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Abstract

Visual Simultaneous Localization and Mapping (vSLAM)

plays a pivotal role in numerous emerging applications, in-

cluding autonomous driving and robotic navigation. It mainly

utilizes consecutive frames captured by image sensors to con-

duct localization and build high-definition maps. However,

existing approaches mainly focus on building reliable and

accurate vSLAM systems, while little work has been done to

investigate the vulnerability of existing vSLAM systems.

To fill the gap, we introduce an AoR (Adversary is on the

Road) attack, which can effectively alter localization and map-

ping results of widely used vSLAM systems without being

detected by the legitimate user. To do this, we conducted in-

depth investigations on existing vSLAM systems and found

that these systems are very sensitive to environmental tex-

ture changes. Building upon this insight, we design a novel

adversarial patch generation mechanism that can generate

unnoticeable adversarial patches to attack existing vSLAM

systems. We extensively evaluate the effectiveness of the AoR

attack on industry-level vehicles, robotic platforms, and four

well-known open-source datasets. The evaluation results show

that the AoR attack can effectively attack existing vSLAM

systems and introduce extremely high localization errors (up

to 713%). To mitigate this attack, we also designed an in-

novative defense module to simultaneously detect abnormal

environmental texture distributions and support reliable vS-

LAM. Our defense module is lightweight and has the potential

to be applied to existing vSLAM systems.

1 Introduction

Simultaneous Localization and Mapping (SLAM) has

emerged as one of the most important technologies to support

real-time localization for various robotic applications, includ-

ing autonomous driving [1±3], robotic navigation [4±6], and

robot delivery [7±9]. To conduct SLAM, a variety of sensors,

such as cameras [10, 11], LiDAR [12, 13], and radar [14, 15],
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Figure 1: Examples of the AoR attack on a real vehicle and

KITTI Dataset: AOR attack can introduce huge errors to

existing SLAM systems.

are employed to sense and interpret the surroundings of the

robot. Among these sensors, camera-based solutions (Visual

SLAM) have distinct advantages, including low cost, high ac-

curacy, and low system complexity. As a result, Visual SLAM

(vSLAM) has been considered a practical solution and widely

applied to many real-world applications [16±21].

To build a vSLAM system, the key idea is to leverage the

consecutively captured frames to estimate the motion and

location of the camera. Then, according to the localization

result, we can simultaneously construct the map using the

captured camera frames. To improve the robustness and ac-

curacy of vSLAM systems, researchers have introduced nu-

merous novel techniques. Specifically, to design a holistic

vSLAM system, one of the most well-known vSLAM algo-

rithms, ORB-SLAM2 [22], introduced the first open-source

vSLAM system for real-time and accurate localization and
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mapping. Built on top of ORB-SLAM2, researchers have

also introduced several novel vSLAM algorithms to improve

the robustness of the vSLAM systems in different scenar-

ios [23±26]. For example, DynaSLAM [26] can detect and

filter out the moving objects in each frame to reduce the mo-

tion estimation error and improve localization accuracy in

dynamic scenarios. Recently, ORB-SLAM3 [27] introduced

a multi-map data association technique to further improve the

accuracy and robustness of vSLAM systems.

However, existing techniques mainly focus on improving

the performance of vSLAM systems, while little work has

been done to study the vulnerability of these systems. Also,

existing studies have only targeted specific components of

vSLAM [28, 29] and often require customized hardware, per-

forming attacks in limited scenarios [30]. Furthermore, they

have not systematically analyzed the security issues in vS-

LAM, resulting in a significant gap in understanding potential

threats and mitigation strategies.

In this work, for the first time, we comprehensively analyze

the unique vulnerabilities within vSLAM and strategically

exploit these weaknesses to do targeted end-to-end attacks.

We discovered that the performance of the vSLAM system

is intrinsically sensitive to various visual environmental fac-

tors, including texture distribution, lighting conditions, and

the shapes and colors of objects. Changes in these factors

can easily affect the localization and mapping accuracy. Fur-

thermore, most of the current vSLAM systems treat all the

features (e.g., key pixel points, key objects, etc.) in a frame

equally without analyzing the current environment. Questions

such as "Which feature is more reliable?" or "Is this feature

real?" often remain unaddressed. For example, features sus-

ceptible to changing light conditions should be assigned lower

importance since they may introduce high noise to vSLAM

systems. However, in practice, to improve the reliability of

vSLAM systems in low-texture environments, every feature

in a frame is utilized for localization and mapping, which

introduces inevitable errors to vSLAM systems.

Based on the above insight and analysis, we propose to at-

tack the vSLAM systems by introducing adversarial features

to existing vSLAM systems. We also aim to provide a defense

strategy to mitigate this attack. To achieve this goal, we need

to overcome three main challenges. First, existing vSLAM

systems leverage various optimization techniques (e.g., Least-

Square algorithm [31], RANSAC [32], etc.) to reduce errors

introduced by the features in a frame. As a result, simply in-

troducing random adversarial features may not attack vSLAM

systems effectively. Therefore, we need to find the optimal

adversarial features to effectively attack the vSLAM system.

Second, most vSLAM systems are designed for autonomous

vehicles and robots which operate in dynamic environments.

Therefore, instead of attacking vSLAM in static scenarios,

the proposed attack approach should stealthily attack exist-

ing vSLAM systems under dynamic environments. Third,

we need to find a solution to identify the stealthy attack and

mitigate its impact effectively.

To overcome the above challenges, we introduce the AoR

(Adversary is on the Road) attack, which can effectively at-

tack existing vSLAM systems without alerting legitimate

users. The key idea of our attack is to inject unnoticeable

adversarial patches into objects in the dynamic environment.

These patches will introduce huge errors to vSLAM systems

and can be seamlessly incorporated into common objects (i.e.,

advertising stickers in public spaces) without being detected

by the naked eye. To generate these patches, we design a novel

adversarial patch generation network to generate patches con-

taining optimal and unnoticeable adversarial vSLAM features.

Moreover, we also introduce a dynamic adjustment model to

make the AoR attack robust under dynamic scenarios. Figure

1 shows examples of AoR attacks on a real vehicle platform

and one of the most well-known autonomous driving datasets

- KITTI [33]. As we can see from Figures 1 (a) and (b), the

AoR attack introduces huge errors to the vSLAM system in

both the real-world scenario and open-source dataset. In this

case, robots or autonomous vehicles will get the wrong lo-

calization results and create a distorted map. Consequently,

users relying on these inaccurate maps for navigation can be

misled, leading to significant security risks.

To defend against the AoR attack, we propose an innovative

and lightweight defense module that can identify abnormal

patterns in each frame. To do this, we first convert each frame

into the texture space to analyze potential adversarial patches.

We then employ a variational auto-encoder model to recognize

abnormal texture distributions. At last, we introduce a cross-

frame optimization technique to dynamically select features

in each frame for reliable localization and mapping.

Overall, our key contributions are summarized as follows:

• To the best of our knowledge, this is the first work that

in-depth investigates the vulnerability of vSLAM systems.

Specifically, we introduce an AoR attack, which injects un-

noticeable adversarial patches into common objects. The pro-

posed attack can effectively attack widely used vSLAM sys-

tems, introducing significant localization and mapping errors

in dynamic settings without detection by legitimate users.

• We conduct extensive real-world experiments using

industry-level vehicles and robot platforms under various sce-

narios and settings. The experiment results prove that our

attack approach can attack widely used vSLAM systems and

introduce harmful impacts.

• To defend against the AoR Attack, we also design a novel

lightweight defense module that can detect the AoR attack

and improve the reliability of vSLAM systems simultaneously.

The experiment results show the effectiveness of our defense

approach.

2 Vulnerability of vSLAM Systems

In this section, we first introduce and analyze the background

and vulnerability of vSLAM systems. Then, we present real-

world experiments to validate our findings.
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Figure 2: An example of mismatched features introduced by

adversarial patterns.

2.1 Vulnerability Analysis of vSLAM Systems

The modern vSLAM system mainly consists of four core

modules: (i) visual odometry (VO), (ii) backend optimization,

(iii) loop closing, and (iv) map construction. The goal of VO

is to estimate the motion and location of the camera between

consecutive frames. The goal of backend optimization and

loop closing is to reduce the noise and error introduced during

the VO process. Based on the localization results, the map is

then concurrently constructed using the frames captured by

the camera in the map construction module.

In this paper, we found that the absence of a verification

process during the VO process will introduce huge errors

to vSLAM systems. Furthermore, we believe that a potential

attacker may take advantage of this vulnerability to attack

the vSLAM systems. Specifically, in the VO process, the first

step is to extract distinctive visual features from the input

images or video frames captured by the camera. These fea-

tures may include corners, edges, or other salient points that

can be reliably detected and tracked. Then, by mapping the

same features across consecutive frames, we can find the po-

sition changes of these features and calculate the location and

moving trajectory for autonomous vehicles or robots.

However, the first vulnerability issue arises as the VO pro-

cess in vSLAM systems tends to select features solely based

on their qualities without considering reliability, especially

in environments with sparse textures. Moreover, there is no

verification mechanism to validate the authenticity of these

features. As a result, unreliable and untrustworthy features

may be selected for localization and tracking, which intro-

duces localization and mapping errors to vSLAM systems.

The second vulnerability issue is that vSLAM systems are

prone to mismatch features when pixels in a frame show sim-

ilar intensity distributions. In some extreme cases, multiple

selected features in one frame may be matched to a single fea-

ture in another frame. Then, during the backend optimization

process, these mismatches will lead the vSLAM system in the

wrong optimization direction, which introduces significant

errors to vSLAM systems.

Based on the above analysis of these inherent vulnerability

issues in vSLAM systems, a malicious attacker can easily

attack vSLAM systems by injecting carefully designed adver-

sarial patterns into each frame.

(a) Adversarial 

Patch Generation

(b) Poisoned Billboard
Actual Trajectory

Generated Trajectory

Adversarial Patch 

Deployment

Eve

(c) Wrong vSLAM Results

vSLAM Error

Camera

Figure 3: The Threat Model: (a) a malicious attacker (Eve)

generates the unnoticeable adversarial patch and (b) deploys

the patch on the billboard. In (c), the vSLAM system detects

the key features in adversarial patches and outputs wrong

localization and mapping results.

2.2 Preliminary Results of vSLAM Systems

To validate our analysis, we conduct a preliminary experiment

in a real-world scenario in Figure 2. In this experiment, we

generated an adversarial pattern containing numerous repeti-

tive pixels. The grayscale values of these pixels are the same

as each other but significantly different from the background

pixels. We positioned this adversarial pattern at the road-

side and utilized the implemented vSLAM system (ORB-

SLAM2) [22] on our vehicle platform introduced in Section

5.1.1 for localization and mapping. During the experiment, we

leveraged the widely-used ORB features [34] to extract key

pixels from each frame, while leveraging the RANSAC algo-

rithm [35] to filter out anomalies. As shown in this figure, key

pixels outside the adversarial pattern are all correctly matched.

However, since the features within the adversarial pattern are

indistinguishable from one another, the VO process fails to

accurately match these features between consecutive frames.

This experiment not only proves the vulnerability of vSLAM

systems but also points out a high-level strategy to attack

the vSLAM system: the attacker can generate adversarial

patterns that contain similar features to introduce errors to

vSLAM systems.

3 Models and Assumptions

In this section, we first describe the system model. Then, we

introduce our threat model.

3.1 System Model
In this work, we mainly focus on investigating the vulnerabil-

ity of commonly used vision-based SLAM (vSLAM) systems

for autonomous vehicles and robotic applications. These vS-

LAM systems mainly utilize frames captured by cameras for

real-time localization and mapping in both indoor and out-

door scenarios. Specifically, a vSLAM system will first select

multiple key pixels in each frame as the key features during
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Figure 4: An overview of the AoR attack.

the visual odometry (VO) process. These selected features are

then mapped and tracked across consecutive frames. Finally,

based on the movement of these key features, the vSLAM

system can conduct localization and mapping accurately.

3.2 Threat Model

Attack Goal. The goal of the AoR attack is to alter the lo-

calization and mapping results of vSLAM systems in au-

tonomous vehicles or robots without being detected by the

legitimate user. By doing this, a malicious attacker can poten-

tially cause car accidents involving autonomous vehicles or

divert the robots to fallacious destinations.

Assumptions. To orchestrate such an attack, we assume

the attacker (Eve) can rent or buy the same hardware as the

victims to know the potential attack environment and the

victim’s hardware platform (e.g., autonomous vehicle, robot,

etc.). The attacker cannot access the victim’s camera frames

but can use the same hardware to collect the frames of the

attack environment before launching the attack. We also as-

sume the attacker has basic knowledge of machine learning

techniques to generate optimal adversarial patches using the

collected frames, but no additional computer science expertise

is required to execute the attack. Then as long as the victim

uses commonly-used vSLAM systems [22, 24±27], the AoR

attack can effectively alter the localization and mapping re-

sults without detection by the legitimate user. The AoR attack

is under a grey-box access assumption, where the attacker

knows that the victim employs the target vSLAM system but

does not have any internal technical details of the victim’s

system. We consider this assumption reasonable because the

attacker can infer such information through preliminary ex-

periments (Figure 2) to see if high-texture patches can affect

the system’s performance.

To attack the vSLAM systems in real-world scenarios, an

attacker can implement unnoticeable adversarial patches on

common real-world objects (e.g., billboards). While these

patches appear harmless to humans, they deceive vSLAM sys-

tems used for localization in autonomous vehicles or robots.

As a result, the AoR attack can stealthily introduce high local-

ization and mapping errors to vSLAM systems. For example,

as shown in Figure 3, the attacker generates and deploys adver-

sarial patches on roadside billboards. Then, the poisoned bill-

board containing unnoticeable features can be easily detected

by vSLAM systems in autonomous vehicles or robots and

introduce errors to vSLAM results.When the victim system

relies on such inaccurate vSLAM maps for decision-making,

it may result in collisions with nearby objects.

4 Design of the AoR Attack

In this section, we first introduce the design overview of the

AoR attack. Then, we describe the design in detail.

4.1 Design Overview

The AoR attack design, shown in Figure 4, comprises three

modules: Preliminary Adversarial Patch Generation, Dy-

namic Adjustment, and Motion Estimation.

The objective of preliminary adversarial patch generation

is to produce adversarial patches that contain unnoticeable ad-

versarial features. To achieve this goal, we first select images

suitable for roadside deployment as the base content image.

Then we embed an ideal error pattern image that can intro-

duce mismatches to vSLAM systems into the content image.

The error pattern is designed based on the feature extraction

mechanism in the VO process of vSLAM systems. To do the

embedding, we design a first-stage generation model to merge

the content image and the error pattern.

In the second-stage adjustment model, dynamic adjustment

is designed to optimize the adversarial pattern using environ-

mental information and maximize the attack’s effectiveness.

Specifically, we found that the effectiveness of the adversar-

ial patch may vary according to different attack scenarios.

Therefore, the attacker should conduct optimization based

on the potential attack scenarios before attacking the target

autonomous vehicle or robot. To do this, the attacker can use

the same hardware to collect frame sequences of the target

attack scenario. Then, the dynamic adjustment module will

optimize the adversarial patterns from the preliminary adver-

sarial patch generation module based on the captured frames.

It will optimize the inner texture to make the adversarial patch

targeted to the designated attack scenario while remaining

benign in other situations.

We also design a motion estimation module to roughly

estimate the potential movement of the target autonomous
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Black Dot White Dot

Figure 5: The ideal error pattern contains repetitive black and

white dots.

vehicle or robot. Using these processes, we can find the best

locations to deploy multiple adversarial patches in the target

attack scenarios.

4.2 Detailed Design

In this section, we first introduce the preliminary adversarial

patch generation module. Then, we show the detailed design

of the dynamic adjustment module. At last, we introduce the

motion estimation technique.

4.2.1 Preliminary Adversarial Patch Generation

The goal of preliminary adversarial patch generation is to

create adversarial patches that can introduce vSLAM errors

without being detected by legitimate users. To achieve this

goal, as shown in Figure 4, we design a first-stage generation

model to efficiently introduce adversarial features into the

content image.

Error Pattern Design. To produce an effective error pat-

tern, the features of the pattern must be both detectable by

vSLAM systems and capable of causing mismatches over

successive frames. Specifically, we generate the error pattern

based on the principle of the FAST (Features from Acceler-

ated Segment Test) [36] key feature selection algorithm which

is commonly used in industry. The algorithm identifies key

features by analyzing brightness differences around specific

pixels, marking a pixel as a corner point if its surrounding

pixels are significantly brighter or darker. As depicted in Fig-

ures 2 and 5, we created an error pattern of alternating black

and white dots, distinct from the background. Because these

dots are so different, the vSLAM system is likely to recog-

nize them as key features. Moreover, due to the similarity

of these dots, vSLAM systems struggle to accurately match

the selected key features across consecutive frames, which

introduces high errors to vSLAM systems.

Content Preservation. To attack the vSLAM system

stealthily, the final adversarial patch should also look benign

to legitimate users. To achieve this goal, we embed the ideal

error pattern on commonly seen objects (e.g., advertisements

on billboards) to hide the error pattern. Specifically, we first

select multiple advertisement posters as foundational content

images that are contextually suitable for roadside use. We

then employ a multi-scale feed-forward neural network as

the first-stage generation model to embed the ideal error pat-

tern into the advertisement posters seamlessly. We also use

a pre-trained VGG-16 model [37] as our fixed backbone to

facilitate the training phase.

To preserve the high-level information (e.g., shape, spatial

relationships, etc.) of the content image in the first-stage gen-

eration model, we introduce a content loss function Lc that

calculates the similarity between the final generated adversar-

ial patch x′ and the original content image x0:

Lc(x
′
,x0) =

N

∑
i=1

[F l
i (x

′)−F l
i (x0)]

2
(1)

In the above equation, F l
i (x) represents the i− th feature map

computed by the backbone network applied to image x at

the l − th convolutional layer and N is the number of feature

maps in layer l. In practice, it has been proven that the higher

layers of the network correspond to high-level information

about the image, while the lower layers affect pixel-level

details [38]. In this step, since our goal is to preserve the

high-level information of the content image so that the final

generated adversarial patch looks benign to the naked eye, we

utilize the inner product of ReLU activations from the fourth

layer (l = 4) of the VGG-16 backbone network to calculate

the loss function Lc.

Adversarial Features Integration. To ensure the features

in the final adversarial patch effectively introduce vSLAM

errors, we introduce a feature loss function L f to optimize the

discrepancy between the generated patch and the ideal error

pattern in the feature space. Here, the feature loss function L f

uses lower layers (l = 1,2) of the VGG-16 model and focuses

on capturing pixel-level information, such as grayscale distri-

bution and fine textures. Specifically, the feature loss function

L f can be calculated as:

L f

(

x′,x f

)

= ωl ∑
l∈LF

∑
i, j

[

Gl
i j

(

x′
)

−Gl
i j (x f )

]2

(2)

Here, x f is the ideal error pattern. LF denotes the selected lay-

ers in the backbone network, and the weight assigned to each

layer is ωl . The Gram matrix, Gl
i j(x), calculated by multiply-

ing the feature maps i and j in layer l, models the correlation

between different feature maps in the network. Finally, we

generate the optimal adversarial patches by using the high-

level loss function Lc and the pixel-level loss function L f .

4.2.2 Dynamic Adjustment

The preliminary adversarial patch generation module pro-

duces optimal adversarial patches that can work effectively in

ideal attack scenarios. However, in real-world scenarios, envi-

ronmental factors (e.g., the texture and color of surrounding

objects, the density of objects on the road, etc.) may also af-

fect the attack results. For example, if the texture distribution

of the target environment deviates too far from the normal

distribution, then the effectiveness of the adversarial patch

may be diminished. To address this challenge, we introduce a

dynamic adjustment module that guides the generation net-

work in finding the optimal adversarial patch according to

real-world environmental factors. The high-level idea of the

dynamic adjustment module is to dynamically adapt the inter-

nal feature distribution of the generated patch in response to

environmental factors.
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Adjustment with Environment Loss. As depicted in Fig-

ure 4, our second-stage adjustment model employs a convolu-

tional neural network (CNN) with attention modules. During

the dynamic adjustment, this model integrates the optimal ad-

versarial patch with frames reflecting environmental factors to

create a sequence of poisoned frames. Then, the poisoned and

original frame sequences are fed into the adjustment model.

This adjustment model aims to maximize the difference be-

tween the poisoned and the original frames in the feature

space according to the attack scenario. To achieve this, we

design an environment loss function Le that (i) measures the

difference between the poisoned and the original frames, and

(ii) measures the feature difference between adjacent poi-

soned frames simultaneously. Formally, the environment loss

function Le can be formulated as:

Le =−ωe ∑
e∈LE

([Me(F(y))−Me(F(x′+ y))]2

−[Fe(x′+ y)−Fe(x′+ yp)]
2)

(3)

where x′ is the optimal adversarial patch, y is the captured

camera frame and yp is the previous frame of y. It’s important

to highlight that y and yp are frames captured by the attacker’s

camera, not the victim’s. They are collected before the attack

to find the most effective adversarial patch for the target sce-

nario. The combination x′+ y represents the poisoned frame.

F(x′ + y) is the output from each layer in the adjustment

model, while M(F(x′+ y)) is the attention map. The set of

the selected layers in the backbone network is represented

by LE , while the weight of each layer is denoted by ωe. By

using the loss function Le, the adjustment model effectively

identifies regions that have dense feature points in a frame.

Enhance Robustness. To enhance the attack’s robustness

to various environmental conditions in a genuine driving en-

vironment, we collect frames of the attack environment at

different times under diverse weather and lighting conditions.

Additionally, to address the differences in trajectory between

the victim and the attacker as they navigate through the at-

tack scenario, we employ perspective warping to adjust the

perspective of the collected frames for further training.

At last, a total loss function Ltotal combines the content loss,

feature loss, and environment loss with weighted parameters,

which can be expressed as:

Ltotal(x0,x f ,x
′) = αLc +βL f + γLe (4)

We optimize our model using the Adam optimizer, setting

an initial learning rate of 0.001 and beta coefficients at 0.9

and 0.999. To combat overfitting, we apply dropout with a

rate of 0.5 and L2 regularization at a lambda value of 0.01.

The training is conducted over 50 epochs with a batch size of

64, utilizing NVIDIA RTX 3080 Ti GPUs.

4.2.3 Motion Estimation

To deploy the adversarial patch and improve the effectiveness

of the AoR attack in real-world scenarios, it is also important

to ensure the victim’s camera can see the adversarial patch.
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Figure 6: The bicycle and deployment models used for adver-

sarial patch deployments.

We use the well-known bicycle model [39] to estimate the

potential motion of the target vehicle or robot. This model, il-

lustrated in Figure 6, defines key parameters: δ for the steering

angle, C for the center of mass with front and rear distances l f

and lr, and ϕ for the angle between the vehicle’s longitudinal

axis and the X-axis. It also includes forces such as lateral

tire forces Fc f and Fcr, air drag Fa, and rolling resistance Fr.

Additionally, it considers the vehicle’s mass m and inertia I.

The detailed bicycle model can be represented as:















































Ẋ = vx cos(ϕ)− vy sin(ϕ)

Ẏ = vx sin(ϕ)+ vy cos(ϕ)

ϕ̇ =
vx

l f + lr
tan(δ)

mv̇x = Fx +mvyϕ̇−2Fc f sin(δ)−Fa −Fr

mv̇y =−mvxϕ̇+2(Fc f cos(δ)+Fcr)

I Èϕ = 2(l f Fc f cos(δ)− lrFcr)

(5)

Typically, the maximum steering angle of a vehicle is less

than 40◦ [40]. An attacker can acquire additional vehicle or

robot parameters by renting or purchasing a model identi-

cal to the target. According to this bicycle model, we can

estimate the motion of the target vehicle or robot and find

the optimal location to deploy the adversarial patches. As

illustrated in Figure 6 (b), the vehicle transitions from P1 to

P2, altering lanes from A to B. The distances involved are d1

(from A to P1), d2 (from P1 to B), and d3 (from B to P2).

Analyzing these distances using the camera’s angle of view,

set around 62.5◦ [41], allows for calculating the maximum

transverse (∆R) and longitudinal (∆Rx) displacements of the

vehicle during the time window T :

∆R =
∫ T

0
(vx sinϕ+ vy cosϕ)dt (6)

Similarly, maximum movement ∆Rx of the victim in X direc-

tion can be estimated as:

∆Rx = d2 +
s

tanθ
=

∫ T

0
(vx cosϕ− vy sinϕ)dt (7)
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Figure 7: The implementation of AoR attack and attack scenarios.

Based on the above equations, the distance between the ad-
versarial patch and the victim should be larger than ∆Rx to

ensure that every patch appears on the victim’s camera.

5 Evaluation

To evaluate the effectiveness of the AoR attack, in this section,

we conduct extensive experiments in real-world scenarios

using a vehicle and a robotic platform. Then, we also study

the effectiveness of the AoR attack using multiple well-known

open-source datasets.

5.1 AoR Attack on the Vehicle Platform
In this subsection, we first introduce the experiment setup.

Then, we show the AoR attack results on the vehicle platform.

5.1.1 Experiment Setup

vSLAM Platform. We built a standard autonomous vehi-

cle testing platform based on a BMW X3, which is shown

in Figure 7 (a). Specifically, we deployed an industry-level

Orbbec Astra Pro camera [42] and implemented the target vS-

LAM algorithms on this platform to conduct localization and

mapping. We also adapted vSLAM algorithms using BMW’s

parameters to handle real-world challenges, including vibra-

tion, slip, and chassis dynamics.

vSLAM Selection. We selected five popular vSLAM algo-

rithms that are widely used in autonomous driving [16±19].

These algorithms include ORB-SLAM2 [22], ORB-SLAM3

[27], DynaSLAM [26], pl-SVO [24], and SVO Pro [25]. These

algorithms deliver excellent performance with high accuracy

and modest hardware resource requirements [43, 44].

Attack Execution. Under the grey-box assumption, the

attacker first used the same vehicle platform as the victim

to capture frames in the attack environment. These frames

were then used to generate the optimal adversarial patch with

our generation framework. The attacker placed the generated

patches on self-made billboards and determined the optimal

locations for deploying these billboards by the roadside using

our proposed motion estimation approach. Once the patch

was deployed at the roadside, victims using the same platform

passed through the attack environment to assess the effec-

tiveness of our attack. We conducted experiments in various

real-world scenarios, including a campus, rural area, ware-

house, city center, and parking garage, as depicted in Figure

7 to fully assess the AoR attack. Each scenario varied from

20m to 80m. We also explored the impact of the patch config-

uration and various environmental conditions, with the results

presented in Section 5.2. To accurately evaluate the perfor-

mance of the AoR attack, we used a Real-Time Kinematics

positioning device [45] to provide ground truth data and cal-

culated the average Root Mean Square Error (RMSE) [46]

within each scenario to assess the vSLAM errors.

5.1.2 The AoR Attack Results

Since the evaluation results show similar trends, we mainly

show the attack results on ORB-SLAM3. The full results are

presented in Appendix A.2. Figure 8 shows the vSLAM errors

introduced by the AoR attack in each scenario. The AoR at-

tack significantly impacts the accuracy of vSLAM systems, as

illustrated in the figures. Under normal conditions, the ORB-

SLAM3 system can conduct relatively accurate localization

and mapping and achieves a maximum localization error of

13.92m in rural areas. However, when the ORB-SLAM3 sys-

tem is under attack, the vSLAM errors increase to 25.40m in

rural areas, which is around two times as high as that of the

no-attack scenario. Moreover, the increase in vSLAM errors

is particularly noticeable in the warehouse scenario, where the

RMSE escalates by 75%. This significant rise is attributed to

the sparse textures and limited distinct features in both rural

and warehouse environments. The camera has to rely more

on features from the adversarial patches, thereby magnifying

the vSLAM errors. It should be noted that the RMSE exceeds

13 meters across all scenarios. Given that road widths are

typically less than 12 feet (3.7m) in real driving environments,

such substantial errors can lead to severe outcomes, such as

causing the vehicle to collide with others or veer off the road

when navigating based on a distorted vSLAM map. These

inaccuracies highlight the potential risks of car accidents in

practical applications. In summary, the AoR attack can in-

troduce high errors to vSLAM systems in various scenarios

and introduce serious security risks to legitimate users.

5.2 Insight and Impact Analysis

To study the insight and impact of the AoR attack, we con-

duct experiments by changing different influencing factors,

including the dynamic adjustment module, the number, size,

orientation, and height of adversarial patches, along with dif-

ferent environmental conditions.

5.2.1 Effectiveness of the Dynamic Adjustment Module

To study the impact of our dynamic adjustment module, we

implement a baseline attack method (named w/o DA). This

method only uses the preliminary adversarial patch module
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Table 1: The vSLAM errors introduced by the AoR attack with various environmental conditions.

Lighting condition Weather Moving objects

low moderate bright sunny light rain heavy rain < 5 5 - 10 > 10

ORB-SLAM2 9.25 / 14.31 3.22 / X 3.06 / 12.20 2.59 / 10.27 14.10 / 19.82 X / X 5.70 / 17.36 9.24 / 16.33 10.74 / 12.05

DynaSLAM 8.16 / 15.33 4.48 / 16.30 4.50 / 15.59 3.63 / 11.50 14.11 / X X / X 3.14 / 15.20 6.29 / 13.85 7.28 / 10.00

ORB-SLAM3 9.34 / 15.66 3.92 / 14.40 3.45 / 14.75 2.59 / 9.40 10.82 / 14.20 9.10 / X 3.26 / 16.06 10.04 / 14.22 13.20 / 14.05

pl-SVO 10.63 / 15.80 13.92 / 20.10 15.49 / X 9.32 / 16.28 14.01 / X X / X 12.84 / 19.66 12.65 / 18.53 20.16 / 23.99

SVO Pro 18.89 / 21.51 10.55 / 20.23 10.23 / 20.56 l4.20 / 19.57 20.90 / 27.35 22.19 / X 8.22 / 15.29 9.10 / 13.96 18.73 / X

* For each A/B, A is the vSLAM error without the attack and B with the attack. Bold values highlight the largest change (B/A) per column.
* X means the track is lost.

to produce the adversarial patches without considering the

real-world attack scenarios. We show the attack results in the

rural area, warehouse, and parking garage in Figure 9.

As we can observe from the figure, the baseline attack

method can only slightly affect the vSLAM results. This is

because environmental factors will affect the VO process

in vSLAM systems. As a result, the camera may not select

the features on the adversarial pattern. On the other hand,

after applying the dynamic adjustment (DA), the performance

of the baseline method improved on average by 60%. This

improvement is because the DA module adjusts adversarial

patches dynamically based on environmental conditions. In

summary, the dynamic adjustment module can significantly

improve the effectiveness of the AoR attack.

5.2.2 Impact of the Patch Numbers and Sizes

In our experiments, we also explore the effects of varying

the number and size of adversarial patches. Patch sizes are

defined as Small (20×20 inches), Medium (30×30 inches),

and Large (40×40 inches). We varied the number of patches

placed by the roadside from 1 to 4, positioning all patches on

the same side of the road.

In Figure 10, we show the vSLAM errors of ORB-SLAM3

under each setting. Notably, medium and large patches yield

high errors, while the errors are significantly lower with small

patches. This is because the smaller patches occupy a smaller

area in the victim’s camera and limited pixels in the camera

can be used to render the adversarial patches. As a result,

fewer features are selected from the patches, reducing the

attack’s effectiveness. Therefore, attackers should ensure that

patch sizes are large enough for real-world effectiveness. We

believe that this is a reasonable requirement since a standard

advertising billboard is much larger than 20×20 inches [47].

We also notice that the vSLAM errors increase rapidly as the

number of adversarial patches increases in most cases. This

is because more patches will introduce severe mismatches

across consecutive frames. In this case, the vehicle keeps

capturing the poisoned frames, which increases the vSLAM

errors. Interestingly, even if small patches collectively cover

the same area as medium patches, their impact is less signifi-

cant. This reduced effectiveness arises because features on a

larger patch are more likely to be selected and mismatched

when they are concentrated together.

5.2.3 Impact of the Patch Directions and Heights

In Figure 11, we study the effectiveness of both the patch di-

rection and height. Throughout our experiments, adversarial

patches of varying heights were positioned in distinct direc-

tions relative to the target vehicle: on its left, on its right,

and directly in front of it. As shown in this figure, we can

observe that the optimal heights of the adversarial patch are

from 90cm to 150cm. When the height is reduced to 60cm

or increased to 150cm, the camera cannot fully capture the

adversarial patch. As a result, the vSLAM errors introduced

by the AoR are reduced. Counterintuitively, we also notice

that the AoR attack introduces higher vSLAM errors when

the adversarial patches are not deployed in front of the tar-

get vehicle. This is because the features along the roadside

change faster than the features in the camera’s center of view

as the vehicle moves on the road. This finding demonstrates
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Figure 12: AoR attack on the robotic platform in indoor scenarios.

the effectiveness of the AoR attack. In summary, the attacker

can easily achieve high AoR attack effectiveness by simply

deploying the adversarial patches by the roadside.

5.2.4 Robustness to Environmental Conditions

To evaluate the practicality of the AoR attack, we conduct ex-

periments under various environmental conditions, including

different lighting and weather conditions, as well as the pres-

ence of moving objects. To assess the impact under various

lighting conditions, we performed the attack in low (<1000

lux), moderate (1000 to 10,000 lux), and bright light (>10,000

lux) environments. Regarding weather conditions, we evalu-

ated the effects during sunny, light rain, and heavy rain sce-

narios. Additionally, we examined the influence of moving

objects on the AoR attack by considering three different levels

of moving object density: fewer than 5, between 5 and 10, and

more than 10. In Table 1 of the evaluation results, we observe

that extreme conditions such as heavy rain and a large number

of moving objects may degrade the performance of the attack

due to reduced visibility of the patch. However, vSLAM er-

rors still increase significantly compared to scenarios with

no attack, demonstrating the AoR attack’s robustness across

various environmental conditions.

5.3 AoR Attack on the Robotic Platform
To extensively study the effectiveness of the AoR attack, we

also evaluate a robotic platform in indoor scenarios.

5.3.1 Experiment Setup

vSLAM Platform and vSLAM Selection. To evaluate the

effectiveness of the AoR Attack on a robotic platform, we

built a robotic navigation platform based on the ROSMAS-

TER R2 [48] for indoor scenarios. We implemented vSLAM

algorithms including ORB-SLAM2 [22], ORB-SLAM3 [27],

DynaSLAM [26], pl-SVO [24], and SVO Pro [25] on the

platform for evaluation since they are widely used in robot

navigation [20, 21].

Attack Execution. To perform the AoR attack on the

robotic platform, the attacker first used the same type of

robotic platform as the victim to collect frames within the at-

tack scenario under the grey-box assumption. Following this,

the attacker created adversarial patches and deployed them in

the environment. The victim robot then navigated through this

setup to assess the effectiveness of the attack. We conducted

experiments in various real-world scenarios, including a corri-

dor, office, warehouse, library, classroom, and shopping mall,

Table 2: The vSLAM errors when the robotic platform is under

the AoR attack in indoor scenarios.

Scenarios Corridor Office Library Classroom Mall

ORB-SLAM2 2.15 / X 1.42 / 3.78 2.93 / 7.20 1.90 / 4.33 2.79 / 5.20

DynaSLAM 1.98 / 5.77 1.60 / 4.08 2.34 / 6.27 1.87 / X 2.53 / 5.59

ORB-SLAM3 1.52 / 7.02 1.37 / 3.26 2.59 / 5.81 1.46 / 5.96 2.19 / 4.77

pl-SVO 5.50 / X 5.31 / 9.88 7.29 / 11.30 4.84 / 7.50 6.92 / 12.18

SVO Pro 5.39 / 9.16 4.07 / 7.59 7. 58 / 10.05 4.29 / 6. 55 7.03 / 14.11

* For each A/B, A is the vSLAM error without the attack and B with the attack.

Bold values highlight the largest change (B/A) per column.
* X means the track is lost under the AoR attack.

as depicted in Figure 12 to fully assess the AoR attack. Each

scenario varies from 5m to 20m. To quantitatively assess the

attack, we utilized an Ultra-Wideband (UWB) module to pro-

vide accurate indoor positioning as ground truth to measure

the Root Mean Square Error (RMSE).

Safety-Critical Scenario. For safety reasons, we demon-

strate the specific safety-critical consequences of the AoR

attack using a robotic platform in a 2m wide corridor, as de-

picted in Figure 14. Specifically, the attacker placed a 12×12

inch adversarial patch on a trash bin to attack the robot. We

set a destination for the robotic platform 8.5m away from

the starting location. The victim utilized the ORB-SLAM3

algorithm for indoor localization and mapping and navigated

based on the vSLAM results to see the impact of the attack.

To establish a baseline for the robot’s performance without

attack, we also use the robotic platform for navigation in the

same environment without attack.

5.3.2 The AoR Attack Results

Table 2 shows the significant increase in vSLAM errors when

the robotic platform is under the AoR attack in indoor scenar-

ios. This is because the adversarial patch can continuously

introduce mismatches and errors to the vSLAM systems. For

example, in the corridor scenario, the RMSE of ORB-SLAM3

reaches 7.02 under the AoR attack, which is more than 4.62

times higher than that of the no-attack scenario (1.52). Fig-

ure 13 illustrates the corresponding localization and mapping

results in this scenario. As we can see from this figure, the

vSLAM system accurately locates and maps the environment

without attack. When the vSLAM system is under attack, it

suffers from high localization errors. As a result, the vSLAM

system believes that it is at the same location in the corridor

due to the mismatches introduced by the adversarial patches.
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Figure 14: The safety-critical scenario experiments.

Figure 15 shows the corresponding translation errors when

ORB-SLAM3 is under the AoR attack. This error defines

the distances between the generated vSLAM trajectory and

the ground truth driving trajectory. As seen in Figure 15 (a),

the maximum translation error is as high as 19.27m. Given

that the width of the corridor is less than 3m, the vSLAM

system believes that the robot is actually outside the building.

Figure 15 (b) illustrates the variation in translation errors,

showing that while the Absolute Pose Error (APE) normally

stays below 5m without an attack, it can exceed 20m in severe

cases under attack.

Figure 14 illustrates the severe safety consequences of an

AoR attack on a victim robot. In Figure 14 (b), the robot

navigates safely to its destination in a straight line. However,

as shown in Figure 14 (c), the robot believes the corridor

ahead is curved after it encounters the adversarial patch on

its road to the destination. Consequently, it started to turn

to the wall according to this altered vSLAM map instead of

moving straight. The vSLAM trajectory (green line) intersects

with the corridor wall (grey), indicating a collision. In real-

world applications, a delivery robot relying on such a distorted

vSLAM map could be diverted to incorrect destinations and

become trapped. In summary, the AoR attack can effectively

attack vSLAM systems on robotic platforms in various indoor

scenarios and introduce serious security risks.

5.4 AoR Attack on Public Datasets
In this section, we conduct experiments to study the perfor-

mance of the AoR attack using well-known public datasets,
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Figure 15: Translation errors introduced by AoR attack in the

corridor scenario.

including KITTI [33], RobotCar [49], 4Seasons [50], and

Complex Urban [51].

5.4.1 Experiment Setup

The target public datasets, collected in real-world scenarios,

feature diverse environmental conditions including lighting,

weather, and moving objects, which reflect the complexity and

reality of actual driving environments. The attacker carefully

selected frames containing the target scenario to generate op-

timal adversarial patches. These patches were then embedded

into the original benign frames at suitable locations, such as

the roadside, to evaluate the effectiveness of the real-world

attack. Specifically, we also performed an affine transforma-

tion on the patches during embedding to ensure the results

accurately reflect genuine driving environments. The output

size of each patch is set to 80×80 pixels. The average length

of the selected frames ranges from 20 to 40, depending on the

attack scenarios.

5.4.2 The AoR Attack Results

Table 3 shows the vSLAM errors introduced by the AoR At-

tack in city, rural areas, and parking garage scenarios. As we

can see, the errors of all five vSLAM systems become much

larger under the AoR attack. Moreover, all these vSLAM sys-

tems suffer track loss during the experiments, which means

the autonomous vehicle or the robot cannot conduct localiza-

tion and mapping at all in these scenarios. Figure 16 shows

that the absolute pose error (APE) for DynaSLAM on the

KITTI dataset Seq 07 is nearly 10 times higher than that of

the no-attack scenario. This experiment result demonstrates

the effectiveness of the AoR attack in city scenarios.

We also notice the surprisingly high vSLAM errors in rural

areas and parking garages. For example, the vSLAM error

for ORB-SLAM2 is 26.03m (4Seasons-Countryside), which

is around 5 times higher than that of the no-attack scenario.

Figure 17 shows the corresponding calculated vSLAM trajec-

tory. As we can see from Figure 17 (b), the vSLAM system

believes that the vehicle stops at a distance of 35m. This is

because the rural area has sparse textures and fewer good

features. Therefore, the vSLAM system has to select the fea-

tures from the adversarial patch, which introduces significant
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Table 3: The vSLAM errors introduced by the AoR attack on public datasets.

Scenarios City Rural Area Parking Garage

Datasets KITTI RobotCar 4Seasons Complex Urban 4Seasons

Sequences Seq 07 2014-05-19 Countryside Urban28 parking_garage_1_train

ORB-SLAM2 3.31 / 20.39 12.77 / X 5.27 / 26.03 10.73 / 34.94 3.78 / X

DynaSLAM 3.25 / 23.20 9.04 / 19.73 5.63 / 17.29 9.28 / 28.35 1.58 / 9.20

ORB-SLAM3 3.37 / 14.50 8.11 / 15.24 3.22 / 11.59 9.30 / 31.05 1.60 / 8.37

pl-SVO 17.62 / 23.21 15.60 / 22.29 10.17 / X 16.47 / 29.30 14.75 / X

SVO Pro 14.77 / 21.82 18.73 / X 12.49 / X 15.90 / 25.15 10.03 / X

* For each A/B, A is the vSLAM error without the attack and B with the attack. Bold values highlight the largest change (B/A) per column.
* X means the track is lost under the AoR attack.

 0      20     40     60     80    100

 15 

20

10

AP
E 

(m
)

t (s)

 0 

5 

APE (m)
rmse

median
mean

std

(a) Absolute pose error without

the AoR attack.

 0      20     40      60     80    100

 30 

40

 20AP
E 

(m
)

t (s)

 0 

10 

APE (m)
rmse

median
mean

std

(b) Absolute pose error under the

AoR attack.

Figure 16: AoR attack results on the KITTI dataset (Seq 07).

The attack starts at 10s and ends at 50s.

SLAM errors. In summary, the AoR attack can effectively

attack the vSLAM systems in various complex scenarios.

6 Defending Against the AoR Attack

Due to the severe security issues introduced by the AoR attack,

we introduce a novel defense module to secure the vSLAM

systems. This section first discusses the potential challenges

in designing the defense module. Then, we introduce the

detailed design.

6.1 Challenges in Defense

Since the vSLAM systems operate in dynamic scenarios, tradi-

tional defense strategies that are designed for static situations,

such as model and input analysis approaches [52, 53], cannot

work effectively to secure the vSLAM systems. Moreover,

since the AoR attack uses commonly seen objects to attack

the vSLAM systems, it is very difficult for common anomaly

detection [54, 55] or contextual analysis [56] approaches to

detect adversarial patches. In addition, although recent ad-

vances in deep learning have shown inspiring results in most

vision-based tasks, the substantial computational resources

and extensive training time required make them impractical

for vSLAM systems. Furthermore, since the backend opti-

mization methods in vSLAM systems barely consider the

reliability of the features extracted during the VO process,

the optimization direction can be easily misled by the AoR

attack. Therefore, a suitable defense module should satisfy

the following requirements: (i) high attack detection effective-

ness, (ii) low computational overhead, and (iii) improving the

Accurate vSLAM Trajectory

20

 0           10         20          30         40 (m)
 0 

10

30

(a) vSLAM results without the

AoR attack.

?
Wrong vSLAM Trajectory

20

 0           10         20          30         40 (m)
 0 

10

30

(b) vSLAM results under the AoR

attack.

Figure 17: The AoR attack on the KITTI dataset (Seq 03).

robustness of the backend in vSLAM systems.

6.2 Design of the Defense Module

As shown in Figure 18, to defend against the AoR attack, we

introduce a lightweight defense module that can effectively

detect the adversarial features and improve the robustness of

the vSLAM systems. This module mainly consists of three

key components: Texture Extraction, Anomaly Detection,

and Cross-Frame Optimization.

The texture extraction aims to extract the texture of cap-

tured frames using the Weber Local Descriptor (WLD) [57].

By doing this, we can make the texture of the adversarial

patch noticeable in the whole frame. Then, to detect abnor-

mal textures, the anomaly detection component uses a varia-

tional auto-encoder to identify the position of the abnormal

texture in a frame sequence. To enhance the robustness of

vSLAM systems against potential attacks, we’ve developed a

cross-frame optimization component that utilizes the reliabil-

ity factors of features across multiple frames. Finally, if the

AoR attack is detected, the defense module will send alerts to

legitimate users. In the following sections, we will introduce

the details of each component in our defense module.

6.2.1 Texture Extraction

Since the adversarial patches generated by the AoR attack are

natural and unnoticeable in real-world scenarios, it is hard to

detect such patches directly from the captured frame sequence

using traditional vision-based detection approaches. To ad-

dress this challenge, the key insight we found is that although

adversarial patches on common objects (e.g., billboards and

walls) are hard to detect, they show notably denser internal
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Figure 18: The overall architecture of our defense module.

textures than their surrounding common objects. To exploit

this characteristic, we use Weber’s Local Descriptor (WLD),

which is designed to enhance texture analysis. WLD works

by transforming the captured frames into a texture space,

highlighting the denser textures of adversarial patches. This

transformation is achieved by calculating the relative intensity

difference between a pixel and its neighbors in horizontal and

vertical directions, which helps to emphasize textural features.

The texture distribution can be formulated as:

ξ(xc) = arctan(
P−1

∑
i=0

xi − xc

xc

) (8)

Φ(xc) = arctan(
DV

DH

) (9)

Here, xc represents the intensity of the central pixel, while

xi refers to the intensity of a neighboring pixel, with P indi-

cating the total number of neighbors. The variables DV and

DH are defined as the vertical and horizontal intensity differ-

ences between the central pixel and its neighbors, respectively.

To enhance efficiency and reduce complexity, the intensity

difference is calculated using a sliding window with adap-

tive step sizes, focusing on probable regions like roadsides

and buildings. This selective approach streamlines the texture

extraction process, making it more manageable and effective.

6.2.2 Anomaly Detection

Since the adversarial patch becomes noticeable in texture

space compared to its neighboring regions, the question now

is: how can the abnormal region in the texture space be de-

tected? To answer this question, we utilize a lightweight vari-

ational auto-encoder (VAE) [58] model to identify anomalies.

The goal is to enable the model to find the abnormal regions

that significantly deviate from the normal distribution. During

detection, the VAE encoder first transforms the input texture

images into latent variables. Then, based on the differences be-

tween the input and the output, the model can predict whether

the current scenario contains the adversarial patch. Specifi-

cally, the loss function Loss of the VAE model consists of the

reconstruction error and a regularization parameter:

Loss =
α

m

m

∑
i=1

∥x− x̂∥2 +
β

2
·Reg(σ,µ) (10)

In this equation, x and x̂ are the ground truth and the prediction

value, respectively. m is the number of frames. The first term

is the reconstruction error, while the second term, Reg, is the

regularization parameter. α and β are the weight factors for

each term. Formally, Reg can be calculated as:

Reg(σ,µ) =−
n

∑
i=1

(

1+ log
(

σ2
i

)

−µ2
i −σ2

i

)

(11)

Here µi is the mean of the reconstructed output for feature i,

and σi is the standard deviation of the reconstructed output.

6.2.3 Robust Optimization

An important reason why vSLAM systems do not work under

the AoR attack is that adversarial features introduce huge er-

rors during the pose optimization in the backend. Specifically,

the features in the adversarial patches are carefully designed

to follow the feature extraction algorithms in the VO process

of vSLAM systems. As the camera captures frames when the

vehicle or robot moves on the road, the adversarial features are

likely to be selected as key points for pose optimization. To

improve the robustness of the vSLAM system, we introduce

a robust cross-frame error function E ′ to reduce the effects

of adversarial features during optimization in the backend.

Formally, we define a reliability factor r j to measure the re-

liability of the feature points in each frame and its value is

positively correlated with the density of surrounding features.

Then, the cross-frame error function E ′ can be formulated as:

E ′ = min
Ri,ti,X j

N

∑
i=1

M

∑
j=1

(

r j

µ

)2

log

(

1+

(

µ

r j

)2

E(x, p)

)

(12)

Here µ is the weighted coefficient determined by the defender.

N is the set of captured frames and M is the set of map points.

E(x, p) is the re-projection error that can be calculated as:

E(x, p) =∥ x ji − p(X j,Ri, ti,Ki)∥
2

(13)

Here X j denotes the jth map point, and x ji represents its po-

sition in camera coordinates on the ith frame. The function

p projects the map point from world coordinates to camera

coordinates. The rotation matrix R and translation vector t de-

fine the pose for each frame, while K is the camera’s intrinsic

matrix, typically available from the manufacturer’s website.

In our approach, the weight of feature points with low relia-

bility is reduced during optimization, enhancing the influence

of feature points from sparser regions (clean features). This

adjustment makes the vSLAM system depend more on clean

features, increasing its robustness against the AoR attack.
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(b) vSLAM results using our de-

fense module.

Figure 19: An example of the effectiveness of our defense

module on autonomous vehicle testing platform in the city

center scenario.

6.3 Experiment Setup
To extensively evaluate the effectiveness of our defense mod-

ule, we conduct experiments in the same real-world scenarios

depicted in Figure 7 and on famous public datasets includ-

ing KITTI [33], RobotCar [49], 4Seasons [50], and Com-

plex Urban [51]. During the experiments, we integrated our

defense module into five commonly used vSLAM systems:

ORB-SLAM2 [22], ORB-SLAM3 [27], DynaSLAM [26], pl-

SVO [24], and SVO Pro [25]. In addition, we also assessed

its performance in benign cases to ensure that the module

does not degrade system performance. Specifically, we eval-

uated the precision of attack detection across 100 scenarios,

comprising 38 with attacks and 62 without attacks. These

scenarios are all real-world driving environments containing

various environmental conditions, legitimate billboards, and

moving pedestrians. Tables 4 and 5 summarize the defense

results in real-world scenarios. The results on public datasets

are presented in Appendix A.3.

6.4 Experiment Results
Figure 19 demonstrates the performance of our defense mod-

ule in a city center scenario. In Figure 19 (a), when the au-

tonomous vehicle makes a left turn, the vSLAM trajectory is

missing due to the AoR attack. After applying our defense

module, as shown in Figure 19 (b), the vSLAM system accu-

rately conducts localization and mapping.

Figures 20 and 21 show the effectiveness of the defense

module by comparing the RMSE on ORB-SLAM3. We can

see that our defense module significantly reduces the vSLAM

errors when vSLAM systems are under attack. For example,

as shown in Figure 21, when we apply our defense module to

the Complex Urban dataset, the vSLAM errors are reduced

by more than three times compared to the attack scenario.

Table 4 demonstrates that our defense module significantly

reduces vSLAM errors in real-world scenarios. More impor-

tantly, by using our defense module, the vSLAM systems

never face the problem of lost tracking, demonstrating our

defense module’s effectiveness. Table 5 shows the detection

results of our defense module in real-world scenarios. Our

system correctly raises alarms for all 36 potential threats, re-

sulting in no false alarms. This indicates that our defense
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Figure 20: vSLAM errors in

real-world scenarios.

KITTI

RobotCar

Complex 

Urban4Seasons

RM
SE

 (m
)

5
10
15
20
25

35

0

30

Figure 21: vSLAM errors on

public datasets.

Table 4: The effectiveness of the defense module in real-world

scenarios.

Scenarios City Center Parking Garage Corridor Library

ORB-SLAM2 X / 5.21 7.23 / 4.24 X / 3.10 5.26 / 3.52

DynaSLAM 10.95 / 5.31 7.45 / 4.21 5.77 / 3.95 6.27 / 2.59

ORB-SLAM3 17.37 / 10.24 13.30 / 7.02 7.64 / 4.77 10.31 / 5.79

pl-SVO 8.22 / 5.20 4.09 / 3.13 7.02 / 4.18 5.81 / 2.56

SVO Pro X / 12.14 19.70 / 10.58 9.16 / 8.60 10.05 / 9.32

* For each C/D, C is the vSLAM error under attack, and D is with our defense

module. Bold values highlight the largest change (C/D) per column.
* X means the track is lost under the AoR attack.

module does not impact vSLAM performance when there is

no attack, as it only switches to the robust mode when attacks

are detected. In summary, our defense module can (i) effec-

tively detect the AoR attack and reduce the vSLAM errors, (ii)

enhance the security of the vSLAM system, and (iii) enable

reliable localization and mapping under the AoR attack.

Table 5: Robustness of the defense strategy.

Detection Results

Alarm No Alarm

Attack TP = 36 FN = 2

No Attack FP = 0 TN = 62

7 Discussion

7.1 Ethics and Safety Considerations

Our research does not target specific commercial products;

the BMW X3 is used solely as an example within our vehicle-

based vSLAM system testing setup. Furthermore, all safety-

critical experiments are conducted in controlled environments,

enabling human operators to intervene at any time to prevent

harm to users or public systems. For instance, a human driver

can immediately take over the vehicle, and we can remotely

take control of the wheeled robot, equipped with a remote

controller, to mitigate potential risks. We found that the AoR

attack could introduce significant errors into vSLAM systems,

misleading those who rely on vSLAM maps for navigation.

Given the crucial role of vSLAM algorithms in autonomous

driving [16±19] and robot navigation [20, 21], their vulner-

abilities pose significant threats. We hope our findings will

highlight these security issues and enhance the robustness of
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vSLAM systems.

7.2 Limitations and Future Work
One limitation of our attack is that position changes caused by

the attack may diminish its effectiveness. During the attack,

its position changes as the vehicle or robot navigates using

the distorted vSLAM map. These changes make the attack-

influenced frames somewhat different from those used for

patch generation, potentially reducing the attack’s effective-

ness. However, our design ensures that the adversarial patch

remains effective as long as it is visible to the camera, even

if the patch’s position in the frames shifts slightly. When the

position changes are significant, the victim has likely already

been diverted from the driving area, indicating a successful

attack. In future work, we will explore the impact of such

position changes during the attack more deeply and try to

incorporate them during patch generation to realize more

accurate attacks.

Additionally, our defense strategy could potentially be by-

passed by attackers. Attackers might develop new adversar-

ial patches specifically designed to evade the detection tech-

niques currently used by our defense module. For instance,

they could use machine learning models to generate patches

that more closely mimic legitimate environmental textures.

However, our defense strategy can also continually learn from

new types of attacks and automatically adjust the defense

mechanisms. This adaptive security approach is essential for

recognizing and addressing changing threats over time.

8 Related Work

Simultaneous Localization and Mapping (SLAM) plays

a pivotal role in enabling robots and autonomous vehicles

to understand their current locations and make navigation

decisions. Among existing solutions [10±15, 59±62], camera-

based solutions (Visual SLAM) have been adopted for many

real-world applications [16±21] due to their lightweight na-

ture, cost-effectiveness, and ability to provide richer environ-

mental representations [60].

One of the most widely recognized Visual SLAM(vSLAM)

systems is ORB-SLAM2 [22], which provides a robust and

efficient method with various camera setups. To enhance the

ability to handle dynamic elements, DynaSLAM [26] effec-

tively detects moving objects and filters them out to build

a reliable map. Building upon its predecessors, the ORB-

SLAM3 [27] system utilizes a multi-map data association

technique to achieve highly accurate and robust real-time

localization and mapping. To integrate the benefits of feature-

based and direct method-based vSLAM systems, SVO [23]

introduced a novel VO method enhancing vSLAM perfor-

mance. Building on this, pl-SVO [24] utilizes point and line

features for a more robust vSLAM system. SVO Pro [25] up-

grades SVO by incorporating a sliding window backend and

loop closure technique, further enhancing mapping accuracy.

However, existing works mainly focus on improving the

performance of the vSLAM system, while little work has fo-

cused on the vulnerability of the vSLAM systems. Several

studies [28, 29] attack certain components of the vSLAM

system using highly noticeable images for human eyes. In

addition, the ICSL attack [30] introduces an IR light-based

attack approach to attack the SLAM system. However, their

work requires customized hardware and can only attack ORB-

SLAM2 in an indoor parking lot at night. Importantly, these

studies often do not investigate the underlying reasons and

conditions for their success, leading to uncertainty about the

effectiveness of these attacks. Different from their works, in

this paper, we are the first to conduct an in-depth analysis

of the unique vulnerabilities within vSLAM systems and to

strategically exploit these vulnerabilities to implement tar-

geted end-to-end attacks. Specifically, we propose an AoR

attack, which can effectively attack multiple commonly used

vSLAM systems in various real-world scenarios. Furthermore,

we also designed a defense module to protect vSLAM systems

from the harmful impact of the AoR attack.

Attacks on Image Recognition Systems. There are exten-

sive works that explored the security issues of camera-based

systems on autonomous vehicles [63±67]. Using adversarial

patches can harm the image recognition system [68±70] on

various tasks. For example, GhostImage [68] exploits lens

flare effects and auto-exposure control to project adversarial

patterns into camera-based image classification systems and

causes misclassification. TPatch [69] introduces a physical

adversarial patch that uses specific signals to execute hiding,

creating, and altering attacks on the vision-based perception

module of a targeted autonomous vehicle. In contrast to pre-

vious work, our goal is to disrupt the crucial processes of

real-time localization and mapping in vSLAM rather than

simply causing image misclassification. Additionally, our at-

tack is effective across sequential frames within dynamic

environments and leads to serious safety issues. Thus, these

previous works are not applicable to attack vSLAM.

9 Conclusion

In this paper, we propose the first work that in-depth inves-

tigates security issues in vSLAM systems. Specifically, we

introduce the AoR attack, which can effectively attack com-

monly used vSLAM systems in autonomous vehicles and

robots. Our attack has the following advantages: (i) it can

easily be implemented in various real-world scenarios; (ii) no

need for expensive hardware, and (iii) it can introduce sig-

nificant errors to vSLAM systems without being detected by

legitimate users. Moreover, given the severe harmful impacts

of the attack, we also present a lightweight defense module

to counter the AoR attack. We believe that the attack method

and defense strategy outlined in this paper will contribute to

the development of more secure vSLAM systems.
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A Appendix

A.1 Effect of Random Adversarial Features
Since existing vSLAM systems leverage various optimization

techniques (e.g., Least-Square algorithm [31], RANSAC [32],

etc.) to reduce potential errors introduced by the features in

a frame, simply adding random features in the environment

won’t effectively affect the performance of the system. To

show the impact of random features, we tested ORB-SLAM2
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Figure 22: The effect of random adversarial features.

Table 6: The vSLAM errors when the vehicle platform is under the AoR attack.

Scenarios Campus Rural Area Warehouse City Center Garage

ORB-SLAM2 13.54 / 18.04 12.14 / 20.30 14.95 / X 8.69 / 18.93 7.20 / 16.15

DynaSLAM 11.85 / 20.36 13.03 / X 14.35 / 20.05 8.34 / 20.17 8.10 / 16.33

ORB-SLAM3 10.17 / 14.40 13.92 / 25.40 11.51 / 20.19 9.92 / 14.22 7.55 / 13.09

pl-SVO 16.39 / 22.25 15.36 / 22.92 12.96 / 23.37 15.39 / X 13.32 / 21.51

SVO Pro 15.28 / 20.30 12.03 / 25.64 16.84 / 27.97 15.60 / 22.18 10.33 / 19.70

* For each A/B, A is the vSLAM error without the attack and B with the attack. Bold values highlight the largest change (B/A) per column.
* X means the track is lost under the AoR attack.

in real-world driving environments by altering grayscale val-

ues of randomly selected pixels in consecutive frames. How-

ever, as shown in Figure 22 (a), these injected features were

rarely chosen as key features, and mapping results remained

unaffected (Figure 22 (b)).

A.2 AoR Attack Results on Vehicle Platform
Table 6 shows the impact of the AoR attack on vSLAM sys-

tems in various environments. The RMSE (Root Mean Square

Error) consistently increases under attack. For example, in the

city center, DynaSLAM’s RMSE rises from 8.34m to 20.17m,

indicating significant navigational disruptions due to the AoR

attack. The provided data in Table 6 not only quantifies the

severity of AoR attacks across different scenarios but can also

serve as a benchmark for evaluating the robustness of various

vSLAM systems under adversarial conditions.

A.3 Defense Effectiveness on Public Datasets
Table 7 shows that our defense module significantly reduces

vSLAM errors across all four datasets. Figure 23 shows an

?
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(a) vSLAM results under the

AoR attack.
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(b) vSLAM results using our de-

fense module.

Figure 23: An example of the effectiveness of our defense

module on the 4Seasons dataset.

example of using our defense module on 4Seasons dataset.

During an AoR attack, as the victim vehicle makes a left

turn (Figure 23 (a)), the vSLAM map inaccurately shows it

still facing forward with a slight position change, potentially

leading to accidents. After implementing our defense, the

vSLAM map is corrected and reliably accurate for navigation,

which confirms the effectiveness of our defense module.

Table 7: The effectiveness of our defense module on public datasets.

Scenarios City Rural Area Parking Garage

Datasets KITTI RobotCar 4Seasons Complex Urban 4Seasons

Sequences Seq 07 2014-05-19 Countryside Urban28 parking_garage_1_train

ORB-SLAM2 20.39 / 3.36 X / 15.00 26.03 / 5.25 34.94 / 12.61 X / 3.70

DynaSLAM 23.20 / 3.07 19.73 / 10.94 17.29 / 5.99 28.35 / 8.20 9.20 / 1.60

ORB-SLAM3 14.50 / 4.15 15.24 / 8.59 11.59 / 3.67 31.05 / 12.89 8.37 / 2.02

pl-SVO 23.21 / 19.15 22.29 / 13.08 X / 12.55 29.30 / 15.26 X / 10.02

SVO Pro 21.82 / 15.26 X / 16.90 X / 9.13 25.15 / 17.32 X / 8.07

* For each C/D, C is the vSLAM error under attack, and D is with our defense. Bold values indicate the largest change per column.
* X means the track is lost under the AoR attack.
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