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Abstract. Chess endgame tables encode unapproximated game-
theoretic values of endgame positions. The speed at which informa-
tion is retrieved from these tables and their representation size are
major limiting factors in their effective use. We explore and make
novel extensions to three alternatives (decision trees, decision dia-
grams, and logic minimization) to the currently preferred implemen-
tation (Syzygy) for representing such tables. Syzygy is most com-
pact, but also slowest at handling queries. Two-level logic minimiza-
tion works well when the full compression algorithm can be run. De-
cision DAGs and multiterminal binary decision diagrams are com-
parable and offer the best querying times, with decision diagrams
providing better compression.

1 Introduction
Endgame tables (EGTs) support increased skill in play by storing
precomputed exact (non-heuristic) information about game positions
for convergent games, which are games where the size of the state
space decreases as the game approaches its end. An EGT serves as
a map from game state to relevant information. EGTs are typically
calculated via retrograde analysis [15]. For the game of Checkers,
the precomputation of EGTs combined with forward search allowed
the determination of the game-theoretic result of its initial position
[12].

We focus on Chess EGTs, the first of which were computed by
Ströhlein [14]. The largest complete sets of such EGTs currently are
for seven pieces [16], and require at least tens of trillions of bytes to
generate and store, even when compressed. We study lossless com-
pression methods for Chess EGTs, quantifying their compression and
probing speeds.

1.1 State-of-the-art

Syzygy [5] is currently the predominant Chess EGT storage imple-
mentation: its representation is more compact than widely available
alternatives, it is acceptably efficient to query, and its data files and
source code are freely available for download and use.

Syzygy, and virtually all of its predecessor Chess EGT implemen-
tations, provides a separate table for each material balance: the set
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of pieces remaining for each player. There is a table for positions
where White has a king, pawn, and rook, and Black has a king and
queen, there is another table for positions where White has a king and
two rooks and Black has a king and pawn, and so on. For each ma-
terial balance, there is both a win/cursed win/draw/blessed loss/loss
(WCDBL) table that indicates the game-theoretic value of positions,
and a distance to zeroing-move (DTZ) table.

Cursed wins and blessed losses are positions where the official
over-the-board rules of Chess allow a player to successfully claim a
draw once 50 moves by each side in succession without a capture or
pawn push would be made in a position that would otherwise lead to
a decisive result with perfect play. WCDBL tables are also referred
to as win/draw/loss (WDL) tables in the literature because no piece
configurations with four or less pieces in the absence of move history
are cursed wins or blessed losses.

In this paper, we focus on WCDBL: the use of sufficiently large
WCDBL tables alone during lookahead is sufficient to avoid reach-
ing a game-theoretically suboptimal position. DTZ tables also store
additional information that permits optimal play once an EGT posi-
tion has been reached.

1.2 Problem definition

We encode the coordinate of any location on the chessboard using
three bits for the file and three bits for the rank. One additional bit
is used to encode the side to move. A pawn that may be captured
en passant is encoded as being on the first or eight rank instead of
the fourth or fifth rank where it actually is. Thus, if we assume that
castling is not possible (which we do, as Syzygy does), then when
probing some particular five-piece material balance, we can express
the input as a bit vector of length (3 + 3)⇥ 5 + 1 = 31.

The mapping from the input to one of five outcomes is partial: not
all inputs are possible. For instance, two pieces cannot occupy the
same location. We also exploit symmetry to reduce further the num-
ber of stored positions. For example, when no pawns are present (and
castling is not possible), all board rotations are equivalent. Flipping
the player to move along with the colour of all pieces is also sym-
metric. We only store and query one canonical position for each set
of symmetric positions. Consequently, over 90% of possible inputs
are not associated with any particular output.

The goal is to produce a data structure, and suitable querying code,



that returns the proper game-theoretic value for any canonical encod-
ing of a Chess position. While it is not strictly necessary to do so, we
continue the historic practice of building separate data structures for
each material balance. We build our alternative compressed repre-
sentations from a list of each canonical Chess position of the relevant
material balance, paired with its associated game-theoretic outcome.

1.3 Research Goal

We aim to explore alternatives to the Syzygy Chess EGT format.
Syzygy is a complex system that by design exploits properties spe-
cific to Chess such as not encoding the correct values for positions
containing legal captures, instead relying on identifying these posi-
tions at probing time and uses a capture-based minimaxing search to
back-up the values from other tables.

However, it is not our goal to exhaustively assess any of the once-
common Chess EGT formats such as the Nalimov [9] tables. These
tables do not provide full WCDBL information, yet require seven
times the space of Syzygy, so they are no longer used by the top tier
of current Chess-playing programs.

Rather, this paper aims to quantify what is possible using non-
Chess-specific compression techniques. While we do modify some
standard compression methods, these modifications target general
properties of EGTs. We explore three alternatives that, while exploit-
ing basic symmetries of Chess, are nonetheless general-purpose com-
pression and query techniques. They have simple querying code and
straightforward interpretations. We believe these alternatives could
also be helpful in other convergent games in which symmetries exist,
such as Xiangqi and International Draughts.

1.4 Contributions

We consider and compare three alternative methods to Syzygy for
storing a WCDBL EGT: decision directed acyclic graphs (DAGs),
indexed two-level logic minimization (TLLM), and multiterminal re-
duced ordered binary decision diagrams (MTBDDs). All methods
construct a tree or DAG whose leaves indicate either individual out-
comes or a small set of cube-outcome pairs to scan linearly. Each of
these methods uses different heuristics to form a compact represen-
tation of the EGT data.

We provide necessary improvements to each method for efficient
use on this application. For decision trees, the modification is minor:
we build a decision DAG instead of a tree. For logic minimization, we
significantly rework main operations of the ESPRESSO algorithm
to enable operating upon tables of this size. For decision diagrams,
we extend the concretization methods for fully-reduced binary de-
cision diagrams (BDDs) to MTBDDs. The modifications for logic
minimization and decision diagrams are novel contributions to these
areas.

Each method approaches the compression problem differently. We
outline each method, draw connections amongst them, and compare
them empirically with each other and with Syzygy on three-, four-,
and five-piece EGTs.

2 Decision DAGs

We use a standard binary decision tree learning algorithm [10] to
compress each EGT. The set of canonical positions of each table are
used as the training examples, each viewed as an input of binary fea-
tures and an output as one of five classes reflecting the game-theoretic

value of the position. When building, we employ greedily the stan-
dard information gain metric [11]. Decisions at internal nodes corre-
spond to checking a single bit of the input.

Our method differs only slightly from typical machine learning
decision tree construction. Because we seek only compression, not
generalization (our training set for each EGT already includes every
position of interest), we exhaustively build the tree and perform no
pruning. Second, to save space, we construct a DAG rather than a
tree by merging common subtrees during the construction process.

3 Two-level logic minimization

We also compare with the recent endgame compression method of
Gomboc and Shelton [7], which leveraged the ESPRESSO [2] two-
level logic minimizer to perform minimization on three- and four-
piece tables. ESPRESSO represents functions as pairs of input and
output vectors. The input vector may be represented using the al-
phabet {0, 1, ⇤}, respectively meaning that the corresponding input
must be 0, must be 1, or may be either 0 or 1. The output vector may
be represented using the alphabet {f, r, d,⇠}, respectively meaning
that the corresponding output must be 1, must be 0, may be either 0
or 1, or is unconstrained by the paired input vector.

ESPRESSO repeatedly iterates through three major operations.
EXPAND attempts to replace 0s and 1s in each input vector with
*s (known as “raising”) such that as many other input vector are
subsumed and eliminated as possible, while ensuring that no out-
put vector specification conflicts occur. IRREDUNDANT identifies
and removes input vectors whose output constraints may be deduced
from combinations of other remaining input vectors without adjust-
ing the values of any input vectors. REDUCE attempts to replace *s
in each input vector with 0s and 1s without newly permitting any out-
put bit to take on any value that was previously precluded by some
combination of mapping constraints.

3.1 Representation simplification

As discussed in Section 1.2, lookups for the vast majority of input
vectors will never be performed. Nonetheless, ESPRESSO explicitly
represents D, the multiset of input vectors that map any output to d,
because its implementation of both IRREDUNDANT and REDUCE
depend upon D’s availability. When attempting to process five-piece
EGTs using ESPRESSO, representing D causes main memory (256
GiB) exhaustion. To address this problem, we devised alternative al-
gorithms for performing these two operations that do not require D
to be provided as an input.

In our application of TLLM, we never map any output bit to ⇠, and
furthermore, either every element or no element of each individual
output vector is mapped to d. Thus, in addition to not representing
D, we also need not represent R, the multiset of input vectors that
map any output to r, separately from F , the multiset of input vectors
that map any output to f, which results in further memory savings.

In this paper, we refer to just the input vector associated with an
output as a cube. We initialize the EGTs prior to minimization by
specifying the output value for each minimum product term (a.k.a.
unit cube) about which we care.

As arguments to Algorithms 1 and 2, we provide two cube sets,
which we denote as B (for baseline) and E (for expanded). B rep-
resents an earlier representation of F prior to expansion: it can, but
does not have to be, the original definition of F prior to any mini-
mization. E represents some expansion of B. In both, we use indices



(see Section 3.3), priority queues, and caching to make them more
efficient than a direct implementation of the pseudo-code would be.

3.1.1 Efficient D-less irredundancy

Algorithm 1 computes an irredundant cover E0 from B and E. We
add cubes from E, starting with all cubes that uniquely cover some
cube in B, then greedily select additional cubes which cover the most
additional not-yet-covered cubes of B.

Algorithm 1 IRREDUNDANT
Require: B: Baseline cubes (modifies copy)
Require: E: Expanded cubes that covers B (modifies copy)
Ensure: E0: Irredundant subset of E that covers B

1 E0 = {e | 9 b 2 B, 8 e0 6= e,¬contains(e0, b)}
2 B = B � {b 2 B | 9 e 2 E0, contains(e0, b)}
3 E = E � E0

4 while E 6= {}
5 e = argmaxe2E

P
b2B|contains(e,b0) 1

6 E0 = E0 [ {e}
7 B = B � {b 2 B | contains(e, b)}
8 E = E � {e}� {e0 2 E | @ b 2 B, contains(e0, b)}
9 return E0

3.1.2 Efficient D-less reduction

Algorithm 2 computes a reduced cover E0 from B and E. We repeat-
edly select expanded cubes uniformly at random without replace-
ment, shrinking them as much as possible while ensuring that B re-
mains covered.

Algorithm 2 REDUCE
Require: B: Baseline cubes (modifies copy)
Require: E: Expanded cubes that cover B (modifies copy)
Ensure: E0: Cover of B, each cube is a subcube of some cube in E

1 E0 = {}
2 foreach e 2 E (random order)
3 E = E � {e}
4 B0 = {b 2 B | contains(e, b)}
5 B00 = {b 2 B0 | @e0 2 E, contains(e0, b)}
6 if B00 6= {}
7 E0 = E0 [ supercube(B00)
8 B = B �B00

9 return E0

3.2 Accelerating expansion

Application of Algorithms 1 and 2 permit us to no longer immedi-
ately exhaust main memory, yet we can still only completely pro-
cess several of the simplest five-piece EGTs. The performance of
ESPRESSO, both before and after the above changes, is dominated
by the 99% time spent in EXPAND.

Though the time complexity of a single EXPAND operation is re-
ferred to as quadratic in the size of its input within ESPRESSO’s

source code, we found that it actually scales less well. As is, EX-
PAND could not be applied even a single time to the vast majority of
five-piece EGTs, even when given weeks of running time. We were
able to address this problem by introducing two innovations.

3.2.1 Distance-n merging (for n > 1)

Both ESPRESSO and its predecessor MINI [8] support distance-one
merging, which is the merging of two cubes that disagree on only a
single variable. Such merges are always safe to perform.

We introduce a generalization, distance-n merging, that can be
used to merge cubes that disagree on multiple variables simultane-
ously. Unlike the distance-one case, the blocking cover must now
be consulted. Given v input variables, Algorithm 3 sweeps over all�
v
n

�
combinations of input variables and attempts to merge any set of

cubes that differ only in these variables. Distance-n merging is not
intended to be a replacement for the more general EXPAND opera-
tion of MINI and ESPRESSO. Rather, it is particularly effective and
intended for use when n ⌧ v and there may be many small cubes
present within a cover that is to undergo expansion. By sorting the
cubes based on all other variables, we can quickly find groups of
cubes to be merged.

Algorithm 3 DISTANCE-N-MERGE
Require: M : Cover to which merging should be applied
Require: B: Baseline cubes
Require: n: number of variables to merge
Ensure: M 0: Cover equivalent to M , where |M 0|  |M |

1 M 0 = M
2 foreach subset, V , of variables of size n
3 G = groupby(M,V )
4 (groups where all variables except V are the same)
5 foreach G 2 G:
6 if output, o, same for cubes in G
7 c = supercube(G)
8 c[V ] = ⇤
9 D = {b 2 B | contains(c, b) ^ output(b) 6= o}

10 if D = {} (check not necessary if n = 1)
11 M 0 = (M 0 �G) [ {c}
12 return M 0

3.2.2 Random expansion

ESPRESSO’s [2] implementation of the EXPAND algorithm [8]
tracks which cubes cover which other cubes in order to attempt to
grow cubes in ways that encompass as many other cubes as possi-
ble. While highly effective at small problem sizes, this tracking is
also the root cause of its performance bottleneck when applied to the
much larger minimization problems we consider, which render the
algorithm infeasible for our use.

Instead, we propose the RANDOM-EXPAND algorithm (Alg. 4).
Each time RANDOM-EXPAND attempts to expand any cube, it ran-
domly selects an input variable ordering, then attempts to raise each
input variable (replace the specific 0 or 1 for this variable with ⇤) one
after the other in that chosen order. Every raise that does not result in
a conflict is accepted. Consequently, unlike with EXPAND as used
by ESPRESSO, RANDOM-EXPAND discards no cubes whatsoever.
Instead, we exclusively rely on IRREDUNDANT for cube elimina-
tion.



Algorithm 4 RANDOM-EXPAND
Require: B: Baseline cubes
Require: L: Input dimension count of B
Require: F : Cover of B, where |F |  |B|
Ensure: E: Cover of B, where |E| = |F |, such that each cube in F
is a subcube of some cube in E

1 E = F
2 foreach c 2 E (random order)
3 e = c D = 1 . . . L
4 foreach d 2 D (random order)
5 e0 = raise(e, d)
6 if (e0 does not contradict B)
7 e = e0

8 E = E � {c} [ {e}
9 return E

3.3 Cube list indexing

Naïve lookup of a position in the resulting cube list would require
scanning all cubes to find the one(s) that match the input position’s
bit vector, and then returning the associated output. This is too slow,
so we build an index tree over the cube list to accelerate lookup at
table load time.

Our algorithm for building the cube index is similar to that of
building a decision DAG: The index is a tree with internal nodes
corresponding to checking one bit of the input. It is built greedily
and recursively. However, there are a few differences.

Because the cubes to be indexed are not bit vectors, but rather
{0, 1, ⇤}-vectors, constructing a binary tree would require the dupli-
cation of cubes: If an internal node tests bit i, for any cube for which
bit i is ⇤, it would need to be duplicated on the 0 and 1 subtrees. This
would negate the advantages of the two-level logic minimization that
produced the cubes in the first place. Instead, we build a ternary tree
with three branches at each internal node. Any cube so indexed be-
longs to only one of the 0, 1, or ⇤ branches.

We use a modified Gini impurity score to score a potential inter-
nal node. If n0, n1, and n⇤ are the number of cubes that would be
sorted into the 0, 1, and ⇤ branches, respectively, we use the score of
n0(n0 + n⇤) + n1(n1 + n⇤) + 2n2

⇤. The first two terms represent
the number of items to be scanned (n0 + n⇤ and n1 + n⇤) times the
relative frequency with which they would be scanned. The last term
penalizes large number of examples in the common subtree.

We do not build the index structure all the way to single leaves.
Rather, empirical tests indicate that performing a linear scan of 10 to
20 cubes is faster than refining the index further, so we stop when the
number of remaining cubes is 16 or fewer. A lookup consists of re-
cursively descending the tree, checking either the 0 or 1 branch first,
followed by the ⇤ branch if necessary. Whenever a leaf is reached,
the cubes associated with that leaf are scanned linearly. Because each
leaf has a unique set of cubes, it is not possible to convert this tree
into a DAG.

4 Multiterminal reduced ordered binary decision
diagrams

A fully-reduced, ordered BDD (FBDD) [3], the most common type
of BDD, encodes a Boolean-valued function in a DAG with the two
terminal nodes 0 and 1. The fixed order in which variables are en-
countered on all paths from the root to any terminal node (unlike

Level 0
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Level 3

Level 4

W ? L W D ?

u v

p q

g h

f

W D L
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f 0

Figure 1. MTBDD encoding f (left), and a concretization f 0 of f (right).

the decision DAGs of Section 2) allows for both efficient opera-
tions combining BDD-encoded functions (not used in this work) and
greater opportunity to merge common subDAGs.

We could encode partial function f described by an n-piece
EGT using five FBDDs encoding fi : B6n+1 ! B, for i 2
{W, C, D, B, L}, where fi(x) = 1 iff f(x) = i, so that the don’t

care set D = {x : f(x) = ?} would be implicitly given by
{x : 8i, fi(x) = 0}. Instead, we use a single multiterminal reduced

ordered binary decision diagram (MTBDD) [4], a generalization of
FBDDs that allows an arbitrary set of terminal nodes. MTBDDs en-
code total, rather than partial, functions, so we treat f as a total func-
tion of the form f : B6n+1 ! {W, C, D, B, L, ?}. Probing an
MTBDD once is both simpler than probing multiple FBDDs in par-
allel and, in expectation, faster than probing multiple FBDDs serially.

Formally, a K-variable MTBDD is an edge-labelled DAG where
the terminal nodes belong to an arbitrary finite set R, and are at
level 0, while each nonterminal node p is at a level p.level =
k 2 {1, . . . ,K} and has a 0-child, p[0], and a 1-child, p[1], sat-
isfying k > max{p[0].level , p[1].level} and p[0] 6= p[1] (i.e.,
there are no redundant nodes). MTBDD node p at level k encodes
function fp : Bk ! R, defined recursively as fp(i1, . . . , ik) =
fp[ik](i1, . . . , ik�1) if k > 0, otherwise fp = p. Fig. 1
shows two example MTBDDs, encoding functions f, f 0 : B4 !
{W, D, L, ?}. In the figure, dashed edges point to the 0-child, solid
edges point to the 1-child.

An advantage of the BDD approaches we discuss is that we nat-
urally store multiple BDDs of the same type in a single forest with
shared nodes, especially at lower levels. Thus, the node count of the
forest storing all n-piece EGTs together cannot exceed, and is in
practice less than, the sum of the node counts needed to store each
n-piece EGT individually.

4.1 Concretization

In our application, we never evaluate f(x) for x 2 D. Thus, the
MTBDD size may be reduced by concretizing f , that is, chang-
ing some of the values of f from ? to (appropriate) values i 2
{W, C, D, B, L}.

Finding a concretization f 0 of f with minimal size (which can be
shown to be full, i.e., f 0(x) 6= ? for all x 2 BK ) is NP-hard, so
we limit ourselves to greedy (suboptimal) heuristics. We use three
increasingly expensive and increasingly general heuristics originally
proposed for FBDDs [13], but with notable differences: in Shiple et
al. [13], a partial Boolean-valued function f is encoded using two

FBDDs: one to encode f , and one to encode “don’t care” set D
(or, equivalently, the “care set” which is the complement of D). The



heuristics must then consider the two FBDDs simultaneously to per-
form the concretization. Our versions of the heuristics, instead, use a
single MTBDD where the “don’t cares” are encoded as terminal node
?. The heuristics proceed top-down in the MTBDD and attempt to
remove each nonterminal node p by making it redundant as follows
(let p0 and p00 be the two children of p, in either order):

• Restrict: If p0 = ?, change p0 to p00. When applied to function f
in Fig. 1, restrict would eliminate nodes u (replaced by W ) and q
(replaced by v).

• One-sided-match: If p0 is a (not necessarily full) concretization of
p00, change p00 to p0. When applied to function f in Fig. 1, one-

sided-match would eliminate nodes g (replaced by v), q, and u.
• Two-sided-match: If p0 and p00 admit a common (least, thus not

necessarily full) concretization q, change p0 and p00 to q, which
may be an existing node or a new node. When applied to func-
tion f in Fig. 1, two-sided-match would produce function f 0: node
r concretizes both nodes p and q, while node v concretizes node
u; thus node h is eliminated and replaced by r, and node g is elim-
inated and replaced by v.

As these are heuristics, none is guaranteed to be best. However,
experiments we performed using five-piece EGTs showed that re-

strict and one-sided-match tend to have similar node savings w.r.t.
no concretization, while two-sided-match was almost always best,
sometimes by a substantial factor. Five-piece EGTs concretized with
two-sided-match require only 44.2% of the nodes versus using no
concretization. When storing these EGTs in a forest, the node counts
are only 78.4% (with no concretization) and 91.1% (with two-sided-

match) of the total node counts for the individual EGTs. Thus, using
forests does not help as much in conjunction with concretization, but
the forest with two-sided-match still requires only 59.9% of the nodes
of the forest with no concretization.

Finally, we observe that, while BDD implementations may vary
widely in the way they store edges (pointers vs. indices) and levels
(the size of the integer types), once the total count T of (terminal or
nonterminal) nodes in the forest is known, it is a simple matter to
encode the entire MTBDD forest using

T · (2dlog2 T e+ dlog2 K + 1e)

bits, where K is the number of variables, while still providing effi-
cient query time.

5 Experimentation
We measure and discuss data preparation, the size of the data of the
various methods, then measure and discuss their probing efficiency.

5.1 Methodology

We downloaded the Syzygy WCDBL tables[1], and updated the code
of Fathom [6] to return an appropriate result whenever an invalid
or illegal position is probed. Syzygy tables do not include game-
theoretic values for positions where either side has not already per-
manently lost their right to castle.

We probed every bit vector of each three-, four-, and five-piece
EGT, and recorded the result returned by Fathom in a binary file
ordered by the numerical value of the bit vector. The bit vector repre-
sentation we use accommodates piece coordinates, the side to move,
and the right to capture en passant. To represent a white (black) pawn
that is at risk of being captured en passant, we encode it as being

placed on the first (eighth) rank instead of the fourth (fifth) rank
where it actually resides.

Subsequently, we used this extracted information as our training
data for decision DAG, TLLM, and MTBDD EGT construction. All
145 decision DAG and 145 MTBDD EGTs were constructed within
a few hours. However, the construction of TLLM EGTs requires sub-
stantially more time.

For each EGT, we iterated through n = 1 . . . N , performing two
operations: a single distance-n merge sweep immediately followed
by an IRREDUNDANT pass. The application of IRREDUNDANT
reduces the cube count of the working set as quickly as possible,
so that more challenging functions can be minimized using a given
amount of computational effort.

For three-piece EGTs, we set N = 11 (higher N introduces no
further changes). For four-piece and five-piece EGTs, we used N =
9 and N = 5, respectively.

Subsequently, we performed a single REDUCE pass, a single
RANDOM-EXPAND pass, then attempted to perform a single fur-
ther IRREDUNDANT pass, and one final REDUCE pass (which,
while not reducing cube count, tends to improve the compressed size
on disk).

5.2 Data size

We first consider the size of the compressed data on disk, then give
some observations about runtime memory usage.

5.2.1 Disk space

Of the four methods, decision trees provide the least compact disk
representation (see Table 1 and Figure 2). One practical advantage of
the MTBDD representation is that its tables may be stored together,
rather than as 145 distance MTBDDs (one for each of the material
balances with three, four, or five pieces), without adjusting the en-
coding scheme: this yields a reduction in overall space usage of a
few percent. TLLM uses less space than MTBDD even when this is
taken into account. However, Syzygy’s disk representation is clearly
the most compact.

5.2.2 Memory usage

The MTBDD, decision tree, and TLLM methods all require roughly
a constant factor across tables more for memory versus disk space.
However, in the case of TLLM, that constant factor is relatively
higher, because indexing of the cube lists is required to probe the
TLLM tables efficiently (these indices are constructed rapidly at data
load time). In contrast, the decision tree and MTBDD structures do
not require additional augmentation after in-memory decompression
of the on-disk data. Of these three methods, MTBDD is most efficient
from a memory usage perspective.

The memory usage of Syzygy substantially differs from the three
other methods we explore, and is difficult for us to characterize.
Syzygy EGTs are cleverly engineered to store blocks of compressed
data, so that it is not actually necessary to unpack the entirety of
its tables into memory to perform any single probe. However, be-
cause Syzygy’s data encoding requires that a minimax-based cap-
ture search be performed when any captures are available, it follows
that compressed blocks from multiple tables may actually need to be
probed to resolve the game-theoretic value of the particular position
under consideration.



method disk space used (MiB) memory space used (MiB) average query time (µs)
subset 3 pc 4 pc 5 pc all 3 pc 4 pc 5 pc all 3 pc 4 pc 5 pc all

Flat file mmap 0.0 2.8 640.5 643.3 1147.0 1365.5 1178.8 1216.3
Decision DAGs 0.0 4.5 1372.5 1377.0 0.0 11.4 3038.5 3049.9 1221.8 1449.7 1312.1 1337.5
MTBDD 0.0 2.7 782.9 785.6 0.0 7.1 1763.5 1770.6 1198.1 1467.2 1513.4 1492.9
TLLM 0.0 2.0 634.8 636.8 0.1 13.2 4160.9 4174.2 1335.5 1804.2 3935.4 3404.8
Syzygy WCDBL 0.0 1.1 348.4 349.6 7271.5 12496.3 17160.8 15854.7

Table 1. Experiment results. Disk space is for files after compression with xz, using options
-T1 –lzma2=preset=9e,dict=1GiB,mf=bt4,mode=normal,nice=273,depth=1000. Memory space includes the index for TLLM. Syzygy does not load the entire

table into memory at once, but also requires additional tables for querying. Full distributions are shown in Figures 2 and 3.
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Figure 2. Pair plot of bytes required to store compressed WCDBL data on disk. Each point is one material balance. Orange points are pawnless material
balances; blue points are those with at least one pawn. Triangles are 3-piece tables; squares are 4-piece tables; pentagons are 5-piece tables. Off-diagonal plots

are scatter plots comparing two methods. Diagonal plots are (kernel-smoothed) distributions over the space per table.

5.3 Probe timing

For each of the 145 material balances, we sampled two million posi-
tions with replacement by drawing each of the n pieces, then drawing

the side to move. Every invalid or illegal position thus selected is im-
mediately discarded and redrawn. Because en passant positions are
encoded as illegal positions, none are present in the probe timing set.
Fathom provides the quiescence search necessary to query Syzygy
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Figure 3. Pair plot of mean nanoseconds required to probe WCDBL data. Interpretation is the same as 2, but represent the (mean) querying time of the
compressed representation, once loaded into memory.

EGTs.
For each of the three groups of n-piece positions, two probing

passes are performed. The correctness of the probe results returned
is verified on the first pass; probe timings are captured on the sec-
ond pass. We then compute the mean probe time for each material
balance within the group of n-piece positions. The probe timings
reported are from a system with only a solid-state drive. (When an
electromechanical disk drive is used instead, the performance of each
method deteriorates.)

As shown in Table 1 and Figure 3, the decision DAGs and MTB-
DDs are probed most quickly on average, with the decision DAGs
exhibiting only a slight speed advantage. In comparison, the mean
probing speeds of TLLM and especially Syzygy are poor.

6 Discussion

Syzygy is both the most space-efficient and the least runtime-efficient
choice. Why is this so? By design, Syzygy stores incorrect values for
Chess positions containing legal captures to achieve better compres-
sion. The trade-off for the reduction in space thereby achieved is that
querying requires the use of a capture-based quiescence search and
the minimaxing of the resulting values, which lengthens the time re-
quired to return the desired information. It would be interesting to
explore removing this transformation from Syzygy and/or adding it
to the other techniques to be able to discern with precision the effects
of this particular choice.

Decision trees provide the fastest query times, but are substan-
tially less space efficient than MTBDDs. When implementing from
scratch, decision trees are the quickest route to achieving good query
performance.

MTBDDs provide both good compression and efficient query



time. We believe that other BDD-based techniques are likely to per-
form similarly well and are worth exploration. While not considered
in this paper, BDDs can also be used to efficiently perform operations
on sets of positions, which could enable generating the Chess EGTs
in compressed format without explicitly enumerating all canonical
positions.

TLLM exhibits both high potential for future result improvement
and high risk of future obsolescence, depending on whether or not
further effective breakthroughs in the efficiency and effectiveness of
the minimization process are discovered. The disk space and results
reported upon herein are reasonable for five-piece EGTs. That said,
the challenge of handling the exponential growth in data size as even
larger n-piece EGTs are processed currently seems the most daunting
for this method.
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