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Abstract—We describe a new approach for implementing
arbitrary-order local radiation boundary condition sequences
for Maxwell’s equations designed to have a straightforward
interface with standard element-based volume schemes. Our goal
is to develop easy-to-use software utilizing complete radiation
boundary conditions. These implicitly apply uniformly accurate
exponentially convergent rational approximants to the exact radi-
ation boundary conditions. Numerical experiments for waveguide
and free space problems using high-order discontinuous Galerkin
spatial discretizations are presented.

Index Terms—radiation conditions, time-domain methods.

I. INTRODUCTION

The radiation of waves to the far field is a central feature
of electromagnetism. Therefore efficient, convergent domain
truncation algorithms are a necessary component of any soft-
ware for simulating electromagnetic waves in the time domain.
Complete radiation boundary conditions (CRBC), presented
for electromagnetic waves in [1], [2], are an ideal solution
to the radiation boundary condition problem. They possess a
number of theoretical and practical advantages over perfectly
matched layers (PML) [3]. In particular, as proven in [4], they
are spectrally convergent, optimal parameters can be chosen
automatically to guarantee any prescribed accuracy, and the
computational boundary can be placed arbitrarily close to
scatterers or other inhomogeneities.

Despite these facts, PML is still far more popular than
CRBC in the user community. One reason is that the original
implementation of CRBC for first order hyperbolic equations
involved the solution of nonstandard systems of equations on
the radiation boundary faces, as well as on the edges con-
necting the faces and on corner points where multiple edges
meet. To make CRBC easier to use, we will release a library
of implementations designed to be used with standard volume
discretization schemes [5]. To date the library is limited to
an implementation for the well-known Yee scheme. However,
it will include implementations appropriate for discontinuous
Galerkin discretizations [6]. (Preliminary implementations in
F90 in three space dimensions and, for TM formulations, in
Matlab are available from the author on request.)
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In this paper we will describe the data that is passed between
the volume solver and the radiation boundary faces, along with
a brief description of the equations which our codes will solve
for auxiliary variables defined on faces, edges, and corners. We
emphasize that a user will not need to implement the latter, but
simply evolve the functions defined there using the computed
time derivatives.

II. CRBC THEORY

We consider Maxwell’s equations in a uniform dielectric.
Suppose a radiation boundary is located at x; = L; with
normal in the z; direction and waves are produced by sources
or scatterers located in the region z; < L; — §. We construct
CRBC to be the radiation condition which minimizes the max-
imum possible error up to a given simulation time 7" subject
to a constraint on the complexity. Practically we constrain the
degrees-of-freedom (DOF) devoted to the radiation condition,
denoted by a parameter P which equals the ratio of the DOFs
to the number of boundary nodes per field. In three space
dimensions if there are N nodes on the boundary we will
evolve 6N P degrees of freedom, similar to the complexity
requirements of a PML with P nodes in the normal direction.

The construction of the optimal conditions for a given
P is carried out using the Remez algorithm based on the
dimensionless parameter v = <= where ¢ = — is the wave
speed. This is possible since, as shown in [4], we can reduce
the problem to that of minmizing a weighted error in the
rational approximation to the square root function. We prove
that an error tolerance 7 can be achieved with P  log v-log %
poles in the rational interpolant. To meet a given tolerance we
simply find the smallest P for which the tolerance is met. We
remark that ¥ may be interpreted as the number of times a
wave can travel between the source and the radiation boundary
over the course of a simulation. In Figure 1 below we plot P
versus the error tolerance for ¥ = 102 and v = 103; the
efficiency of the approximations is obvious. We emphasize
that the results are based on rigorous error estimates, while
methods for choosing the width of a PML are usually based on
ad hoc formulas which ignore the effect of evanescent modes.

The optimal conditions are implemented by introducing P
auxiliary variables per field. These satisfy recursion relations
which enforce the interpolation conditions. The new feature
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Fig. 1. Required DOFs/field/boundary point plotted versus tolerance.

compared with our original implementations is that we asso-
ciate the normal derivatives of the auxiliary variables with
the volume variables, which in turn simplifies the data input
from the volume. We must also evolve auxiliary variables on
edges and at corner points. Solving these recursions requires
the use of sparse linear algebra solvers for systems of size
proportional to P? at edge nodes and P2 at corner points.

III. INTERFACE WITH THE VOLUME

To interface with the CRBC system the following steps are
required:

1. Input v and 7 or v and P into the optimizer. This
will determine the optimal parameters.
ii. Input the face meshes and normal (the faces must be

flat), the requested spatial discretization order and the
impedance at any physical termination boundaries.

iii. At each time step or stage input the tangential fields
into the CRBC solver. The solver will return the
outside state at the boundary faces as well as the
time derivatives of all auxiliary variables associated
with faces, edges, and corners. These can be evolved
with any time-stepping scheme.

So far we have only experimented with DG but we note
that the required data is also compatible with edge elements.

IV. SECOND ORDER FORMULATIONS

We are developing an alternative implementation for sec-
ond order formulations which we term the double absorbing
boundary (DAB) [7]. As demonstrated in [8], the method
can be used in conjunction with upwinded interior penalty
DG discretizations for the scalar wave equation [9] and we
will apply these to Maxwell’s equations written as a system
of second order wave equations for the electric field as in
[10]. The DAB formulation involves the evolution of the
auxiliary variables in a one or two element layer normal to the
radiation boundary with analogous edge and corner layers. The
equations themselves are simply copies of the second order
Maxwell system coupled at the layer ends by the recursions,
avoiding any linear algebra. However, the cost is an increase
in the number of degrees-of-freedom.

V. NUMERICAL EXPERIMENTS

We demonstrate the accuracy of the method with DG
discretizations of the TM system in two space dimensions. We
consider initial value problems in a waveguide of width 2 and
in free space. The computational domain is (—1,1) x (—1,1)
with PEC boundary conditions imposed at xo = —1,1 and
the CRBCs imposed at x; = +1 for the waveguide. For the
free space problem the CRBCs are imposed at ;3 = =+1
and x9 = +1 - in this case corner variables must also be
evolved. The initial electric field is E, = 10e~%0@+75) with
the magnetic fields set to 0. We use upwind fluxes with degree
9 polynomials, an explicit fourth order Runge-Kutta method
in time, and fix the CRBC order to be P = 7. We use 20 x 20
elements in space and choose At = 2 x 1073, The dielectric
parameters are ¢ = 1.5, u = ¢~ !. Errors are computed by
comparison with solutions computed on domains so large that
the effect of the external boundaries can’t be felt in the interior.
We plot the errors relative to the initial pulse in Figure 2. We
see that the errors remain below 7 for all time. (Here we set
§=1and T = 20 and find 7 = 2.98 x 1076.)
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Fig. 2. Relative errors for the TM problem.
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