an exciting direction for future work that may
significantly further enhance performance.
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A. Experiment details

We tune the hyperparameter 3 for AFT, KD, and B-Tuning in all experiments by holding out 10% of the original training
set and selecting the g value that yields the highest accuracy on this holdout set. Once the optimal /3 is determined, we
train the models on the entire training set using this value. Our implementations of relational knowledge distillation (RKD)
and B-Tuning are based on their original implementations, available at https://github.com/lenscloth/RKD and
https://github.com/thuml/LogME, respectively. Following Park et al. (2019), we weigh the angle loss and the
distance loss in RKD at a 2:1 ratio. For Factor Transfer, we replace the original CNN-based paraphraser and translator
networks with MLPs, as we work with the last layer features, which lack spatial dimensions, instead of the intermediate
CNN feature maps used in the original paper (Kim et al., 2018).

A.1. Vision experiments

We use the timm (Wightman, 2019) implementation for all vision models, their pre-trained checkpoints, and data preprocess-
ing pipelines. We do not use data augmentation in any experiment.

We use the Adam optimizer in all experiments and train for 5000 steps (rounded up to whole epochs) with a batch size of
128 and a cosine Ir decay schedule. We use a base learning rate of 1e — 4 for ViT-S/16 and MLP Mixer-B, and le — 3
for ResNet-50. We tune 3 € {3, 10,30} for AFT, 8 € {0.1,1, 10,100} for KD, RKD, FT, and 8 € {1, 1e2, 1e3, 1e4} for
B-Tuning. We use the Adam optimizer and a learning rate of 1e — 2 for updating the vector s parameterizing the diagonal
elements of (.

A.2. Language experiments

We use the Hugging Face implementation of all the language models. We use the Adam optimizer in all experiments and
train for 5000 steps (rounded up to whole epochs) with a batch size of 64 and a cosine Ir decay schedule. We use a base
learning rate of 2e — 5 for both BERT Small and DistilBERT. We tune 8 € {1, 3,10} for AFT, 8 € {0.01,0.1,1,10} for
KD, RKD, FT, and § € {1, 1e2, 1e3, le4} for B-Tuning. We use the Adam optimizer and a learning rate of le — 2 for
updating the vector s parameterizing the diagonal elements of .

We format each example as follows before feeding it into the language model:

IMDB (Maas et al., 2011): (review) Overall, the sentiment of my review is
* BoolQ (Wang et al., 2019): Question: (question)\n Reference: (passage)\n Answer:

e MNLI (Williams et al., 2018): Premise: (premise)\n Hypothesis: (hypothesis)\n Does the premise entail the
hypothesis? Answer:

* SST-2 (Socher et al., 2013): Review: ”(sentence)”\n Sentiment:

* MRPC (Dolan & Brockett, 2005): Sentence 1: (sentencel)\n Sentence 2: (sentence2)\n Is Sentence 1 equivalent to
Sentence 27 Answer:

* QQP (Wang et al., 2018): Question 1: (questionl)\n Question 2: (question2)\n Are Question 1 and Question 2
equivalent? Answer:

* QNLI (Rajpurkar et al., 2016): Question: {question)\n Sentence: (sentence)\n Does the sentence answer the question?
Answer:

* RTE (Wang et al., 2018): Sentence 1: (sentencel)\n Sentence 2: (sentence2)\n Does Sentence 1 entail Sentence 2?
Answer:

On memorization concerns. Language models are pre-trained on internet-scale data, making it difficult to rule out the
possibility that the benchmarks we evaluated on are not in their training set. However, this concern is irrelevant for us as our
experiments aim only to compare each method’s effectiveness in transferring knowledge from the pre-trained models rather
than establishing some absolute level of downstream performance on these benchmarks.
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A.3. SNLI-VE experiments

We use the official OpenAl implementation of CLIP ResNet-50 (Radford et al., 2021). We use the Adam optimizer in all
experiments and train for 1 epoch with a batch size of 64. We use a base learning rate of 1le — 5 for CLIP ResNet-50. We
tune 8 € {1, 3,10} for AFT, and 8 € {0.01,0.1, 1} for KD. We use the Adam optimizer and a learning rate of 1e — 2 for
updating the vector s parameterizing the diagonal elements of .

B. Extended results
Table 4: Unnormalized results for transfer to ViT-S/16 in Figure 2c.
Method BiT CLIP DINO DINO+CLIP  BiT+DINO+CLIP
KD 87.79410.07 88.0640.06 88171006 87.9610.21 88.1310.01
B—Tuning 88.01i0_05 88.57i0_06 88.5410411 88.66i0_13 88.67i0_04
AFT 88.2510.09 88.5610.06 88.8810.06 89.2310.10 89.1440.00

Table 5: Unnormalized results for transfer to MLP-Mixer in Figure 2d.

Method BiT CLIP DINO DINO+CLIP BiT+DINO+CLIP
KD 86.2140.05 86.63109.13 86.4210.11  86.5510.27 86.4040.06
B—Tuning 87.34:|:0,06 87.42:|:0,10 87.20:‘:0,16 87.43:|:0_02 87.27:|:0_04
AFT 87.4040.03 87.924002 87.7640.11 88.2310.07 88.4210.02

Table 6: Unnormalized results for transfer to ResNet-50.

Method BiT CLIP DINO DINO+CLIP BiT+DINO+CLIP
KD 86.641015 87.321016 87.18:010 87.6210.07 87.29. 0 14
B—Tuning 85.57i0.10 85.42i0,04 85-49iNaN 85.06i0,05 85.19i0.11
AFT 86.17+0.05 86.78+0.07 86.9110.00  87.18+40.04 87.08+0.10
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