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Abstract—We describe a new approach for implementing
arbitrary-order local radiation boundary condition sequences
for Maxwell’s equations designed to have a straightforward
interface with standard element-based volume schemes. Our goal
is to develop easy-to-use software utilizing complete radiation
boundary conditions. These implicitly apply uniformly accurate
exponentially convergent rational approximants to the exact radi-
ation boundary conditions. Numerical experiments for waveguide
and free space problems using high-order discontinuous Galerkin
spatial discretizations are presented.

Index Terms—radiation conditions, time-domain methods.

I. INTRODUCTION

The radiation of waves to the far field is a central feature

of electromagnetism. Therefore efficient, convergent domain

truncation algorithms are a necessary component of any soft-

ware for simulating electromagnetic waves in the time domain.

Complete radiation boundary conditions (CRBC), presented

for electromagnetic waves in [1], [2], are an ideal solution

to the radiation boundary condition problem. They possess a

number of theoretical and practical advantages over perfectly

matched layers (PML) [3]. In particular, as proven in [4], they

are spectrally convergent, optimal parameters can be chosen

automatically to guarantee any prescribed accuracy, and the

computational boundary can be placed arbitrarily close to

scatterers or other inhomogeneities.

Despite these facts, PML is still far more popular than

CRBC in the user community. One reason is that the original

implementation of CRBC for first order hyperbolic equations

involved the solution of nonstandard systems of equations on

the radiation boundary faces, as well as on the edges con-

necting the faces and on corner points where multiple edges

meet. To make CRBC easier to use, we will release a library

of implementations designed to be used with standard volume

discretization schemes [5]. To date the library is limited to

an implementation for the well-known Yee scheme. However,

it will include implementations appropriate for discontinuous

Galerkin discretizations [6]. (Preliminary implementations in

F90 in three space dimensions and, for TM formulations, in

Matlab are available from the author on request.)
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opinions, findings, conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the NSF.

In this paper we will describe the data that is passed between

the volume solver and the radiation boundary faces, along with

a brief description of the equations which our codes will solve

for auxiliary variables defined on faces, edges, and corners. We

emphasize that a user will not need to implement the latter, but

simply evolve the functions defined there using the computed

time derivatives.

II. CRBC THEORY

We consider Maxwell’s equations in a uniform dielectric.

Suppose a radiation boundary is located at x1 = L1 with

normal in the x1 direction and waves are produced by sources

or scatterers located in the region x1 ≤ L1 − δ. We construct

CRBC to be the radiation condition which minimizes the max-

imum possible error up to a given simulation time T subject

to a constraint on the complexity. Practically we constrain the

degrees-of-freedom (DOF) devoted to the radiation condition,

denoted by a parameter P which equals the ratio of the DOFs

to the number of boundary nodes per field. In three space

dimensions if there are N nodes on the boundary we will

evolve 6NP degrees of freedom, similar to the complexity

requirements of a PML with P nodes in the normal direction.

The construction of the optimal conditions for a given

P is carried out using the Remez algorithm based on the

dimensionless parameter ν = cT
δ

where c = 1
√
ǫµ

is the wave

speed. This is possible since, as shown in [4], we can reduce

the problem to that of minmizing a weighted error in the

rational approximation to the square root function. We prove

that an error tolerance τ can be achieved with P ∝ log ν ·log 1
τ

poles in the rational interpolant. To meet a given tolerance we

simply find the smallest P for which the tolerance is met. We

remark that ν may be interpreted as the number of times a

wave can travel between the source and the radiation boundary

over the course of a simulation. In Figure 1 below we plot P

versus the error tolerance for ν = 102 and ν = 103; the

efficiency of the approximations is obvious. We emphasize

that the results are based on rigorous error estimates, while

methods for choosing the width of a PML are usually based on

ad hoc formulas which ignore the effect of evanescent modes.

The optimal conditions are implemented by introducing P

auxiliary variables per field. These satisfy recursion relations

which enforce the interpolation conditions. The new feature
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Fig. 1. Required DOFs/field/boundary point plotted versus tolerance.

compared with our original implementations is that we asso-

ciate the normal derivatives of the auxiliary variables with

the volume variables, which in turn simplifies the data input

from the volume. We must also evolve auxiliary variables on

edges and at corner points. Solving these recursions requires

the use of sparse linear algebra solvers for systems of size

proportional to P 2 at edge nodes and P 3 at corner points.

III. INTERFACE WITH THE VOLUME

To interface with the CRBC system the following steps are

required:

i. Input ν and τ or ν and P into the optimizer. This

will determine the optimal parameters.

ii. Input the face meshes and normal (the faces must be

flat), the requested spatial discretization order and the

impedance at any physical termination boundaries.

iii. At each time step or stage input the tangential fields

into the CRBC solver. The solver will return the

outside state at the boundary faces as well as the

time derivatives of all auxiliary variables associated

with faces, edges, and corners. These can be evolved

with any time-stepping scheme.

So far we have only experimented with DG but we note

that the required data is also compatible with edge elements.

IV. SECOND ORDER FORMULATIONS

We are developing an alternative implementation for sec-

ond order formulations which we term the double absorbing

boundary (DAB) [7]. As demonstrated in [8], the method

can be used in conjunction with upwinded interior penalty

DG discretizations for the scalar wave equation [9] and we

will apply these to Maxwell’s equations written as a system

of second order wave equations for the electric field as in

[10]. The DAB formulation involves the evolution of the

auxiliary variables in a one or two element layer normal to the

radiation boundary with analogous edge and corner layers. The

equations themselves are simply copies of the second order

Maxwell system coupled at the layer ends by the recursions,

avoiding any linear algebra. However, the cost is an increase

in the number of degrees-of-freedom.

V. NUMERICAL EXPERIMENTS

We demonstrate the accuracy of the method with DG

discretizations of the TM system in two space dimensions. We

consider initial value problems in a waveguide of width 2 and

in free space. The computational domain is (−1, 1)× (−1, 1)
with PEC boundary conditions imposed at x2 = −1, 1 and

the CRBCs imposed at x1 = ±1 for the waveguide. For the

free space problem the CRBCs are imposed at x1 = ±1
and x2 = ±1 - in this case corner variables must also be

evolved. The initial electric field is Ex = 10e−40(x2

1
+x2

2
) with

the magnetic fields set to 0. We use upwind fluxes with degree

9 polynomials, an explicit fourth order Runge-Kutta method

in time, and fix the CRBC order to be P = 7. We use 20×20
elements in space and choose ∆t = 2 × 10−3. The dielectric

parameters are ǫ = 1.5, µ = ǫ−1. Errors are computed by

comparison with solutions computed on domains so large that

the effect of the external boundaries can’t be felt in the interior.

We plot the errors relative to the initial pulse in Figure 2. We

see that the errors remain below τ for all time. (Here we set

δ = 1 and T = 20 and find τ = 2.98× 10−6.)
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Fig. 2. Relative errors for the TM problem.
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