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Department of Computational Mathematics,

Science & Engineering

Department of Mathematics

Michigan State University

East Lansing MI, USA

appeloda@msu.edu

Lu Zhang

Department of Applied Physics

and Applied Mathematics

Columbia University

New York NY, USA

lz2784@columbia.edu

Abstract—We consider numerical methods for Maxwell’s equa-
tions in general linear dispersive media. First, we use standard
energy techniques to prove stability for discontinuous Galerkin
methods applied to both first-order and second-order formu-
lations. Second, we discuss the general representation of the
polarization kernel by rational functions in continued fraction
form.

Index Terms—dispersive media, discontinuous Galerkin meth-
ods, rational approximation.

I. INTRODUCTION

We consider Maxwell’s equations in an isotropic dispersive

medium, written both as a first order system

∂D

∂t
= ∇×H− J,

∂H

∂t
= −

1

µ0
∇×E, (1)

∇ ·H = 0, ∇ ·D = ρ,

and in second order form

∂2D

∂t2
= −

1

µ0
∇×∇×E−

∂J

∂t
, (2)

where

D = ϵ0E+P. (3)

Discontinuous Galerkin (DG) methods applied to (1) or (2)

have a number of desirable features; they are geometrically

flexible and can achieve aribitrary-order in a straightforward

way. For applications to electromagnetic waves in dispersive

media see [1] and references therein. Our goals are to analyze

the stability of DG methods for a general linear polarization

P and to describe effective methods for the localized reduced

order modeling of P.

We note that the disadvantage of DG methods relative to

alternative high-order schemes on structured grids such as [2],

[3] is the excessive restriction on the time step for explicit

schemes, worse by a factor of the polynomial degree. A

possible approach to circumventing this restriction in cases

where uniform media form a sufficiently large portion of

the domain are to use either Galerkin difference [4]–[7] or

staggered [8] formulations, but we will not consider these here.

II. LINEAR DISPERSION MODELS

Consider a general time-translation-invariant linear disper-

sion model taking the form of a temporal convolution:

P(x, t) = ϵ0

∫ t

0

χ(x, τ)E(x, t− τ)dτ. (4)

Here we will focus on the typical case where the convolution

kernel χ is piecewise constant; that is only varying from

material to material. We also note that in our notation ϵ0 and

µ0 may also vary from material to material. To emphasize

this we will drop the x in describing χ, but will note the role

of discontinuities at material interfaces when we discuss the

DG discretizations. It is convenient to express the polarization

using a Laplace transformation in time:

P̂(x, s) = ϵ0χ̂(s)Ê(x, s). (5)

We explicitly assume that χ̂ is analytic in ℜs > 0 and that it

represents a lower order term in that |χ̂| = O(s−1), |s| → ∞.

We also assume that χ satisfies the stability condition

ℜ (sχ̂) > 0, ℜs > 0. (6)

An immediate consequence of (6) is an energy estimate

for solutions of both the first and second order formulations.

These follow from the positivity of convolutions with kernels

satifying (6) (e.g. [9, Ch. 16] and [10]). For any function u(t)

∫ T

0

u(t)

(

χ ∗
du

dt

)

(t)dt ≥ 0. (7)

We first consider (1). Define, for any domain Ω

E1(t) =
1

2

∫

Ω

ϵ0|E|2 + µ0|H|2.

Then, differentiating in time and applying the standard argu-

ments we find

dE1
dt

= −ϵ0

∫

Ω

E ·

(

χ ∗
∂E

∂t

)

(8)

−

∫

Ω

E · J+

∫

∂Ω

(H×E) · n.
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Integrating in time and applying (7) component-wise we obtain

an expression for ∆E1 = E1(t)− E1(0):

∆E1 ≤ −

∫ t

0

(
∫

Ω

E · J+

∫

∂Ω

(H×E) · n

)

dt. (9)

Now consider (2). Define

E2(t) =
1

2

∫

Ω

ϵ0|
∂E

∂t
|2 +

1

µ0
|∇ ×E|2.

Then, again differentiating in time and applying the standard

arguments we find

dE2
dt

= −

∫

Ω

ϵ0
∂E

∂t
·

(

χ ∗
∂2E

∂t2

)

(10)

−

∫

Ω

∂E

∂t
·
∂J

∂t
−

∫

∂Ω

1

µ0

(

(∇×E)×
∂E

∂t

)

· n.

Integrating in time and applying (7) component-wise we now

obtain:

∆E2 ≤ −

∫ t

0

∫

Ω

∂E

∂t
·
∂J

∂t
dt (11)

−

∫ t

0

∫

∂Ω

1

µ0

(

(∇×E)×
∂E

∂t

)

· ndt.

We remark that in the absence of charges ∇ · E = 0 and (2)

can be replaced by a standard vector wave equation, as used

computationally in [3]. Then E2 can be replaced by the usual

energy for the scalar wave equation applied component-wise

and the boundary flux density replaced by ∇E · ∂E
∂t .

III. DISCONTINUOUS GALERKIN DISCRETIZATIONS IN

SPACE

Leaving time continuous, we consider the approximation of

(1) or (2) by discontinuous Galerkin methods. Given the en-

ergy estimates listed above and the fact that the energy flux at

boundaries is independent of the polarization model, these only

require an addition of the polarization terms to approximations

developed in the nondispersive case. Specifically we assume

the domain Ω is divided into the union of nonoverlapping

elements Ωj and that the fields are approximated by piecewise

polynomials relative to this partition. We will also assume that

material boundaries coincide with element boundaries.

A. First Order Formulation

Approximating (1) follows the standard procedure out-
lined in [11]. On each element Ωj we approximate E, H

component-wise by polynomials of degree q, E
h, H

h, and
impose for all component-wise degree q test functions ΦE ,
ΦH ,

∫

Ωj

ϕE ·
∂Dh

∂t
−

1

2

(

ΦE · (∇×H
h) + (∇×ΦE) ·H

h
)

=

∫

∂Ωj

(

n×

(

H
∗ −

1

2
H

h

))

·ΦE −

∫

Ωj

ϕE · J,

∫

Ωj

µ0ϕH ·
∂Hh

∂t
+

1

2

(

ΦH · (∇×E
h) + (∇×ΦH) ·Eh

)

=

∫

∂Ωj

(

n×

(

E
∗ −

1

2
E

h

))

·ΦH .

To facilitate the computation of P
h we would generally use

nodal degrees-of-freedom to represent the polynomials. In

addition we have written down the partially integrated form

which allows us to retain the energy estimates when exact

integration is replaced by a numerical quadrature with positive

weights. Then the integrals in the energy estimate are simply

replaced by quadratures.
At interelement boundaries we can choose the standard

fluxes [11], where the parameter α, 0 ≤ α ≤ 1, controls the
upwinding and the outside states at physical boundaries are
chosen to impose the boundary conditions. In these formulas
+ denotes the outside state, − denotes the inside state,
Z = Y −1 =

√

µ0/ϵ0. Jumps in the material parameters are
allowed with {W} = (W+ +W−)/2, [[W ]] for W = Z, Y .
The expressions for n×

(

H
∗ − 1

2H
h
)

and n×
(

E
∗ − 1

2E
h
)

are, respectively,

1

2{Z}
n×

(

Z
+
H

h,+ +
[[Z]]

2
H

h + αn×
(

E
h −E

h,+
)

)

,

1

2{Y }
n×

(

Y
+
E

h,+ +
[[Y ]]

2
E

h − αn×
(

H
h −H

h,+
)

)

.

We then have that the discrete analogue of (9) holds,

establishing the stability of the method. The proof exactly

mimics the standard arguments in [11].

B. Second Order Formulation

To approximate (2) we propose a generalization of the
so-called energy-DG method introduced for the scalar wave
equation in [12]. (The original method could be directly
applied in the absence of charges by reformulating as the
standard wave equation.) In energy-DG methods we introduce
a new variable weakly equal to the time derivative of some
quantity. In this setting we impose, again for polynomial test
and trial functions,

∫

Ωj

1

µ0

(∇× ϕE) ·

[

∇×

(

∂Eh

∂t
−V

h

)]

=

∫

∂Ωj

1

µ0

(∇× ϕE) · (n×V
∗ − n×V

h),

∫

Ωj

ϵ0ϕV ·

(

∂Vh

∂t
+ χ ∗

∂Vh

∂t

)

+ (∇× ϕV ) ·

(

1

µ0

∇×E
h

)

=

−

∫

Ωj

ϕV ·
∂J

∂t
+

∫

∂Ωj

ϕV ·

((

1

µ0

∇×E

)

∗

× n

)

.

A general parametrization of the fluxes is given by
(

1

µ0

∇×E

)

∗

= (1− α)

(

1

µ+
0

∇×E
h,+

)

+ α

(

1

µ−

0

∇×E
h,−

)

− β(n+ ×V
h,+ + n

− ×V
h,−),

V
∗ = αV

h,+ + (1− α)Vh,−

− τ

(

1

µ+
0

(∇×E
h,+)× n

+ +
1

µ−

0

(∇×E
h,−)× n

−

)

,

with 0 ≤ α ≤ 1 and, if upwinding is desired, β, τ < 0.

With these choices a discrete analogue of (11) holds,

establishing the stability of the method. See [13] for details.



IV. LOCAL DISPERSION MODELS

Although our analysis only relies on the assumptions on χ̂
listed above, memory-efficient implementations are possible if

χ̂(s) is a rational function. Of course this is always the case

for the standard Lorentz and Debye models, and recently a

generalization (GDM) has been proposed in [14]. However,

other dispersion models are also relevant, for example the

general Havriliak-Negami relation with non-integral α, β [15]:

χ̂ =
δ

(1 + (ηs)α)
β
, (12)

Here we propose a generalized rational approximation based

on continued fractions, which have proven to be convenient for

constructing local, high-order radiation boundary conditions

[16]–[19]. As motivation for this we note the following three

facts:

i. All kernels satisfying (6) take the form [10]:

sχ̂(s) = χ0 +

∫

∞

−∞

σ(dλ)

s+ iλ
, (13)

where χ0 ≥ 0 and σ is a finite measure. Such func-

tions are also sometimes called Markov functions.

The standard Lorentz-Debye and the generalized

GDM models of [14] correspond to Dirac measures.

ii. A continued J-fraction

f̂(s) = χ0 +
ω2
0

s+ γ1 +
ω2

1

s+γ2+...

, (14)

with γj ≥ 0 is positive definite, converges to a

function satisfying (13) and, when truncated, satisfies

the Kramers-Kronig relations [20, Ch. IV, XII].

iii. Away from singular points the diagonal Padé approx-

imant to (13) (with respect to the Laurent series)

is exponentially convergent away from singularities

and, for real χ, has the form (14) [21].

Our proposal, then, is to model (or approximate) sχ̂(s)
by a finite continued fraction in the form (14). Then, just

as in the auxiliary differential equation approach of [3],

[14], the pointwise polarizations in our Galerkin methods can

be computed by solving a number of auxiliary differential

equations. Precisely, suppose (14) is truncated after m terms.

That is, the last term in the continued fraction is
ω2

m−1

s+γm
. We

then can write, where w = E
h for our DG discretization of

(1) and w = V
h for our DG discretization of (2),

χ ∗
∂w

∂t
= χ0w + ψ1, (15)

dψj

dt
+ γjψj = ω2

j−1ψj−1 − ψj+1,

where we set

ψ0 = w, ψm+1 = 0.

It is always possible to transform between the continued

fraction and GDM forms, assuming that the GDM describes

a kernel satisfying (6). Recall the GDM form is

sχ̂ =

m
∑

j=1

a0,js+ a1,js
2

b0,j + b1,js+ s2
. (16)

To go from (16) to (14) one first writes the rational function

explicitly as a ratio of polynomials and then applies the

division algorithm described in [20, Ch. IX]. The calculations

are always explicit. Note that such a procedure would provide

a test that the proposed GDM satisfies (6). To go from

(14) to (16) requires computing the poles of the rational

function. These are the eigenvalues of the tridiagonal matrix

with diagonal elements −γj , superdiagonal elements −1, and

subdiagonal elements ω2
j .

The advantage of the GDM method is that it encompasses

the standard models in current use. However, we believe our

proposed form could be useful in automatically developing

stable approximations. For example, one can construct rational

interpolants or least squares approximations using experimen-

tal data or formulas such as (12) using the large s Padé

approximants of [21]. Here we note the stable interpolation

and approximation algorithms based on barycentric forms

[22], [23], which can be directly transformed to the continued

fraction form and monitored for stability as discussed above.

These approximations can be made more efficient, that is

using smaller values of m, via the application of reduced

order modeling techniques such as balanced truncation, which

has been successful in constructing efficient approximations to

radiation boundary conditions [24], [25]. We note the work in

[26] where accurate approximations to (12) are incorporated

into the Yee scheme. There the short time singularity was

handled using a local quadrature, but we also suspect that

with appropriately chosen interpolation nodes efficient rational

approximations can be constructed [27].

V. A NUMERICAL EXAMPLE

As a simple illustration we present the results of a numerical

experiment using the upwind (α = 1) DG discretization of (1)

mentioned above. Examples using the new energy-DG method

will appear elsewhere. The problem solved is inspired by but

different than the one presented in [1]. Here we look at a

transverse magnetic wave in two space dimensions. The setup

is a waveguide with PEC boundaries and a width of 2500nm.

A metal strip of width 50nm and ϵ0,metal = 2.75ϵ0,vacuum
is placed in the guide and a current source with a Gaussian

spatio-temporal profile centered at t = 5 with a temporal width

tw = 0.77 and frequency ω = 4.9 and a spatial width of

rw = 200nm is used to excite the waves. It is centered in the

middle of the waveguide a distance of 1250nm to the left of

the strip. (Time is measured in femtoseconds.)

Jz = e−((t−t0)/tw)2−(r/rw)2 sin (ω(t− t0)).

The dispersion model, though reasonably scaled, does not

correspond to a model of a particular metal, but could be

produced by a Drude-Lorentz combination. The parameters

are:

ω0 = 2, ω1 = .715, ω2 = .65

γ1 = 0.1, γ2 = 0.016, γ3 = 0.



We use square elements of side 25nm and compare results

using tensor product polynomials of q = 3, 5, 7 in each coor-

dinate direction for the spatial discretization in each element.

Time stepping is by the standard fourth order Runge-Kutta

method with ∆t = 1/300, ∆t = 1/600 and ∆t = 1200. The

domain is truncated by complete radiation boundary conditions

with 5 auxiliary fields as described in [19]. These are located

2500nm to the left and 50nm to the right of the strip. In Figure

1 we plot the transmitted and reflected fields at points in the

middle of the waveguide 200nm to the left and 25nm to the

right of the strip respectively. Note that the source excites a

variety of modes so the profiles are not as simple as would

be produced by plane wave incidence. Using the q = 7 results

as a reference solution we find that the reflected wave at the

recording station has a maximum relative error of 1.1× 10−5

when q = 3 and 5.1× 10−9 when q = 5.
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Fig. 1. Transmitted and reflected waves in the numerical experiment.
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