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Abstract—We consider numerical methods for Maxwell’s equa-
tions in general linear dispersive media. First, we use standard
energy techniques to prove stability for discontinuous Galerkin
methods applied to both first-order and second-order formu-
lations. Second, we discuss the general representation of the
polarization kernel by rational functions in continued fraction
form.

Index Terms—dispersive media, discontinuous Galerkin meth-
ods, rational approximation.

I. INTRODUCTION

We consider Maxwell’s equations in an isotropic dispersive
medium, written both as a first order system
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and in second order form
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Discontinuous Galerkin (DG) methods applied to (1) or (2)
have a number of desirable features; they are geometrically
flexible and can achieve aribitrary-order in a straightforward
way. For applications to electromagnetic waves in dispersive
media see [1] and references therein. Our goals are to analyze
the stability of DG methods for a general linear polarization
P and to describe effective methods for the localized reduced
order modeling of P.

We note that the disadvantage of DG methods relative to
alternative high-order schemes on structured grids such as [2],
[3] is the excessive restriction on the time step for explicit
schemes, worse by a factor of the polynomial degree. A
possible approach to circumventing this restriction in cases
where uniform media form a sufficiently large portion of
the domain are to use either Galerkin difference [4]-[7] or
staggered [8] formulations, but we will not consider these here.

II. LINEAR DISPERSION MODELS

Consider a general time-translation-invariant linear disper-
sion model taking the form of a temporal convolution:

¢
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Here we will focus on the typical case where the convolution
kernel y is piecewise constant; that is only varying from
material to material. We also note that in our notation ¢y and
o may also vary from material to material. To emphasize
this we will drop the x in describing , but will note the role
of discontinuities at material interfaces when we discuss the
DG discretizations. It is convenient to express the polarization
using a Laplace transformation in time:

P(x,s) = eoX(s)E(x, s). (5)

We explicitly assume that x is analytic in s > 0 and that it
represents a lower order term in that | Y| = O(s™1), |s| — oo.
We also assume that y satisfies the stability condition

R(sx) >0, Rs>0. (6)

An immediate consequence of (6) is an energy estimate
for solutions of both the first and second order formulations.
These follow from the positivity of convolutions with kernels
satifying (6) (e.g. [9, Ch. 16] and [10]). For any function u(t)

ATUG)<X*§?>@MtZO. )

We first consider (1). Define, for any domain 2
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Then, differentiating in time and applying the standard argu-

ments we find
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Integrating in time and applying (7) component-wise we obtain
an expression for A& = & (t) — £1(0):

t
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Now consider (2). Define
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Then, again differentiating in time and applying the standard
arguments we find
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Integrating in time and applying (7) component-wise we now
obtain:
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We remark that in the absence of charges V - E = 0 and (2)
can be replaced by a standard vector wave equation, as used
computationally in [3]. Then & can be replaced by the usual
energy for the scalar wave equation applied component-wise
and the boundary flux density replaced by VE - %.

A& < (11)

III. DISCONTINUOUS GALERKIN DISCRETIZATIONS IN
SPACE

Leaving time continuous, we consider the approximation of
(1) or (2) by discontinuous Galerkin methods. Given the en-
ergy estimates listed above and the fact that the energy flux at
boundaries is independent of the polarization model, these only
require an addition of the polarization terms to approximations
developed in the nondispersive case. Specifically we assume
the domain €2 is divided into the union of nonoverlapping
elements 2; and that the fields are approximated by piecewise
polynomials relative to this partition. We will also assume that
material boundaries coincide with element boundaries.

A. First Order Formulation

Approximating (1) follows the standard procedure out-
lined in [11]. On each element {2; we approximate E, H

component-wise by polynomials of degree ¢, E", H", and
impose for all component-wise degree ¢ test functions ®p,
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To facilitate the computation of P” we would generally use
nodal degrees-of-freedom to represent the polynomials. In
addition we have written down the partially integrated form
which allows us to retain the energy estimates when exact
integration is replaced by a numerical quadrature with positive
weights. Then the integrals in the energy estimate are simply

replaced by quadratures.

At interelement boundaries we can choose the standard
fluxes [11], where the parameter o, 0 < o < 1, controls the
upwinding and the outside states at physical boundaries are
chosen to impose the boundary conditions. In these formulas
+ denotes the outside state, — denotes the inside state,

Z =Y ! = \/uo/eo. Jumps in the material parameters are
allowed with {W} = (W + W~ )/2 [W]] for W = Z,Y.
The expressions for n x (H* — 1H") and n x (E* — JE")

are, respectively,
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We then have that the discrete analogue of (9) holds,
establishing the stability of the method. The proof exactly
mimics the standard arguments in [11].
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B. Second Order Formulation

To approximate (2) we propose a generalization of the
so-called energy-DG method introduced for the scalar wave
equation in [12]. (The original method could be directly
applied in the absence of charges by reformulating as the
standard wave equation.) In energy-DG methods we introduce
a new variable weakly equal to the time derivative of some
quantity. In this setting we impose, again for polynomial test
and trial functions,
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A general parametrization of the fluxes is given by
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with 0 < o < 1 and, if upwinding is desired, 5,7 < 0.

With these choices a discrete analogue of (11) holds,
establishing the stability of the method. See [13] for details.



IV. LocAL DISPERSION MODELS

Although our analysis only relies on the assumptions on Y
listed above, memory-efficient implementations are possible if
X(s) is a rational function. Of course this is always the case
for the standard Lorentz and Debye models, and recently a
generalization (GDM) has been proposed in [14]. However,
other dispersion models are also relevant, for example the
general Havriliak-Negami relation with non-integral «, 5 [15]:

1)
X=—""3> (12)
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Here we propose a generalized rational approximation based
on continued fractions, which have proven to be convenient for

constructing local, high-order radiation boundary conditions

[16]-[19]. As motivation for this we note the following three
facts:
1. All kernels satisfying (6) take the form [10]:
< a(dN)
Y(s) = 13
5X(s) XO*/,msﬂ-x 13)

where xo > 0 and o is a finite measure. Such func-

tions are also sometimes called Markov functions.

The standard Lorentz-Debye and the generalized

GDM models of [14] correspond to Dirac measures.
ii. A continued J-fraction

2
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with 7; > 0 is positive definite, converges to a
function satisfying (13) and, when truncated, satisfies
the Kramers-Kronig relations [20, Ch. TV, XII].

iii.  Away from singular points the diagonal Padé approx-
imant to (13) (with respect to the Laurent series)
is exponentially convergent away from singularities
and, for real y, has the form (14) [21].

Our proposal, then, is to model (or approximate) sx(s)
by a finite continued fraction in the form (14). Then, just
as in the auxiliary differential equation approach of [3],
[14], the pointwise polarizations in our Galerkin methods can
be computed by solving a number of auxiliary differential
equations. Precisely, suppose (14) is truncated after m terms.

. We

then can write, where w = E" for our DG discretlzatlon of
(1) and w = V" for our DG discretization of (2),

(14)
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That is, the last term in the continued fraction is :
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It is always possible to transform between the continued
fraction and GDM forms, assuming that the GDM describes
a kernel satisfying (6). Recall the GDM form is

ao,;s + ay ;s
16
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To go from (16) to (14) one first writes the rational function
explicitly as a ratio of polynomials and then applies the
division algorithm described in [20, Ch. IX]. The calculations
are always explicit. Note that such a procedure would provide
a test that the proposed GDM satisfies (6). To go from
(14) to (16) requires computing the poles of the rational
function. These are the eigenvalues of the tridiagonal matrix
with diagonal elements —+;, superdiagonal elements —1, and
subdiagonal elements wJQ».

The advantage of the GDM method is that it encompasses
the standard models in current use. However, we believe our
proposed form could be useful in automatically developing
stable approximations. For example, one can construct rational
interpolants or least squares approximations using experimen-
tal data or formulas such as (12) using the large s Padé
approximants of [21]. Here we note the stable interpolation
and approximation algorithms based on barycentric forms
[22], [23], which can be directly transformed to the continued
fraction form and monitored for stability as discussed above.
These approximations can be made more efficient, that is
using smaller values of m, via the application of reduced
order modeling techniques such as balanced truncation, which
has been successful in constructing efficient approximations to
radiation boundary conditions [24], [25]. We note the work in
[26] where accurate approximations to (12) are incorporated
into the Yee scheme. There the short time singularity was
handled using a local quadrature, but we also suspect that
with appropriately chosen interpolation nodes efficient rational
approximations can be constructed [27].

V. A NUMERICAL EXAMPLE

As a simple illustration we present the results of a numerical
experiment using the upwind (o = 1) DG discretization of (1)
mentioned above. Examples using the new energy-DG method
will appear elsewhere. The problem solved is inspired by but
different than the one presented in [1]. Here we look at a
transverse magnetic wave in two space dimensions. The setup
is a waveguide with PEC boundaries and a width of 2500nm.
A metal strip of width 50nm and €y metal = 2.75€0 vacuum
is placed in the guide and a current source with a Gaussian
spatio-temporal profile centered at ¢ = 5 with a temporal width
ty = 0.77 and frequency w = 4.9 and a spatial width of
r = 200nm is used to excite the waves. It is centered in the
middle of the waveguide a distance of 1250nm to the left of
the strip. (Time is measured in femtoseconds.)

T, = e~ (=t /t)*=(/r)? gin (w(t — 1)),

The dispersion model, though reasonably scaled, does not
correspond to a model of a particular metal, but could be
produced by a Drude-Lorentz combination. The parameters
are:

Wy = .65
73 = 0.



We use square elements of side 25nm and compare results
using tensor product polynomials of ¢ = 3,5, 7 in each coor-
dinate direction for the spatial discretization in each element.
Time stepping is by the standard fourth order Runge-Kutta
method with At = 1/300, At = 1/600 and At = 1200. The
domain is truncated by complete radiation boundary conditions
with 5 auxiliary fields as described in [19]. These are located
2500nm to the left and 50nm to the right of the strip. In Figure
1 we plot the transmitted and reflected fields at points in the
middle of the waveguide 200nm to the left and 25nm to the
right of the strip respectively. Note that the source excites a
variety of modes so the profiles are not as simple as would
be produced by plane wave incidence. Using the ¢ = 7 results
as a reference solution we find that the reflected wave at the
recording station has a maximum relative error of 1.1 x 10~
when ¢ = 3 and 5.1 x 10~ when ¢ = 5.

Incoming and reflected wave
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Fig. 1. Transmitted and reflected waves in the numerical experiment.
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