
Compute Better Spent: Replacing Dense Layers with Structured Matrices

Shikai Qiu * 1 Andres Potapczynski * 1 Marc Finzi 2 Micah Goldblum 1 Andrew Gordon Wilson 1

Abstract

Dense linear layers are the dominant computa-

tional bottleneck in foundation models. Iden-

tifying more efficient alternatives to dense ma-

trices has enormous potential for building more

compute-efficient models, as exemplified by the

success of convolutional networks in the image

domain. In this work, we systematically explore

structured matrices as replacements for dense ma-

trices. We show that different structures often

require drastically different initialization scales

and learning rates, which are crucial to perfor-

mance, especially as models scale. Using insights

from the Maximal Update Parameterization, we

determine the optimal scaling for initialization

and learning rates of these unconventional lay-

ers. Finally, we measure the scaling laws of dif-

ferent structures to compare how quickly their

performance improves with compute. We pro-

pose a novel matrix family containing Monarch

matrices, the Block Tensor-Train (BTT), which

we show performs better than dense matrices for

the same compute on multiple tasks. On CIFAR-

10/100 with augmentation, BTT achieves expo-

nentially lower training loss than dense when

training MLPs and ViTs. BTT matches dense ViT-

S/32 performance on ImageNet-1k with 3.8 times

less compute and is more efficient than dense for

training small GPT-2 language models.

1. Introduction

Regardless of their architectures, most neural networks con-

sist of interleaved linear layers and simple non-linearities.

In large foundation models such as GPT-3 (Brown et al.,

*Equal contribution 1New York University 2Carnegie Mellon
University. Correspondence to: Shikai Qiu <sq2129@nyu.edu>,
Andres Potapczynski <ap6604@nyu.edu>, Marc Finzi
<maf820@nyu.edu>, Micah Goldblum <goldblum@nyu.edu>,
Andrew Gordon Wilson <andrewgw@cims.nyu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2020), these linear layers consume the vast majority of the

parameters and computation (Kaplan et al., 2020), and are

primarily represented by dense matrices. Substituting these

dense matrices with structured matrices with fast matrix-

vector multiplies (MVMs) has the potential to significantly

improve the computational efficiency of these models. Un-

fortunately, there often isn’t an obvious algebraic structure

to exploit in the linear layers of such models, which process

end-to-end learned token embeddings rather than objects

with clear structures like images (Vaswani et al., 2017).

Structured matrices, however, are not limited to encoding

domain-specific inductive biases. They can also offer advan-

tages over dense matrices by enabling different allocations

of the same computational budget. For example, a struc-

tured layer can be much wider than a dense layer given the

same number of parameters and compute. The compute

cost C of an MVM is O
(

d2
)

for a d× d dense matrix, but

only O
(

d3/2
)

for a block diagonal matrix with
√
d blocks.

Consequently, given the same compute C, the width can be

at most O
(

C1/2
)

for a dense layer, but O
(

C2/3
)

for such a

block diagonal layer. We can replace a dense layer of width

1024 with a 10× wider block diagonal layer, as illustrated in

Figure 1a. Both layers have the same number of parameters

and compute costs, but a larger width enables the model to

potentially store more information in its activations and use

more non-linearities to model complex functions. In this

light, structured matrices do not merely approximate dense

matrices but enable different ways of scaling up the models

with compute that make them potentially more expressive.

To study how structured layers compare against dense layers

as a function of compute, we will compare their scaling laws:

how compute translates to performance as the models scale

up. Across domains such as language, image, and video

modeling, the loss or error rate E of a well-trained neural

network has shown to be highly predictable as a function of

the compute C required by the model, often well-described

by a power law E ∝ C−α when data is not a bottleneck

(Kaplan et al., 2020; Sharma & Kaplan, 2022; Hoffmann

et al., 2022). If structured layers can achieve better scaling

laws, they will outperform dense layers at scale, delivering

exponentially better performance per unit compute if they

can improve the scaling exponent α.

In this work, we systematically study whether structured

1

a
rX

iv
:2

4
0
6
.0

6
2
4
8
v
1

[c

s.
L

G
]

 1
0
 J

u
n
 2

0
2
4

Compute Better Spent: Replacing Dense Layers with Structured Matrices

Structure MVM FLOPs # Params Modeling assumptions Example applications

Dense d2 d2 General linear maps MLPs, Transformers

Low-Rank 2rd 2rd Compression Bottleneck layers, Linear attention

Convolution pd p Translation equivariance Images, Time-series

Kronecker 2d3/2 2d Sets, Graphs, Grids GPs, Deep Sets, Attention, GNNs

Monarch 2d2/b 2d2/b Flexible Compute-efficient linear layers

TT 2rd3/2 2rd Subsystems, Local interactions Hidden Markov Models, Spin systems

BTT 2rd3/2 2rd3/2 Flexible Compute-efficient linear layers

Table 1. Overview of the computational properties, modeling assumptions, and applications of structured matrices we consider.

Some structures require the same FLOPs as parameters for a matrix multiply, while others require more FLOPs. d is the size of the matrix,

r is the rank in low-rank, TT, and BTT, p is the kernel size in a convolution, and b is the number of blocks in Monarch. We assume 2 cores

each of size
√

d for Kronecekr, TT and BTT.

FLOPs. By first performing a dimension reduction on the

input via V, a low-rank matrix assumes that only a subspace

of the input space is relevant to the task and is natural for

compression (Zhao et al., 2024; Wang et al., 2020).

Convolution. Convolutions, or Toeplitz matrices, nat-

urally model systems with translational symmetries such

as images (LeCun et al., 1998a; Krizhevsky et al., 2012;

He et al., 2015b) and time-series (Wilson & Adams, 2013).

A convolution with kernel size p has p parameters and re-

quires O(pd) FLOPs. Each parameter is used O(d) times

in a convolution to impose translational symmetry. Alterna-

tively, the Fast Fourier transform allows the convolution to

be computed in O(d log d) FLOPs.

Kronecker. Kronecker product structure naturally arises

in applications with structured data (Perez et al., 2017;

Titsias, 2009; Maron et al., 2020; SaatcËi, 2012; Wilson

& Nickisch, 2015). A Kroncker product W = L ⊗ R

with L ∈ R
d1×d1 , R ∈ R

d2×d2 , d = d1 · d2, speci-

fies a matrix whose MVM y = Wx can be efficiently

computed as yαβ =
∑

γ Lαγ

∑

δ Rβδxγδ, after reshap-

ing the input x in row-major order into a d1 × d2 matrix

and followed by flattening y back to a vector. Assuming

d1 = d2 =
√
d, W has 2d parameters and requires 2d3/2

FLOPs for an MVM. The Kronecker product uses each

parameter
√
d times, which can be made explicit by inter-

preting
∑

δ Rβδxγδ (the same argument applies to the sum

involving L) as multiplying the vector x by a block-diagonal

matrix
⊕

√
d

γ=1 Rγ , where all the blocks Rγ ∈ R

√
d×

√
d are

shared: Rγ = R, γ = 1, . . . ,
√
d. This parameter-sharing

naturally corresponds to the assumption that the input x

represents a set of objects of the same kind, such as nodes

in a graph (Kipf & Welling, 2016), patches of an image

(Tolstikhin et al., 2021), points on a grid (SaatcËi, 2012), or

words in a sentence (Vaswani et al., 2017; Elhage et al.,

2021).

Monarch. Introduced in Dao et al. (2022), a Monarch

matrix is defined as the product PLP⊤R where P is a

row-major to column-major permutation and L,R are two

block-diagonal matrices:
⊕

√
d

β=1 Lβ ,
⊕

√
d

γ=1 Rγ . Monarch

requires 2d3/2 FLOPs for an MVM and has 2d3/2 param-

eters. The efficient multiply for Monarch can be written

as yαβ =
∑

γ Lαβγ

∑

δ Rβγδxγδ, where Rβγδ = (Rγ)βδ
and Lαβγ = (Lβ)αγ and we have colored the block di-

mensions β, γ. Monarch can be viewed as a relaxation of

the Kronecker product where parameters that were shared

across the block dimensions are now made independent.

Monarch matrices do not make strong assumptions about

the structure of the input. In practice, the number of blocks

b in L and R are often chosen to be much less than
√
d to

reduce sparsity (Dao et al., 2022; Fu et al., 2023). In this

case, Monarch has 2d2/b parameters and requires 2d2/b
FLOPs for an MVM.

Tensor-Train. The Tensor-Train (TT) decomposition

(Oseledets, 2011) specifies a set of c cores G(i) ∈
R

ri×mi×ni×ri−1 for i = 1, . . . , c where d =
∏

i mi =
∏

i ni, ri ∈ N and r0 = rc = 1. For ease of notation, we

will focus on c = 2 with m1 = m2 = n1 = n2 =
√
d, r1 =

r, G(1) = R ∈ R
r×

√
d×

√
d,G(2) = L ∈ R

√
d×

√
d×r,

though we present the general case in Appendix C. With

the input and output as reshaped as
√
d ×

√
d matrices, a

TT matrix is equivalent to a sum over r Kronecker products

indexed by σ = 1, . . . , r:

yαβ =
∑

γσ

Lαγσ

∑

δ

Rσβδxγδ. (1)

By increasing r, referred to as the TT-rank, TT becomes

more expressive relative to the Kronecker product. When

r = d, it can represent any d × d dense matrix. TT has

2rd parameters and costs 2rd3/2 FLOPs for an MVM. Like

Kronecker, TT shares parameters along the block dimen-

sions β, γ and therefore uses each parameter
√
d times in

an MVM. The TT structure is natural for modeling systems

that decompose into subsystems with local pairwise inter-

actions, such as quantum spin chains and hidden Markov

3

Compute Better Spent: Replacing Dense Layers with Structured Matrices

models (Fannes et al., 1992; Critch et al., 2014).

Block Tensor-Train. We propose a novel family of struc-

tured matrices called Block Tensor-Train (BTT) matrices,

by removing the parameter-sharing along the block dimen-

sions β, γ in the TT structure. In the two core (c = 2) case,

a BTT matrix of BTT-rank r is defined by two parameter

tensors R ∈ R
r×

√
d×

√
d×

√
d and L ∈ R

√
d×

√
d×

√
d×r. Its

MVM is given by

yαβ =
∑

γσ

Lαβγσ

∑

δ

Rσβγδxγδ. (2)

In Appendix C, we study the expressiveness of BTT, present

a simple algorithm for projection onto the BTT family, and

show BTT with rank r =
√
d can represent any dense matrix

(in constrast to r = d for TT) when c = 2 and analogous

results for c > 2. Therefore, by varying the BTT rank, we

effectively interpolate between Monarch matrices and dense

matrices.

We use the Linear Operator abstractions available in

CoLA (Potapczynski et al., 2024) to compute MVMs for

these structures efficiently. In Appendix B, we show the

structures we consider have asymptotically the same MVM

runtimes as dense matrices as a function of FLOPs because

they can be implemented through the same dense matrix

multiply primitives, though they introduce non-trivial over-

head for small matrix sizes with our current implementation.

3. Optimizing Structured Matrices

To study the performance and scaling laws of unconven-

tional layers, we must determine how to optimize them

effectively by choosing appropriate initialization and learn-

ing rates as the models scale. As Figure 1c illustrates, the

optimal settings for structured matrices can differ signifi-

cantly from dense matrices. We develop a technique based

on the Maximal Update Parameterization (µP) (Yang & Hu,

2021; Yang & Littwin, 2023; Yang et al., 2021) to auto-

matically determine the optimal initialization and learning

rate scaling for a generic structured layer given its structure

and size, enabling us to train and scale various structured

layers with good hyperparameters and minimal tuning. We

focus on the Adam optimizer (Diederik P. Kingma, 2015)

but discuss extensions to other optimizers in Appendix H.

3.1. Maximal Update Parameterization

The Maximal Update Parameterization (µP) (Yang & Hu,

2021; Yang & Littwin, 2023; Yang et al., 2021) specifies

how to scale the initialization and learning rate of neural

networks as their widths increase while maximizing feature

learning in every layer (Yang & Hu, 2021). Yang et al.

(2023a) provides an elementary derivation based on the

spectral norm, which we now review.

In µP, initialization and learning rates are chosen so that

entries of each layer’s output have size Θ(1) and are up-

dated at a rate of Θ(1) per step throughout training. Here,

big-Θ notation denotes scaling in the layer’s width, omitting

dependence on other quantities. If these conditions do not

hold, the layer’s output or update will either diverge or van-

ish for sufficiently large widths. For a dense matrix W ∈
R

dout×din , input x ∈ R
din , output h = Wx ∈ R

dout , and

output update ∆h = ∆Wx due to a weight update ∆W,

µP requires ∥h∥2 = Θ(
√
dout) and ∥∆h∥2 = Θ(

√
dout).

During training, gradient descent aligns x with the top

singular subspace of W and ∆W (Yang et al., 2023a;

Yang & Littwin, 2023), so ∥h∥2 = Θ(∥W∥2∥x∥2) and

∥∆h∥2 = Θ(∥∆W∥2∥x∥2). Assuming x is entry-wise

Θ(1), we want ∥W∥2 = Θ(
√

dout/din) and ∥∆W∥2 =

Θ(
√

dout/din). To ensure the desired spectral norm at ini-

tialization, entries of W are drawn from N (0, σ2) with

σ = Θ(
√

min(din, dout)/d2in). For the updates, the gra-

dient ∇WL = 1
B

∑B
i=1 ∇hiL · x⊤

i has Θ(1) stable rank,

assuming the batch size B is constant, so its spectral norm

scales the same way as its Frobenius norm. Since Adam nor-

malizes the gradient to be entry-wise Θ(1), the normalized

gradient has Frobenius norm Θ(
√
dindout). Therefore, an

Adam learning rate of Θ(1/din) ensures the desired spectral

norm.

Once the optimal learning rate η∗ is found for a particu-

lar width din, it can be transferred to any other width d′in
by setting the new learning rate as η∗ · din

d′

in

, assuming din

and d′in are sufficiently large (Yang et al., 2021). For ar-

chitectures, µP deviates from conventional initializations

mainly in the last layer, where σ = Θ(1/din) according to

µP but σ = Θ(
√

1/din) according to more conventional

strategies (LeCun et al., 2002; Glorot & Bengio, 2010; He

et al., 2015a).

3.2. Identifying µP for Structured Matrices

The above scaling of learning rate and initialization assume

dense matrices and don’t immediately carry over to arbitrar-

ily structured matrices. For example, for a Kronecker prod-

uct W = L⊗R where W ∈ R
d×d and L,R ∈ R

√
d×

√
d,

one intuitively expects that the optimal learning rates for

parameters L and R in this layer to scale as Θ(1/
√
d), the

size of the actual learnable parameter matrices, rather than

naively as Θ(1/d) based only on the width of the layer.

Since many structured matrices are ultimately compositions

of smaller dense matrices and fixed, norm-preserving lin-

ear transformations (e.g. reshapes), as exemplified in Sec-

tion 2, we can decompose the problem by applying the

same spectral considerations to each dense component sep-

arately, effectively treating each structured layer as a deep

linear network. Suppose the MVM Wx can be computed as

Wx = GkPk . . .G1P1x where each Pi is a fixed, norm-

4

Compute Better Spent: Replacing Dense Layers with Structured Matrices

learning rate ηi for each parameter tensor Gi in a dout×din
structured layer as ηi = η0

d0

din
∝ 1/din, where the base

learning rate η0 and the base width d0 are constants, corre-

sponding to scaling the learning rate optimally according to

µP if the layer were dense. The structure-aware approach

additionally applies the structure-dependent learning rate

multipliers κi in Table 2 so that ηi = η0
d0

din
κi. We use

d0 = 64 throughout this section.

Stable feature learning. We train an MLP with 2 hid-

den layers without bias on CIFAR-10 with width d ∈
{16, 64, 256, 1024, 4096} and a base learning rate η0 =
3 · 10−3. For a given width, we track the root mean square

(RMS) of ∆ht = ht+1 −ht at every step t, where ht ∈ R
d

is the activation of the last layer before the classification

head. We then plot the the average RMS over 500 steps

for different widths and structures. As seen in Figure 2,

structure-aware learning rate scaling produces consistent

feature learning for all structures used with no tuning. In

contrast, the naive approach causes much smaller or vanish-

ing updates to the features. The effect is most pronounced

for BTT and Kronecker, for which κi grows without bound

for both L and R as the width increases.

Stable optimal learning rate. We test if the structure-aware

learning scaling preserves the learning rate landscape for all

structures so that once an optimal learning rate is found for

the dense model with some width, it can be directly trans-

ferred to all other structures and widths. We train a 2-layer

MLP on CIFAR-10 with augmentation (see Section 4 for de-

tails) for 100 epochs, using a base learning rate of 3 · 10−3,
the optimal value for a dense model at with d0 = 64. In the

first row of Figure 2b, we show the train error as a function

of the base learning rate η0 when scaled to other widths and

structures using the naive approach, which is optimal for

the dense model but clearly not for the other structures. By

contrast, in the second row, the structure-aware approach

approximately stabilizes the learning rate landscape across

structures and widths, significantly reducing the cost for ex-

ploring different structures. Slight deviation at small widths

is expected because the optimality of µP relies on conver-

gence to the infinite-width limit (Yang & Hu, 2021).

Improved performance even after tuning. Finally, we

show in Figure 1c the performance of structured models

quickly saturate as they are scaled up without structure-

aware learning rates. Monarch is an exception, for which

the multipliers in Table 2 are closer to 1 because we use

b = 4. In this case, the learning rate multiplier required for

Monarch is only 2 and independent of scale, which may ex-

plain why Dao et al. (2022) still achieves good performance

with Monarch by reusing the dense learning rates.

Furthermore, the structure-aware approach not only reduces

the tuning cost for structured layers, but is necessary for

optimal performance if the structures differ across layers,

even when we perform a grid search over the base learning

rate η0. Consider a transformer of hidden dimension d
where only the feed-forward layers (FFN) are replaced with

BTT and the attention projection matrices are dense. Since

the optimal learning rate is Θ(1/
√
d) for the FFN layer

but Θ(1/d) for the attention projection, the naive approach

would have to choose between using a learning rate too

large for the attention projection or a learning rate too small

for the FFN, whereas the structure-aware approach does not

have this problem. In Figure 3, we show that for a ViT with

BTT-structured FFNs, the structure-aware approach indeed

achieves much better performance even if we tune the base

learning rate.

4. Scaling Laws of Structured Matrices

Having developed an effective procedure to automatically

scale the initialization and learning rates for structured lay-

ers, we now aim to understand how various structures com-

pare in performance.

When data is not a bottleneck, a neural network’s test error

or loss on a task follows a power law E ∝ P−αP if trained

to (near) convergence, where P is the number of parameters

and αP is a constant (Kaplan et al., 2020; Hoffmann et al.,

2022; Henighan et al., 2020). For dense models, compute

per forward pass C ∝ P , so E ∝ C−αC for some constant

αC . We explore how different structures change how E
scales with C, as P does not consistently relate to training

or inference cost when varying the structure (Table 1).

We train all models for a fixed number of iterations T , so

the total training compute Ctot ∝ C. Thus, the scaling laws

in C can differ from compute-optimal scaling laws, which

require carefully optimizing the allocation of Ctot ∝ CT
between C and T (Kaplan et al., 2020; Hoffmann et al.,

2022), which we leave to future work.

To compare multiple structures across compute scales, we

conduct experiments primarily using MLPs and ViTs on

CIFAR-10 and CIFAR-100. In Section 5, we present larger-

scale experiments on ImageNet and language modeling.

With limited training data in CIFAR-10 and CIFAR-100,

we apply heavy augmentation to alleviate over-fitting. The

augmented training set is sufficiently large, resulting in

relatively clean power-law scaling of training error with

C. We extract these power law parameters, reflecting the

expressivity afforded by each structure as a function of C,

and visualize the scaling of test error with C, which is not

well-described by a power law due to train-test discrepancy.

Experimental setup. We use CIFAR-10 and CIFAR-

100 datasets, applying random crop, random flip, MixUp

(αmixup = 0.8) augmentations, and label smoothing of 0.3,

following Bachmann et al. (2023). We use the same MLP

architecture as in Bachmann et al. (2023), but apply a fixed

6

Compute Better Spent: Replacing Dense Layers with Structured Matrices

Impact Statement

This work aims to improve the performance of MLPs and

transformers per unit of compute. Making neural networks

more efficient has the potential to reduce energy consump-

tion of training and inference, and more efficient neural

networks can also make deep learning accessible where

compute resources are scarce. However, we caution that the

matrix structures we use should be tested in new domains, at

new architectural scales, and within new architectures, to en-

sure that our results extrapolate for a practitioner’s specific

individual needs.

References

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer Normaliza-

tion. Preprint arXiv 1607.06450, 2016.

Bachmann, G., Anagnostidis, S., and Hofmann, T. Scal-

ing mlps: A tale of inductive bias. arXiv preprint

arXiv:2306.13575, 2023.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma,

U. Explaining neural scaling laws. arXiv preprint

arXiv:2102.06701, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:

1877±1901, 2020.

Chekalina, V., Novikov, G., Gusak, J., Oseledets, I., and

Panchenko, A. Efficient GPT Model Pre-training us-

ing Tensor Train Matrix Representation. Preprint arXiv

2306.02697, 2023.

Critch, A., Morton, J., et al. Algebraic geometry of ma-

trix product states. SIGMA. Symmetry, Integrability and

Geometry: Methods and Applications, 10:095, 2014.

Dao, T., Chen, B., Sohoni, N., Desai, A., Poli, M., Grogan,

J., Liu, A., Rao, A., Rudra, A., and RÂe, C. Monarch:

Expressive Structured Matrices for Efficient and Accurate

Training. International Conference on Machine Learning

(ICML), 2022.

Diederik P. Kingma, J. B. Adam: A Method for Stochastic

Optimization. International Conference on Learning

Representations (ICLR), 2015.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,

D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,

Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An

Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale. Preprint arXiv 2010.11929, 2020.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,

N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,

T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-

Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,

L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,

Kaplan, J., McCandlish, S., and Olah, C. A math-

ematical framework for transformer circuits. Trans-

former Circuits Thread, 2021. https://transformer-

circuits.pub/2021/framework/index.html.

Fannes, M., Nachtergaele, B., and Werner, R. F. Finitely cor-

related states on quantum spin chains. Communications

in mathematical physics, 144:443±490, 1992.

Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G. Gen-

eralizing convolutional neural networks for equivariance

to lie groups on arbitrary continuous data. In Interna-

tional Conference on Machine Learning, pp. 3165±3176.

PMLR, 2020.

Frankle, J. and Carbin, M. The Lottery Ticket Hypothesis:

Finding Sparse, Trainable Neural Networks: w. Interna-

tional Conference on Learning Representations (ICLR),

2018.

Fu, D. Y., Arora, S., Grogan, J., Johnson, I., Eyuboglu, S.,

Thomas, A. W., Spector, B., Poli, M., Rudra, A., and RÂe,

C. Monarch Mixer: A Simple Sub-Quadratic GEMM-

Based Architecture. Advances in Neural Information

Processing Systems (NeurIPS), 2023.

Glorot, X. and Bengio, Y. Understanding the difficulty

of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on

artificial intelligence and statistics, pp. 249±256. JMLR

Workshop and Conference Proceedings, 2010.

Han, S., Mao, H., and Dally, W. J. Deep Compression: Com-

pressing Deep Neural Networks with Pruning, Trained

Quantization and Huffman Coding. The 4th International

Conference on Learning Representations (ICLR), 2016.

Hayou, S., Ghosh, N., and Yu, B. Lora+: Efficient

low rank adaptation of large models. arXiv preprint

arXiv:2402.12354, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep

into rectifiers: Surpassing human-level performance on

imagenet classification. In Proceedings of the IEEE inter-

national conference on computer vision, pp. 1026±1034,

2015a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-

ing for Image Recognition. Preprint arXiv 1512.03385,

2015b.

Hendrycks, D. and Gimpel, K. Gaussian Error Linear Units

(GELUs). Preprint arXiv 1606.08415, 2016.

10

Compute Better Spent: Replacing Dense Layers with Structured Matrices

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C.,

Jackson, J., Jun, H., Brown, T. B., Dhariwal, P., Gray, S.,

et al. Scaling laws for autoregressive generative modeling.

arXiv preprint arXiv:2010.14701, 2020.

Henry, A., Dachapally, P. R., Pawar, S., and Chen, Y.

Query-key normalization for transformers. arXiv preprint

arXiv:2010.04245, 2020.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,

Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,

Welbl, J., Clark, A., et al. Training compute-optimal

large language models. arXiv preprint arXiv:2203.15556,

2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,

S., Wang, L., and Chen, W. LoRA: Low-Rank Adaptation

of Large Language Models. Preprint arXiv 2106.09685,

2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,

Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and

Amodei, D. Scaling laws for neural language models.

arXiv preprint arXiv:2001.08361, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classifica-

tion with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

Krizhevsky, A., Sutskever, I., , and Hinton, G. E. ImageNet

Classification with Deep Convolutional Neural Networks.

Communications of the ACM, Volume 60, Issue 6, 2012.

LeCun, Y., Bottou, L., Bengio, Y., , and Haffner, P. Gradient-

Based Learning Applied to Document Recognitio. Pro-

ceedings of the IEEE, Volume: 86, Issue: 11, 1998a.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278±2324, 1998b.

LeCun, Y., Bottou, L., Orr, G. B., and MÈuller, K.-R. Effi-

cient backprop. In Neural networks: Tricks of the trade,

pp. 9±50. Springer, 2002.

Lee, C. and Kim, H.-S. Differentiable learning of general-

ized structured matrices for efficient deep neural networks.

arXiv preprint arXiv:2310.18882, 2023.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky,

A. Relora: High-rank training through low-rank updates.

In Workshop on Advancing Neural Network Training:

Computational Efficiency, Scalability, and Resource Opti-

mization (WANT@ NeurIPS 2023), 2023.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C.

Learning Efficient Convolutional Networks through Net-

work Slimming. International Conference on Computer

Vision (ICCV), 2017.

Maron, H., Litany, O., Chechik, G., and Fetaya, E. On

learning sets of symmetric elements. In International

conference on machine learning, pp. 6734±6744. PMLR,

2020.

Michaud, E. J., Liu, Z., Girit, U., and Tegmark, M. The

quantization model of neural scaling. arXiv preprint

arXiv:2303.13506, 2023.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic, D.,

Venkatesh, G., Yu, C., and Micikevicius, P. Acceler-

ating Sparse Deep Neural Networks. Preprint arXiv

2104.08378, 2021.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.

Pruning Convolutional Neural Networks for Resource Ef-

ficient Inference. International Conference on Learning

Representations (ICLR), 2016.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D.

Tensorizing Neural Networks. Advances in Neural Infor-

mation Processing Systems (NeurIPS), 2015.

Oseledets, I. V. Tensor-Train Decomposition. SIAM Journal

on Scientific Computing, 2011.

Pan, Y., Su, Z., Liu, A., Jingquan, W., Li, N., and Xu, Z. A

unified weight initialization paradigm for tensorial con-

volutional neural networks. In International Conference

on Machine Learning, pp. 17238±17257. PMLR, 2022.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and

Courville, A. FiLM: Visual Reasoning with a General

Conditioning Layer. Association for the Advancement of

Artificial Intelligence (AAAI), 2017.

Potapczynski, A., Finzi, M., Pleiss, G., and Wilson, A. G.

Cola: Exploiting compositional structure for automatic

and efficient numerical linear algebra. Advances in Neural

Information Processing Systems, 36, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and

Sutskever, I. Language Models are Unsupervised Multi-

task Learners. OpenAI, 2019.

SaatcËi, Y. Scalable inference for structured Gaussian pro-

cess models. PhD thesis, Citeseer, 2012.

Salimans, T. and Kingma, D. P. Weight normalization: A

simple reparameterization to accelerate training of deep

neural networks. Advances in neural information process-

ing systems, 29, 2016.

Sharma, U. and Kaplan, J. Scaling laws from the data mani-

fold dimension. Journal of Machine Learning Research,

23(9):1±34, 2022.

11

Compute Better Spent: Replacing Dense Layers with Structured Matrices

Titsias, M. K. Variational Learning of Inducing Variables in

Sparse Gaussian Processes. International Conference on

Artificial Intelligence and Statistics, pp. 567-574, 2009.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,

X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D.,

Uszkoreit, J., Lucic, M., and Dosovitskiy, A. MLP-

Mixer: An all-MLP Architecture for Vision. Preprint

arXiv 2105.01601, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, è., and Polosukhin, I. At-

tention is all you need. Advances in neural information

processing systems, 30, 2017.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. Lin-

former: Self-Attention with Linear Complexity. Preprint

arXiv 2006.04768, 2020.

Wightman, R. Pytorch image models. https://github.

com/rwightman/pytorch-image-models,

2019.

Wilson, A. and Adams, R. Gaussian process kernels for

pattern discovery and extrapolation. In International

conference on machine learning, pp. 1067±1075. PMLR,

2013.

Wilson, A. and Nickisch, H. Kernel interpolation for scal-

able structured gaussian processes (kiss-gp). In Interna-

tional conference on machine learning, pp. 1775±1784.

PMLR, 2015.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K., Alemi, A.,

Adlam, B., Co-Reyes, J. D., Gur, I., Kumar, A., Novak,

R., et al. Small-scale proxies for large-scale transformer

training instabilities. arXiv preprint arXiv:2309.14322,

2023.

Yang, G. and Hu, E. J. Feature Learning in Infinite-Width

Neural Networks. International Conference on Machine

Learning (ICML), 2021.

Yang, G. and Littwin, E. Tensor Programs IVb: Adaptive

Optimization in the Infinite-Width Limit. International

Conference on Learning Representations (ICLR), 2023.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi,

D., Ryder, N., Pachocki, J., Chen, W., and Gao, J. Tensor

Programs V: Tuning Large Neural Networks via Zero-

Shot Hyperparameter Transfer. Advances in Neural Infor-

mation Processing Systems (NeurIPS), 2021.

Yang, G., Simon, J. B., and Bernstein, J. A Spectral Con-

dition for Feature Learning. Preprint arXiv:2310.17813,

2023a.

Yang, G., Yu, D., Zhu, C., and Hayou, S. Tensor programs

vi: Feature learning in infinite-depth neural networks.

arXiv preprint arXiv:2310.02244, 2023b.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar,

A., and Tian, Y. Galore: Memory-efficient llm train-

ing by gradient low-rank projection. arXiv preprint

arXiv:2403.03507, 2024.

12

Compute Better Spent: Replacing Dense Layers with Structured Matrices

Structure Learning rate multiplier κ
Low-Rank UV κU = d/2r, κV = 1/2

Kronecker L⊗R κL =
√
d/2, κR =

√
d/2

Monarch PLP⊤R κL = b/2, κR = b/2

TT(L,R) κL =
√
d/2r, κR =

√
d/2

BTT(L,R) κL =
√
d/2r, κR =

√
d/2

Table 2. Learning rate multipliers for structured matrices. We show the Adam learning rate multiplier κ we use for each parameter

tensor of the structure when transferring the learning rate from a dense layer of the same width d. r refers to the rank in low rank, TT, and

BTT, while b refers to the number of blocks in Monarch.

to inefficient tensor core utilization. For large matrices, runtimes converge to the same function in FLOPs. Optimizing

structured matrix implementations can reduce their runtime overhead and will be essential to realizing the practical benefits

of these structures.

Measuring FLOPs allows incorporating results from smaller experiments without letting the runtime inefficiencies at small

scale obscure the scaling laws. Figure 10b and Figure 10 compare BTT with dense MLPs on CIFAR-100 in FLOPs and

runtimes on an Nvidia A100. Below ∼ 107 FLOPs, increasing FLOPs barely changes runtimes for dense and BTT, obscuring

the scaling laws. BTT underperforms dense when controlling for runtime by incurring longer runtime per FLOP at this scale.

However, as compute increases, scaling laws in FLOPs translate to scaling laws in runtimes, with BTT outperforming dense

significantly.

C. General Expression for Tensor-Train and Block Tensor-Train

Here we describe the general expression for Tensor-Train and Block Tensor-Train, with an arbitrary number of cores and

ranks. To make the expression more intuitive, we will use superscripts for output indices and subscripts subscripts for input

indices. Rank indices appear once as a superscript when first introduced and once as a subscript when summed away.

Tensor-Train. Tensor-Train (TT) decomposition of a dout × din matrix W is defined by a set of c cores Gt ∈
R

rt−1×mt×nt×rt for t = 1, . . . , c, where c ≥ 2, dout =
∏

t mt, din =
∏

t nt, r0 = rc = 1 and {rt}ct=1 being free integer

hyperparameters. These cores specify the elements of an n1 × . . .× nt ×m1 × . . .×mt tensor T via

T i1,...,ic
j1,...,jc

=
∑

α1,...,αt+1

c
∏

t=1

(Gt)
αt−1,it
jt,αt

. (4)

Identifying elements of T with elments of a dout × din matrix W, the efficient matrix-vector multiply against W does not

involve materializing W but is simply given by a sequence of contractions against each core Gt from t = c to t = 1 :

(zt−1)
αt−1,j1,...,jt−1,it,...,ic =

rt
∑

αt=1

nt
∑

jt=1

(Gt)
αt−1,it
jt,αt

(zt)
αt,j1,...,jt,it+1,...,ic , (5)

where the initial zc is obtained by reshaping the input x into an nc × nc−1 . . .× n1 × 1 tensor and the final z0 is flattened

into an output vector. Suppose, for convenience, din = dout = d, nt = mt = d1/c for all t, and rt = r for all t /∈ {0, c},
then TT has P = (2r+ (c− 2)r2)d2/c parameters, and an MVM costs C = (2r+ (c− 2)r2)d1+c−1

FLOPs. Note we have

C = Pd1−c−1

, showing each parameter is used for d1−c−1 ≥
√
d times.

Block Tensor-Train. Block Tensor-Train (BTT) is defined simply by appending additional axes to each core in TT via

the substitution

(Gt)
αt−1,it
jt,αt

→ (Gt)
αt−1,it,it+1,...,ic
j1,...,jt−1,jt,αt

. (6)

14

Compute Better Spent: Replacing Dense Layers with Structured Matrices

As before, multiplying the cores and summing out the rank axes, we have

T i1,...,ic
j1,...,jc

=
∑

α1,...,αt+1

c
∏

t=1

(Gt)
αt−1,it,it+1,...,ic
j1,...,jt−1,jt,αt

. (7)

Efficient multiplication with the corresponding matrix is now given by

(zt−1)
αt−1,j1,...,jt−1,it,...,ic =

rt
∑

αt=1

nt
∑

jt=1

(Gt)
αt−1,it,it+1,...,ic
j1,...,jt−1,jt,αt

(zt)
αt,j1,...,jt,it+1,...,ic , (8)

which costs the same FLOPs as for TT, while admitting more learnable parameters. Again we do not need to materialize

T. Suppose, for convenience, din = dout = d, nt = mt = d1/c for all t, and rt = r for all t /∈ {0, c}, then BTT has

P = (2r + (c− 2)r2)d1+c−1

parameters, equal in number to the FLOPs for an MVM C = (2r + (c− 2)r2)d1+c−1

. Thus,

for the same amount of compute, BTT can learn a factor of d1−c−1 ≥
√
d more parameters than TT.

D. Expressivity of Block Tensor-Train

We start by providing an algorithm to approximate any existing dense matrix A with a BTT. The algorithm will then illustrate

the expressivity of the BTT structure as a function of c and {rt}ct=1. For simplicity, we will assume A ∈ R
d×d, and the

cores will be square, having size d1/c in each dimension, except for the rank dimension. Generalization to non-square A

and non-square cores is straigtforward.

Projection onto Block Tensor-Train with c = 2. In the case where c = 2, we prove a closed-form expression for

projecting an arbitrary dense matrix A to the closest rank-r (there is only one rank parameter so we omit the subscript)

BTT B that minimizes the squared Frobenius norm ∥A−B∥2F . Writing A and B as
√
d×

√
d×

√
d×

√
d tensors with

Bii′

jj′ =
∑r

α=1 L
ii′

jαR
αi′

jj′ , we have

∥A−B∥2F (9)

=
∑

ii′jj′

(

Aii′

jj′ −
r
∑

α=1

Lii′

jαR
αi′

jj′

)2

(10)

=
∑

i′j

∑

ij′

(

Aii′

jj′ −
r
∑

α=1

Lii′

jαR
αi′

jj′

)2

(11)

=
∑

i′j

∥

∥

∥

∥

∥

A(i′j) −
r
∑

α=1

ℓ
(i′j)
α r(i

′j)⊤
α

∥

∥

∥

∥

∥

2

F

, (12)

(13)

where we have decomposed the minimization problem into multiple independent minimization problems: for each i′, j, we

wish to find the best rank-r approximation
∑r

α=1 ℓ
(i′j)
α r

(i′j)⊤
α to the matrix A(i′j) ∈ R

√
d×

√
d. Thus, we obtain an optimal

solution by finding these best rank-r approximation (e.g. via SVD) for each A(i′j), and reassembling the vectors ℓ(i
′j)

α and

r
(i′j)
α into the tensors L and R. This result is a straightforward generalization of the algorithm for projection onto Monarch

matrices (Dao et al., 2022), which deals with the case where r = 1.

Generalization to c > 2. For convenience, let’s relabel L found in the previous algorithm as L̃, and the rank r as

r2. Having found L̃ and R, we can recursively apply the above algorithm on L̃ to find its optimal 2-core rank-r1 BTT

approximation, with cores L and M. Together, L,M, and R parameterize a 3-core BTT approximation with ranks r1 and

r2. Similar to the recursive TT-SVD algorithm (Oseledets, 2011), the found solution will not necessarily be optimal for

c > 2 due to its greediness.

It is sufficient to illustrate this algorithm in detail for c = 3. Reshaping A into a tensor Ai1i2i3
j1j2j3

∈ R
d1/3×...×d1/3

, we wish to

find Bi1i2i3
j1j2j3

=
∑r

α=1

∑r
β=1 L

i1i2i3
j1β

Mβi2i3
j1j2α

Rαi3
j1j2j3

that approximates A. We first group i1, i2 as a single index (i1i2) and

15

Compute Better Spent: Replacing Dense Layers with Structured Matrices

j1, j2 as a single index (j1j2), and then apply the previous algorithm for the 2-core case to find L̃,R that minimizes

∑

(i1i2)i3(j1j2)j3

(

A
(i1i2)i3
(j1j2)j3

−
r2
∑

α=1

L̃
(i1i2)i3
(j1j2)α

Rαi3
(j1j2)j3

)2

, (14)

forming the best following best rank-r2 2-core approximation:

A
(i1i2)i3
(j1j2)j3

≈
r2
∑

α=1

L̃
(i1i2)i3
(j1j2)α

Rαi3
(j1j2)j3

. (15)

Setting r2 = min(#(i1i2),#j3) =
√
d will lead to an exact decomposition, where #χ denotes the length of the range of

the index χ. Then we un-group the indicies to the obtain L̃i1i2i3
j1j2α

, Rαi3
j1j2j3

. Now grouping i2i3 and j2α as single indices, we

apply the previous algorithm again to find the best rank-r1 2-core BTT approximation to L̃ yielding the tensors L,M that

minimize

∑

i1(i2i3)j1(j2α)



L̃
i1(i2i3)
j1(j2α)

−
r1
∑

β=1

L
i1(i2i3)
j1β

M
β(i2i3)
j1(j2α)





2

. (16)

Setting r1 = min(#i1,#(j2α)) =
√
d will again lead to an exact decomposition, Now replacing L̃i12i3

j12α
in Equation (15) by

its approximation
∑r1

β=1 L
i1i2i3
j1β

Mβi2i3
j1j2α

, we have found the 3-core BTT approximation to A with ranks (r1, r2) :

Ai1i2i3
j1j2j3

≈ Bi1i2i3
j1j2j3

=

r1
∑

β=1

r2
∑

α=1

Li1i2i3
j1β

Mβi2i3
j1j2α

Rαi3
j1j2j3

. (17)

Quantifying the expressivity of BTT. By applying the above recursive algorithm and always choosing a high enough

rank so that the decomposition is exact at each step, we prove that a c-core BTT with sufficiently large ranks {rt}ct=1

can represent any d× d dense matrix exactly. Moreover, the general expression for an upper-bound on rt to ensure exact

decomposition can be deduced as rt ≤ min(#i1 × . . . × #it,#jt+1 × rt+1) ≤ dmin(t,c−t)/c : i.e. r1 ≤ d1/c, r2 ≤
d2/c, . . . , rc/2 ≤

√
d, . . . , rc−1 ≤ d2/c, rc ≤ d1/c. By contrast, TT has a worse bound of r1 ≤ d2/c, r2 ≤ d4/c, . . . , rc/2 ≤

d, . . . , rc−1 ≤ d4/c, rc ≤ d2/c (Oseledets, 2011).

A practical takeaway is that we can monotonically improve the expressivity of BTT by increasing rt until the bound is

reached, and we should never use ranks larger than the bound since it creates unnecessary redundancy in the parameterization.

E. Scaling Laws Experiment Details

We provide code for reproducing our experiments here.

E.1. Model architectures

MLP. Following Bachmann et al. (2023), we use MLPs consisting of residual blocks of the form

hℓ+1 = hℓ +W
(2)
ℓ g

(

W
(1)
ℓ LN (hℓ)

)

, W
(1)
ℓ ∈ R

4d×d, W
(2)
ℓ ∈ R

d×4d, (18)

where g (·) denotes the GELU activation (Hendrycks & Gimpel, 2016) and LN (·) stands for layer normalization (Ba et al.,

2016). In addition, there is an input embedding layer and a classification layer. We refer to d as the width of the model. We

use models with 3 residual blocks and scale them up by increasing d.

ViT. We use standard ViTs (Dosovitskiy et al., 2020), but with 1/d−scaled rather 1/
√
d−scaled attention as prescribed

by µP (Yang et al., 2021) and Query-Key Normalization (Henry et al., 2020; Wortsman et al., 2023) for improved stability.

We refer to the embedding dimension, commonly denoted dmodel, as the width d of the model. We use models with 3
transformer blocks and scale them up by increasing d.

16

Compute Better Spent: Replacing Dense Layers with Structured Matrices

E.2. Hyperparameters

Training hyperparameters. We use random crop, random flip, and MixUp (α = 0.8) data augmentations, and label

smoothing of 0.3. We train all MLP models for 500 epochs with batch size 1024, and all ViT models for 200 epochs with

batch size 256. At the end of training, the models are close to but not exactly at convergence because fitting the training set

is challenging due to strong augmentations and label smoothing. We do not use early stopping as it is not necessary.

We use structure-aware learning rates and initialization described in Section 3.2, with a cosine learning rate decay to 0. We

set the constant in Θ(·) as 1 for the initialization standard deviations, with the exception that the last linear layer inside every

residual block of the MLP and ViT is zero-initialized, as mentioned in Section 3.2. For a structured layer, zero-initialization

is only applied to its last dense component so its output is zero at initialization but all the parameters receive non-zero

gradients after the first step. Following (Yang et al., 2021), we also zero-initialize the classification layer and the query

projection WQ in transformers. We found zero-initialization generally improves performance.

We use a base learning rate of η0 = 3e− 3 for a dense MLP at d0 = 64, and η0 = 1e− 3 for a dense ViT at d0 = 64. For

MLPs, we scale the learning rate of the input layer by a factor of 0.1 since the input image dimension is much larger than d0.

This small multiplier prevents the first layer feature updates from having much larger scales than the other layers (Yang

et al., 2023a), which we found improves performance.

Structure-specific hyperparameters. We provide hyperparameters such as ranks we use for each structure and any other

design choices we make.

• Low-rank: we set the ranks of low-rank matrices to
√

min(din, dout) for MLP and 0.1×min(din, dout) for ViT. The

first choice leads to O
(

d3/2
)

scaling of compute and parameters, same as Kronecker, 2-core BTT, and 2-core TT, but

the second choice works significantly better for ViTs. We round the rank to its nearest integer when necessary. We

initialize V ∈ R
r×d of the low-rank layer as Vij ∼ N (0,

√

1/din), rather than Vij ∼ N (0,
√

1/(rdin)). While the

latter is required for having the desired spectral norm at initialization according to Section 3.2, when we choose a rank

of
√

min(din, dout), it is not compatible with our zero-initialization scheme as it led to vanishing gradients for both U

and V as the width gets large.

• Kronecker: for any dimension d that is not a perfect square, we factorize it so that the factors are as close as possible.

For example, for a 20× 30 matrix, we use the factorization L⊗R where L ∈ R
4×5 and R ∈ R

5×6.

• TT: we use two cores with TT-rank of 16 for MLPs and 8 for ViTs. We deal with non-perfect-square dimensions same

as in Kronecker.

• Monarch: unless otherwise specified, we use L and R with 4 blocks, following the ViT and GPT-2 experiments in Dao

et al. (2022).

• BTT: we use BTT with various ranks and deal with non-perfect-square dimensions same as in Kronecker.

F. Results for BTT with c > 2

In Figure 5, we showed scaling compute per dimension ξ as ξ = 2d1/2 using BTT with c = 2 and r = 1 leads to better

scaling laws than other choices of r that increases ξ to 2r1/2. The gap between different choices of r closes as the models

are scaled up in width, e.g. d ≫ r. In Figure 11, we show a similar trend for c = 3, where higher values of r perform

worse when controlling for FLOPs, though the gap tends to vanish as the width is scaled up. Each connected line shows the

performance of BTT with a fixed r while d is increased.

In Figure 12, we show the performance of BTT with r = 1 and c ∈ {2, 3, 4}. Further reducing the scaling of ξ to 3d1/3 or

4d1/4 brings no or negligible improvement to performance when controlling for FLOPs.

In summary, choosing c = 2 and r = 1 leads to near-optimal performance for BTT on these tasks. In this case, BTT is

equivalent to Monarch with
√
d blocks.

G. Transformer experiments

We provide code for reproducing our experiments here.

17

Compute Better Spent: Replacing Dense Layers with Structured Matrices

We use BTT with rank 4 in every linear layer, including the language modeling head. We set nhead to be smaller than the

usual dmodel/dhead for the BTT models since otherwise we would spend too much compute in the attention layers relative

to the FFN layers. We use the Adam optimizer and set the base learning rate to 6e− 4 for the dense model at dmodel = 768,

which is transferred to other models via µP and our structured-aware learning rate scaling.

H. Structure-Aware Learning Rate for Other Optimizers

The structure-aware learning rate scaling described in Section 3 applies to Adam or AdamW. However, we can derive

appropriate scaling rules for other optimizers such as SGD. In Section 3.3, we obtain our structure-aware learning rate

scaling rule in three steps: 1) decompose the matrix-vector multiplication (MVM) of a structured matrix W ∈ R
dout×din

as a sequence of batched MVMs involving only dense matrices {Gi}ki=1, 2) identify the input and output dimensions diin
and diout of these dense matrices, 3) apply µP to each of these dense matrices to scale their learning rates based on diin and

diout. Steps 1 and 2 are optimizer-agnostic. While step 3 is optimizer-dependent, it only requires knowing how to set µP

learning rates for regular dense matrices, which has been analyzed in prior works for various optimizers, including SGD,

Adam, and SignSGD (Yang & Littwin, 2023; Yang et al., 2023a). For example, instead of having the learning rate ηi of

Gi be Θ(1/diin), which is correct for Adam, SGD would require ηi = Θ(diout/d
i
in) (Yang et al., 2023a). Therefore, the

structure-aware learning rate multiplier relative to a dense W should now be κi = Θ
(

di
out/d

i
in

dout/din

)

instead of Θ(din/d
i
in),

which is correct for Adam.

I. Limitations and Future Work

We provide a summary of the limitations of this work, and exciting directions for future work:

• Due to affordability constraints, we conducted our evaluation primarily with relatively small-scale models and datasets.

Extending our evaluation to much larger-scale models and datasets is an important future direction.

• The scaling laws we study differ from the compute-optimal scaling laws more relevant for large-scale training, which

require optimally trading off between training larger models and training for more iterations. We only varied model

size while keeping training iterations constant. Similarly, we did not optimize between scaling width v.s. depth, which

allowed us to conveniently transfer learning rate through µP2.

• Our comparisons are based on FLOPs rather than runtimes. While the structures we consider have asymptotically the

same MVM runtimes as dense matrices per FLOP (Appendix B), they introduce non-trivial runtime overhead for small

matrix sizes, e.g. O
(

103
)

. Developing highly optimized implementations will be important to realize the benefits of

structured matrices in practice.

• Despite our efforts to avoid over-fitting to image data (shuffling pixels for the MLP experiment), our findings that

structured matrices can significantly outperform dense matrices may still be highly dataset-dependent, as BTT offers a

less significant improvement in language modeling compared to in image classification.

• Our findings are empirical. Theoretically understanding when and why structured matrices can have better scaling

laws than dense matrices, depending on model and data characteristics, will enable a prescriptive selection of structure

rather than via trial and error alone.

2See Yang et al. (2023b) for a depth extension of µP and why it doesn’t work for transformers in principle.

19

